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Abstract

The problem addressed in this paper is the intedra¢hicle-crew-rostering problem
(VCRP) aiming to define the schedules for the bwsesthe rosters for the drivers of a
public transit company. The VCRP is described byi-abjective mixed binary linear
programming model with one objective function aggteng vehicle and crew scheduling
costs and the other the rostering features. The R/@Rsolved by a heuristic approach
based on Benders decomposition where the mastéiepnois partitioned into daily
integrated vehicle-crew scheduling problems andstheproblem is a rostering problem.

Computational experience with data from a bus caompa Lisbon shows the ability
of the decomposition approach for producing a wared potentially efficient solutions

for the VCRP within low computing times.

Keywords: integrated vehicle-crew-rostering problem, Bendelscomposition,

multi-objective optimization.

1. Introduction



This paper focuses on the operational planninggbésa public transit company that
operates buses in an urban area. The problem addresms to assign drivers of a
company to vehicles and vehicles to a set of pfme timetabled trips that cover
passenger transport demand on a specific areaygdarplanning horizon. The objective
is to minimize total costs and maximize drivergfprences while satisfying passengers
demand and driver constraints specified by genkgislation, labor contracts and
specific company rules. Due to the complexity oé tborresponding combinatorial
optimization problem, it is usually tackled on asential basis beginning with vehicle
scheduling, followed by crew scheduling and, lgstlyiver rostering. Given a set of
timetabled trips, vehicle scheduling produces tieo$ daily schedules for the vehicles
that perform all trips. The crew scheduling defities daily crew duties that cover the
respective vehicle schedules. Finally, for the piag horizon, crew duties are assigned
to the company’s drivers leading to a roster thasthcomply with rostering constraints.
There is a high dependency among these three pnsblgence following this sequential
approach one cannot guarantee that the final résulte best solution to the overall
problem.

Despite its computational burden, the integratibalbor some of these problems is
expected to outperform the corresponding sequesigtoach. Efficient algorithms have
been developed to solve the integrated vehicle-gewveduling problem (Borndorfer et
al. (2006), Huisman et al. (2005), Hollis et aD@8), Mesquita and Paias (2008)). Crew-
rostering integration has been devised by Capraral.e(2001), Ernst et al. (2001),
Freling et al. (2004) and Lee and Chen (2003) althin other transport contexts
(railway and air crews) and by Chu (2007) for artpstaff. In Mesquita et al. (2008)
advantages of integrating the three problems fdripuransit companies were pointed
out. For an overview of problems arising in thengport domain, see Barnhart and
Laporte (2007).

The problem addressed in this paper is the intedra¢hicle-crew-rostering problem
(VCRP). The VCRP solution consists of a set ofydaghicle schedules, covering all
timetabled trips, and a roster defining the setrefv duties for each driver, covering all
vehicle schedules of the planning horizon. Natyrahe VCRP objectives possess a

conflicting nature. In fact, whereas the minimirati of vehicle and driver costs



represents the interests of the management, othectwves, like evenly distributing
overtime among drivers and fulfilling as much asgble the preferences of drivers for
specific crew duties, arise from the drivers pties. These non-reconcilable interests at
the operational planning phase suggest a multietibgemathematical model for VCRP.

In this paper, the authors developed an integrapguioach to solve the VCRP based
on Benders decomposition. The method iterates lagivilee solution of an integrated
vehicle-crew scheduling problem and the solutioa adstering problem.

Benders decomposition methods have already begroged although within airline
planning by Cordeau et al. (2001) and Mercier et(2005) for the integrated aircraft
routing and crew scheduling problem and by Mereaied Soumis (2006) for integrated
aircraft routing, crew scheduling and the flighttimeng problem. The solution
approaches proposed by these authors are basdueenphases. In phase 1, the linear
programming relaxation of the problem is solved Benders decomposition. Phase 2
considers all cuts generated during phasel andeappénders decomposition with the
integer master problem. Phase 3 reintroduces @liggconstraints in the sub-problem.
Also in the same applicatiorcontext, Papadakos (2009) presented a Benders
decomposition approach to deal with the integrdlieset assignment, aircraft routing and
crew scheduling problem where both the sub-proldachthe master problem are solved
by column generation.

This paper is organized as follows. The VCRP is@néed in the section 2, along
with its mathematical formulation. Section 3 is d@d to Benders methodology and
section 4 to the description of the new solutioprapch. Finally, section 5 shows

computational results and section 6 presents someusions.

2. Mathematical formulation

During a planning horizorH, partitioned into days, a séf of drivers must be
assigned to a fleet of vehicles from a Bebf depots in order to perform timetabled
trips (trips for short). For each trip the startangd ending times ardcations are known.
Trips s andt are compatible if the same vehicle can perfornhoandt, in sequence.
The movement of a vehicle without passengers weldbnoted by deadhead trip. There

are three types of deadhead trips: those betweeent location of a trip and the start



location of another trip, those from a depot to shert location of a trip (pull-out trips)
and those from an end location of a trip to a dépatl-in trips). The set of timetabled
trips and deadhead trips performed by a vehiclelamnhH is a vehicle block. Each
vehicle block starts and ends at the same depot.

A task is the smallest amount of work to be asgigneghe same vehicle and crew and
it corresponds to a deadhead trip followed by p.tA changeover is the walking
movement of a driver between two timetabled trip®iider to change the vehicle. Each
end location of a trip is a potential relief powhere a changeover may occur. A crew
duty is a daily combination of tasks that respéat®r law, union contracts and internal
rules of the company. These rules depend on thiécylar situation under study and
usually constrain the maximum and minimum spredohet elapsed between the
beginning and end of a crew duty), the maximum waykime without a break, the
break duration, etc. The crew duties can start)(ah@ depot or at an end location of a
trip.

A line of work is the sequence of crew duties dagls-off, one per day, assigned to a
particular driver during the planning or rosterimgrizon. A line of work for a particular
driver must satisfy a certain number of constraithtg result from the above mentioned
regulations, namely: the driver must rest a givanimum number of hours between
consecutive duties; he must work at most a givemkiwg time per week, a given
working time during the planning horizon and a giveumber of consecutive days; he
must get at least a given number of days-off pexknand a given number of Sundays off
in the planning horizon, as well as specific weegisdaff and weekends off. A roster is
the set of lines of work for the drivers of the qmany that covers all the crew duties
during the planning horizon.

The integrated vehicle-crew-rostering problem abmssimultaneously determine a
minimum cost set of vehicle blocks that daily cevatl timetabled trips, a set of crew
duties that daily covers all vehicle blocks and mimum cost roster for the horizon.
However, for a roster to be accepted in the compasitould also comply with other
kind of requirements arising from the interestdhe drivers that express their preferred
crew duties and call for balanced lines of workvimat respects maximum overtime.



To formulate the VCRP a mathematical model simiiarthe one proposed in
Mesquita et al. (2008) is considered and the requiotation follows:
H = planning horizon, partitioned into days
a = number of weeks iHl

Ny, = set of timetabled trips for ddy

N= U Ny, set of all timetabled trips fot
hOH

n=N|
| "= set of deadhead trips corresponding to all peficompatible trips on daly

IQ: subset ofl " where a changeover may occur

T= U 1M, set of deadhead trips corresponding to all piompatible trips foH
hOH

D = set of depots

vq = number of vehicles in depdt(vehicles are identical in each depot)

LN, = set of crew duties covering the deadhead tamfthe end location of tripto the
start location of trigg and covering tripp, on dayh

DL{‘ = set of crew duties covering the deadhead tomfany depot to the start location

of trip t and covering trigh, on dayh

LDQ = set of crew duties covering the deadhead tdmfthe end location of tripto any

depot, on dayn

L™ = early crew duties on day

L?"= late crew duties on ddy

L" = U LN U pLP U DY, set of crew duties for dal, partitioned into L™"
(stoh tonh gIND

andL?"

o" = day-off on day, the (|L"|+D)™ "crewduty"
M = set of drivers

u, = spread of crew duty

U = normal working time of a crew duty



u, = max {0, u, -u }, overtime of crew duty/
b1y = maximum total work per week per driver
brw = Maximum total work during per driver

g = maximum number of consecutive days without aafhyor a driver

Q= minimum number of days-off per week per driver

Qs = minimum number of Sundays-off durikbper driver

= 1 if driver m was assigned to a crew duty on dafjrom the previous planning
horizon, or O otherwise
F™M= set of obligatory days-off (planned absencesirfstance) for drivem duringH
c" = cost of the deadhead trip from tspo tript plus tript cost, performed by a vehicle
from depotd on dayh
cif‘md ,cﬂd,s = pull-in and pull-out costs from tripto depotd and from depotl to trip s,

respectively, on daly

c¢? = cost of crew duty
c3™ = cost of assigning work to drivar duringH
c*= penalty cost for the maximum overtime per drigeringH

c?mh = penalty cost based on driverpreference for crew duty on dayh.

All the costs are assumed to be nonnegahivev the decision variables are presented:
St_1 if a vehicle from depotl performs tripss andt in sequence on daly, or O

otherwise

h

ontd =1 if a vehicle returns to depdtafter trips on dayh, or O otherwise

z

n+d =1 if depotd directly supplies a vehicle for trippn dayh, or O otherwise

w?: 1 if crew duty/ is selected on day, or O otherwise
y™ ,;— 1 if driverm performs crew duty on dayh, or O otherwise

«J"=1 if drivermworks duringH, or O otherwise

Jd = maximum overtime per driver durir



Then, the VCRP becomes the following bi-objectiveixed

programming problem:
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The objectives of the VCRP derive from minimizatidrvehicle and driver costs, as

well as minimization of inconvenience of work for thevdrs. In fact, on the one hand,

management aims at minimizing costs related witHfldet of operational vehiclesé‘tjh,



hand ¢l

sn+d 1+q - Besides, management often wants to know the miminuorkforce

c

required to operate the fleet of vehicles, so as tigrasisivers to other departments of the

company or to replace those absent. Such policytsdsuminimizing crew duty costs?

associated to variablesy] and rostering costs®™ associated tow", variables
representing drivers effectively assigned to work. Onother hand, interests of drivers
must be taken into account and this motivates thnition of penalty costsc?

associated with the overtime, since overtime is smdele it should be minimized and
equitably distributed. Also penalty coat;émh related to driverspreferences for specific

duties can be considered in the model. All theseatijes represent various conflicting
interests that cannot usually be simultaneouslylledfithus leading to a multi-objective
perspective for VCRP. However, more than two objectaresnot easily tackled. Hence,
we opted by a bi-objective optimization problem: fivet objective, (2.1), aggregates
vehicle and crew duty costs; the second objective),(aggregates driver costs plus
driver penalties, the rostering objective.

In the above bi-objective model, constraints (2.3))(@escribe the vehicle scheduling
problem. Constraints (2.3) state that each timetabipedstperformed, exactly once, by a
vehicle that comes directly from a depot or from the ledtion of another timetabled
trip. Constraints (2.4) together with (2.3) ensure tfwaiteach day, each timetabled trip is
performed, exactly once, by a vehicle that returnd¢osource depot, being constraints
(2.5) depot capacity constraints. Note that, for eaghitdH , {(23),(24),(25)} defines

an integer multi-commodity network flow problem.
The constraint set {(2.6), (2.7), (2.7)’, (2.8)} links vekiand crew duty variables
ensuring that each task in a vehicle block is covesedne crew. (2.6) and (2.8) impose

the covering of tasks involving deadhead trips fromépals and (2.7) and (2.7)’ refer to
covering the remaining taskSet |" is partitioned into two subsetsfandi "\1[.
Deadhead trips where changeovers may occur are irntl'mdeg‘. Constraints (2.7)
assign a single crew to each deadhead triplri‘mg‘ whereas constraints (2.7)’

correspond to two different situations. On the one heoistraints (2.7)" allow drivers to

walk over deadhead trips that are not included wehicle block. Whenever the end



location of the first trip is the same as the starttiooaof the second one, this movement
represents a waiting time. On the other hand, theyalleadhead trips to be covered by
more than one crew. As over-covering only occurs iigagsg several drivers to a task is
cheaper than assigning a single one, the major mIR.3)" is to explicitly handle
changeovers in the constraint set.

Constraints (2.9)-(2.16) define an assignment problem wadttitional constraints.
Equalities (2.9) link crew and rostering variables byasipg that each crew duty, in a
solution, must be assigned to one and only oneedand equalitie§2.10) deal with the
assignment of each driver to one crew duty or to aatagn each day. Constraints (2.11)
forbid the sequence déte/early duty followed by early/late duty to ensurattdrivers
rest a given minimum number of hours between consexutities (a hard constraint
coming from legislation) and also that changes of stnétonly allowed after a day-off (a
soft rostering constraint here imposed as if it was rd lbae). Inequalities (2.12) and
(2.13) force drivers to work at most a given time per waed a given time during.
Inequalities (2.14) and (2.14)’ impose for each driver tagimum number of daysg—
without a day-off. As to (2.14)' they are defined for timst g days ofH, taking into
account the parameters for the crew duties assignedeidast days of the previous
planning horizon. Furthermore, (2.15) and (2.16) ensuredoh driver at least a given
number of days-off per week and at least a given numbebumdays off inH,

respectively.
Constraints (2.17) define the variables" from the rostering variablesl,fnh and

inequalities (2.18) calculate the maximum overtime ¢@ver so as to minimize and
equitably distribute it through the second optinm@abbjective.
Finally, (2.19)-(2.24) define the domains of the variabke nonnegative space for

and binary sets for the remaining.

3. Decompaosition Approach

The VCRP has been modeled as a huge dimension rhirady linear optimization
problem that includes three main combinatorial strustua@ integer multi-commodity
network flow problem (Mesquita and Paias 2008), a sefitpning/covering structure

and an assignment problem with minimum and maximapacity constraints.
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Within those combinatorial structures two well knowsheduling problems can be
identified: one defining the vehicle-crew schedulimggess and the other the rostering.
These two sub-problems share a set of variables and ljcating) constraints, in spite
of involving other separable sets of variables and caings. By taking into account the
variables involved in the complicating constraints,Banders decomposition based
method arises as a natural approach to solve the byeodllem, the VCRP. Such a
technique has been applied in different combinatopéimization contexts as referred to

in the survey by Boschetti and Maniezzo (2009).

3.1 Bender s decomposition

In 1962, Benders proposed a decomposition algorithm,sédving large single
objective mixed integer linear programming problemst #igernates between a primal
sub-problem and a master problem. The Benders sub-prablemrestriction of the
original problem where some decision variables’ vahresfixed. In each iteration of the
algorithm the solution of the master problem is useddjpst primal variables’ values
that will be fixed in the sub-problem, whereas thel dud-problem solution is used to
construct cuts - Benders cuts - to be added to theemagtis method guarantees the
convergence to the optimum under specific hypothésier generalized (Geoffrion
1972).

The VCRP is indeed a very complex and huge dimensiulti-objective
combinatorial problem that will be optimized from a Rarperspective (Ehrgott and
Gandibleux 2000). As it is not reasonable to searchhi®rentire Pareto frontier due to
such a demanding process on computing resources, @RPWvill be tackled within a
single objective issue by weighting the two origiradjective functions, that is, by
substituting (2.1) and (2.2) by:

; 1dh_dh 1h h 1h h 2.0
min Al Z Z ZCSt z st + Z Z (Cs‘n+d Zs|n+d +Cn+d,SZn+d,Sj+ Z Cy W@ +
hOH \ dOD (s,t)dT dOD sN gDLh

+/12{ > [cSchM Y ¥ c?m“yz““}c‘*aJ
moMm hOH o0

which is equivalent to
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: 1dh_dh 1h h 1h h 2...h
min > [ 2 2 MCst Zgtt X X (Alcs,n+dzs,n+d +A1cn+d,szn+d,sj+ zh/]lclé Wf]"'

hOH \ dOD (s,t)0T dOD SN Ve
+ % [A2c3mwm+ Yy ¥ /\zc?mhyg‘“hJ+/\2c45 (3.1)
MM hOH o D

where j; and A, are nonnegative real parameters.

The non-supported efficient solutions of the bi-objextproblem (2.1) to (2.24)
cannot be obtained from minimization of (3.1) subjeatdastraints (2.3) to (2.24) even
by taking into account all the possible choices fug tveights A, 1, (Steuer 1986).
However, a partial Pareto optimization strategy, negjuiring the entire set of efficient
solutions, copes with the typical decision makerghded for a set containing a few
solutions, achieving different levels of quality for thigectives.

The mathematical model presented includes differepeésyof decision variables.
Variablesz define the vehicle schedules, variablesire associated to crew duties and
variablesy, & and J are connected with rostering. These variables mayab&ipned
into two sets: thewset and they«wd -set. The decomposition approach proposed, based
on Benders method, alternates between the soluti@ méster problem involving the
zw-set, a vehicle-crew scheduling problem for all the dafyld, and the solution of the
corresponding sub-problem involving tlyasd -set, a rostering problem.

In order to present the sub-problem and the master probhesVCRP defined by
(2.3) to (2.24) and (3.1) is supposed to possess a nptydeasible region. Now, it is

rewritten through the following matrix form:

min A, ClZ + 1 C2W + 1,C3 W+ 1,C% 5 + 1,C3Y (3.2)

subject to
AlZ > A2 (3.3)
B'Z + B*W > B® (3.4)
QY-w=0 (3.5)
ELY > g2 (3.6)
Gy +G%a=G?3 (3.7)
PY +01>0 (3.8)

12



Z >0 and binary (3.9

W =0 and binary (3.10)
Y =0 and binary (3.11)
@ =0 and binary (3.12)
020 (3.13)

where ct,c2?,c3, c5, Al A% B! B? B3 Q, E! E2GL G2 G3P,10,Z,W,Y and &
are appropriate dimension matrices.

Here (3.2) stands for (3.1), (3.3) corresponds to (2.3)-(2.9)) (8presents (2.6)-
(2.8), (3.5) corresponds to (2.9), (3.6) stands for (2.10)-(2(B67) for (2.17), (3.8)
represents inequalities (2.18), and, finally (3.9)-(3.18)espond to (2.19)-(2.24).

3.2. Sub-problem
Fixing the values of the andw variables in VCRP at values given by vecta@rsnd

W , respectively, the following sub-problem is obtained:

(Suby,)

min )|2c3a,+)|2045+)|2c5Y+(A1(:12+)|1(;2V_V) 3.2y

subject to
QY=W (3.5)’
ELY > g2 (3.6)
Gl +G%a=G?3 (3.7)
PY+5120 (3.8)
Y >0 and binary (3.11)
& =0 and binary (3.12)
520. (3.13)

As one considers the set of crew duties and vehidekblinduced by Z ,W ), this

sub-problem is a rostering problem. Moreover, ¥f&,J) is a feasible solution for
Sub,, and Z ,W) satisfies (3.3), (3.4), (3.9) and (3.10) th&hW,Y, &, d) is feasible
for VCRP.
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Let us denote by Suby; the linear programming relaxation 8tiby; , where (3,11),
(3.12) are replaced by >0 and & >0, respectively. A new set of constraints, (3.14), is
added to set unitary bounds on thevariables:

la<1 (3.14)
wherel is an appropriate dimension unitary vector &rah identity matrix. Note that,
unitary bounds for thg variables are not necessary since constraints (2rid@)2.11),
included in matrix representation (3.6), force theseabdes to be less than or equal to 1.

Let ¢, B, ¢,x and & be the dual vectors corresponding to (3.5)", (3.6), (3.78) (3
and (3.14), respectively. Then, the dual of the ling@mgramming problemLSub,, ,

denoted byDLSubsy, can be written as:

(DLSUbyy;)

max W + BE2+¢G3+£1+ (1,617 + 1,C2W) (3.15)

subject to
¢G2+E1<),C° (3.16)
X1<2¢* (3.17)
¢Q+BEM+ G+ YP< 1,00 (3.18)
B¢ x=0,£<0. (3.19)

If the drivers, defined by sédl, with the respective availabilities froe™ and F™,
are enough to cover all crew duties for all daysipiven byW and at the same time alll
the rostering constraints are satisfied, assumingaalblbles may be non-integer, then
LSubs; has feasible solution and optimal solution alsadrtbat the respective feasible
regions are bounded along the optimization directidm)this case, a Benders cut is
obtained from the optimal solution @LSubs; which corresponds to an extreme point
of the respective feasible region. If the available ds\are not enough to cover all the
crew duties inW respecting all rostering constrairggen accepting fractional variables,
then LSub,,, is unfeasible and its dud@-Subsy, is unbounded (there is always at least a
feasible dual solution, the nil vector). In this cdke corresponding Benders cut is

obtained from an extreme ray of the feasible regioBldubsy; .

14



3.3. Master problem
Let PD andRD be, respectively, the set of the extreme points hadsét of extreme
rays of the dual feasible region defined by (3.16) to (3.26cording to the Benders

decomposition theory the master problem follows:

(Master)

min ¢, (3.20)

subject to
bo2MCZ+T+MCOW+BE2+@G3+EL  (C.B.9.x.E)0PD (3.21)
0> W +77 g2+ hG3+ Al (4,7, 7,A)0RD  (3.22)
ALZ > p2 (3.3)
B!z + B2W > B3 (3.4)
Z >0 and binary (3.9)
W =0 and binary. (3.10)

The constraint set {(3.3), (3.4), (3.9), (3.10)} is alscluled in the mathematical
model of the VCRP where it describes the integratedcleshrew scheduling problem
for all the days of the planning horizon. This fact sgigd the decomposition procedure
for the VCRP that will be detailed in the next seatio

4. Solution approach
Let VCRP, ,»o be the problem obtained from relaxing the integraldpstraints for

they and « variables in VCRP defined through (3.2) to (3.13) witdpacific choice for
the parameters; andj,. Fixing the values of the andw variables inVCRPy ;. at
values given by vectorZ andW , respectively, we obtain the linear sub-probleub,;
and Benders decomposition theory guarantees thaptamas solution forVCRP, ;5 is

achieved, in case it exists (see Benders 1962). Howsweh optimal solution might not
be feasible for VCRP due to the possibility of obtagniton-integer values for theand

« variables. In fact, the sub-proble®ubs;is a mixed binary linear programming

problem that does not satisfy the integrality propéthye y and . variables must be
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forced to be binary) and for this case, to the authorsivledge, no Benders convergence
results have been generalized.

For each specific choice of values for parametgasid A,, this paper proposes a
non-exact approach for VCRP that iterates between &leetriew scheduling problem
for the planning horizon and a rostering problem thusioistg, at the end, a feasible
solution for the VCRP that naturally might not be gstimal one. In addition, this
decomposition method is also much useful insofar Es)gathe several iterations, it
produces a pool of feasible solutions for the VCRP. Saditions can be analyzed from
the two original objectives’ perspective and one catemnine the potentially efficient
solutions corresponding to the points of the objestigpace that are not dominated by
other points in the pool, the so-called potentiabbptdominated points.

The Decomposition algorithm is summarized in figure 1

Decomposition algorithm

[linput//

Data: A1, A1, CL, €%, C3, ¢4, C°, AL, A%, BY, B?, B3,Q, E!, E%,GL, G2, G3,P
[linitialization//

step1)PD, = RD=Pook & .

step 2)k=1.

[literationk//

step 3) Define Mastgwith the cuts fronPD,;andRD,.;.

step 4) DefineRMastek(U,V), a lagrangean relaxation of the cuts associateahutipliers U and
_ kg —
V satisfying > ui =1.
i=1
step 5) SolveRMastek(U,V).
5.1) Apply the integrated vehicle-crew schedulitgpathm for each day dfl.

5.2) Concatenate thEl|| solutions thus building a feasible solution of trehicle-crew scheduling

problem forH, (Z,V_V)

step 6) Call procedure Sub-problécn{z,v_\/);PD r.1;RDy.;Po0l).
/Istoping criterion//
step 7) Ifk < maxiterations—1

7.1) therk=k+1 and go to step 3;
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7.2) otherwise, calculate the potentially efficisntutions from théool.

Stop.

Figure 1. Decomposition algorithm for the VCRP.

Steps 3, 4 and 5 of each iteration of the Decompuosdaigorithm are devoted to the
master problem whereas step 6 calls the procedureckte tthe sub-problem. These

features will be detailed in the next sub-sections.

4.1. Solving the master problem

Suppose that, in iteratidq PD, hask; extreme points an®RD, hask; extreme rays.

Then the master problem becomes:

(Mastery)

min @, (3.20)

subject to
Po-MC'Z-(C+MCOW2B E2+p G+l =1,k (3.21y
~AW = E2+ i G3+ i=1,...,k (3.22)
ALZ > p2 (3.3)
B!z +B?W=>B? (3.4)
Z >0 and binary (3.9
W =0 and binary (3.10)

Where(ﬁi,ﬁi,gZi,)—(i,gi)DPDk and (&, .77, i » ;) DRDx -

The master problem is a difficult binary linear prograngnproblem and must be
solved repeatedly, i.e., in each iteration of the rtlgm. Moreover, the convergence
results of the Benders algorithm to an optimal soludomot apply here, as mentioned
above, due to the combinatorial nature of the sub-proldub,, . Consequently, a non-

exact approach to tackle the master problem is adeis@ibe option favoured a method
based on the relaxation of (3.21)" and (3.22)". At iteralipa lagrangean relaxation of
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Masteg is considered, where (3.21)" and (3.22)’ are embeddeklebjective function
associated with the non-negative lagrangean mudtgll andV, respectively:
(RMastey (U,V))

min ¢ + Elu. o+ MGz +(@ +hcAW+r)+ ¥ L (AW +s) (4.2)
subject to
ALZ > p2 (3.3)
Bz +BW>B? (3.4)
Z =0 and binary (3.9)
W =0 and binary (3.10)

where 1 =B E2+@G*+E&1 for all i=1..k and s =7 E*+% G*+4,1 for all
i=1..ky.

Note that, the integrality property is not valid feMasteg (U,V). As a result, in each
iterationk, one hasv(LMasteQ)sUrr’1VaE>BRMaste|;(U V)< v(Master ), wherev(LMasteg)

is the optimal value of the linear programming releotatof Mastex. Hence, the
lagrangean relaxation might do better than the limekxation in what respects lower
bounds forv(Masteg). Usually, the values of the lagrangean multipliesoagted to the
relaxed constraints are set equal to the values afdiresponding dual variables and an
optimizing iterative procedure updates the multiplershat the lower bound improves.

However, in this approach no multiplier improvementésformed.

A specific choice for the lagrangean multipliers values, and vV, such that

ky
Zlui =1(satisfied by the corresponding dual variables), contee®bjective function of
i=1

RMasteg (U ,\_/), in (4.1), into:

¢O+Zu. ( $o + 1C'Z + (G +/|102)W+r|)+2v. (mw +s )=

kl — 2 ko _
=nClz+ ZluiCi +21C +Zu.f|+ZVI HW +Zv9n—
1= i=

=pCz+

k]_ k2 — k k2
Zu.Ci +11C%+ Zv.,u. "‘Zu.ru "‘Zv.

i=1 =1
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Now, this objective function can be rewritten by idigimg the components of the

vectorct,z,c2andw :

db (s,t)dT oL

1dh_,dh h h h
h%:-l(z ZAlet Zgt z Z(/‘l sn+d sn+d +A:C n+dszn+ds)+ Z /j+

ky ko
2 uifi t 2 viS
i=1 i=1

k2 _—
where Zu,Ci +/\1Cg + ZV| Hi-

. . ki _ ko_ . . .
For any choice for the paramefgr, since X i + XS IS constant, this objective
i=1 i=1

function, along with the set of constraints RMasteg (U,V), can be partitioned intdd|
independent subsets. Therefore, solviRgfIaste,((U,V) for a specific choice of the

multipliers U and V is equivalent to solvingH| independent integrated vehicle-crew
scheduling problems, one for each day of the planhiorizon. The (daily) integrated

vehicle-crew scheduling problems can be solved byalyerithm proposed in Mesquita

and Paias (2008) which combines a heuristic columergéion procedure with a branch-
and-bound scheme.

Note that these vehicle-crew scheduling solutiony gige slightly different daily
schedules for the vehicles and also for the crews. Hemyvév real cases public transit
companies, usually, have the same vehicle-crew sitb®dn each day type of the
planning horizon - there is a pattern for the weekdaykane pattern for the weekend
days. Hence, it is desirable that solutions resulfiogn the master problem will follow
this scheme. Consequently, in step 5 of the Decoitiposligorithm the master problem
is solved for each day type.

4.2. Solving the sub-problem
In each iteration of the Decomposition algorithm pse(figure 1) refers to the sub-
problem. Figure 2 details the procedure.

Procedure Sub-probleR) Z,V_V);PD 1, RDy.;P0o0l)

/[sub-problem of iteratiok//
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step 1) DefineSubsy , the rostering sub-problem for iteratikn

step 2) Solvel Subsy; , the corresponding linear relaxation:
2.1) in case it has a finite optimal value, sshedorresponding dual solution and go to step 3;
2.2) in case it is unfeasible, save an extremefalye dual linear feasible region and go to &tep
step 3) SolveSubyy to get a feasible roster if the threshali not attained.
/Isolutions for the VCRP//
step 4) Update theool of feasible solutions of the VCRP.

step 5) Update the sets of extreme points andtoéme raysPD,.; andRD,.;.
Stop.

Figure 2. Procedure for tackling the sub-problem.

Exact standard algorithms are used to solve the subepmolgstep 3) and the

respective linear relaxation (step 3uybs; andLSubs; . The dual linear variables or dual

extreme rays obtained in step 2 will give rise toBleeaders cuts that will be added to the
master problem, in the next iteration.

Let v(LSubgy,c—) denote the linear programming relaxation value in finek-1 of
the Decomposition algorithm. To obtain a feasibleagst branch-and-bound is executed

with Suby; whenever the following criterion involving the twotopization objectives
and a thresholdr (step 3) is satisfied:

v(LSubgy )< ]Emrll 1v(LSubm)i + 77 Of
1=1,... K-

v(RMastey (U V)) < min v(RMaster(U V))+ 7.

In this case, the solution of the master, a set dicle-crew schedules covering the
planning horizon, along with the solution of the gubblem correspond to a feasible
solution for the VRCP which will be included in tiRool - step 4 of the procedure in
figure 2.

5. Computational experiment

A computational experiment was performed using real-wddth from a public

transit company operating in Lisbon.
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All linear programming relaxations and branch-and-boundiemes, in the
Decomposition algorithm, wereackled with CPLEX solvers (CPLEX Manual version
11.0, 2007). As for the integer resolution of the rostesulg-problems a time limit of
7200 seconds was imposed. The (daily) integrated heetiew scheduling problems
were solved by the algorithm proposed in Mesquita Baths (2008) by setting the
parameters =7, )=3000 ancp=4/15, where//is the parameter related with the definition
of the tasks,yis the maximum number of columns generated per itgaraandp is a
parameter related with the heuristic pricing of the colsnSee Mesquita et al. 2009 for a
detailed description of these parameters.

All algorithms were coded in C, using VStudio 6.0/Cand all the programs ran on a
PC Pentium IV 3.2 GHz.

5.1 Test instances

The test instances used for the experiments were deitigen an urban bus service
inside the city of Lisbon and involve scheduling ldemms with 122, 168, 224, 226 and
238 trips and 4 depots. The input of each VCRP igstamcludes the start and end times,
the start and end locations for each trip and the d=atltimes between locations and
depots. Two different demand patterns (timetabled tripg) @nsidered, one for
weekdays and the other for weekend days. Consequentlgach iteration of the
Decomposition algorithm the integrated vehicle-creshesluling problem is solved
twice: for a weekday type and for a weekend day type.

Concerning daily crew duties and the rostering, somanpaiers have to be defined
in order to respect the rules imposed by Portuguese uaiwn contracts and specific
rules of the bus company. A detailed description ofmtimeay be seen in Mesquita et al.
(2008).

In what respects the vehicle-crew scheduling processas:

- for each crew duty the minimum spread is set at 1 hour

- the maximum spread is 5 hours for duties without akpretherwise, it is 10 hours and
45 minutes

- break times range from 1 hour to 2 hours and 20 nsnute

- the maximum duration allowed for a crew duty beforeeak occurs is 5 hours
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- a penalty of 5000 m.u. is added to the cost ofi gadl-in and each pull-out trip in order
to minimize the number of vehicle blocks in the schied
- 11=1.
Respecting the rostering process one has:
- H|=28
-a=4
- [M|=80
u, D[300, 64@ minutes

- U =480 minutes (8 hours)
- a= 11 hours - the minimum rest period of 11 hours alldvesseparation of the set of

crew duties into early dutieg), starting at a point between 6:00 a.m. and 3:30 and
late duties (2h), starting in the interval fror:30 p.m. to midnight

- by = 2880 minutes (48 hours)
- by = 10560 minutes (176 hours)

- Qw =2 days
- Qs =1day
- g=6days
-F"=0

- ¢ =0.96

- ¢*=0.04

- =0

- /]2:1
-m=0.

5.2 Computational resultsfor the VCRP
Tables 1 and 2 show computational results obtaifiech 10 iterations of the
proposed Decomposition algorithm. In both tablesghg”, “ncrew” and “ndriver” refer

to the number of vehicles, number of crew duties amdbau of drivers, respectively. In
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table 1, column (10) contains the average maximuntiove per driver measured in

units of 15 minutes. The last columns in table 1 @eeoted to CPU time: the values
reported in columns (11) and (12) are total CPU vatl#ained from the 10 iterations,
respectively, for the VCP master problem and for the fippagramming relaxation
rostering sub-problem. Column (13) shows total CPU vafoesdetermining mixed-
integer solutions of the rostering sub-problems (feagitsters) and, in brackets, the

number of MILP sub-problems solved according to the Hulelst

Table 1. Results from 10 iterations of the Decompasiilgorithm.

master sub-problem
(daily) vehicle-crew schedules monthly roster tetBU (seconds)
weekday weekend
max
nvehic ncrew nvehic ncrew ndriver _ )
overtime |VCP rostering
average MiN  max javerage MiN  max | min  max average LP MILP
(quarters)
122 9 17 17 6 9 9 21 21 64.7 61 7 3893|(3)
168 17 38 38 10 19 19 46 46 81.0 109 83 42684 (6)
224 18 39 39 10 16 16 50 52 113.6 4296 83 36000 (5)
226 15.6 33 35 7 15 15 44 47 117.4 13208 73 368P0 (
238 22 54 54 11 27 27 69 75 109.3 1038 164 28800 (4

As one can see, in table 1, the Decomposition dlgurhas produced solutions that,
despite being different, have the same number of ke=hi@nd crews. Variations have
occurred only for instance 226. This diversity of wcrew solutions led to rostering

solutions that, for the same instance, may have @& gegiation in the number of drivers.

For instance 224 the rostering solutions differ at mose idrivers. For the last two

instances, 226 and 238, the number of drivers varies #dnio 47 and 69 to 75,
respectively.

On average, considering all instances, the rosteringdninteger linear program

(MILP) was solved 5 times out of 10. One can noticd, tfaa each instance, a small
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increase in the number of mixed integer linear rostepgraplems solved, during 10
iterations, led to a great increase in total CPU time.

In table 2, for each instance, the first row of columnst¢2(7) shows the results
obtained in the first iteration of the Decompositidgogithm which corresponds to that
of a sequential approach applied to the same instdin@esubsequent rows (or row), in
columns (2) to (7), correspond to the potentially non-cateid points (or point)
obtained. Columns (9) to (11) report on the difference éetw the solution
corresponding to a potentially non-dominated pointteptially efficient solution and
the solution obtained on iteration 1 (sequentialraggh), concerning the number of
vehicles, the number of crew duties, the number of tsiaad the overtime. The last

column refers to overtime and is given in percentage.

Table 2. The Decomposition algorithm versus the Setiplealgorithm.

potentially non-dominated points improvement freaguential approach
weekday weekend planning horizon (iteration 1)
nvehic ncrew nvehic ncrew ndriver max overtime | Anvehic  Ancrew  Andriver  Aovertime
9 17 6 9 21 74
122 9 17 6 9 21 56 0 0 0 -24%
17 38 10 19 46 88
168 17 38 10 19 46 75 0 0 0 -15%
18 39 10 16 51 110
224 18 39 10 16 51 108 0 0 0 -2%
18 39 10 16 50 107 0 0 -1 -3%
15 35 7 15 47 131
226 15 35 7 15 44 115 0 0 -3 -12%
16 33 7 15 44 111 +1 0 -3 -15%
15 35 7 15 46 112 0 0 -1 -15%
2z 54 11 27 69 111
238 22 54 11 27 70 107 0 0 +1 -4%
22 54 11 27 71 117 0 0 +2 +5%
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With the exception of instance 238, the potentialty-dominated points obtained by
the Decomposition algorithm dominate the pointsaot#d by the sequential approach
(see the first row - first iteration - per instance). In ins&a 238, the first solution
obtained by the Decomposition algorithm, is itselpatentially efficient solution. The
last row of the table displays a point for this imst&a that corresponds to a reduction in
the cost of the weekday VCP thus being a potentraly-dominated point.

In general, one can see from the above results thatripevement over the first
solution is obtained by minimizing the maximum oiured per driver. In fact, the solution
of the master problem could be adjusted using the &xdbbtained by introducing
Bender cuts. This feedback guided the building ofvibleicle and crew schedules thus
conducing to rosters with less overtime per driver anih iéwer drivers. Note that,
although a sequential approach greatly reduces CRid, tthe resulting integrated
problem might not be solvable if no feasible roster barbuilt from the vehicle-crew

scheduling solution.

6. Conclusions

This paper proposes a new methodology to deal withiritegrated vehicle-crew-
rostering problem within public transit companies. TWERP is modelled as a bi-
objective mixed binary linear problem and the solutapproach is based on Benders
decomposition. It alternates between the solutidn an integrated vehicle-crew
scheduling master problem and the solution of the spomding linear programming
relaxation rostering sub-problem, used to produce Beralgss In spite of the fact that
the feasible region of the Benders sub-problem is oim¢&x, hence it does not satisfy the
hypotheses for the convergence of the Benders algoritbre,Benders decomposition is
used within a non-exact method for the VCRP that preda pool of feasible solutions.
In fact, in each iteration of the proposed decomposiigorithm, a pre-defined criterion
is analysed and whenever satisfied branch-and-bounditees are applied to obtain a
feasible roster that together with the master problemchebrew scheduling solution
give a feasible solution to the VCRP.

The effects of integration of the three difficult comhor&l optimization problems

were analyzed for real instances of the VCRP. The geoerat Benders cuts proved to
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be effective within the proposed non-exact method fodpcing a pool of feasible and

potentially efficient solutions for the VCRP at readaieracomputing times.
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