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Abstract  

The problem addressed in this paper is the integrated vehicle-crew-rostering problem 

(VCRP) aiming to define the schedules for the buses and the rosters for the drivers of a 

public transit company. The VCRP is described by a bi-objective mixed binary linear 

programming model with one objective function aggregating vehicle and crew scheduling 

costs and the other the rostering features. The VCRP is solved by a heuristic approach 

based on Benders decomposition where the master problem is partitioned into daily 

integrated vehicle-crew scheduling problems and the sub-problem is a rostering problem. 

Computational experience with data from a bus company in Lisbon shows the ability 

of the decomposition approach for producing a variety of potentially efficient solutions 

for the VCRP within low computing times.  

 

Keywords: integrated vehicle-crew-rostering problem, Benders decomposition, 

multi-objective optimization. 

 

 

 

 

1. Introduction 
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This paper focuses on the operational planning phase of a public transit company that 

operates buses in an urban area. The problem addressed aims to assign drivers of a 

company to vehicles and vehicles to a set of pre-defined timetabled trips that cover 

passenger transport demand on a specific area, during a planning horizon. The objective 

is to minimize total costs and maximize drivers’ preferences while satisfying passengers 

demand and driver constraints specified by general legislation, labor contracts and 

specific company rules. Due to the complexity of the corresponding combinatorial 

optimization problem, it is usually tackled on a sequential basis beginning with vehicle 

scheduling, followed by crew scheduling and, lastly, driver rostering. Given a set of 

timetabled trips, vehicle scheduling produces the set of daily schedules for the vehicles 

that perform all trips. The crew scheduling defines the daily crew duties that cover the 

respective vehicle schedules. Finally, for the planning horizon, crew duties are assigned 

to the company’s drivers leading to a roster that must comply with rostering constraints. 

There is a high dependency among these three problems, hence following this sequential 

approach one cannot guarantee that the final result is the best solution to the overall 

problem.  

Despite its computational burden, the integration of all or some of these problems is 

expected to outperform the corresponding sequential approach. Efficient algorithms have 

been developed to solve the integrated vehicle-crew scheduling problem (Borndörfer et 

al. (2006), Huisman et al. (2005), Hollis et al. (2006), Mesquita and Paias (2008)). Crew-

rostering integration has been devised by Caprara et al. (2001), Ernst et al. (2001), 

Freling et al. (2004) and Lee and Chen (2003) albeit within other transport contexts 

(railway and air crews) and by Chu (2007) for airport staff. In Mesquita et al. (2008) 

advantages of integrating the three problems for public transit companies were pointed 

out. For an overview of problems arising in the transport domain, see Barnhart and 

Laporte (2007). 

The problem addressed in this paper is the integrated vehicle-crew-rostering problem 

(VCRP). The VCRP solution consists of a set of daily vehicle schedules, covering all 

timetabled trips, and a roster defining the set of crew duties for each driver, covering all 

vehicle schedules of the planning horizon. Naturally, the VCRP objectives possess a 

conflicting nature. In fact, whereas the minimization of vehicle and driver costs 
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represents the interests of the management, other objectives, like evenly distributing 

overtime among drivers and fulfilling as much as possible the preferences of drivers for 

specific crew duties, arise from the drivers priorities. These non-reconcilable interests at 

the operational planning phase suggest a multi-objective mathematical model for VCRP.  

In this paper, the authors developed an integrated approach to solve the VCRP based 

on Benders decomposition. The method iterates between the solution of an integrated 

vehicle-crew scheduling problem and the solution of a rostering problem. 

Benders decomposition methods have already been proposed although within airline 

planning by Cordeau et al. (2001) and Mercier et al. (2005) for the integrated aircraft 

routing and crew scheduling problem and by Mercier and Soumis (2006) for integrated 

aircraft routing, crew scheduling and the flight retiming problem. The solution 

approaches proposed by these authors are based on three phases. In phase 1, the linear 

programming relaxation of the problem is solved by Benders decomposition. Phase 2 

considers all cuts generated during phase1 and applies Benders decomposition with the 

integer master problem. Phase 3 reintroduces integrality constraints in the sub-problem. 

Also in the same application context, Papadakos (2009) presented a Benders 

decomposition approach to deal with the integrated fleet assignment, aircraft routing and 

crew scheduling problem where both the sub-problem and the master problem are solved 

by column generation.  

This paper is organized as follows. The VCRP is presented in the section 2, along 

with its mathematical formulation. Section 3 is devoted to Benders methodology and 

section 4 to the description of the new solution approach. Finally, section 5 shows 

computational results and section 6 presents some conclusions.  

 

2. Mathematical formulation 

During a planning horizon H, partitioned into days, a set M of drivers must be 

assigned to a fleet of vehicles from a set D of depots in order to perform n timetabled 

trips (trips for short). For each trip the starting and ending times and locations are known. 

Trips s and t are compatible if the same vehicle can perform both, s and t, in sequence. 

The movement of a vehicle without passengers will be denoted by deadhead trip. There 

are three types of deadhead trips: those between the end location of a trip and the start 
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location of another trip, those from a depot to the start location of a trip (pull-out trips) 

and those from an end location of a trip to a depot (pull-in trips). The set of timetabled 

trips and deadhead trips performed by a vehicle on day Hh∈ is a vehicle block. Each 

vehicle block starts and ends at the same depot.  

A task is the smallest amount of work to be assigned to the same vehicle and crew and 

it corresponds to a deadhead trip followed by a trip. A changeover is the walking 

movement of a driver between two timetabled trips in order to change the vehicle. Each 

end location of a trip is a potential relief point where a changeover may occur. A crew 

duty is a daily combination of tasks that respects labor law, union contracts and internal 

rules of the company. These rules depend on the particular situation under study and 

usually constrain the maximum and minimum spread (time elapsed between the 

beginning and end of a crew duty), the maximum working time without a break, the 

break duration, etc. The crew duties can start (end) at a depot or at an end location of a 

trip.  

 A line of work is the sequence of crew duties and days-off, one per day, assigned to a 

particular driver during the planning or rostering horizon. A line of work for a particular 

driver must satisfy a certain number of constraints that result from the above mentioned 

regulations, namely: the driver must rest a given minimum number of hours between 

consecutive duties; he must work at most a given working time per week, a given 

working time during the planning horizon and a given number of consecutive days; he 

must get at least a given number of days-off per week and a given number of Sundays off 

in the planning horizon, as well as specific weekdays off and weekends off. A roster is 

the set of lines of work for the drivers of the company that covers all the crew duties 

during the planning horizon. 

The integrated vehicle-crew-rostering problem aims to simultaneously determine a 

minimum cost set of vehicle blocks that daily covers all timetabled trips, a set of crew 

duties that daily covers all vehicle blocks and a minimum cost roster for the horizon. 

However, for a roster to be accepted in the company it should also comply with other 

kind of requirements arising from the interests of the drivers that express their preferred 

crew duties and call for balanced lines of work in what respects maximum overtime. 
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To formulate the VCRP a mathematical model similar to the one proposed in 

Mesquita et al. (2008) is considered and the required notation follows: 

H = planning horizon, partitioned into days 

α = number of weeks in H 

hN = set of timetabled trips for day h 

N = h
Hh

NU
∈

, set of all timetabled trips for H 

n = |N| 

hI = set of deadhead trips corresponding to all pairs of compatible trips on day h 

h
cI = subset of hI  where a changeover may occur 

T = I h

Hh
U
∈

, set of deadhead trips corresponding to all pairs of compatible trips for H 

D = set of depots  

dν = number of vehicles in depot d (vehicles are identical in each depot) 

h
stL  = set of crew duties covering the deadhead trip from the end location of trip s to the 

start location of trip t and covering trip t, on day h 

h
tDL  = set of crew duties covering the deadhead trip from any depot to the start location 

of trip t and covering trip t, on day h 

h
sLD  = set of crew duties covering the deadhead trip from the end location of trip s to any 

depot, on day h 

hL1 = early crew duties on day h 

hL2 = late crew duties on day h 

hL  = LDDLL h
s

Ns

h
t

Nt

h
st

Its hhh
UUU

∈∈∈),(
, set of crew duties for day h, partitioned into hL1  

and hL2  

h
O  = day-off on day h, the duty" crew"  )1|(| th+Lh  

M = set of drivers 

lu = spread of crew duty l   

u = normal working time of a crew duty 
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l'u = max {0, lu -u }, overtime of crew duty l    

b w1 = maximum total work per week per driver 

brw= maximum total work during H per driver 

g = maximum number of consecutive days without a day-off for a driver 

Ωw= minimum number of days-off per week per driver 

ΩS= minimum number of Sundays-off during H per driver 

=mhe  1 if driver m was assigned to a crew duty on day h from the previous planning 

horizon, or 0 otherwise 

mF = set of obligatory days-off (planned absences, for instance) for driver m during H 

dh
stc1  = cost of the deadhead trip from trip s to trip t plus trip t cost, performed by a vehicle 

from depot d on day h 

h
sdn

h
dns cc 1

,
1
,  , ++  = pull-in and pull-out costs from trip s to depot d and from depot d to trip s, 

respectively, on day h 

2
lc  = cost of crew duty l  

c m3  = cost of assigning work to driver m during H 

c4= penalty cost for the maximum overtime per driver during H 

mhc5
l  = penalty cost based on driver m preference for crew duty l  on day h. 

 

All the costs are assumed to be nonnegative. Now the decision variables are presented: 

=dh
stz 1 if a vehicle from depot d performs trips s and t in sequence on day h, or 0 

otherwise  

=+
h

dnsz , 1 if a vehicle returns to depot d after trip s on day h, or 0 otherwise  

=+
h

tdnz , 1 if depot d directly supplies a vehicle for trip t on day h, or 0 otherwise  

=hwl 1 if crew duty l  is selected on day h, or 0 otherwise  

=mhy l 1 if driver m performs crew duty l  on day h, or 0 otherwise  

=ωm 1 if driver m works during H, or 0 otherwise 

δ  = maximum overtime per driver during H 
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Then, the VCRP becomes the following bi-objective mixed integer linear 

programming problem: 

∑ 












∑ ∑ ∑+







 ++∑ ∑
∈ ∈ ∈ ∈

++++
∈ ∈Hh Dd Ns L

hh
sdn

h
sdn

h
dns

h
dns

Dd Tts

dh
st

dh
st

h
wczczczc

l

ll
2

,
1

,,
1
,

),(

1min  (2.1) 














∑ ∑ ∑++∑
∈ ∈ ∈∈ Mm Hh L

mhmh

Mm

mm

h
yccc

l

ll
543   min δω  (2.2) 

subject to 

( )
1,

,:

=+∑∑ ∑
∈

+
∈ ∈ Dd

h
tdn

Dd Itss

dh
st zz

h

   hNt ∈∀ , Hh∈∀  (2.3) 

( ) ( )
0,

,:
,

,:

=−∑−+∑ +
∈

+
∈

h
dnt

Ists

dh
ts

h
tdn

Itss

dh
st zzzz

hh
  DdNt h ∈∀∈∀ , , Hh∈∀  (2.4) 

d
Ns

h
s,dn

h

z ν≤∑
∈

+       Dd ∈∀ , Hh∈∀  (2.5) 

0, =∑ ∑−
∈ ∈

+
DL Dd

h
tdn

h

h
t

zw
l

l  hNt ∈∀ , Hh ∈∀  (2.6) 

0=∑ ∑−
∈ ∈L Dd

dh
st

h

h
st

zw
l

l  ( ) h
c

h I\It,s ∈∀ , Hh ∈∀  (2.7) 

0≥∑ ∑−
∈ ∈L Dd

dh
st

h

h
st

zw
l

l  ( ) h
cIt,s ∈∀ , Hh ∈∀  (2.7)’ 

0, =∑−∑
∈

+
∈ Dd

h
dns

LD

h zw
h
sl

l  hNs∈∀ , Hh ∈∀  (2.8) 

 0  =−∑
∈

wy h

Mm

mh
ll

 Hh,Lh ∈∀∈∀  l  (2.9) 

1
}{

=∑
∪∈ hh oL

mhy
l

l  HhMm ∈∀∈∀  ,  (2.10) 

1)1( ≤∑+∑
∈

−

∈ jhih L

hm

L

mh yy
l

l
l

l  jiji|H|hMm ≠==∈∀ ,2,1,,2,...,,  (2.11) 
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w

l

lh

mh

L

byu
h

1
7

1)1(7
≤∑∑

+−=∈
ll

l

 α,...,l,Mm 1=∈∀              (2.12) 

rw
Hh

mh

L

byu
h

≤∑∑
∈∈

ll

l

 Mm∈∀               (2.13) 

 gy
hL

g

r

rhm ≤∑ ∑
∈ =

+

l
l

0

,          g|H|,...,hM,m −=∈∀ 1    (2.14) 

gye
gh

r

mr

Lhr

mr

h
≤∑∑+∑

+

=∈= 1

0
l

l

           1,0,...,1 −−=∈∀ ghM,m  (2.14)’ 

Ω≥∑
+−=

w
l

lh

mhy h

7

1)1(7 ο
          α1,...,=∈∀ lM,m         (2.15) 

Ω≥∑
=

S
l

lm

o ly
α

1

7,
7  Mm∈∀                                  (2.16) 

0≤−∑ ∑
∈ ∈

m

L Hh

mh Hy
h

ω
l

l  Mm∈∀  (2.17)  

            0 '
 

≤−∑ ∑
∈ ∈

δ
hL Hh

mhyu
l

l l
 Mm∈∀  (2.18) 

{ }1,0∈dh
stz  ( ) Dd,It,s h ∈∀∈∀  , Hh∈∀  (2.19) 

{ }10  , ,zz h
s,dn

h
dn,s ∈++  Dd,Ns h ∈∀∈∀  , Hh∈∀  (2.20) 

{ }1,0∈hwl  Lh∈∀l , Hh∈∀  (2.21) 

{ }0,1∈mhyl  HhLMm hh
O ∈∀∪∈∀∈∀ },{, l   (2.22) 

{ }0,1∈mω  Mm∈∀  (2.23) 

0≥δ . (2.24) 
 

The objectives of the VCRP derive from minimization of vehicle and driver costs, as 

well as minimization of inconvenience of work for the drivers. In fact, on the one hand, 

management aims at minimizing costs related with the fleet of operational vehicles, dh
stc1 , 
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h
dnsc1

, +  and h
tdnc1
,+ . Besides, management often wants to know the minimum workforce 

required to operate the fleet of vehicles, so as to assign drivers to other departments of the 

company or to replace those absent. Such policy results in minimizing crew duty costs c2
l

 

associated to variables hwl  and rostering costs c m3  associated to mω , variables 

representing drivers effectively assigned to work. On the other hand, interests of drivers 

must be taken into account and this motivates the definition of penalty costs c4  

associated with the overtime, since overtime is undesirable it should be minimized and 

equitably distributed. Also penalty costs mhc5
l  related to drivers’ preferences for specific 

duties can be considered in the model. All these objectives represent various conflicting 

interests that cannot usually be simultaneously fulfilled thus leading to a multi-objective 

perspective for VCRP. However, more than two objectives are not easily tackled. Hence, 

we opted by a bi-objective optimization problem: the first objective, (2.1), aggregates 

vehicle and crew duty costs; the second objective, (2.2), aggregates driver costs plus 

driver penalties, the rostering objective.  

In the above bi-objective model, constraints (2.3)-(2.5) describe the vehicle scheduling 

problem. Constraints (2.3) state that each timetabled trip is performed, exactly once, by a 

vehicle that comes directly from a depot or from the end location of another timetabled 

trip. Constraints (2.4) together with (2.3) ensure that, for each day, each timetabled trip is 

performed, exactly once, by a vehicle that returns to the source depot, being constraints 

(2.5) depot capacity constraints. Note that, for each day Hh∈ , ( ) ( ) ( ){ }5.2,4.2,3.2  defines 

an integer multi-commodity network flow problem.  

The constraint set {(2.6), (2.7), (2.7)’, (2.8)} links vehicle and crew duty variables 

ensuring that each task in a vehicle block is covered by one crew. (2.6) and (2.8) impose 

the covering of tasks involving deadhead trips from/to depots and (2.7) and (2.7)’ refer to 

covering the remaining tasks. Set hI  is partitioned into two subsets, hcI and h
c

h II \ . 

Deadhead trips where changeovers may occur are included in h
cI . Constraints (2.7) 

assign a single crew to each deadhead trip in h
c

h II \  whereas constraints (2.7)’ 

correspond to two different situations. On the one hand, constraints (2.7)’ allow drivers to 

walk over deadhead trips that are not included in a vehicle block. Whenever the end 
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location of the first trip is the same as the start location of the second one, this movement 

represents a waiting time. On the other hand, they allow deadhead trips to be covered by 

more than one crew. As over-covering only occurs if assigning several drivers to a task is 

cheaper than assigning a single one, the major role of (2.7)’ is to explicitly handle 

changeovers in the constraint set.  

Constraints (2.9)-(2.16) define an assignment problem with additional constraints. 

Equalities (2.9) link crew and rostering variables by imposing that each crew duty, in a 

solution, must be assigned to one and only one driver and equalities (2.10) deal with the 

assignment of each driver to one crew duty or to a day-off on each day. Constraints (2.11) 

forbid the sequence of late/early duty followed by early/late duty to ensure that drivers 

rest a given minimum number of hours between consecutive duties (a hard constraint 

coming from legislation) and also that changes of shift are only allowed after a day-off (a 

soft rostering constraint here imposed as if it was a hard one). Inequalities (2.12) and 

(2.13) force drivers to work at most a given time per week and a given time during H. 

Inequalities (2.14) and (2.14)’ impose for each driver the maximum number of days – g –  

without a day-off. As to (2.14)’ they are defined for the first g days of H, taking into 

account the parameters for the crew duties assigned in the last days of the previous 

planning horizon. Furthermore, (2.15) and (2.16) ensure for each driver at least a given 

number of days-off per week and at least a given number of Sundays off in H, 

respectively.  

Constraints (2.17) define the variables mω  from the rostering variables mhyl  and 

inequalities (2.18) calculate the maximum overtime per driver so as to minimize and 

equitably distribute it through the second optimization objective. 

Finally, (2.19)-(2.24) define the domains of the variables: a nonnegative space for δ  

and binary sets for the remaining. 

 

3. Decomposition Approach 

The VCRP has been modeled as a huge dimension mixed binary linear optimization 

problem that includes three main combinatorial structures: an integer multi-commodity 

network flow problem (Mesquita and Paias 2008), a set partitioning/covering structure 

and an assignment problem with minimum and maximum capacity constraints. 
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Within those combinatorial structures two well known scheduling problems can be 

identified: one defining the vehicle-crew scheduling process and the other the rostering. 

These two sub-problems share a set of variables and (complicating) constraints, in spite 

of involving other separable sets of variables and constraints. By taking into account the 

variables involved in the complicating constraints, a Benders decomposition based 

method arises as a natural approach to solve the overall problem, the VCRP. Such a 

technique has been applied in different combinatorial optimization contexts as referred to 

in the survey by Boschetti and Maniezzo (2009). 

 
3.1 Benders decomposition 

In 1962, Benders proposed a decomposition algorithm, for solving large single 

objective mixed integer linear programming problems, that alternates between a primal 

sub-problem and a master problem. The Benders sub-problem is a restriction of the 

original problem where some decision variables’ values are fixed. In each iteration of the 

algorithm the solution of the master problem is used to adjust primal variables’ values 

that will be fixed in the sub-problem, whereas the dual sub-problem solution is used to 

construct cuts - Benders cuts - to be added to the master. This method guarantees the 

convergence to the optimum under specific hypotheses latter generalized (Geoffrion 

1972). 

The VCRP is indeed a very complex and huge dimension multi-objective 

combinatorial problem that will be optimized from a Pareto perspective (Ehrgott and 

Gandibleux 2000). As it is not reasonable to search for the entire Pareto frontier due to  

such a demanding process on computing resources, the VCRP will be tackled within a 

single objective issue by weighting the two original objective functions, that is, by 

substituting (2.1) and (2.2) by: 

+∑ 
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∑ ∑++

∈ ∈ ∈l
ll  (3.1) 

where λ1 and λ2  are nonnegative real parameters.  

The non-supported efficient solutions of the bi-objective problem (2.1) to (2.24) 

cannot be obtained from minimization of (3.1) subject to constraints (2.3) to (2.24) even 

by taking into account all the possible choices for the weights λλ 21,  (Steuer 1986). 

However, a partial Pareto optimization strategy, not requiring the entire set of efficient 

solutions, copes with the typical decision makers’ demand for a set containing a few 

solutions, achieving different levels of quality for the objectives. 

The mathematical model presented includes different types of decision variables. 

Variables z define the vehicle schedules, variables w are associated to crew duties and 

variables y, ω  and δ  are connected with rostering. These variables may be partitioned 

into two sets: the zw-set and the ωδy -set. The decomposition approach proposed, based 

on Benders method, alternates between the solution of a master problem involving the 

zw-set, a vehicle-crew scheduling problem for all the days of H, and the solution of the 

corresponding sub-problem involving the ωδy -set, a rostering problem.  

In order to present the sub-problem and the master problem, the VCRP defined by 

(2.3) to (2.24) and (3.1) is supposed to possess a non-empty feasible region. Now, it is 

rewritten through the following matrix form:  

min YCWZ cccc 5
2

4
2

3
2

2
1

1
1 λδλλλλ ω ++++  (3.2) 

subject to  

21 AZA ≥  (3.3) 

321 BWBZB ≥+  (3.4) 

0=− WQY  (3.5) 

EYE 21 ≥  (3.6) 

321 GGYG ≥+ ω  (3.7) 

01≥+ δPY  (3.8) 
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0≥Z  and binary (3.9) 

0≥W  and binary (3.10) 

0≥Y  and binary (3.11) 

0≥ω  and binary (3.12) 

0≥δ  (3.13) 

where YWZPGGGEEQBBBAAcccc ,,,,,,,,,,,,,,,,,,,, 0132121321215321 and ω  

are appropriate dimension matrices. 

Here (3.2) stands for (3.1), (3.3) corresponds to (2.3)-(2.5), (3.4) represents (2.6)-

(2.8), (3.5) corresponds to (2.9), (3.6) stands for (2.10)-(2.16), (3.7) for (2.17), (3.8) 

represents inequalities (2.18), and, finally (3.9)-(3.13) correspond to (2.19)-(2.24).  

  

3.2. Sub-problem 

Fixing the values of the z and w variables in VCRP at values given by vectors Z and 

W , respectively, the following sub-problem is obtained: 

( )wzSub  

min ( )WZYc cccc 2
1

1
1

5
2

4
2

3
2 λλλδλλ ω ++++  (3.2)’ 

subject to 

WQY =  (3.5)’ 

EYE 21 ≥                                                                                                         (3.6) 

321 GGYG ≥+ ω  (3.7) 

01≥+ δPY  (3.8) 

0≥Y  and binary (3.11) 

0≥ω  and binary (3.12) 

0≥δ . (3.13) 

As one considers the set of crew duties and vehicle blocks induced by (Z ,W ), this 

sub-problem is a rostering problem. Moreover, if (Y, δω, ) is a feasible solution for 

wzSub  and (Z ,W ) satisfies (3.3), (3.4), (3.9) and (3.10) then ( )δω,,,, YWZ  is feasible 

for VCRP.  
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Let us denote by wzLSub  the linear programming relaxation of wzSub , where (3,11), 

(3.12) are replaced by 0≥Y  and 0≥ω , respectively. A new set of constraints, (3.14), is 

added to set unitary bounds on the ω  variables: 

1≤ωI  (3.14) 

where 1 is an appropriate dimension unitary vector and I an identity matrix. Note that, 

unitary bounds for the y variables are not necessary since constraints (2.10) and (2.11), 

included in matrix representation (3.6), force these variables to be less than or equal to 1. 

Let ς , β, φ , χ  and ε  be the dual vectors corresponding to (3.5)’, (3.6), (3.7), (3.8) 

and (3.14), respectively. Then, the dual of the linear programming problem wzLSub , 

denoted by wzDLSub , can be written as: 

( )wzDLSub  

max ( )WZGEW cc 2
1

1
1

32 1 λλβ εφς +++++  (3.15) 

subject to 

cIG 3
2

2 λεφ ≤+  (3.16) 

cI 4
2λχ ≤  (3.17) 

cPGEQ 5
2

11 λχβ φς ≤+++  (3.18) 

0,0,, ≤≥ εχφβ . (3.19) 

If the drivers, defined by set M, with the respective availabilities from mhe  and mF , 

are enough to cover all crew duties for all days of H, given by W and at the same time all 

the rostering constraints are satisfied, assuming all variables may be non-integer, then 

wzLSub  has feasible solution and optimal solution also (note that the respective feasible 

regions are bounded along the optimization direction). In this case, a Benders cut is 

obtained from the optimal solution of wzDLSub  which corresponds to an extreme point 

of the respective feasible region. If the available drivers are not enough to cover all the 

crew duties in W  respecting all rostering constraints even accepting fractional variables, 

then wzLSub  is unfeasible and its dual, wzDLSub , is unbounded (there is always at least a 

feasible dual solution, the nil vector). In this case the corresponding Benders cut is 

obtained from an extreme ray of the feasible region of wzDLSub .  
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3.3. Master problem 

Let PD and RD be, respectively, the set of the extreme points and the set of extreme 

rays of the dual feasible region defined by (3.16) to (3.19), according to the Benders 

decomposition theory the master problem follows: 

(Master) 

min 0ϕ  (3.20)  

subject to   

1322
1

1
10 )( εφς βλλϕ +++++≥ GEWZ cc         PD∈),,,,( εφς χβ  (3.21) 

1320 Dh +++≥ GEW ηµ                                        RD∈),,,( Dhηµ  (3.22) 

AZA 21 ≥  (3.3) 

321 BWBZB ≥+  (3.4) 

0≥Z  and binary (3.9) 

0≥W  and binary. (3.10) 

The constraint set {(3.3), (3.4), (3.9), (3.10)} is also included in the mathematical 

model of the VCRP where it describes the integrated vehicle-crew scheduling problem 

for all the days of the planning horizon. This fact suggested the decomposition procedure 

for the VCRP that will be detailed in the next section. 

  

4. Solution approach 

Let 0,VCRP ≥ωy  be the problem obtained from relaxing the integrality constraints for 

the y and ω  variables in VCRP defined through (3.2) to (3.13) with a specific choice for 

the parametersλ1andλ2 . Fixing the values of the z and w variables in 0,VCRP ≥ωy  at 

values given by vectors Z and W , respectively, we obtain the linear sub-problem wzLSub  

and Benders decomposition theory guarantees that an optimal solution for 0,VCRP ≥ωy  is 

achieved, in case it exists (see Benders 1962). However, such optimal solution might not 

be feasible for VCRP due to the possibility of obtaining non-integer values for the y and 

ω  variables. In fact, the sub-problem wzSub is a mixed binary linear programming 

problem that does not satisfy the integrality property (the y and ω  variables must be 
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forced to be binary) and for this case, to the authors’ knowledge, no Benders convergence 

results have been generalized. 

For each specific choice of values for parametersλ1and λ2 , this paper proposes a 

non-exact approach for VCRP that iterates between a vehicle-crew scheduling problem 

for the planning horizon and a rostering problem thus obtaining, at the end, a feasible 

solution for the VCRP that naturally might not be an optimal one. In addition, this 

decomposition method is also much useful insofar as, along the several iterations, it 

produces a pool of feasible solutions for the VCRP. Such solutions can be analyzed from 

the two original objectives’ perspective and one can determine the potentially efficient 

solutions corresponding to the points of the objectives’ space that are not dominated by 

other points in the pool, the so-called potentially non-dominated points. 

The Decomposition algorithm is summarized in figure 1.  

 

Decomposition algorithm 

//input// 

Data: PGGGEEQBBBAAc cccc ,,,,,,,,,,,,,,,,,, 321213212154321
11 λλ  

//initialization// 

step1) PD0 = RD0=Pool=Φ .  

step 2) k=1. 

//iteration k// 

step 3) Define Masterk with the cuts from PDk-1 and RD k-1. 

step 4) Define ( )VUk ,RMaster , a lagrangean relaxation of the cuts associated to multipliers U  and   

V satisfying  1
1

1
=∑

=

k

i
iu .  

step 5) Solve ( )VUk ,RMaster .  

5.1) Apply the integrated vehicle-crew scheduling algorithm for each day of H. 

5.2) Concatenate the |H| solutions thus building a feasible solution of the vehicle-crew scheduling    

problem for H, ( )WZ, . 

step 6) Call  procedure Sub-problem(k; ( )WZ, ;PD k-1;RD k-1;Pool). 

//stoping criterion// 

step 7) If 1−≤ onsmaxiteratik  

7.1) then k=k+1 and go to step 3; 
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7.2) otherwise, calculate the potentially efficient solutions from the Pool. 

Stop. 

 

Figure 1. Decomposition algorithm for the VCRP. 

 

Steps 3, 4 and 5 of each iteration of the Decomposition algorithm are devoted to the 

master problem whereas step 6 calls the procedure to tackle the sub-problem. These 

features will be detailed in the next sub-sections. 

 

 4.1. Solving the master problem  

Suppose that, in iteration k, kPD  has k1 extreme points and kRD has k2 extreme rays. 

Then the master problem becomes: 

(Master k) 

min 0ϕ  (3.20)  

subject to   

1322
1

1
10 )( εφς βλλϕ iiii GEWZ cc ++≥+−−        i = 1,…, k1 (3.21)’ 

132
Dh iiii GEW ++≥− ηµ                                     i = 1,…, k2 (3.22)’ 

AZA 21 ≥  (3.3) 

321 BWBZB ≥+  (3.4) 

0≥Z  and binary (3.9) 

0≥W  and binary (3.10) 

where kiiiii PD∈),,,,( εφς χβ and RDkiiii ∈),,,( Dhηµ . 

The master problem is a difficult binary linear programming problem and must be 

solved repeatedly, i.e., in each iteration of the algorithm. Moreover, the convergence 

results of the Benders algorithm to an optimal solution do not apply here, as mentioned 

above, due to the combinatorial nature of the sub-problem, wzSub . Consequently, a non-

exact approach to tackle the master problem is advisable. The option favoured a method 

based on the relaxation of (3.21)’ and (3.22)’. At iteration k, a lagrangean relaxation of 
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Masterk  is considered, where (3.21)’ and (3.22)’ are embedded in the objective function 

associated with the non-negative lagrangean multipliers U and V, respectively: 

( )( )VUk ,RMaster  

min ∑+
=

1

1
0

k

i
iuϕ ( )ii rWZ cc ++++− )( 2

1
1

10 λλϕ ς + ∑
=

2

1

k

i
iv ( )ii sW +µ  (4.1)  

subject to   

AZA 21 ≥  (3.3) 

321 BWBZB ≥+  (3.4) 

0≥Z  and binary (3.9) 

0≥W  and binary (3.10) 

where 132
iiii GEr εφβ ++=  for all 1,...,1 ki =  and 132

iiii GEs Dh ++= η  for all 

2,...,1 ki = . 

Note that, the integrality property is not valid for ( )VUk ,RMaster . As a result, in each 

iteration k, one has ( ) ( ) ( )kkk vVUv
VU

Master,RMasterLMaster
0,

max ≤≤
≥

, where v(LMasterk) 

is the optimal value of the linear programming relaxation of Masterk. Hence, the 

lagrangean relaxation might do better than the linear relaxation in what respects lower 

bounds for v(Masterk). Usually, the values of the lagrangean multipliers associated to the 

relaxed constraints are set equal to the values of the corresponding dual variables and an 

optimizing iterative procedure updates the multipliers so that the lower bound improves. 

However, in this approach no multiplier improvement is performed.  

A specific choice for the lagrangean multipliers values, U  and V , such that 

1
1

1
=∑

=

k

i
iu (satisfied by the corresponding dual variables), converts the objective function of 

( )VUk ,RMaster , in (4.1), into: 

∑+
=

1

1
0

k

i
iuϕ ( )ii rWZ cc ++++− )( 2

1
1

10 λλϕ ς + ∑
=

2

1

k

i
iv ( )ii sW +µ = 

= WuZ cc i

k

i
i 








+∑+

=

2
1

1

1
1

1
λλ ς i

k

i
i ru∑+

=

1

1
+ ∑

=

2

1

k

i
iv Wiµ i

k

i
isv∑+

=

2

1
= 

= WvuZ i

k

i
ii

k

i
i cc 








∑++∑+
==

µλλ ς 2

1

2
1

1

1
1

1
i

k

i
i ru∑+

=

1

1
i

k

i
isv∑+

=

2

1
. 
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Now, this objective function can be rewritten by identifying the components of the 

vectors WZ cc  and ,, 21 : 

( ) +∑ 







∑ ∑ ∑+++∑ ∑

∈ ∈ ∈ ∈
++++

∈ ∈Hh Dd Ns L

hh
sdn

h
sdn

h
dns

h
dns

Dd Tts

dh
st

dh
st

h
wczczczc

l
ll

2
,

1
,1,

1
,1

),(

1
1 λλλ  

+ i

k

i
iru∑

=

1

1
i

k

i
isv∑+

=

2

1
 

where i

k

i
ii

k

i
i vcuc µλς ∑++∑=

==

2

1

2
1

1

2 1

ll . 

For any choice for the parameterλ1 , since i

k

i
iru∑

=

1

1
i

k

i
isv∑+

=

2

1
 is constant, this objective 

function, along with the set of constraints of ( )VUk ,RMaster , can be partitioned into |H| 

independent subsets. Therefore, solving ( )VUk ,RMaster  for a specific choice of the 

multipliers U and V  is equivalent to solving |H| independent integrated vehicle-crew 

scheduling problems, one for each day of the planning horizon. The (daily) integrated 

vehicle-crew scheduling problems can be solved by the algorithm proposed in Mesquita 

and Paias (2008) which combines a heuristic column generation procedure with a branch-

and-bound scheme.  

Note that these vehicle-crew scheduling solutions may give slightly different daily 

schedules for the vehicles and also for the crews. However, in real cases public transit 

companies, usually, have the same vehicle-crew schedules in each day type of the 

planning horizon - there is a pattern for the weekdays and one pattern for the weekend 

days. Hence, it is desirable that solutions resulting from the master problem will follow 

this scheme. Consequently, in step 5 of the Decomposition algorithm the master problem 

is solved for each day type.  

 

4.2. Solving the sub-problem 

In each iteration of the Decomposition algorithm, step 6 (figure 1) refers to the sub-

problem. Figure 2 details the procedure. 

 

Procedure Sub-problem(k; ( )WZ, ;PD k-1;RD k-1;Pool) 

//sub-problem of iteration k// 
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step 1) Define wzSub , the rostering sub-problem for iteration k  

step 2) Solve wzLSub , the corresponding linear relaxation: 

 2.1) in case it has a finite optimal value, save the corresponding dual solution and go to step 3; 

 2.2) in case it is unfeasible, save an extreme ray of the dual linear feasible region and go to step 5. 

step 3) Solve wzSub to get a feasible roster if the threshold π is not attained.  

//solutions for the VCRP// 

step 4) Update the Pool of feasible solutions of the VCRP. 

step 5) Update the sets of extreme points and of extreme rays, PD k-1 and RD k-1. 

Stop. 

 

Figure 2. Procedure for tackling the sub-problem. 

 

Exact standard algorithms are used to solve the sub-problem (step 3) and the 

respective linear relaxation (step 2), wzSub  and wzLSub . The dual linear variables or dual 

extreme rays obtained in step 2 will give rise to the Benders cuts that will be added to the 

master problem, in the next iteration.  

Let ( )1,LSub −kwzv  denote the linear programming relaxation value in iteration k-1 of 

the Decomposition algorithm. To obtain a feasible roster, a branch-and-bound is executed 

with wzSub  whenever the following criterion involving the two optimization objectives 

and a threshold π  (step 3) is satisfied: 

( ) ≤kwzv ,LSub
1,...,1

min
−= ki

( )LSubzw i
v π+  or  

v ( )( )RMaster ,k U V ≤
1,...,1

min
−= ki

 v ( )( )RMaster ,i U V π+ . 

In this case, the solution of the master, a set of vehicle-crew schedules covering the 

planning horizon, along with the solution of the sub-problem correspond to a feasible 

solution for the VRCP which will be included in the Pool - step 4 of the procedure in 

figure 2. 

 

5. Computational experiment 

A computational experiment was performed using real-world data from a public 

transit company operating in Lisbon.  
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All linear programming relaxations and branch-and-bound schemes, in the 

Decomposition algorithm, were tackled with CPLEX solvers (CPLEX Manual version 

11.0, 2007). As for the integer resolution of the rostering sub-problems a time limit of 

7200 seconds was imposed. The (daily) integrated vehicle-crew scheduling problems 

were solved by the algorithm proposed in Mesquita and Paias (2008) by setting the 

parameters ∈=7, γ=3000 and p=4/15, where ∈ is the parameter related with the definition 

of the tasks, γ is the maximum number of columns generated per iteration and p is a 

parameter related with the heuristic pricing of the columns. See Mesquita et al. 2009 for a 

detailed description of these parameters.  

All algorithms were coded in C, using VStudio 6.0/C++ and all the programs ran on a 

PC Pentium IV 3.2 GHz.  

 

5.1 Test instances 

The test instances used for the experiments were derived from an urban bus service 

inside the city of Lisbon and involve scheduling problems with 122, 168, 224, 226 and 

238 trips and 4 depots. The input of each VCRP instance includes the start and end times, 

the start and end locations for each trip and the deadhead times between locations and 

depots. Two different demand patterns (timetabled trips) are considered, one for 

weekdays and the other for weekend days. Consequently, in each iteration of the 

Decomposition algorithm the integrated vehicle-crew scheduling problem is solved 

twice: for a weekday type and for a weekend day type.  

Concerning daily crew duties and the rostering, some parameters have to be defined 

in order to respect the rules imposed by Portuguese Law, union contracts and specific 

rules of the bus company. A detailed description of them may be seen in Mesquita et al. 

(2008). 

In what respects the vehicle-crew scheduling process one has: 

- for each crew duty the minimum spread is set at 1 hour 

- the maximum spread is 5 hours for duties without a break; otherwise, it is 10 hours and 

45 minutes 

- break times range from 1 hour to 2 hours and 20 minutes 

- the maximum duration allowed for a crew duty before a break occurs is 5 hours 
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- a penalty of 5000 m.u. is added to the cost of each pull-in and each pull-out trip in order 

to minimize the number of vehicle blocks in the schedule 

- λ1=1. 

Respecting the rostering process one has: 

- |H|=28 

- 4=α  

- |M|=80 

- [ ]645 ,300∈lu  minutes 

- u  = 480 minutes (8 hours) 

- a = 11 hours - the minimum rest period of 11 hours allows the separation of the set of 

crew duties into early duties (L h1 ), starting at a point between 6:00 a.m. and 3:30 p.m. and 

late duties (L h2 ), starting in the interval from 3:30 p.m. to midnight 

- b w1  = 2880 minutes (48 hours) 

- brw  = 10560 minutes (176 hours) 

- Ω w  = 2 days 

- Ω S  = 1 day 

- g = 6 days 

- Fm = ∅ 

- mc3  = 0.96 

- 4c = 0.04  

- mhc5
l  = 0 

- λ2 =1 

- π = 0. 

 

5.2 Computational results for the VCRP 

Tables 1 and 2 show computational results obtained from 10 iterations of the 

proposed Decomposition algorithm. In both tables, “nvehic”, “ncrew” and “ndriver” refer 

to the number of vehicles, number of crew duties and number of drivers, respectively. In 
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table 1, column (10) contains the average maximum overtime per driver measured in 

units of 15 minutes. The last columns in table 1 are devoted to CPU time: the values 

reported in columns (11) and (12) are total CPU values obtained from the 10 iterations, 

respectively, for the VCP master problem and for the linear programming relaxation 

rostering sub-problem. Column (13) shows total CPU values for determining mixed-

integer solutions of the rostering sub-problems (feasible rosters) and, in brackets, the 

number of MILP sub-problems solved according to the threshold π.  

 

Table 1. Results from 10 iterations of the Decomposition algorithm.  

 

 

As one can see, in table 1, the Decomposition algorithm has produced solutions that, 

despite being different, have the same number of vehicles and crews. Variations have 

occurred only for instance 226. This diversity of vehicle-crew solutions led to rostering 

solutions that, for the same instance, may have a great variation in the number of drivers. 

For instance 224 the rostering solutions differ at most in 2 drivers. For the last two 

instances, 226 and 238, the number of drivers varies from 44 to 47 and 69 to 75, 

respectively.  

On average, considering all instances, the rostering mixed integer linear program 

(MILP) was solved 5 times out of 10. One can notice that, for each instance, a small 

 master sub-problem  
 (daily) vehicle-crew schedules monthly roster total CPU  (seconds) 

 weekday weekend    

 nvehic ncrew nvehic ncrew ndriver 
max 

overtime VCP   rostering  

 
average 

 

min 

 

max 

 

average 

 

min 

 

max 

 

min 

 

max 

 

average 

(quarters) 
 

LP 

 

MILP 

 

             
122 9 17 17 6 9 9 21 21 64.7     61 7 3893 (3) 

168 17 38 38 10 19 19 46 46 81.0 109 83 42684 (6) 

224 18 39 39 10 16 16 50 52 113.6 4296 83 36000 (5) 

226 15.6 33 35 7 15 15 44 47 117.4 13208 73 36000 (5) 

238 22 54 54 11 27 27 69 75 109.3 1038 164 28800 (4) 
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increase in the number of mixed integer linear rostering problems solved, during 10 

iterations, led to a great increase in total CPU time.   

In table 2, for each instance, the first row of columns (2) to (7) shows the results 

obtained in the first iteration of the Decomposition algorithm which corresponds to that 

of a sequential approach applied to the same instance. The subsequent rows (or row), in 

columns (2) to (7), correspond to the potentially non-dominated points (or point) 

obtained. Columns (9) to (11) report on the difference between the solution 

corresponding to a potentially non-dominated point - potentially efficient solution - and 

the solution obtained on iteration 1 (sequential approach), concerning the number of 

vehicles, the number of crew duties, the number of drivers and the overtime. The last 

column refers to overtime and is given in percentage. 

 

Table 2. The Decomposition algorithm versus the Sequential algorithm.  

 potentially non-dominated points improvement from sequential approach  

 weekday weekend planning horizon (iteration 1) 

 

nvehic 

 

ncrew 

 

nvehic 

 

ncrew 

 

ndriver 

 

max overtime 

 

∆nvehic 

 

∆ncrew 

 

∆ndriver 

 

∆overtime 

 

122 

9 

9 

17 

17 

6 

6 

9 

9 

21 

21 

74 

56 0 

 

0 

 

0 

 

-24% 

168 

17 

17 

38 

38 

10 

10 

19 

19 

46 

46 

88 

75 

 

0 

 

 0 

 

0 

 

-15% 

224 

 

18 

18 

18 

39 

39 

39 

10 

10 

10 

16 

16 

16 

51 

51 

50 

110 

108 

107 

 

0 

0 

 

0 

0 

 

0 

-1 

 

-2% 

-3% 

226 

 

 

15 

15 

16 

15 

35 

35 

33 

35 

7 

7 

7 

7 

15 

15 

15 

15 

47 

44 

44 

46 

131 

115 

111 

112 

 0 

+1 

0 

 

0 

0 

0 

 

-3 

-3 

-1 

  

-12% 

-15% 

-15% 

238 

 

    22 

22 

22 

54 

54 

54 

11 

11 

11 

27 

27 

27 

69 

70 

71 

111 

107 

117 

 

0 

0 

 

0 

0 

 

+1 

+2 

 

-4% 

+5% 
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With the exception of instance 238, the potentially non-dominated points obtained by 

the Decomposition algorithm dominate the points obtained by the sequential approach 

(see the first row - first iteration - per instance). In instance 238, the first solution 

obtained by the Decomposition algorithm, is itself a potentially efficient solution. The 

last row of the table displays a point for this instance that corresponds to a reduction in 

the cost of the weekday VCP thus being a potentially non-dominated point.  

In general, one can see from the above results that the improvement over the first 

solution is obtained by minimizing the maximum overtime per driver. In fact, the solution 

of the master problem could be adjusted using the feedback obtained by introducing 

Bender cuts. This feedback guided the building of the vehicle and crew schedules thus 

conducing to rosters with less overtime per driver and with fewer drivers. Note that, 

although a sequential approach greatly reduces CPU time, the resulting integrated 

problem might not be solvable if no feasible roster can be built from the vehicle-crew 

scheduling solution.  

 

6. Conclusions 

This paper proposes a new methodology to deal with the integrated vehicle-crew-

rostering problem within public transit companies. The VCRP is modelled as a bi-

objective mixed binary linear problem and the solution approach is based on Benders 

decomposition. It alternates between the solution of an integrated vehicle-crew 

scheduling master problem and the solution of the corresponding linear programming 

relaxation rostering sub-problem, used to produce Benders cuts. In spite of the fact that 

the feasible region of the Benders sub-problem is not convex, hence it does not satisfy the 

hypotheses for the convergence of the Benders algorithm, here Benders decomposition is 

used within a non-exact method for the VCRP that produces a pool of feasible solutions. 

In fact, in each iteration of the proposed decomposition algorithm, a pre-defined criterion 

is analysed and whenever satisfied branch-and-bound techniques are applied to obtain a 

feasible roster that together with the master problem vehicle-crew scheduling solution 

give a feasible solution to the VCRP.  

The effects of integration of the three difficult combinatorial optimization problems 

were analyzed for real instances of the VCRP. The generation of Benders cuts proved to 
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be effective within the proposed non-exact method for producing a pool of feasible and 

potentially efficient solutions for the VCRP at reasonable computing times.  
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