
INSTITUTO SUPERIOR DE ENGENHARIA DE LISBOA

Área Departamental de Engenharia de Electrónica e Telecomunicações e de
Computadores

Reactive Web Templates

Pedro Filipe Gonçalves Fialho

Dissertação para obtenção do Grau de Mestre
em Engenharia Informática e de Computadores

Orientador : Doutor Fernando Miguel Gamboa de Carvalho

Júri:

Presidente: Doutor Nuno Miguel Soares Datia

Vogais: Doutor Fernando Miguel Gamboa de Carvalho
Doutor António Paulo Teles de Menezes Correia Leitão

Setembro, 2023

Acknowledgments

Gostaria de expressar a minha mais profunda gratidão às pessoas e instituição cuja contribuição
e apoio tornaram possível a conclusão desta tese.

Em primeiro lugar, desejo manifestar a minha profunda apreciação ao orientador de tese, Fer-
nando Miguel Gamboa de Caervalho, pela orientação, compromisso e dedicação.

Agradecer também à minha família, por todo o apoio e paciência no desenvolvimento desta
tese.

iii

Abstract

Naive server-side rendering (SSR) techniques require a dedicated server thread per HTTP re-
quest, thereby limiting the number of concurrent requests to the available server threads. Fur-
thermore, this approach proves impractical for modern low-thread servers like WebFlux, VertX,
and Express Node.js.

To achieve progressive rendering, asynchronous data models provided by non-blocking APIs
must be utilized. Nevertheless, this method can introduce undesirable interleaving between
template view processing and data access, potentially resulting in malformed HTML docu-
ments.

Some template engines offer partial remedies through specific templating dialects, but they
encounter two limitations. Firstly, their compatibility is confined to specific types of asyn-
chronous APIs, such as the reactive stream Publisher API. Secondly, they typically support
only a single asynchronous data model at a time.

In this research, we propose an alternative web templating approach that embraces any asyn-
chronous API (e.g., Publisher, promises, suspend functions, flow, etc.) and allows for mul-
tiple asynchronous data sources. Our approach is implemented on top of HtmlFlow, a Java-
based DSL for writing type-safe HTML.

We evaluated against state-of-the-art reactive servers, specifically WebFlux, and compared it
with popular templating idioms like Thymeleaf and KotlinX.html. Our proposal effectively
overcomes the limitations of existing approaches.

Keywords: Web Templates, Server-Side Rendering, Non-blocking, Asynchronous, Concurrent

v

Resumo

Técnicas de renderização otimistas no lado do servidor (SSR) requerem uma thread dedicada
por pedido HTTP, limitando assim o número de pedidos concurrentes às threads do servidor
disponíveis. Além disso, essa abordagem mostra-se impraticável para servidores modernos
com um baixo número de threads, como WebFlux, VertX e Express Node.js.

Para alcançar renderização progressiva, modelos de dados assíncronos fornecidos por APIs não
bloqueantes devem ser utilizados. No entanto, este método pode introduzir uma sobreposição
indesejável entre o processamento de visualização do modelo e o acesso a dados, potencial-
mente resultando em documentos HTML malformados.

Alguns template engines oferecem remédios parciais tirando partido de dialetos específicos, mas
enfrentam duas limitações. Em primeiro lugar, a sua compatibilidade é restrita a tipos espe-
cíficos de APIs assíncronas, como a API reativa Publisher. Em segundo lugar, geralmente
suportam apenas um modelo de dados assíncrono.

Nesta pesquisa, propomos uma abordagem alternativa de templates web que abrange qual-
quer API assíncrona (por exemplo, Publisher, promessas, funções de suspensão, flux, etc.)
e permite várias fontes de dados assíncronos. A Nossa abordagem é implementada usando
como base o HtmlFlow, uma DSL (Linguagem de Domínio Específica) baseada em Java para
escrever HTML usando forte tipificação de tipos.

Foi avaliado em servidores reativos de última geração, especificamente o WebFlux, e compa-
ramos com idiomas populares de templating, como Thymeleaf e KotlinX.html. Nossa proposta
supera as limitações das abordagens existentes.

Palavras-chave: Templates Web, renderização no servidor, IO não-bloquente, API assíncrona
programação concorrente.

vii

Contents

List of Figures xi

List of Tables xiii

List of Listings xv

1 Introduction 1

1.1 Motivation . 2

1.2 Asynchronous APIs Matter . 4

1.3 Outline of the Dissertation . 6

2 State of the Art 7

2.1 Related Work . 7

2.2 Spring SSR Basics . 12

2.3 Web Templates . 16

2.3.1 Thymeleaf . 16

2.3.2 KotlinX SSR with Reactive Streams . 19

2.3.3 Handlebars for SSR with Reactive Streams 24

2.3.4 HtmlFlow for SSR with Reactive Streams 27

2.4 Resolvers . 30

2.4.1 Thymeleaf Resolvers . 31

2.4.2 KotlinX Resolvers . 40

2.4.3 Handlebars Resolvers . 42

ix

x CONTENTS

2.4.4 HtmlFlow Resolvers . 44

2.5 Summary . 46

3 Functional Reactive Templates 47

3.1 Former HtmlFlow internal processing . 47

3.1.1 Kinds of Templates . 49

3.1.2 Visitors . 50

3.2 DSL Proposal for asynchronous fragments . 52

3.2.1 Why a new version was needed . 52

3.2.2 An event-driven way of working . 53

3.3 HtmlFlow asynchronous internal processing . 55

3.4 Summary . 60

4 Validation 61

4.1 Disco Non-blocking web application . 61

4.1.1 Thymeleaf . 62

4.1.2 KotlinX.html . 65

4.2 Evaluation . 68

4.2.1 Environment . 68

4.2.2 Results . 69

4.2.3 Performance Evaluation . 69

4.2.4 Memory Allocation Evaluation . 70

4.3 Summary . 71

5 Conclusions 73

5.1 Main contributions . 73

5.2 Future Work . 74

References 75

List of Figures

2.1 Diagram how Spring handles SSR requests from the ViewResolver to the View . 30

3.1 HtmlFlow async then architecture . 54

4.1 Expected output from Disco web app for The Rolling Stones band. 62

4.2 Throughput of Thymeleaf, KotlinX.html and HtmlFlow in Spring templates bench-
mark with WebFlux and JMH. 69

4.3 Memory allocation in Kb/op for each template engine in Spring templates bench-
mark for single HTML emission and progressive rendering. 70

xi

List of Tables

2.1 Comparing template views in terms of DSL approach, host language, and the
ability to provide functional templates, progressive rendering and their relative
performance to HtmlFlow in Spring templates benchmark. 11

xiii

List of Listings

2.1 Example of Thyemelaf tempalate . 8

2.2 Nested function DSL. 9

2.3 Method chaining DSL. 10

2.4 Spring Controller annotation . 13

2.5 Spring RestController annotation . 13

2.6 Example of Controller to SSR . 14

2.7 Example implementation of ViewResolver. numbers 14

2.8 Example view class responsible to process and render the template 15

2.9 Thymeleaf template for the vets . 16

2.10 Vet and dependant object used for the templates 17

2.11 Reactive version of a Controller to use the vets template 17

2.12 Result of Thymeleaf html with reactive streams . 18

2.13 KotlinX vets template . 19

2.14 KotlinX Vet helper template creation . 20

2.15 KotlinX helper to render fragments . 20

2.16 KotlinX controller . 21

2.17 KotlinX result from running the request . 22

2.18 Handlerbars vets template . 24

2.19 Handlerbars vets template . 24

2.20 Handlebars helper to render fragments . 25

2.21 Controller for Handlebars . 26

xv

xvi LIST OF LISTINGS

2.22 HtmlFlow DSL template . 27

2.23 HtmlFlow dynamic consumer implementation, which is the equivalent of the
Handlebars helper, as the helper from KotlinX was 28

2.24 HtmlFlow partial template per vet . 28

2.25 HtmlFlow controller implementation . 28

2.26 Reactive version of the Thymeleaf ViewResolver 31

2.27 Reactive version of a Controller to use the vets template 31

2.28 Reactive version of how the template is rendered 32

2.29 ReactiveDataDriverContextVariable is passed to the context for Thymeleaf to
start the reactive processing . 32

2.30 Internal render of reactive fragment inside template 33

2.31 Context initialization for fragment rendering . 34

2.32 Creation of stream based on output mode . 35

2.33 Creation of Flux containing each part of the HTML fragment 36

2.34 Initialization of throttled template engine . 36

2.35 Delay of throttled processor initialization . 36

2.37 Merging of all the results from the many buffers 36

2.36 Each phase of the reactive fragment rendering . 37

2.38 Create a never-ending Flux to continuations emmit data 37

2.39 Control ending of Flux output . 37

2.40 Starting of emit HTML . 38

2.41 Feeds the values from the buffer to the output . 38

2.42 Starts emitting the end of the reactive HTML fragment 38

2.43 Determines if it should finish the step or continue emmiting 38

2.44 Signals the finish of the phase . 38

2.45 Ends the emission of data from the parent Flux . 39

2.46 BasicView, which is responsible for unwrapping the needed parameters and
passing them to the received processor . 40

2.47 Extraction of response stream, buffer for the data and the write for said buffer . . 41

2.48 Creation of buffer to continuously write to the server output 41

2.49 TemplateProcessor declaration . 41

LIST OF LISTINGS xvii

2.50 KotlinX Processor implementation . 41

2.51 KotlinX template which passes the model for template processing 42

2.52 Handlebars view resolver to fetch the template and compile it 42

2.53 Handlebars implementation of the Processor . 43

2.54 Creation of the Handlebars context . 43

2.55 HtmlFlow resolver implementation . 44

2.56 HtmlFlow resolver implementation . 44

2.57 HtmlFlow resolver implementation . 45

3.1 Creation of simple HtmlFlow Template . 47

3.2 HtmlTemplate interface responsible for specifying a function 48

3.3 Creation of a DynamicHtml that accepts models 49

3.4 Creation of template that is completed by a partial 49

3.5 Usage of partials inside a template . 50

3.6 Thenable interface, definition . 53

3.7 Await operation unwrapped . 54

3.8 HtmlContinuation . 56

3.9 HtmlContinuationSync execute . 56

3.10 HtmlContinuationAsync execute . 56

3.11 Call to preprocessing when viewAsync is called 57

3.12 Asynchronous implementation of chaining of continuations 57

3.13 Html template writeAsync . 58

3.14 HtmlFlow usage with new version . 59

3.15 Result of the new HtmlFlow reactive approach . 60

4.1 Expected HTML source code for the web page of Figure 4.1c 63

4.2 Disco domain entities definition in Kotlin for MusicBrainz and SpotifyArtist. 63

4.3 Example of Thymeleaf template of Disco web application. 64

4.4 Example of KotlinX.html template of Disco web application. 66

4.5 Example of ill-formed HTML source resulting from undesirable interleavings
between template processing and asynchronous data access. 67

4.6 Presentation domain entity. 68

1
Introduction

The research work that I described in this dissertation is concerned with the challenge of deal-
ing with asynchronous data models [3, 21] in web applications with server-side rendering (SSR)
[32]. Thus, the main goal is to provide a solution to make SSR work with asynchronous data
models and achieve progressive rendering. The web applications that already work with SSR,
would be able to work with asynchronous data models of any type of asynchronous API (e.g.
reactive streams, flows, async-await, suspend functions, etc.), without the need to completely
rework their entire infrastructure. Accounting for this new way of working with models.

We will explore the driving factors behind this work, primarily by examining the existing chal-
lenges within the current state-of-the-art related to using SSR with asynchronous models. Fol-
lowing this, we will provide an initial overview of our proposed solution aimed at addressing
the identified problems.

1

1. INTRODUCTION 1.1. Motivation

1.1 Motivation

At the moment, Web Templates are a huge part when developing Web Applications. Although
we see more and more Single Page Applications (SPA’s) putting together techniques like client-
side rendering (CSR), a huge part of Web Applications still rely on SSR. SSR is known for its
simplicity in usage, how fast it can be implemented and in some cases even reduce some client
workload.

It’s also true that when Web Apps are being developed, the usage of Asynchronous APIs are
becoming predominant. There is no way to hold the generation of a table for later while com-
piling the rest of the template and guaranteeing the validity of HTML regarding the template
definition. This causes a major issue, as we need to block the Asynchronous APIs which forces
the client, in this case, the browser, to be blocked while waiting for the response. This behavior
is not acceptable to a user of a website. Another option would be to continue to use SSR with a
traditional server-side blocking thread-per-request architectures.

In traditional thread-per-request architectures, each incoming request is handled by a dedi-
cated thread. The web server creates a new thread to handle each incoming request, meaning
that the number of threads in the system can grow quickly as the load increases. Usually, there
is a pool of threads that deals with thread creation and assignment. This can lead to perfor-
mance issues and scalability problems, as the system can become bogged down by context-
switching and thread overhead [17].

Another thing to consider is that a server has limited amounts of memory and CPU.

If we assume that one thread costs 1 MB, in a case where we have 1000 concurrent requests
being made to the server there can be 1000 threads running simultaneously. Which can poten-
tially correspond, to 1 GB being used just on threads.

Although even if with the current memory costs, 1 GB of memory is not that expensive, we
need to consider the implications of such implementation.

This amount of threads running, and the overhead that comes with it, makes it very difficult to
scale the server to support a high load of requests. A good server-side implementation should
be flexible enough to be able to scale at demand. As more threads are running more resources
the server will consume, which makes it very expensive to scale an application to serve more
requests.

Another downside of this implementation is how hard it is to predict the amount of resources
used, if we have a server running under the thread-per-request model, it can very quickly
(under a lot of load) take a huge amount of resources, as we already discussed it.

In a world where microservices are imperative, we try to take as little, in terms of resources, as
possible for each service. The uncertainty of the amount of resources a service can take makes
it difficult to create a scalable architecture all around the board.

2

1. INTRODUCTION 1.1. Motivation

On the other hand, in modern low-thread architectures, the server uses a few threads to handle
many requests. The server can handle many concurrent requests without blocking or slowing
down the system, which makes it more scalable and efficient [27]. To that end, it uses non-
blocking I/O to ensure that each thread can handle multiple requests at the same time. Non-
blocking I/O means that the main thread returns immediately, indicating that the background
processing was successfully initiated. The application can then perform other processing while
the background operation completes. When the read response arrives, a signal or a thread-
based callback can be generated to complete the transaction.

The non-blocking I/O model used in low-thread servers is well-suited for handling large vol-
umes of data asynchronously [21]. The combination of low-thread servers and asynchronous
data, models have enabled the development of highly scalable, responsive, and resilient Web
applications that can handle a high volume of data [14].

The combination of all the components above presented is what we call a Reactive Web Server.
This idea of a Reactive Web Server was already brought up a long time ago [26] where this
concept of a server that can handle multiple requests at the same time, by taking advantage of
non-blocking I/O is explained.

This idea gained significant attention with the rise of Node.js in 2009 [23], and later, several
technologies embraced this approach in Java ecosystem namely, Netty [22], Akka HTTP [1],
Vert.X [36] and Spring WebFlux [15], being the latter the most widely used middleware in Java
Web applications according to several surveys, such as JetBrains’ State of Java report (2021) and
community activity, such as GitHub and Stackoverflow.

Migrating legacy Web applications to state-of-the-art low-thread Web servers, not only involves
porting the Web handlers (e.g. controllers [2]), and data repositories [9], but may also concern
the Frontend when it uses an SSR approach [2], where the Web server is also responsible for
generating the HTML for a Web page. Although, Single-Page Applications (SPAs) with Client-
Side Rendering (CSR) [30] becoming a popular choice for building Frontend, in modern Web
applications, SSR still has a significant installation base and continues to be used in many Multi-
Page applications.

However, only a few Java template engines properly deal with asynchronous data models.
In our work, we analyze a use-case of a Spring WebFlux application and some limitations, and
harmful effects, that may emerge from the use of SSR Frontend with asynchronous data models,
such as 1) unresponsive blank page, 2) limited concurrency, 3) server runtime exceptions, 4) ill-
formed HTML, 5) single model use, and 6) restricted asynchronous API.

Our work is built on top of HtmlFlow, a Java DSL library for HTML. We present a new pro-
posal that suppresses all the aforementioned issues through the combination of three ideas: 1)
functional templates, which regards the capacity of implementing Web templates as higher-order
functions [5]; 2) resume callback in continuations [6] to control transitions from asynchronous
handlers, and 3) chain-of-responsibility design pattern [11] to control the flow between a chain
of template fragments.

3

1. INTRODUCTION 1.2. Asynchronous APIs Matter

1.2 Asynchronous APIs Matter

In the context of a Reactive Web Server, most of the options for the server-side to support this
approach, described above, take advantage of the reactive programming approach.

This is a paradigm in which declarative code is issued to construct asynchronous processing
pipelines. In other words, it’s a programming technique where asynchronous data streams
send data to a consumer as it becomes available, which enables developers to write code that
can react to these state changes quickly and asynchronously.

One way to describe such asynchronous processing pipelines is through Reactive Streams.

Streams perform exceptionally well in the world of Reactive Programming due to their behav-
ior and usability.

A stream is a sequence of ongoing events (state changes) ordered in time. According to the
Reactive Streams standard, a stream can emit three different things: a value (of some type), an
error, or a completed signal. The events are captured asynchronously, by defining a function
that will execute when a value is emitted, another function when an error is emitted, and an-
other function when completed is emitted. Listening to the stream is called subscribing.
The functions we are defining are observers.

Streams are also composable, being able to build functions one on top of the other gives the
programmer the possibility to chain events to be executed on a certain stream of elements.

Reactive Streams are an initiative to provide a standard for asynchronous stream processing
with non-blocking back pressure. This encompasses efforts aimed at runtime environments
(JVM and JavaScript) as well as network protocols.

The main goal of Reactive Streams is to govern the exchange of stream data across an asyn-
chronous boundary – like passing elements on to another thread or thread-pool – while ensur-
ing that the receiving side is not forced to buffer arbitrary amounts of data.

We can then conclude that Reactive Streams take full advantage of a non-blocking IO model,
to provide the so-wanted behavior for a Reactive Web Server.

The non-blocking IO model used in low-thread servers only functions properly if HTTP han-
dlers do not block. This implies that an HTTP handler cannot wait for IO completion, such
as reading a file, querying a database, or any other kind of IO operation. Therefore, handlers
must be designed to initiate IO operations and return immediately, allowing other handlers
to execute while the IO operation completes in the background. To ensure non-blocking I/O,
handlers should use asynchronous APIs to access data. Asynchronous APIs allow handlers to
submit requests and receive notifications when operations are complete, all without blocking
the thread.

However, while using a synchronous API can be straightforward with its direct style of pro-
ducing results through the returned value of function calls, dealing with an asynchronous API

4

1. INTRODUCTION 1.2. Asynchronous APIs Matter

can be more challenging. Asynchronous APIs do not have a standard approach, leading to sev-
eral proposals such as continuation-passing style (CPS) [28], async/await idiom [3], reactive
streams [25], Kotlin Flow [19], and others.

The correct use of an asynchronous API generally requires following established patterns and
idioms for the particular programming language or framework being used. This can help to
ensure that code is efficient, reliable, and maintainable. On the other hand, naively dealing
with asynchronous data models, may produce several harmful effects. In the context of a web
server, we may observe the following problems, not limited to: 1) unresponsive blank page; 2)
limited concurrency, and 3) server runtime exceptions.

A naive way of dealing with an asynchronous API is blocking on completion. For example,
in the Java CompletableFuture, which is an implementation of the concept of Promise [24],
this may be achieved by getting its result from its method join(): T.

This blocking approach can be used by any template engine, including those analyzed in this
work (i.e. Thymeleaf, KotlinX.html and HtmlFlow) with the same ill effect. These kinds of
handlers will produce an unresponsive blank page in the browser. Only when all data models
are completed we may see a resulting HTML document. Rather than a progressive behavior
where the page would be rendered smoothly as data becomes available, we will have an all-or-
nothing effect starting with a blank page and finishing with the complete page.

The progressive behavior of rendering the static parts of the web template first and then asyn-
chronously rendering the dynamic parts as they complete gives the end-user a feeling of re-
sponsiveness and progress. It helps to avoid a situation where the user is left with an empty
page that appears to be stuck or unresponsive. By using this approach, the user can see that
the page is being loaded and something is happening in the background, which can improve
their overall experience.

Furthermore, in the blocking approach, while a handler is waiting for data completion, it is
blocking a thread and preventing it from doing another task, such as processing another HTTP
request, leading to limited concurrency. For single-threaded environments, it means that it will
handle just one HTTP request at a time.

In some environments, blocking for completion may cause even worse issues, lead to malfunc-
tion and throw a server runtime exception. For instance, in Spring WebFlux blocking an HTTP
handler may throw: IllegalStateExceptionwith the message: block()/blockFirst()
/blockLast() are blocking, which is not supported in thread

Another example is the Eclipse Vert.x for JVM [36], which includes a low-thread server based
on Netty and in similar blocking situations may throw an exception.

When a blocking operation occurs within such a server, it can lead to resource contention and
potentially degrade the scalability of the server. The exceptions serve as warnings to devel-
opers that blocking operations are being performed in a context where they are not supported
or recommended. They highlight the potential risk of blocking and encourage developers to

5

1. INTRODUCTION 1.3. Outline of the Dissertation

refactor their code to use non-blocking alternatives or offload blocking operations to separate
threads or asynchronous tasks.

While the web application might still appear to work fine despite these exceptions, it is impor-
tant to address them to ensure the proper functioning and scalability of the application within
the intended low-thread and non-blocking architecture. Ignoring or suppressing these excep-
tions can lead to potential performance issues, thread starvation, and decreased responsiveness
of the web server under high load.

1.3 Outline of the Dissertation

For the remainder of this paper, we will highlight in the following sections some issues arising
from the naive use of asynchronous techniques in web templates. Then in Chapter 2 we de-
scribe state-of-the-art template engines for SSR and compare different asynchronous template
dialects. In Chapter 3 we discuss their behavior in a case study of a Spring WebFlux application,
followed by Chapter 4 where we propose how to mitigate the found limitations. Next, Chapter
5 presents a performance evaluation benchmark comparing different template engines dealing
with asynchronous data models in a WebFlux web application. We conclude and discuss some
future work in Chapter 6.

6

2
State of the Art

In this chapter, we will describe some concepts of the Spring framework and how it was built to
support Web Templates. We will then move on to how Thymeleaf can handle Web Templating
with Reactive Streams. Then we will compare this approach with other Template Engines such
as Handlebars and KotlinX, which have no internal support for reactive data models. For the
Thymeleaf examples, we used the demo project created by the Spring team Petclinic. To further
demonstrate how and where other technologies fail at Web Templating with Reactive Streams,
a demo under the scope of a Petclinic was also developed.

2.1 Related Work

Templates are pieces of software that provide a generic way to create a certain resource, where
certain parts can be generated dynamically by filling it with information that comes from out-
side sources, such as a database. A Web Page is a simple document that can be displayed by a
browser. These documents are written in HTML.

A Web Template is when we combine the Web Page idea with the template approach in order
to generate a Web Page, where HTML represents the static parts of the website, together with
some dynamic tags representing information that is not available and will be filled by some
external sources at runtime.

When we use a Web Template to render an HTML document on the server that is called SSR
(Server side rendering), which is the approach followed by engines such as Thymeleaf, JSP and
Handlebars. For example, SSR generates the full HTML for a page on the server in response to
client navigation (e.g. HTTP request).

7

2. STATE OF THE ART 2.1. Related Work

Thymeleaf [35] is the default template view engine in Spring WebFlux middleware. Thymeleaf
has a powerful expression language that allows developers to manipulate data in their HTML
templates. Also, Thymeleaf is the only Spring built-in view engine that supports asynchronous
data models with progressive rendering [37], emitting the resulting HTML in a series of incre-
mental updates as the template is being resolved, rather than waiting for the entire template to
be resolved before emitting any HTML. All the other built-in view engines, such as Freemarker,
Handlebars, Jade or JTwig produces an unresponsive blank page while awaiting data comple-
tion. On the other hand, JSP [16] is not supported by WebFlux.

We can use as an example of what is a Web Template this Thymeleaf file.

1 <tbody>

2 <tr th:each="item : ${items}">
3 <td th:text="${item.name}|">[name]</td>
4 </tr>
5 </tbody>

Listing 2.1: Example of Thyemelaf tempalate

We can see here multiple tags that Thymeleaf uses to represent certain actions. For example,
${...} can access object information such as fields. Whereas th:each represents the begin-
ning of an interaction of something that has multiple objects inside, like a list.

Web Templates may also be classified according to the domain-specific language (DSL) they
use, which is a programming language specialized to a particular application domain (e.g.
HTML) [20]. DSLs can be divided into two types: external or internal [10]. External DSLs are
languages created without any affiliation to a concrete programming language. An example of
an external DSL is the regular expression search pattern [34], since it defines its syntax without
any dependency of programming languages. On the other hand, an internal DSL is defined
within a host programming language, and it relies on the language’s syntax and constructs to
define the DSL. For that reason, internal DSLs can also be referred to as embedded DSLs, since
they are embedded in the programming language where they are used.

8

2. STATE OF THE ART 2.1. Related Work

DSLs for HTML allow defining templates for generating HTML directly within the host lan-
guage, rather than using textual template files, which enables the use of functional templates,
that are templates defined using higher-order functions [5]. Using a Java DSL can have several
benefits over using textual templates:

1. Type safety: Because the templates are defined in Java code, the compiler can check the
syntax and types of the templates at compile time, which can help to catch errors earlier
in the development process.

2. IDE support: Many modern IDEs provide code completion, syntax highlighting, and
other features for working with Java code, which can make it easier to write and maintain
templates.

3. Flexibility: Use all the features of the host programming language to generate HTML can
make it easier to write complex templates and reuse code.

4. Integration: Because the templates are defined in Java code, it can easily integrate them
with other Java code in the application, such as controllers, services, repositories and
models.

j2Html [13], KotlinX.html [18] and HtmlFlow, are example of Java libraries DSLs for HTML.
In common these DSLs use functions to define their languages. According to to [10] we can
distinguish their APIs between: 1) nested function and 2) method chaining.

Nested function combines functions by making function calls arguments in higher-level func-
tion calls. This approach can be used to organize code and create reusable code blocks, allowing
an efficient and modular programming style. In Listing 2.2 we present an example of a DSL for
HTML using a nested function approach. Yet, a simple sequence of nested functions ends up
being evaluated backward to the order they are written. This means that arguments are first
evaluated before the function is invoked. In Listing 2.2, p() is first evaluated and its resulting
paragraph will be the argument of the call to div(), which in turn will be the argument of
body() and henceforward.

1 html(

2 head(title("My title"),

3 body(

4 div(p("A paragraph"))

5)

6)

7)

Listing 2.2: Nested function DSL.

9

2. STATE OF THE ART 2.1. Related Work

1 Html().head().title("My title").body().div().p("A paragraph")

Listing 2.3: Method chaining DSL.

The backward evaluation behavior may incur several issues. Since arguments are evaluated
before the high-level function is called, this technique may not support progressive rendering
to emit HTML on demand according to function calls order. Otherwise, the HTML would be
generated backward. Thus, it may require some sort of auxiliary data structure to manage
elements processing and controlling HTML emissions, which in turn may lead to additional
performance overhead compared to other alternatives that do not require such a data structure.

Method chaining pattern avoids the backward evaluation behavior, since it is based on meth-
ods calls with receiver, which is the object of the method being called on [7]. The receiver object
is passed as an implicit argument to each method call, allowing for each subsequent method
to be called on the result of the previous method. In the example of Listing 2.3, the result of
Html() call is an HTML element that will be the receiver for the next head() call, which in
turn produces a Head element that will be the receiver for the next title() call, and hence-
forward.

J2html uses a nested function approach where templates have a similar layout to that one pre-
sented in Listing 2.2. The result of the execution of a j2Html template is a tree structure com-
posed of Tag objects[11]. The render() method is then used to traverse the tree and produce
an HTML document. Also, j2Html does not have built-in support for asynchronous data mod-
els.

KotlinX.html also uses a nested function approach to generate HTML, but instead of using ob-
jects as arguments, uses function literals (i.e. lambdas) to represent HTML tags and attributes.
By using function literals as arguments, KotlinX.html can delay the evaluation of the HTML
tags until the render stage, which solves the problem of backward evaluation that could occur
with j2html’s object-based approach.

HtmlFlow was designed to be a lightweight and efficient Java DSL library for generating
HTML, and one of its key features is its fluent API with a method chaining approach, similar
to the sample presented in Listing 2.3. When using HtmlFlow, developers can chain together
a series of method calls to define the structure and content of their HTML templates. As each
method is called, it emits HTML code directly, rather than instantiating and storing intermedi-
ate objects. This approach allows HtmlFlow to generate HTML more efficiently and with lower
memory overhead than some other HTML generation libraries that may instantiate and store
numerous objects representing HTML nodes or elements.

10

2. STATE OF THE ART 2.1. Related Work

In Table 2.1 we present a brief comparison between the web templates and the properties we
have discussed in this section, regarding non-asynchronous data models. We also included a
performance metric regarding the throughput of each web template in Spring templates bench-
mark [31]. These results are relative to HtmlFlow throughput, which is the most performant
engine among the evaluated Web Templates.

Library DSL Language Functional Prog. Bench

Thymeleaf External Thymeleaf ˆ X 32%
j2html Nested Java X ˆ 26%

KotlinX Nested Kotlin X X 58%
HtmlFlow Chain Java X X 100%

Table 2.1: Comparing template views in terms of DSL approach, host language, and the abil-
ity to provide functional templates, progressive rendering and their relative performance to
HtmlFlow in Spring templates benchmark.

DSLs that are designed to work with Java can also be used in Kotlin without any issues. Simi-
larly, DSLs designed to work with Kotlin can also be used in Java, although some Kotlin-specific
syntax may not be available in Java.

However, the use of asynchronous data models in Web Templates can introduce new issues,
namely:

1. limited asynchronous idiom;

2. single data model;

3. ill-formed HTML;

4. nested callbacks.

One of the main challenges is the lack of a standard API for asynchronous calls, as there are
multiple different APIs and idioms available, as described in Chapter 1. Additionally, Web
Templates may only support a limited asynchronous idiom, which can put a limitation on ap-
plication development. This is especially true when provided API by the non-blocking drivers
is incompatible with the Web Template’s asynchronous support.

Additionally, while most Web Templates can bind with multiple synchronous data models,
they may not be able to do the same for asynchronous data models, limiting the progressive
rendering to a single data model.

Despite this, even for Web Templates that do not face the single data model issue, another
problem may arise regarding the correct emission of HTML. The asynchronicity between the
dispatch and completion of the IO operation may lead to undesired interleaving between data
access and HTML definition, resulting in an ill-formed HTML document.

11

2. STATE OF THE ART 2.2. Spring SSR Basics

Even though a web page may still be readable and function correctly despite containing in-
valid HTML, it is still important to strive for valid and well-formed code. Valid HTML code
ensures that the web page is accessible to a wider range of users and devices, and it also helps
search engines to understand the content of the page better, which can improve search engine
rankings.

Finally for Web Templates dealing with data models through the continuation-passing style
(CPS) [28] we can observe an idiomatic pattern emerging on source code from the use of nested
callbacks. The level of nesting will be proportional to the number of asynchronous models
used in the Web Template, which can lead to code that is difficult to read and maintain. This
scenario is commonly referred to as "callback hell" [4].

In the next chapter, we will have a look at how Spring can handle multiple Web Templates, and
how each one can be integrated into the Spring Framework.

2.2 Spring SSR Basics

In this section, we will discuss how Spring handles Web Templating within the world of an SSR
approach.

Spring framework is one of the most widely used frameworks for web development by Java &
Kotlin developers, and having such an easy way to get started and using some of it’s potential,
makes it a special target for the usage of SSR when using Java and/or Kotlin.

The Spring Framework is built upon the Model-View-Controller (MVC) [8] pattern. The same
architectural approach is followed in the SSR implementation. As a result, developers are re-
quired to adhere closely to the principles of MVC and apply them diligently.

MVC is a pattern in software design commonly used to implement user interfaces, data, and
controlling logic. It emphasizes a separation between the software’s business logic and display.

The Model is the part described as the layer that is responsible for giving the Controller the
necessary information to execute some action.

The Model is completely independent of the Controller or the View. There could be a data
source such as SQL DB, NoSQL DB or fetching some information from a Web Server to serve
the data that is going to be used to render the template.

The Controller does not need to know the implementation of the Model, all it needs it’s the
information. This usually means hiding the Model behind an Interface. Asks for the data to
the Model, and controls the flow of the application for the user, who is waiting for user input
in order to execute some action. After the information is gathered from the Model, it is sent to
the View which has a similar role to a Web Template, which renders what the Controller wants
to present to the caller of the Service.

In the context of SSR, the View is responsible for rendering a certain HTML page with the data
fetched from the Controller through the Model.

12

2. STATE OF THE ART 2.2. Spring SSR Basics

For the controller to be recognized by Spring to be used for SSR we need to apply the annotation

1 @Controller

Listing 2.4: Spring Controller annotation

to the controller class created.

This annotation should be used instead of broadly used:

1 @RestController

Listing 2.5: Spring RestController annotation

Due to the RestController annotation returning the response of an endpoint directly, whether
it’s a simple String or a JSON, whilst using Controller Spring tries to resolve this to a View
if there is one.

If there is no specified behavior for handling templates and SSR, the method will return the
value like a RestController does.

We can then assert that the RestController annotation removes the behavior of SSR.

The expected behavior for a Spring Controller that wants to implement SSR is to return a string
containing the view name, and extension if applicable, in order for it to be resolved by the View
part.

13

2. STATE OF THE ART 2.2. Spring SSR Basics

As we can see in this example,

1 @Controller

2 public class ExampleController {

3 ...

4 @GetMapping(value = {"/template"})
5 public String getAllItems(Model model) {

6 List<Item> items = new Items(itemService.findAll());

7 model.addAttribute("items", items);

8 return "template";

9 }

10 }

Listing 2.6: Example of Controller to SSR

the List of Items is being put inside the View Model for the View to be able to access it. And
the return of the Controller is the location of the template view inside the resource’s folder.

Then, this return will be given to the View part of the spring framework to be resolved.

Inside the Spring framework, the View part is split into two parts: ViewResolver Handed the
task to resolve a View instance based on a view name. View interface responsible for processing
the Web Template with the parameters from the View Model.

ViewResolver is the component responsible to resolve a View based on a viewName, which is
the return from the Controller method.

The way Spring knows how to call the created ViewResolver is by going through all the regis-
tered ViewResolvers.

This ViewResolver must either return an instance of a View that can render the template that
is given by the viewName, or return an absence of value to indicate that this ViewResolver
cannot provide a View to handle such a viewName.

1 @Override

2 protected View createView(final String viewName, final Locale locale) {

3 if (!canHandle(viewName, locale)) {

4 return null;
5 }

6 return ExampleView();

7 }

Listing 2.7: Example implementation of ViewResolver. numbers

In the case of an absence of a value, Spring will move on to the next ViewResolver until either
one returns an instance of a View or, they all return the equivalent of an absence of a value.

If no ViewResolver can solve the viewName provided, then Spring will interpret the returned
String as REST return, having the controller return the String as it is.

In a case where the ViewResolver can return an instance of a View, the View is the component
responsible for rendering a template given a Map of parameters, and an instance of the current
ongoing ServerRequest.

14

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/ViewResolver.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/View.html

2. STATE OF THE ART 2.2. Spring SSR Basics

The Map parameters of a view are the result of unwrapping the Map inside the View Model,
which contains all the objects and variables added by the controller to be possible to render this
specific view.

Here we can see an implementation of the view instance that can render the template used
in the controller above.

1 public class ExampleView implements View {

2

3 public void render(Map model, HttpServletRequest request, HttpServletResponse response) {

4 var templateString = this.generateResult(model);
5 response.getWriter().write(templateWriter.toString());

6 response.getWriter().flush();

7 }

8 }

Listing 2.8: Example view class responsible to process and render the template

In line 4, we can notice the immediate call to generateResult, to render the entire template
as one.

To render the entire template, the following lines 5 and 6 will write the resulting template into
the response writer and flush the writer, so the result appears in the browser.

This MVC framework, that Spring created to work with templates still holds when working
with Spring WebFlux and Reactive Streams. Spring just updated the return values from X

to Mono<X> to work with Reactive Programming and Reactive Streams, we will look at how
Thymeleaf implementation looks like for the Reactive approach as well, to show how other
frameworks like Handlebars, KotlinX and HtmlFlow would look like.

It was already shown what an architecture for working with templates inside Spring looks like.
Now we will present the current most used Web Templates for SSR with Spring while taking a
look at how they work with SSR with an asynchronous model.

15

2. STATE OF THE ART 2.3. Web Templates

2.3 Web Templates

In this section, we will take a look at how they can work with SSR using only one asynchronous
model, using Spring WebFlux to get the reactive behavior. This exploration will help us to
understand the available options when working with these templates within the context of an
asynchronous model.

We’ll begin by examining Thymeleaf, as it serves as the base template engine for a Spring
application. As we will discover, Thymeleaf is currently the only one capable of achieving
progressive rendering with asynchronous models.

Subsequently, we will proceed to explore KotlinX, Handlebars, and finally, HtmlFlow.

2.3.1 Thymeleaf

We will now, first and foremost, take a look at the template we will be using.

1 ...

2 <body>

3 <table>

4 <thead>

5 <tr>

6 <th>Name</th>
7 <th>Specialties</th>
8 </tr>
9 </thead>

10 <tbody>

11 <tr th:each="vet : ${vets.vetList}">
12 <td th:text="|${vet.firstName} |">[firstName]</td>
13 <td>

14
15 none
16 </td>
17 </tr>
18 </tbody>
19 </table>
20 ...

21 </body>
22 ...

Listing 2.9: Thymeleaf template for the vets

Notice in line 11 that we are just iterating a list of vets and adding the many properties of a Vet
to the dynamic part of the template.

16

2. STATE OF THE ART 2.3. Web Templates

The Vet class is what contains all the information that will be used for all the templates.

1 public class Vet {

2 private UUID id;

3 private String firstName;

4 private String lastName;

5 private Set<VetSpecialty> specialties;

6

7 ...

8 }

9

10 public class VetSpecialty{

11 private String id;

12 private String name;

13

14 ...

15 }

Listing 2.10: Vet and dependant object used for the templates

Notice in line 5 that there is a dependent object VetSpecialty which are all the specialties
that a Vet can have. This dependent class is shown in line 10.

This Vet object reaches the template because the controller inserted it into the context of the
request.

If we take a look at the controller,

1 @Controller

2 public class VetReactiveController {

3 (...)

4 @GetMapping(value = {"/vets"})
5 public String getAllVets(Model model) {

6 Flux<Vet> currentVets = vetServices.findAllVets();

7 var rx = new ReactiveDataDriverContextVariable(currentVets, 1);

8 model.addAttribute("vets", rx);

9 return "vets/vetList";
10 }

11 }

Listing 2.11: Reactive version of a Controller to use the vets template

Notice in line 1 that a controller in the Spring WebFlux framework also has to have @Controll-
er annotation, we can see that the method still returns a string representing the Thymeleaf
template file location and the controller also pushes the needed parameters into the Model.

The noticeable difference is in the implementation of the classes that are being put inside the
Model.

The addition of a IReactiveDataDriverContextVariable in line 7, is needed for two
reasons:

17

2. STATE OF THE ART 2.3. Web Templates

The first reason is for the View implementation to know how to handle reactive streams, as
Thymeleaf looks for the presence of this interface in the Model. So passing the interface to
the Model is needed to signal the correct mode, reactive processing, to execute the template
processing.

The other reason why we need to use this interface is when any asynchronous variable, is sent
to the Model, to be added to the Map, the Marshelling process will end up having to block
the asynchronous type from being present. Having the wrapper, we can then guarantee the
serialization does not interfere with the asynchronous variable.

The internals on how the IReactiveDataDriverContextVariable works will be more
explored in the following section 2.4.

We should now see how Thymeleaf behaves when we ask for the resulting template. So, if we
make an HTTP request, the resulting HTML is the following.

1 <html>

2 <head>

3 ...

4 </head>
5 <body>

6 <h2>Veterinarians</h2>
7 <table>

8 <thead>

9 <tr><th>Name</th><th>Specialties</th></tr>
10 </thead>
11 <tbody>

12 <tr><td>Helen Leary</td><td>radiology</td></tr>
13 <tr><td>Henry Stevens</td><td>radiology</td></tr>
14 <tr><td>Linda Douglas</td><td>surgery,dentistry</td></tr>
15 <tr><td>James Carter</td><td>none</td></tr>
16 <tr><td>Sharon Jenkins</td><td>none</td></tr>
17 <tr><td>Rafael Ortega</td><td>surgery</td></tr>
18 </tbody>
19 </table>
20 ...

21 </body>
22 </html>

Listing 2.12: Result of Thymeleaf html with reactive streams

We will see that the HTML is properly formed, as it should, although we are using outside
asynchronous sources.

What we mean by well-formed is, that the tags of the table that are contained inside the body
tags still come as such when the HTML comes in the response.

We can then conclude that Thymeleaf has support for reactive streams and asynchronous mod-
els.

Instead of using Thymeleaf to render the template, this version uses Handlebars, KotlinX and
HtmlFlow to render the template, but it is still built upon the Spring WebFlux framework.

18

2. STATE OF THE ART 2.3. Web Templates

2.3.2 KotlinX SSR with Reactive Streams

We’ll begin by looking at Thymeleaf. Afterward, we’ll move on to examining KotlinX. Similar
to Thymeleaf, our approach will involve starting with the template, followed by an exploration
of the controller, and finally, observing the outcome when requesting the resulting HTML.

For KotlinX, we initiate our exploration with the template. This template is fashioned using
the KotlinX DSL.

In the case of KotlinX, due to its template being created with DSL syntax, developers must
define their helpers or other components as they see fit when creating their templates.

For this demonstration, the decision was made to include a helper. This helper is generated
and registered during the creation of the template using the DSL syntax.

A Helper refers to a small portion of HTML responsible for managing the dynamic aspects of
the HTML content.

Thus, when we examine the KotlinX template, we can see:

1 val vets = { model : Map<String,Any> -> createHTML()

2 .html {

3 head {title(content = "Petclinic")}

4 body {

5 div {

6 div { p { this.title = "Petclinic" } }

7 div { helpProcessAsyncVets(model) }

8 }

9 hr { }

10 footer {

11 div {

12 span{ this.text("Powered by Petclinic") }

13 img(src = "/img/dog_footer.png", alt = "dog footer") {

14 this.height = "410" }

15 } //div
16 } //footer
17 } //body
18 } // html

19 }

Listing 2.13: KotlinX vets template

As can be seen in line 7, the registering of the helper, another function was created that contains
a portion of HTML just for dynamic parts of this template.

19

2. STATE OF THE ART 2.3. Web Templates

Helper DSL for each item,

1 val VET_HTML: (vet: Vet) -> String = { vet -> createHTML()

2 .div {

3 div {

4 div {

5 h5{this.text(vet.firstName)}
6 h6 {this.text(vet.lastName)}
7 p{this.text("Specialities ${vet.specialties}")}
8 }

9 }

10 }

11 }

Listing 2.14: KotlinX Vet helper template creation

Notice that the partial template is just adding each property of the Vet type into HTML tags,
from line 4 to line 6.

Now we take a look at the method helpProcessAsyncVets which is called in the template.

1 fun helpProcessAsyncVets(model: Map<String, Any>) = run {

2 val vets : Flux<Vet> = (model["vets"]).get()

3 val writer : OutputStreamWriter = model["writer"]

4 val subscriber : MonoSink<DataBuffer> = model["subscriber"]

5 val buffer : DataBuffer = model["buffer"]

6

7 vets

8 .map { VET_HTML(it) }

9 .doOnNext {writer.append(it)}

10 .doOnComplete {

11 writer.flush()

12 subscriber.success(buffer)

13 }.subscribe()

14 }

Listing 2.15: KotlinX helper to render fragments

On line 8, the partial template is called per each vet inside the Vets Flux, which will enforce
the partial template to be created per item inside the Flux.

In line 1 by using the run block, we can guarantee that the DSL creates blocks at this point for
the processing of the reactive stream is acknowledged and submitted.

The way this helper works and can handle reactive streams is by pushing each item to the
browser, without the browser closing the connection. This can be achieved by having a refer-
ence to a subscriber and keeping it from reaching a success state until we finish the process-
ing.

This MonoSink<DataBuffer> will serve only to signal when the reactive has been read and
processed, so the ServerWebExchange can close the connection. That’s why it’s called on the
doOnComplete after we flush the writer.

We need to pass the buffer as we signal the completion of the processing, because this buffer
is what the ServerWebExchange uses directly to write into the browser, the writer is just a

20

2. STATE OF THE ART 2.3. Web Templates

wrapper for the DataBuffer where we are pushing the template processing for the helper,
that’s being applied to each item in the ReactiveBox<Vet> stream which was added back in
the controller.

Going to the controller, where the information is grabbed:

1 @Controller

2 public class VetsController {

3 (...)

4

5 @GetMapping("/kotlinx")
6 public String vetsKotlinx(Model model) {

7 Flux<Vet> vets = vetsService.getAllVets();

8 model.addAttribute("vets", new ReactiveBox<>(vets));

9 return "vets.kotlinx";

10 }

11 }

Listing 2.16: KotlinX controller

It can be immediately noticed that we also have to have a wrapper (ReactiveBox) for the
Flux (in line 7), just like the Thymeleaf version. If we add the stream directly to the Model,
the Flux would be blocked and transformed into a List when it came time to use it in the
template. This would remove the reactive and asynchronous approach we are trying to test, so
it’s very important to keep the same behavior as Thymeleaf.

So if we request the resulting HTML,

21

2. STATE OF THE ART 2.3. Web Templates

1 <html>

2 ...

3 <body>

4 <div><div><p>Petclinic</p></div>
5 <div></div>
6 </div><hr>
7 ...

8 </body>
9 </html>

10 <div>

11 <div>

12 <div>

13 <h5>Rafael</h5><h6>Ortega</h6><p>Specialties: [VetSpecialty(surgery)]</p>
14 </div>
15 </div>
16 </div>
17 <div>

18 <div>

19 <div>

20 <h5>Helen</h5><h6>Leary</h6><p>Specialties: [VetSpecialty(radiology)]</p>
21 </div>
22 </div>
23 </div>
24 <div>

25 <div>

26 <div>

27 <h5>James</h5><h6>Carter</h6><p>Specialties: []</p>
28 </div>
29 </div>
30 </div>
31 <div>

32 <div>

33 <div>

34 <h5>Henry</h5><h6>Stevens</h6><p>Specialties: [VetSpecialty(radiology)]</p>
35 </div>
36 </div>
37 </div>
38 <div>

39 <div>

40 <div>

41 <h5>Linda</h5><h6>Douglas</h6><p>Specialties: [VetSpecialty(surgery), VetSpecialty(

dentistry)]</p>
42 </div>
43 </div>
44 </div>
45 <div>

46 <div>

47 <div>

48 <h5>Sharon</h5><h6>Jenkins</h6><p>Specialties: []</p>
49 </div>
50 </div>
51 </div>

Listing 2.17: KotlinX result from running the request

As it can be seen, the html tag ends at line 11, but only after that the result from the Flux is
emitted to the HTML resulting output. Also notice in lines from 5 to 7 the empty div, where
the result should be located.

22

2. STATE OF THE ART 2.3. Web Templates

This is because the remaining template is static and, therefore can be output immediately. The
same cannot be said for the Flux source, for which we need to wait for each element that comes
to emit the corresponding HTML.

We can then conclude that KotlinX does not support SSR with reactive streams.

Next, we will take a look at the Handlebars implementation.

23

2. STATE OF THE ART 2.3. Web Templates

2.3.3 Handlebars for SSR with Reactive Streams

Handlebars implementation for SSR with reactive streams is fairly similar to what we have
already seen in the 2.3.2 subsection.

Starting by looking at the template vets.hbs,

1 <html>
2 <head>
3 <title>Petclinic</title>
4 </head>
5 <body>
6 <div>
7 <div>
8 <p>Petclinic</p>
9 </div>

10 <div>
11 {{{ vetsAsync this}}}

12 </div>
13 </div>
14 <hr>
15 <footer>
16 <div>
17 Powered by Petclinic
18
19 </div>
20 </footer>
21 </body>
22 </html>

Listing 2.18: Handlerbars vets template

Notice in line 12, the call to a vetsAsync this, this is calling a partial template which can be
processed by a Helper. The this is the current context inside Handlebars.

Here we can see the definition of the helper template vet.hbs.

1 <div>
2 <div>
3 <div>
4 <h5>{{firstName}}</h5>
5 <h6>{{lastName}}</h6>
6 <p>Specialties: {{specialties}}</p>
7 </div>
8 </div>
9 </div>

Listing 2.19: Handlerbars vets template

Again, just like KotlinX noticed from lines 4 to 6 it’s just using the properties of the Vet object
into HTML tags.

The main template processing is handled by Handlebars itself, but the helper processing
needs to be provided by the developer.

Handlebars knows that we have registered a helper by adding it in the controller, but the
helper must implement the interface Helper, as can be seen:

24

2. STATE OF THE ART 2.3. Web Templates

1 public class AsyncVetsHelper implements Helper<Map<String, Object>> {

2 (...)

3 @Override

4 public CharSequence apply(Map<String, Object> model, Options options) {

5 Flux<Vet> vets = model.get("vets").get();

6 OutputStreamWriter writer = model.get("writer");

7 MonoSink<DataBuffer> subscriber = model.get("subscriber");

8 DataBuffer buffer = model.get("buffer");

9 vets

10 .map(applyTemplate())

11 .doOnNext(view -> writer.append(view))

12 .doOnError(Throwable::printStackTrace)

13 .doOnComplete(() -> {

14 writer.flush();

15 subscriber.success(buffer);

16 })

17 .subscribe();

18 return null;
19 }

20 (...)

21 }

Listing 2.20: Handlebars helper to render fragments

The Helper interface is what defines a Helper for consideration when handlebars are pro-
cessing the main template. Handlebar knows how to connect the class to the correct helper by
using the string passed as key, in this case vetsAsync when registering the Helper.

This logic is the same as the KotlinX one, except for line 18 where we return null. This is because
it will not return any CharSequence due to being written directly into the output using the
writer in line 11.

The logic on how the helper works with reactive streams is the same as the one given in the
2.3.2. Given that we used the same base implementation and logic for both all the parameters
above writer, subscriber and buffer have the same type and behavior.

25

2. STATE OF THE ART 2.3. Web Templates

Taking a look at the controller for the handlebars,

1 @Controller

2 public class VetsController {

3 (...)

4 @GetMapping("/")
5 public String vets(Model model) {

6 Flux<Vet> vets = vetsService.getAllVets();

7 getHandlebars().registerHelper("vetsAsync", new AsyncVetsHelper(...));

8 model.addAttribute("vets", new ReactiveBox<>(vets));

9 return "vets.hbs";

10 }

11 }

Listing 2.21: Controller for Handlebars

It can be immediately noticed that we also have to have a wrapper for the Flux (in line 8), just
like the KotlinX and Thymeleaf versions.

For the handlebars’ endpoint, it can be noticed that we have to register a Helper with the
name vetsAsync, as it was noted in the helper showcase.

This helper function will force the connection, to the browser, to be kept open and will be
processing a small template and push each item from the stream to the browser for each
onNext(X) function.

The reason we need the helper function is because, currently, since Handlebars does not pro-
vide any support for handling reactive streams, while using an iterative block, the content
would be pushed to the browser as the template is being read. So, there would not appear any
item as the Flux would most likely still not be finished.

That’s why there was a need to create a helper function that would push a separate template
for each item in the stream, as each item in the Flux signals completion.

If we run the request to see the resulting HTML, we will see the same result as 2.17

Just like KotlinX, we can see that the HTML tag ends at line 11, but only after that the result
from the Flux is emitted to the HTML resulting output.

We can then also conclude that Handlebars do not support SSR with reactive streams.

Finally, we will look at how HtmlFlow, in its current state, behaves for SRR with Reactive
Streams.

26

2. STATE OF THE ART 2.3. Web Templates

2.3.4 HtmlFlow for SSR with Reactive Streams

As KotlinX is a Kotlin DSL, HtmlFlow is a Java DSL to write typesafe HTML documents in
a fluent style. The HTML is generated through the creation of a template. Templates are ex-
pressed in an internal DSL, meaning Java code is written to produce the template. This implies
that whilst creating the template we can use the full Java toolchain.

Here we will present how HtmlFlow works for SSR with Reactive Stream, given the present
version.

Just like the previous templates, we will start showing the template followed by the controller.

Like KotlinX but unlike Handlebars, since this is a DSL creating the HTML template, the
helpers (or partials) are declared while we are creating the template.

So now looking at the template created through HtmlFlow DSL,

1 public void template(DynamicHtml<Map<String, Object>> view, Map<String, Object> model) {

2 view

3 .html()

4 .head()

5 .title()

6 .text("Petclinic")

7 .__() //title
8 .__() //head
9 .body()

10 .div()

11 .dynamic(asyncTableProcessing.consumeAsyncStream(model))

12 .br().__()
13 .__() //div
14 .footer()

15 .div()

16 .span().text("Powered By Petclinic").__()
17 .img().attrSrc("/img/dog_footer.png").attrAlt("dog footer").__()
18 .__() //div
19 .__() //footer
20 .__() //body
21 .__(); //html
22 }

Listing 2.22: HtmlFlow DSL template

Although this is the same HTML that was used in previous templates, it’s important to notice
the dynamic method used in line 10.

The function dynamic allows us to specify a Consumer that would be called upon the rendering
of the template.

This Consumer represents an action that is being taken upon the current HTML tag we cur-
rently are.

This consumer will then be consumed, once the render method is called.

This asyncTableProcessing.consumeAsyncStream(model) is what constructs the helper
part of this template which will handle the processing of the Flux inside the model parameter.

27

2. STATE OF THE ART 2.3. Web Templates

1 public Consumer<Div> consumeAsyncStream(Map<String, Object> model) {

2 return __ -> {

3 Flux<Vet> vets = model.get("vets").get();

4 OutputStreamWriter writer = model.get("writer");

5 MonoSink<DataBuffer> subscriber = model.get("subscriber");

6 DataBuffer buffer = model.get("buffer");

7 vets

8 .map(HtmlFlowAsyncProcessing::template)

9 .doOnNext(writer::append)

10 .doOnError(Throwable::printStackTrace)

11 .doOnComplete(() -> {

12 writer.flush();

13 subscriber.success(buffer);

14 })

15 .subscribe();

16 };

17 }

Listing 2.23: HtmlFlow dynamic consumer implementation, which is the equivalent of the
Handlebars helper, as the helper from KotlinX was

Lines 3 to 6 serve to fetch the needed values from the model which is the map passed all the
way from the controller (containing the Flux<Vet>).

The processing of the Flux is pretty straightforward as it was for the other templates. But we
should notice in line 8 the calling to a template method. This method has the partial HTML
that will be filled per Vet inside the Flux.

1 private static String template(Vet vet) {

2 return StaticHtml

3 .view()

4 .div().div().div()

5 .h5().text(vet.getFirstName()).__()
6 .h6().text(vet.getLastName()).__()
7 .p().text(format(vet.getSpecialties())).__()
8 .__().__().__() //divs
9 .render();

10 }

Listing 2.24: HtmlFlow partial template per vet

Notice the usage here of StaticHtml instead of a DynamicHtml (line 2). Although we are
using a model here, we do not want to render this template entirely after it has been processed.
And we should remember that this is being created inside a DynamicHtml, so this will be
processed again per request in the controller (because, per request, there is a new View being
generated).

The usage of the vet param is the same as the other templates through lines 3 to 5 we are just
adding the properties to HTML tags.

We can now see the controller implementation,

1 @Controller

2 public class VetsController {

3 ...

28

2. STATE OF THE ART 2.3. Web Templates

4 @GetMapping("/flow")
5 public String vetsHtmlFlow(Model model) {

6 Flux<Vet> vets = vetsService.getAllVets();

7 model.addAttribute("vets", new ReactiveBox<>(vets));

8 return "vets.flow";

9 }

10 }

Listing 2.25: HtmlFlow controller implementation

In line 6 we can see the controller getting the Flux of vets, and just like the previous templates
will put it into a wrapper to make sure we will receive the Flux instance intact.

Notice in line 8, that we define the template we want to process which is the vets.flow. Just
like KotlinX, this template does exist as a resource file as it does with Handlebars or Thymeleaf.
This is just so that the HtmlFlow resolver can process this request, and the other resolvers
discard it.

If we run the request to see the result, which just like Handlebars is the same as the KotlinX on
2.17.

After examining how each template is created, exploring how we can invoke them through
a controller, and observing the results they produce, the subsequent section is dedicated to
delving into the internal mechanisms of each template.

29

2. STATE OF THE ART 2.4. Resolvers

2.4 Resolvers

This chapter’s purpose is to examine the internal workings of each template and explore how
progressive rendering is either attempted or achieved, particularly in the case of Thymeleaf.

Each subsection is dedicated to one of the four templates, and within these sections, we will
illustrate the relationships among the ViewResolver, View, and Processor components.
We will highlight which components are provided by Spring, as well as what we need to create
to apply a consistent approach across all templates.

The following image serves as a way to explain how all the components from the ViewReso-
lver to the Processor work.

Figure 2.1: Diagram how Spring handles SSR requests from the ViewResolver to the View

As previously mentioned, the ViewResolver yields a Mono<View> instance. Internally, we
incorporated the functionality of a View that encompasses a Processor, capable of handling
the HTML template.

We proceed to see each template and how this architecture works in each.

30

2. STATE OF THE ART 2.4. Resolvers

2.4.1 Thymeleaf Resolvers

Just like in 2.3 we start by taking a look at Thymeleaf.

1 public class ThymeleafReactiveViewResolver extends ViewResolverSupport {

2

3 @Override

4 public Mono<View> resolveViewName(String viewName, final Locale locale) {

5 if (!canHandle(viewName, locale)) {

6 return Mono.empty();

7 }

8 ...

9 return loadView(viewName, locale); //ThymeleafReactiveView
10 }

11 }

Listing 2.26: Reactive version of the Thymeleaf ViewResolver

The first thing that should catch our eye is the change of the return type in the resolveViewN-
ame method in line 4. In the previous explanation, we pointed out that the return would be an
instance of View, now we are looking at an instance of a Mono<View>.

As for the implementation itself, the important part is that this resolver keeps the responsibility
of either returning an instance of a View or informing that it cannot process this template.

In line 5 we can see that if Thymeleaf cannot handle this template it returns an empty Mono, this
will let Spring know that it should search for another available bean of a Resolver. Line 9 will
load the bean for the instance of the wanted view, which in this case is ThymeleafReactiveV-
iew, and wrap it into a Mono, we can then assert that ThymeleafReactiveView implements
the View interface.

Now if we take a look into a snippet of the ThymeleafReactiveView.

1 public class ThymeleafReactiveView extends AbstractView {

2 @Override

3 public Mono<Void> render(Map<String, ?> model, MediaType contentType, ServerWebExchange

exchange) {

4 Map<String,Object> enrichedModel = null;
5 for (String executionAttributeName : executionAttributes.keySet()) {

6 if (enrichedModel == null) {

7 enrichedModel = new LinkedHashMap<>(model);

8 }

9 enrichedModel.put(modelAttributeName, modelAttributeValue);

10 }

11 enrichedModel = (enrichedModel != null ? enrichedModel : model);

12 return super.render(enrichedModel, contentType, exchange);

13 }

14 }

Listing 2.27: Reactive version of a Controller to use the vets template

Although the render function should just process the template and produce an output, Thymeleaf
has many external and optional parameters that we can pass to the template. And so, if we take
a look from line 6 to line 13, this render function will first take notice of such parameters and
add those to a enrichedModel.

31

2. STATE OF THE ART 2.4. Resolvers

At line 15, the render function’s main goal is to render the template, which is done by calling
the parent function super.render(...), which will call a method called renderInternal.

This method renderInternal implementation is very similar to what we show on the syn-
chronous version of Thymeleaf.

1 @Override

2 protected Mono<Void> renderInternal(Map<String, Object> renderAttributes, MediaType

contentType ServerWebExchange exchange) {

3 return renderFragmentInternal(this.markupSelectors, renderAttributes, contentType, exchange)

;

4 }

5 ...

6 protected Mono<Void> renderFragmentInternal(Set<String> markupSelectorsToRender, Map<String,

Object> renderAttributes, MediaType contentType, ServerWebExchange exchange) {

7 ServerHttpResponse response = exchange.getResponse();

8 ...

9 Publisher<DataBuffer> stream = viewTemplateEngine.processStream(

10 templateName, processMarkupSelectors, context, response.bufferFactory(), contentType,

charset,templateResponseMaxChunkSizeBytes);

11 if (templateResponseMaxChunkSizeBytes == Integer.MAX_VALUE && !dataDriven) {

12 return response.writeWith(stream);

13 }

14 return response.writeAndFlushWith(Flux.from(stream).window(1));

15 }

Listing 2.28: Reactive version of how the template is rendered

In line 3 we directly call the renderFragmentInternal in order to decide whether to render
the entire template or just a fragment of it.

In line 8 we extract the underlying ServerHttpResponse of the current exchange happening,
this is what will allow us to produce an output for the browser.

Line 10 is where we do the processing of the template and return Publisher<DataBuffer>

as the output that needs to go to the browser.

Now, we need to decide if this is an entire template output or just a partial template output. So,
if we notice at line 13 this is done by inspecting the variable templateResponseMaxChunkS-
izeBytes and if we are in mode dataDriven which determines if we have a limit of bytes,
we should emit at one time.

Then finally at both line 14 and line 18, we use the response variable and output the resulting
stream to the browser.

All of this is part of the progressive rendering that Thymeleaf does in data-driven mode,
which is enabled when a type of variable ReactiveDataDriverContextVariable is present
in the context of the engine.

This type ReactiveDataDriverContextVariable is passed to the context of the template
in the controller, as the snippet below shows,

1 @GetMapping(value = {"/vets"})
2 public String getAllVets(Model model) {

3 Flux<Vet> currentVets = vetServices.findAllVets();

32

2. STATE OF THE ART 2.4. Resolvers

4 var rx = new ReactiveDataDriverContextVariable(currentVets, 1);

5 model.addAttribute("vets", rx);

6 return "vets/vetList";
7 }

Listing 2.29: ReactiveDataDriverContextVariable is passed to the context for Thymeleaf to start
the reactive processing

Notice the passage of the variable rx of type ReactiveDataDriverContextVariable in
line 5.

When the internal rendering finds this type, the template engine enters data-driven mode,
where data is streamed to the client as it becomes available, rather than waiting for the entire
response to be generated before sending it.

This allows the static parts of the Web Template to be immediately emitted, displaying an initial
web page before the asynchronous data is completed, and the web page is finished. Thymeleaf
does this in multiple steps, inside the internal rendering of the template.

1 Mono<Void> renderFragmentInternal(...) {

2 (...)

3 // Step 1

4 var ctx = createRequestContext(exchange, mergedModel);

5 var thymeleafRequestContext = RequestContext(ctx, exchange);

6 // Step 2

7 var dataDriven = isDataDriven(mergedModel);

8 (...)

9 // Step 3

10 var stream = templateEngine.processStream(...,maxChunkSizeBytes);

11 // Step 4

12 if (maxChunkSizeBytes == Integer.MAX_VALUE && !dataDriven) {

13 return response.writeWith(stream);

14 }

15 return response.writeAndFlushWith(Flux.from(stream).window(1));

16 }

Listing 2.30: Internal render of reactive fragment inside template

If we follow the steps inside the code, the first thing done is to initialize the RequestContext
(reactive version) and add it to the model as another attribute, so that it can be retrieved from
elsewhere.

33

2. STATE OF THE ART 2.4. Resolvers

1 var ctx = createRequestContext(exchange, mergedModel);

2 var thymeleafRequestContext = new RequestContext(ctx, exchange);

Listing 2.31: Context initialization for fragment rendering

This elsewhere being wherever fragments have access to the SpringWebFluxThymeleafRe-
questContext.

As a second step, Thymeleaf will then determine if we have a data-driver variable, and there-
fore will need to configure the flushing of output chunks and not flushed immediately after
each buffer.

As described, this variable will be used when Thymeleaf is deciding how to output the values
inside the stream, which is done in the final, fourth step.

Thymeleaf has three possible modes to process the template and emit the HTML, those being:

1. FULL mode

2. CHUNKED mode

3. DATA-DRIVEN mode

If no size limit for output chunks has been set (FULL mode), Thymeleaf lets the server applies
its standard behavior by using writeWith.

Else, either we are in DATA-DRIVEN mode or a limit for output chunks has been set (CHUN-
KED mode), Thymeleaf uses writeAndFlushWith in order to make sure that output is flushed
after each buffer.

These mods here described are ways that Thymeleaf can deal with template processing for Re-
active Streams, there are three possible processing modes, for each of which a Publisher<Data-
Buffer> will be created in a different way.

The DataBuffer interface is used because that’s what the WebFlux framework receives in
the ServerWebExchange interface, which on itself represents the current response/request
exchange happening within the browser, to be able to push content for the browser response.

The FULL mode outputs chunks not limited in size (templateResponseMaxChunkSize-
Bytes == Integer.MAX_VALUE) and no data-driven execution (no context variable of type
Publisher driving the template engine execution). In this case, Thymeleaf will be executed
unthrottled, in full mode, writing output to a single DataBuffer chunk instanced before ex-
ecution, and which will be passed to the output channels in a single onNext(buffer) call
(immediately followed by onComplete()).

CHUNKED mode outputs chunks limited in size (responseMaxChunkSizeBytes) but no
data-driven execution (no Publisher<X> driving engine execution). All model attributes are
expected to be fully resolved (in a non-blocking fashion) by WebFlux before engine execution

34

2. STATE OF THE ART 2.4. Resolvers

and the The Thymeleaf engine will execute in throttled mode, performing a full-stop each time
the chunk reaches the specified size, sending it to the output channels with onNext(chunk)
and then waiting until these output channels make the engine resume its work with a new re-
quest(n) call. This execution mode will request an output flush from the server after producing
each chunk.

The final mode is DATA-DRIVEN, where one of the model attributes is a Publisher<X>

wrapped inside an implementation of the IReactiveDataDriverContextVariable<?> interface.
In this case, the Thymeleaf engine will execute as a response to onNext(List<X>) events trig-
gered by this Publisher. The bufferSizeElements specified at the model attribute, will de-
fine the amount of elements produced by this Publisher that will be buffered into a List<X>
before triggering the template engine each time (which is why Thymeleaf will react on onNext
(List<X>) and not onNext(X)). Thymeleaf will expect to find an th:each iteration on the
data-driven variable inside the processed template, and will be executed in throttled mode
for the published elements, sending the resulting DataBuffer output chunks to the output
channels via onNext(chunk) and stopping until a new onNext(List<X>) event is trig-
gered. When execution is data-driven, a limit in size can be optionally specified for the output
chunks (responseMaxChunkSizeBytes), which will make Thymeleaf never send to the out-
put channels a chunk bigger than that (thus splitting the output generated for a List<X> of
published elements into several chunks if required). When executing in DATA-DRIVEN mode,
Thymeleaf will always request flushing of the output channels after producing each chunk.

Step 3 is where Thymeleaf knows which mode to choose by the variable templateResponse-
MaxChunkSizeBytes that is passed to the method viewTemplateEngine.processStream
where,

1 var stream = processStream(...,templateResponseMaxChunkSizeBytes);

Listing 2.32: Creation of stream based on output mode

If templateResponseMaxChunkSizeBytes is MAX_VALUE then FULL/DATA-DRIVEN
mode is chosen, else CHUNKED/DATADRIVEN is the chosen one.

The processing mode that is used is Data-Driven because the controller when returning the
template adds a IReactiveDataDriverContextVariable to the Model.

If we go inside the processStream method and follow the implementations for Data-Driver
development we reach the createDataDrivenStream where Thymeleaf handles the out-
putting of the HTML whilst dealing with reactive streams.

This whole process can be broken down into five steps.

35

https://www.thymeleaf.org/apidocs/thymeleaf-spring5/3.0.9.RELEASE/org/thymeleaf/spring5/context/webflux/IReactiveDataDriverContextVariable.html

2. STATE OF THE ART 2.4. Resolvers

1 Flux<DataBuffer> createDataDrivenStream(...) {

2 // STEP 1: Obtain the data-driver variable and its metadata

3 (...)

4 // STEP 2: Replace the data driver variable with a DataDrivenTemplateIterator

5 (...)

6 // STEP 3: Create the data stream buffers.

7 var dataDrivenBufferedStream =

8 Flux.from(getDataStream(reactiveAdapterRegistry))

9 .buffer(bufferSizeElements);

10 // STEP 4: Initialize the (throttled) template engine for each subscriber.

11 var dataDrivenWithContextStream = Flux.using((...));

12 // STEP 5: React to each buffer of published data by creating one or many (concatMap)

DataBuffers containing the result of processing only that buffer.

13 var stream = dataDrivenWithContextStream.concatMap((step) -> (...));

14 }

Listing 2.33: Creation of Flux containing each part of the HTML fragment

In step 4, which starts by initializing the (throttled) template engine for each subscriber where
normally there will only be one.

1 var dataDrivenWithContextStream = Flux.using (...)

Listing 2.34: Initialization of throttled template engine

Using the throttledProcessor as the state in this Flux.using allows us to delay the initial-
ization of the throttled processor until the last moment, when output generation is really re-
quested.

1 () -> {...

2 return new StreamThrottledTemplateProcessor(processThrottled(...));

3 }

Listing 2.35: Delay of throttled processor initialization

This flux will be made by concatenating a phase for the head (template before data-driven
iteration), another phase composed of several steps for the data-driven iteration, and finally
a tail phase (template after data-driven iteration). But this concatenation will be done from a
Flux created with , so that there is an opportunity to check if the processor has already signaled
that it has finished, and in such case, the subscription to the upstream data driver might be able
to be avoided if its iteration is not needed at the template.

We then reach step 5 where a flux is built to react to each buffer of published data by creating
one or many (concatMap) DataBuffers containing the result of processing only that buffer.

1 var stream = dataDrivenWithContextStream.concatMap((step) -> (...))

Listing 2.37: Merging of all the results from the many buffers

The initial state is set to TRUE so that the first step executed for this Flux performs the initializa-
tion of the dataDrivenIterator for the entire Flux. It is necessary that this initialization be
performed when the first step of this Flux is executed, because initialization actually consists

36

2. STATE OF THE ART 2.4. Resolvers

1 throttledProcessor ->
2 Flux.concat(
3 Flux.generate(() -> DATA_DRIVEN_PHASE_HEAD,(phase, emitter) -> {
4 if (throttledProcessor.isFinished()) {
5 emitter.complete();
6 return null;
7 }
8 switch (phase) {
9 case DATA_DRIVEN_PHASE_HEAD:

10 emitter.next(just(forHead(throttledProcessor)));
11 return DATA_DRIVEN_PHASE_BUFFER;
12 case DATA_DRIVEN_PHASE_BUFFER:
13 emitter.next(map(forBuffer(throttledProcessor, it)));
14 return DATA_DRIVEN_PHASE_TAIL;
15 case DATA_DRIVEN_PHASE_TAIL:
16 emitter.next(Mono.just(forTail(throttledProcessor)));
17 emitter.complete();
18 }
19 return null;
20 }
21)
22)

Listing 2.36: Each phase of the reactive fragment rendering

of a lateral effect on a mutable variable (the dataDrivenIterator). This way we are certain
that it is executed in the right order, given concatMap guarantees to us that these Fluxes gen-
erated here will be consumed in the right order and executed one at a time (and the Reactor
guarantees us that there will be no thread visibility issues between Flux steps).

From then on, it will be FALSE so it is the first execution of this that initializes the (mutable)
dataDrivenIterator.

1 Flux.generate(() -> Boolean.TRUE, (...))

Listing 2.38: Create a never-ending Flux to continuations emmit data

The dataDrivenIterator is then initialized. This is a lateral effect, this variable is mutable, so it
is important to do it here to be sure that it is executed in the right order.

1 (initialize, emitter) ->

2 {

3 var throttled = step.getThrottledProcessor();

4 var templateIterator = throttled.getDataDrivenTemplateIterator();

5 if (throttled.isFinished()) {

6 emitter.complete();

7 return Boolean.FALSE;

8 }

9 }

10 (...)

Listing 2.39: Control ending of Flux output

This is where the order of execution is guaranteed by evaluating where the step is currently.

If the step is on the head, then there is a feed with no elements - we just want to output the part
of the template that goes before the iteration of the data driver.

When we get to the dataBuffer part, we get to the value-based execution, where we have
values and want to iterate them.

37

2. STATE OF THE ART 2.4. Resolvers

1 if (step.isHead()) {templateIterator.startHead();}

Listing 2.40: Starting of emit HTML

1 else if(step.isDataBuffer()){ templateIterator.feedBuffer(step.getValues()); }

Listing 2.41: Feeds the values from the buffer to the output

Now we finally get to the tail. It’s time to signal feeding complete, indicating this is just meant
to output the rest of the template after the iteration of the data driver. Note there is a case when
this phase will still provoke the output of an iteration, and this is when the number of iterations
is exactly ONE. In this case, it won’t be possible to determine the iteration type (ZERO, ONE,
MULTIPLE) until we close it with this feedingComplete().

1 else {

2 dataDrivenTemplateIterator.feedingComplete();

3 dataDrivenTemplateIterator.startTail();

4 }

Listing 2.42: Starts emitting the end of the reactive HTML fragment

It’s time to determine if the template should be executed another time for the same data-driven
step or rather should consider to have done everything possible for this step (e.g.produced all
markup for a data stream buffer) and just emit complete and go for the next step.

1 boolean phaseFinished = false;
2 if (throttledProcessor.isFinished()) {

3 phaseFinished = true;
4 dataDrivenTemplateIterator.finishStep();

5 } else {

6 (...)

7 }

Listing 2.43: Determines if it should finish the step or continue emmiting

We know everything before the data-driven iteration has already been processed because the
iterator has been used at least once (i.e. its ‘hasNext()’ or ‘next()’ method has been called at
least once). This will mean the context switches to the buffer phase.

1 if (step.isHead() && templateIterator.hasBeenQueried()) {

2 phaseFinished = true;
3 templateIterator.finishStep();

4 } else if (step.isDataBuffer() && !templateIterator.continueBufferExecution()) {

5 phaseFinished = true;
6 }

Listing 2.44: Signals the finish of the phase

We get to the final part of step 5, where there is a computation if the output for this step has
been already finished (i.e. not only the processing of the model’s events, but also any existing
overflows). This has to be queried before the buffer is emitted.

38

2. STATE OF THE ART 2.4. Resolvers

If the step has finished, complete has to be emitted now, giving the opportunity to execute
again if processing has finished.

1 boolean stepOutputFinished = templateIterator.isStepOutputFinished();

2 emitter.next(buffer);

3 if (phaseFinished && stepOutputFinished) {

4 emitter.complete();

5 }

6 return Boolean.FALSE;

Listing 2.45: Ends the emission of data from the parent Flux

When we reached the end of all the steps, Flux signaled that the processing is complete and
can output the entire rendered HTML to the browser.

This is how Thymeleaf, which is an internal implementation of Spring, handles the SSR for
reactive models.

We will now take a look at how we implemented this logic in the other templates.

39

2. STATE OF THE ART 2.4. Resolvers

2.4.2 KotlinX Resolvers

Just like the Thymeleaf version, we will start by showing the Resolver, followed by the View.

The resolver implementation is pretty straightforward, as is the Thymeleaf one.
1 class KotlinxViewResolver(suffixes) : AbstractViewResolver(suffixes) {

2 (...)

3 override fun resolveViewName(viewName, locale): Mono<View> =

4 checkIfPrefixIsSupported(viewName, locale)

5 .map { BasicView(KotlinXTemplateProcessor(resolveTemplate(it))) }

6 }

Notice that in line 4, we first check if this resolver can support the viewName passed. If the
viewName is not supported then the return will be Mono<Void>.

Assuming that this viewName is supported, we need to return an instance of a View that can
handle the processing of the template. Hence the creation of a BasicView instance, in line 5,
with a processor as a parameter.

The resolveTemplate(it) method is to fetch the KotlinX template built using the DSL.

The BasicView is a generic implementation, shared by all the templates, except Thymeleaf,
which takes a processor that is capable of parsing the template.

1 public class BasicView extends AbstractView {

2 private final TemplateProcessor processor;

3 (...)

4 protected Mono renderInternal(renderAttributes, exchange) {

5 // Step 1, prepare writing fields

6 var response = exchange.getResponse();

7 var dataBuffer = response.bufferFactory().allocateBuffer();

8 var writer = new OutputStreamWriter(dataBuffer.asOutputStream());

9

10 // Step 2, create a Mono with a subscriber to write into the exchange

11 return response.writeWith(Mono.create((sub -> {

12 var templateAttrs = Map.of("writer", writer, "subscriber", subscriber, "buffer",

dataBuffer, "response", response);

13 this.processor.processTemplate(this.mergeModels(renderAttributes, templateAttrs),

writer);

14 }))

15);

16 }

17 (...)

18 }

Listing 2.46: BasicView, which is responsible for unwrapping the needed parameters and
passing them to the received processor

Notice that in the class declaration (line 1) BasicView extends AbstractView which is the
base class to represent a View in WebFlux, like seen in ThymeleafReactiveView.

The method renderInternal is the one responsible for starting the template processing and
can be broken down into 2 steps.

Step 1, we prepare the writing fields for the template processing operation about to happen,

40

2. STATE OF THE ART 2.4. Resolvers

1 var response = exchange.getResponse();

2 var dataBuffer = response.bufferFactory().allocateBuffer();

3 var writer = new OutputStreamWriter(dataBuffer.asOutputStream());

Listing 2.47: Extraction of response stream, buffer for the data and the write for said buffer

The response field represents the current connection open to the browser, for writing output
to the browser. This response will then allocate a buffer to write the content.

We then create a writer in to be able to write strings into the buffer. This strings are in
fact the processed html template.

In step 2, we create a Mono with a subscriber to write into the response object.

1 response.writeWith(Mono.create(subscriber -> {

2 var templateAttrs = Map.of(...);

3 processTemplate(mergeModels(renderAttributes, templateAttrs), writer);

4 }))

Listing 2.48: Creation of buffer to continuously write to the server output

This mono will control what gets written into the response object and when it also when the
response can close the connection and give the template processing work as completed. To
have that kind of control, Mono.createmethod provides a subscriber of type (MonoSink<DataBuffer>).
This subscriber will serve only to signal when the reactive has been read and processed, so
ServerWebExchange can close the connection.

The processor field represents an interface created to represent some implementation that
can deal with the processing of a template. For each technology we use, we have a dedicated
TemplateProcessor that applies the model to the template and deals directly with the re-
spective template engine, this is done in the method processTemplate.

1 public interface TemplateProcessor {

2 void processTemplate(Map renderAttributes, OutputStreamWriter writer);

3 }

Listing 2.49: TemplateProcessor declaration

The KotlinX version,

1 class KotlinXTemplateProcessor(val template : KotlinxTemplate) : TemplateProcessor {

2 override fun processTemplate(renderAttributes : Map, writer: OutputStreamWriter) {

3 applyTemplate(renderAttributes, writer)

4 }

5 (...)

6 private fun applyTemplate(renderAttributes : Map, writer: OutputStreamWriter) {

7 renderAttributes?.let { this.template.apply(it, writer) }

8 }

9 }

Listing 2.50: KotlinX Processor implementation

41

2. STATE OF THE ART 2.4. Resolvers

As can be seen in line 4, we call the method applyTemplate which will call upon the Kotlinx-
Template which will grab the Map containing all the parameters and replace them into the
template (notice in line 12 the call to the apply method in the KotlinxTemplate class).

If we look at the KotlinxTemplate implementation, it’s just converting the template and
writing the output into the writer.

1 class KotlinxTemplate(val templateConverter : (model) -> String) {

2 fun apply(model : Map<String, Any> = mapOf(), writer: Writer) {

3 val converter = templateConverter(model)

4 writer.append(converter)

5 }

6 }

Listing 2.51: KotlinX template which passes the model for template processing

All of this resolver, view logic is called by the Spring framework when we declare a con-
troller and return the template to use (just like Thymeleaf).

2.4.3 Handlebars Resolvers

The implementation of Handlebars follows precisely the same logic as KotlinX. Therefore, we
will solely highlight the key differences in implementation, while omitting aspects that are
identical to KotlinX.

Starting by the resolver,

1 public class HandlebarsViewResolver extends AbstractViewResolver {

2 (...)

3

4 public Template resolveTemplate(String templateName) {

5 return this.handlebars.compile(templateName);
6 }

7

8 public Mono<View> resolveViewName(String viewName, Locale locale) {

9 return this.checkIfPrefixIsSupported(viewName, locale)

10 .map(view -> new BasicView(new Processor(resolveTemplate(view))));

11 }

12 }

Listing 2.52: Handlebars view resolver to fetch the template and compile it

Just like for the KotlinX version, each ViewResolver is called to provide a View based on a
certain viewName, and if it’s not supported, it returns an instance of Mono<Void>. On our
version, we also added the ability for the ViewResolver to be able to call the template engine
and give to HandlebarsTemplateProcessor the correct template instance to use.

As for the view implementation, it is the same as the BasicView seen in the KotlinX subsection
2.3.2.

42

2. STATE OF THE ART 2.4. Resolvers

The only difference is the implementation of the processor which in the Handlebars goes as
follows,

1 public class HandlebarsTemplateProcessor implements TemplateProcessor {

2 private final Template compiledTemplate;

3 @Override

4 public void processTemplate(Map renderAttributes, writer) {

5 applyMainTemplate(renderAttributes, writer);

6 }

7

8 void applyMainTemplate(Map<String,Object> renderAttributes, writer) {

9 compiledTemplate.apply(this.getContext(renderAttributes), writer);

10 }

11 }

Listing 2.53: Handlebars implementation of the Processor

Notice that the method processTemplate in line 5 is very similar to the KotlinX version.

If we go to the method applyMainTemplate in line 13, we can sew in line 14, that we take
the template that was already compiled in the ViewResolver and process it by passing the
context and the writer as parameters.

This context is composed of two parameters, the current map containing all parameters
passed to the Model the controller, plus some more that was added in the View class, and
an Options object existent in the handlebars library.

In order for Handlebars to be able to give the map with all these parameters, we need to build
this Context. This is done by creating an instance of such a class and passing the Model.

1 private Context getContext(Map<String, Object> model) {

2 return Context.newBuilder(model).resolver(INSTANCE).build();

3 }

Listing 2.54: Creation of the Handlebars context

By passing this Context into the Handlebars’ template instance, Handlebars internally will
apply all the needed objects into the HTML template, and any helpers that might be regis-
tered will also receive this context object unwrapped by the Map containing the model and an
Options instance.

We can see the model creation and the template associated with the Helper in the controller.

As we can see, the only difference for Handlebars is the usage of the Context object which
represents the model. In the case of KotlinX, we use the map directly.

Finally, we will take a look at HtmlFlow.

43

2. STATE OF THE ART 2.4. Resolvers

2.4.4 HtmlFlow Resolvers

The implementation of HtmlFlow adheres to the exact same logic as KotlinX and Handlebars.
As a result, we will exclusively focus on delineating the primary differences in implementation,
while excluding elements that are shared by both KotlinX and Handlebars.

The implementation of the Resolver does not change much from the 2.3.2 and 2.3.3 imple-
mentation, as can be seen here.

1 public class HtmlFlowViewResolver extends AbstractViewResolver {

2

3 private HtmlFlowTemplate resolveTemplate(String template) {

4 return new HtmlFlowTemplate(HtmlFlowKeyTemplateMatcher.match(template));

5 }

6 @Override

7 public Mono<View> resolveViewName(String viewName, Locale locale) {

8 return this.checkIfPrefixIsSupported(viewName, locale)

9 .map(name -> new BasicView(new HtmlFlowProcessor(resolveTemplate(name))));

10 }

11 }

Listing 2.55: HtmlFlow resolver implementation

Notice in line 4 that, also here we create a template that contains the matching name of the name
(template parameter (line 3)) using the static method from HtmlFlowKeyTemplateMatcher

class and return that HtmlFlowTemplate instance.

The method resolveViewName from lines 7 to 10 also returns a Mono<View> containing the
instance of BasicViewwith the HtmlFlowProcessor that will process the template returned
from the resolveTemplate method.

If we look at the processor implementation for HtmlFlow,

1 public class HtmlFlowProcessor implements TemplateProcessor {

2 private final HtmlFlowTemplate template;

3

4 @Override

5 public void processTemplate(Map renderAttributes, OutputStreamWriter writer) {

6 applyTemplate(renderAttributes, writer);

7 writer.flush();

8 }

9

10 private void applyTemplate(Map renderAttributes, OutputStreamWriter writer) {

11 this.template.apply(renderAttributes, writer);

12 }

13 }

Listing 2.56: HtmlFlow resolver implementation

As KotlinX and Handlebars implementations of the processors do, this also implements the
interface TemplateProcessor.

Line 7 calls upon the method applyTemplatewhich itself on line 17 will call the HtmlFlowTemplate
to apply the received model to the template created through the DSL.

44

2. STATE OF THE ART 2.4. Resolvers

Notice the writer.flush() in line 8 which will effectively push what was added to the
writer into the output.

HtmlFlowTemplate is what uses the correct template and returns the String which is the
result of the processing of such a template.

1 public class HtmlFlowTemplate {

2 private final HtmlFlowTemplates match;

3 public void apply(Map<String, Object> renderAttributes,

4 OutputStreamWriter writer) {

5 String view = DynamicHtml.view(match::template).render(renderAttributes);

6 writer.append(view);

7 }

8 }

Listing 2.57: HtmlFlow resolver implementation

Notice the method view used in line 6 after the DynamicHtml class.

A View in HtmlFlow can be seen as a wrapper for the complete HTML document. Depending
on the type of view that the programmer chooses to create, certain methods and advantages
can be used, or not.

A View instance acts like a container that mediates the connection between a template function
and a Visitor.

In terms of Views, HtmlFlow presents two options for representing a view.

1. DynamicHtml

2. StaticHtml

The DynamicHtml is used (line 6) to create this template. This is because DynamicHtml

should be used when we want to write a template that has dynamic components to it. As can
be seen, the method render (at the end of line 6) receives the renderAttributes parameter
which is all the parameters needed for the dynamic parts.

This will effectively make the template that the HtmlFlowTemplates return can use this
Map<String,Object> to populate the dynamic parts of the template.

On the other hand StaticHtml does not support the render with the Model as a parameter.
Because the idea for StaticHtml is to be used when we have a template that is always the same
and does not depend on external objects, this makes it so this type of view can always be cached
as not render every time it is called.

Another difference between StaticHtml and DynamicView is the missing of the method dynamic
that is present in the DynamicView. Since StaticHtml does not support render with the View-
Model, we cannot also call the method dynamic when using this type of view.

Going to the view implementation, it is the same as the previous templates, so it will not be
shown again here.

45

2. STATE OF THE ART 2.5. Summary

But as we can see, given the Spring logic on how to handle SSR with reactive streams, all three
templates do not differ much from how they are implemented.

2.5 Summary

As we have seen, there is a need to implement SSR with reactive streams given the new
paradigm of a Reactive Server. There is currently no support for SSR with Reactive Streams
in most template engines, being Thymeleaf the exception. In the petclinic demo, we showed
how we can incorporate Reactive Stream processing, with a single source of reactive data, into
the Handlebars, KotlinX and HtmlFlow template engines, by doing a workaround of using
helpers classes.

Even with that workaround we still could not see the desired results in the browser, with all the
content inside the streams being processed out of order and the HTML showing out-of-order as
well. But being Thymeleaf a heavy template engine, like can be seen in [33] and being mostly
coupled with the Spring framework, there is a need to find a template engine that can do the
job and not be stuck to an asynchronous model type.

46

3
Functional Reactive Templates

In this Chapter, we will discuss the proposal for handling reactive web templates with a func-
tional approach, by enhancing the framework HtmlFlow, with the goals of providing progres-
sive rendering and supporting multiple asynchronous sources.

We will start by describing HtmlFlow architecture and functionality, followed by the proposal
for supporting reactive templates.

3.1 Former HtmlFlow internal processing

HtmlFlow is a Java DSL to write typesafe HTML documents in a fluent style. The HTML is
generated through the creation of a template. Templates are expressed in an internal DSL,
meaning Java code is written to produce the template. This implies that whilst creating the
template we can use the full Java toolchain.

As can seen in the example,

1 StaticHtml.view()

2 .html()

3 .head()

4 .title().text("title").__()

5 .link().attrRel(EnumRelType.STYLESHEET).attrHref("/css/bootstrap.css").__()

6 .__()

7 .body()(...)

8 .footer()(...).__()

9 .__();

Listing 3.1: Creation of simple HtmlFlow Template

47

3. FUNCTIONAL REACTIVE TEMPLATES 3.1. Former HtmlFlow internal processing

Each view is built from a function of type HtmlTemplate, specified by the following Java
functional interface:

1 interface HtmlTemplate {

2 void resolve(HtmlPage page);

3 }

Listing 3.2: HtmlTemplate interface responsible for specifying a function

As can be seen in listing 3.2, the HtmlTemplate interface specifies a function that we can use
to define a template through the usage of a HtmlPage.

The HtmlPage instance provides the HTML builder methods which allow us to construct the
template 3.1, just like the head or title methods.

The template 3.1 has a StaticHtml associated (line 1), which is a type of view. As stated in
the previous Chapter, at the end of the subsection 2.4.4, a View in HtmlFlow is a wrapper for
the complete HTML document. But a View is also what makes the association to a Visitor.

So, the HtmlTemplate provides us with a function to define the template and create a view.
The view itself is what binds all the created methods to a Visitor, which we will present later
on in the Chapter.

In a way, HtmlFlow templates are essentially plain Java functions.

We will now have a look at two components that make HtmlFlow.

1. Templates

2. Visitors

48

3. FUNCTIONAL REACTIVE TEMPLATES 3.1. Former HtmlFlow internal processing

3.1.1 Kinds of Templates

The basic definition of a template is a function that builds the HTML document through the
Element API.

1 static void template(DynamicHtml<LabelValueModel> view, LabelValueModel model) {
2 view
3 .div()
4 .label()
5 .dynamic(label -> label.text(model.label)).__() //label
6 .input()
7 .dynamic(input -> input
8 .attrType(EnumTypeInputType.TEXT)
9 .attrId(model.id)

10 .attrName(model.id)
11 .attrValue(model.value.toString())
12)
13 .__() //input
14 .__(); //div
15 }

Listing 3.3: Creation of a DynamicHtml that accepts models

In HtmlFlow, there are three kinds of templates. There is what we call normal template that can
be either a template created out of the StaticHtml, like example 3.1, or with DynamicHtml in
example 3.3. And then we have Partials and Layouts.

A Partial in HtmlFlow is constructed just like any template, where we create the type of view
we want and continue to define the rest of the partial. The difference is that we don’t have to
specify the entire HTML document for it to make sense.

The advantage of using Partials is that we only have to define small parts of HTML that will be
used in a bigger template.

1 static void template(DynamicHtml<Pet> view, Pet pet) {
2 view
3 .form().attrMethod(EnumMethodType.POST)
4 .div().attrClass("form-group")
5 .dynamic(div -> view.addPartial(view, of(LocalDate.now())))
6 .__() //div
7 .__() //form
8 }

Listing 3.4: Creation of template that is completed by a partial

Usually, a partial is created to fill a hole in some other template. As seen in 3.4, line 5, the partial
is added to the main template to complete the HTML.

This way of invoking partials is particularly useful when you need to use a smaller part (com-
ponent) together with an existing template, to produce a bigger one. This is the most common
usage of partials.

Another way of using partials is to construct a layout, which is the latter kind of template.

49

3. FUNCTIONAL REACTIVE TEMPLATES 3.1. Former HtmlFlow internal processing

The layout is a normal template, but with a hole to be filed with partials. As we saw earlier, a
partial has nothing special by itself. What is interesting it is the layout. Consider the following
template.

1 static void template(DynamicHtml<T> view, T model, HtmlView[] partials) {

2 view

3 .html().head()

4 (...)

5 .title().text("My awesome templating system").__().__() //head

6 .body().nav().attrClass("navbar navbar").addAttr("role","navigation")

7 .dynamic(__ -> view.addPartial(partials[0]))

8 .__() //nav

9 .div().attrClass("container-fluid")

10 .div().attrClass("container xd-container")

11 .dynamic(__ -> view.addPartial(partials[1], model))

12 .__() //div

13 .__() //div

14 .__() //body

15 .__(); //html

16 }

Listing 3.5: Usage of partials inside a template

Notice the third argument to the function template, this array of partials is the place where we
receive the partials to fill the holes with our layout. To use them, we called two distinct sig-
natures of view.addPartial; one with only the partial, and one with a partial and a model.
Depending on the type of templates hidden behind partials[0]we would use one signature
or the other.

3.1.2 Visitors

One of the reasons HtmlFlow is so diverse and flexible is the usage of the well-known Design
Pattern Visitors.

In object-oriented programming and software engineering, the visitor design pattern is a way
of separating an algorithm from an object structure on which it operates. A practical result
of this separation is the ability to add new operations to existing object structures without
modifying the structures. It is one way to follow the open/closed principle.

The way HtmlFlow follows the principle mentioned above is to have a singular abstract class
ElementVisitor. Each component that wants to be considered a Visitor should extend and
present the correct definitions for the methods.

The programmer can, of course, decide which one to use. This is done by the overload of
the method view the programmer calls. Each overload has its option of an implementation of
Visitor that best suits the choice made.

50

3. FUNCTIONAL REACTIVE TEMPLATES 3.1. Former HtmlFlow internal processing

The responsibility of the Visitor is to specify how the HTML is being built. This is defined
by how we close and open tags, add attributes, and comments and how the content ends up
being written in the end.

We also have another level of abstraction, that all the top-level Visitor end up extending
from directly.

HtmlVisitorCache extends from ElementVisitor and helps define some of the previ-
ously not-defined methods to deal with visitor-specific methods, like visitParent and visi-
tElement.

As explained, HtmlFlow is built on a cache system and we can "turn if off" when we have
a dynamic element. This level of abstraction has the implementation to handle caching but
leaves a new method open to be implemented, write.

The method write is what each top-level Visitor should implement to define how the content is
being pushed downstream.

A programmer looking to implement their Visitor, for their very specific needs, can take advan-
tage of this design pattern by extending the cache definition or going to the lower abstraction
level and extending ElementVisitor.

51

3. FUNCTIONAL REACTIVE TEMPLATES 3.2. DSL Proposal for asynchronous fragments

3.2 DSL Proposal for asynchronous fragments

Now that we understand how HtmlFlow works internally, we can begin to explain our pro-
posal for solving the problem of SSR with asynchronous sources to achieve progressive render-
ing.

Our proposal for SSR Web templates on top of HtmlFlow is the only non-blocking solution that
can deal with any number and any kind of asynchronous data models and still produce well-
formed HTML. Also, our use of CPS in asynchronous views avoids nesting callbacks, among
different asynchronous models.

So here we are taking advantage of the functional nature of HtmlFlow which proposes the idea
of functional templates using HoT - higher-order templates. Thus, we will implement a new
idea of Functional Reactive Templates on top of HoT.

By using the already existent architecture of HtmlFlow with the visitors’ strategy, we need to
add a new layer that would handle Reactive Streams without forcing the client to wait for the
response and guarantee the correct order of the HTML output.

Since HtmlFlow uses a method chaining approach, it is possible to extend its API through
Kotlin extension functions that provide the ability to extend a class or an interface with new
functionality without having to inherit from the class.

So in this Chapter, we will present how HtmlFlow supports asynchronous sources, starting
from an initial version of a data structure with multiple strings to a more event-driven archi-
tecture with continuations.

The goal for this new version is to avoid nested call chains and achieve a fluent style, without
being compromised to a specific type of asynchronous source. Furthermore, it should be easy
for the user to work with, so it should spare the end-user asynchronous specific logic.

To achieve this goal, we went from an approach of a data structure with multiple String to a
more event-driven architecture to support asynchronous sources.

3.2.1 Why a new version was needed

In the first version of the HtmlFlow API, the HTML was built taking advantage of the visitor
pattern, where a visit happens per element and the output of the element is written into a
StringBuilder.

When a visit happened, it would immediately write the content without having the context of
the previous or next element to be written. Although the HTML was well-formed, once it was
written, each element would be processed immediately when called.

For a version where there was no support for asynchronous behavior, this always worked as
expected, because at the time each element needed to be written, its content was already present
and ready to be read.

52

3. FUNCTIONAL REACTIVE TEMPLATES 3.2. DSL Proposal for asynchronous fragments

When we enter the world of asynchronous behavior, there is no predicting when the data will
be ready to be read. This logic itself is already incongruous with the version explained above.
Two things would happen when we brought asynchronous sources to this version.

The very first is that the HTML would not be well-formed when the elements were being writ-
ten. The second was that if the content took too long to be available, it might not even appear
on the HTML if the result was already produced.

So it was evident, that we needed a way to delay the writing of an element for when it’s needed.
This is to say that we need to keep the order of how the elements should be written. Each
element should only be processed when the previous one has terminated.

3.2.2 An event-driven way of working

As explained, we needed a way to enforce the order of writing the overall HTML elements.

Since we work with asynchronous sources, we cannot block the data and make it work that
way.

In the first iteration, we could not miss the similarity between our solution, to the one of a
LinkedList. In this data structure, each node knows the next one. Also, each node is only
processed when the list cursor advances.

So a structure of nodes was created, where the operation async would be the main asyn-
chronous operation to occur, and the then synchronous operations that would occur after.

The type Thenable would encapsulate this entire logic.

1 interface Thenable {
2 Thenable async(Observable, Consumer);
3 Thenable then(Function cont);
4 }

Listing 3.6: Thenable interface, definition

Each method of the interface returns itself so that the end user can chain more actions, either
more async or synchronous, by using the method then.

Each action would then be kept inside a data structure of async nodes, with the order of inser-
tions guaranteed. Only the async nodes were being kept inside this data structure since they
were the ones that needed to have the execution halted until it was required.

The then actions were seen as children of an async action. By the end of each async action
the children nodes would be invoked.

Once the children of an async action are complete, the next async node would receive an event
to start running, as seen in the following diagram.

53

3. FUNCTIONAL REACTIVE TEMPLATES 3.2. DSL Proposal for asynchronous fragments

Figure 3.1: HtmlFlow async then architecture

Although this solution worked to reach the desired result, which is support for asynchronous
sources, it didn’t fully reach the desired goal. It was very verbose for the end-user as it intro-
duced two new operations that contradict the goal of avoiding nested chain calling.

Having this first version as a base to start from, we focused on reaching our end goal. One
of first things we did, was to try and trim the new operations to just one, making it easier for
the end-user to work with and make a more seamless transition between previous HtmlFlow
versions.

We added the await operation, which is a single operation that contains an asynchronous
action. Where following HTML elements should wait for this action to finish before being
processed.

This await operation can be unwrapped into three main parts, as can be seen in the following
code.

1 <M> E await(AwaitConsumer<E,M> asyncAction);
2 interface AwaitConsumer<T,M> {
3 void accept(T first, M model, OnCompletion cb);
4 }

Listing 3.7: Await operation unwrapped

54

3. FUNCTIONAL REACTIVE TEMPLATES 3.3. HtmlFlow asynchronous internal processing

The first argument represents the current HTML element being processed, the model is an
asynchronous model to be used, and the cb argument is the onCompletion signal for when
the asynchronous source has ended.

To take full advantage of this new await operation, we need to alter the internal logic of
HtmlFlow on how the elements are processed, to make every element knowledgeable of the
element to be processed. Out of this necessity came the current version of the HtmlFlow API,
where we have a preprocessing of the entire element tree and the construction of an internal
chain of continuations.

3.3 HtmlFlow asynchronous internal processing

As it was previously acknowledged, to reach our goal we need every element of the entire
HTML to have an added responsibility. Each HTML element should have a reference for the
next element to be processed.

So, each element no longer holds the responsibility to know when it should be written into the
output. But, instead, it holds the responsibility to let the next element in line know that it can
start the processing.

As explained in 3.2.2, this way of traversing and processing elements it’s very similar to a
LinkedList.

In our case, each node represents a subset of HTML that needs a specific behavior. This behav-
ior can vary, by the way of emitting HTML and when the next node should be called. Although
each node contains a very specific logic, they all share the same responsibilities.

To group this responsibility, we created the term, continuation, which takes shape in our imple-
mentation HtmlContinuation.

55

3. FUNCTIONAL REACTIVE TEMPLATES 3.3. HtmlFlow asynchronous internal processing

1 abstract class HtmlContinuation {
2 ...
3 HtmlContinuation next;
4 ...
5 HtmlContinuation getNext() {return next;}
6 abstract void execute(Object model);
7 }

Listing 3.8: HtmlContinuation

A HtmlContinuation is the base for a linked list of nodes, corresponding to HtmlContinua-
tion objects, and it’s responsible for emitting an HTML block and calling the next node.

There are two main continuations defined in this new architecture, HtmlContinuationSync
and HtmlContinuationAsync.

HtmlContinuationSync is a continuation that defines a block of static HTML, so it’s logic to
emit and call the next node is fairly simple.

1 void execute(Object model) {

2 ...

3 emitHtml(model);

4 if (next != null) {

5 next.execute(model);

6 }

7 }

Listing 3.9: HtmlContinuationSync execute

Notice that in line 3 of 3.9, we can directly emit the HTML and call upon the next HTML
continuation, if it exists, since this is a block of static information.

As for the HtmlContinuationAsync, we need to consider that the next node can only be
executed when the asynchronous operation has ended. Even, if the HTML can start to be
emitted, we should have more control over the execution of the next continuation.

1 void execute(Object model) {
2 ...
3 consumer.accept(element, model, () -> {
4 if (next != null) {
5 next.execute(model);
6 }
7 });
8 }

Listing 3.10: HtmlContinuationAsync execute

Unlike the sync version, where we just emitted the HTML and called the next continuation, in
the asynchronous version, we defined a consumer (line 3 in 3.7) which contains a function as a

56

3. FUNCTIONAL REACTIVE TEMPLATES 3.3. HtmlFlow asynchronous internal processing

parameter that is called when the asynchronous operations have ended. This is what triggers
the next HTML continuation to be executed if it exists.

Now that we understand how the internal continuations communicate with each other, we
need to take a look at how everything is put together.

For the continuations to work, as we described then, we need first and foremost to connect the
nodes.

For that purpose, we created the step of preprocessing. Preprocessing is the first step of
HTML creation. At the moment of template creation, all the continuations are created as we go
along the HTML tree.

1 public static HtmlViewAsync viewAsync(HtmlTemplate template){

2 PreprocessingVisitorAsync pre = preprocessingAsync(template);

3 return new HtmlViewAsync(new HtmlViewVisitorAsync(true, pre.getFirst()));

4 }

Listing 3.11: Call to preprocessing when viewAsync is called

Notice in line 2, that what is called immediately is the preprocessingAsync, which effec-
tively will go through all the HTML tree and chain the connections.

The first static HTML elements are grouped into a single continuation (line 3 in 3.11), without
needing to be signaled to write to the output. However, it still requires the user to call the final
function that triggers the HTML to start being written, maintaining the lazy behavior. And the
async elements into a different one as it was explained.

When we get to the async node, all the nodes that proceed an async one, static or async,
needs to be called to start writing to the output, as can be seen in the example below.

1 @Override

2 public void visitAwait(Element element, AwaitConsumer asyncHtmlBlock) {

3 HtmlContinuation asyncCont = new HtmlContinuationAsync<>(

4 (...),new HtmlContinuationSyncCloseAndIndent(this));

5 chainContinuationStatic(asyncCont);

6 indentAndAdvanceStaticBlockIndex();

7 }

Listing 3.12: Asynchronous implementation of chaining of continuations

Notice the passage of a HtmlContinuationSyncCloseAndIndent which will effectively
deal with indentation problems between static and async blocks.

After the indentation is dealt with, the asyncCont is called to emit its HTML.

The static continuations hold their block of static HTML to be written, until it is required to
do so, giving the guarantee that the order in which the template was created gets preserved.

As the name of this step suggests, all of this is preprocessing. Meaning that none of the elements
are called and emit their HTML parts. They are just grouped into continuations that reflect the

57

3. FUNCTIONAL REACTIVE TEMPLATES 3.3. HtmlFlow asynchronous internal processing

needs we have per set of elements. This is important because one of the characteristics of
HtmlFlow is that the writing of the template is lazy. Meaning it will only write into the output
when it is required to.

The following example showcases how the chain of continuations is triggered to start running.

1

2 view.writeAsync(new PrintStream(mem), asyncModel); //user call

3 ...

4 CompletableFuture<Void> writeAsync(out, model) {

5 return visitor.clone(out).finishedAsync(model); // executes the visitor

6 }

7 ...

8 CompletableFuture<Void> finishedAsync(model) {

9 var cf = new CompletableFuture<Void>();

10 var terminationNode = new HtmlContinuationAsyncTerminationNode(cf);

11 setNext(last, terminationNode);

12 this.first.execute(model); // Initializes render on first node.

13 return cf;

14 }

Listing 3.13: Html template writeAsync

Listing 3.13 starts, in line 2, with an example of a user triggering the writing of the HTML using
the method writeAsync.

Line 5 showcases how the visitor for the asynchronous operations is called upon to start the
continuation chain by the method finishedAsync.

Notice the terminationNode at line 12. The HtmlContinuationAsyncTerminationNo-
de is just a node to complete the CompletableFuture when all the processing has ended.

We guarantee that this node will be the last one because in line 14 we connect this one as a next
node for last node.

Effectively, each part of the HTML tree is really just written when the user calls the writeAsync
method. Which will trigger the first node to be executed (line 18) and the ones after that, as the
preprocessing constructed them.

With this approach, we can guarantee that the HTML is well-formed and, by taking advantage
of the continuations, we can have progressive rendering.

58

3. FUNCTIONAL REACTIVE TEMPLATES 3.3. HtmlFlow asynchronous internal processing

1 view

2 .html()

3 .body()

4 .div()

5 .p().text("Students from a school board").__()

6 .__() //div

7 .div()

8 .table()

9 .thead()

10 .tr()

11 .<AsyncModel>await((tr, model, onCompletion) -> Flux

12 .from(model.titles)

13 .doOnComplete(onCompletion::finish)

14 .doOnNext(nr -> tr.th().text(nr).__())

15 .subscribe())

16 .__() //tr

17 .__() //thead

18 .tbody()

19 .<AsyncModel>await((tbody, model, onCompletion) -> Flux

20 .from(model.items)

21 .doOnComplete(onCompletion::finish)

22 .doOnNext(student -> tbody.tr().th().text(student.getNr()).__()

23 .td().text(student.getName()).__().__())

24 .subscribe())

25 .__() //tbody

26 .__() //table

27 .__() //div

28 .div().p().text("Best students in school").__() //p

29 .__() //div

30 .__() // body

31 .__(); //html

Listing 3.14: HtmlFlow usage with new version

In the template above, we see in line 4 the usage of model.titles and in line 10 model.items.

This involves the inclusion of two separate asynchronous sources within a single model object.
In doing so, HtmlFlow is equipped to manage multiple asynchronous sources and facilitate
progressive rendering.

59

3. FUNCTIONAL REACTIVE TEMPLATES 3.4. Summary

By running the template, we get the following result.

1 <html>

2 <body>

3 <div><p>Students from a school board</p></div>

4 <div>

5 <table>

6 <thead>

7 <tr>

8 <th>Nr</th>

9 <th>Name</th>

10 </tr>

11 </thead>

12 <tbody>

13 <tr><th>1</th><td>Pedro</td></tr>

14 <tr><th>2</th><td>Manuel</td></tr>

15 <tr><th>3</th><td>Maria</td></tr>

16 <tr><th>4</th><td>Clara</td></tr>

17 <tr><th>5</th><td>Rafael</td></tr>

18 </tbody>

19 </table>

20 </div>

21 <div><p>Best students in school</p></div>

22 </body>

23 </html>

Listing 3.15: Result of the new HtmlFlow reactive approach

3.4 Summary

As demonstrated in this Chapter, we have enhanced HtmlFlow by introducing Continuations
objects, thus enabling seamless support for multiple asynchronous sources alongside synchronous
sources. This advancement has enabled us to successfully achieve the primary objective of pro-
gressive rendering.

As evidenced in the final example, 3.14, the adoption of this new version of HtmlFlow has
had a minimal impact on its usage. Despite the integration of two asynchronous sources, the
resulting HTML remains well-structured and consistent.

In the following chapter, we will proceed to validate the presented approach with a use case.

60

4
Validation

In this chapter, we will present how Thymeleaf and KotlinX.html deal with multiple asyn-
chronous data models in a web application running in a state-of-the-art non-blocking middle-
ware, namely Spring WebFlux [37]. Followed by a benchmarking study to compare solutions.

In the next subsection, we start describing our case study of a WebFlux application named
Disco. After that, we analyze how Thymeleaf and KotlinX.html behave with this application.

4.1 Disco Non-blocking web application

The Disco WebFlux application consumes data from two Web APIs, namely MusicBrainz (an
open music encyclopedia that collects music metadata) and Spotify (an audio streaming). The
Disco application will fetch information from MusicBrainz about the foundation, origin and
genres of a band, and from Spotify, it will get its popular tracks.

In Figure 4.1 we present the expected output of an HTML document from the Disco web ap-
plication for The Rolling Stones band, in three accumulated fragments. The first fragment of
Figure 4.1a is immediately rendered since it does not depend on any asynchronous data. Then,
the remaining two fragments of Figures 4.1b and 4.1c are emitted incrementally as their data
models become available. We deliberately made, a Spotify data model with a higher latency
than MusicBrainz to observe a progressive render between these two steps. In Listing 4.1 we
present the corresponding HTML source to the final web page.

Notice that we are including a footerwith the total processing time, since the handler receives
the request until the template finishes processing the footer element. To make visible the
effects of progressive rendering, we inserted an explicit delay of 2 seconds on the first data

61

4. VALIDATION 4.1. Disco Non-blocking web application

(a) First fragment (b) 1st and 2nd fragments (c) Final web page

Figure 4.1: Expected output from Disco web app for The Rolling Stones band.

source (i.e. MusicBrainz) and 3 seconds on the second one (i.e. Spotify). Since we are fetching
data sources concurrently, then the handler processing duration is at least equal to the largest
delay of the data sources, in this case 3 seconds.

Since the analyzed web templates are compatible with both Java and Kotlin, as well as Spring
WebFlux, we choose Kotlin as the programming language for the Disco web application due to
its conciseness and expressiveness.

The Disco domain model has two main entities defined by MusicBrainz and SpotifyArtist
classes, according to the Kotlin definition of Listing 4.2. In this case we have a repository [9]
for each domain entity to access its data source.

Repositories are a key component of the data access layer and provide a way to encapsulate and
manage data access logic. Repositories are closely related to domain entities and typically rep-
resent a collection of entities of a particular type, such as MusicBrainz or SpotifyArtist.
The main role of repositories is to provide a simplified and consistent API for working with
data sources, such as databases, file systems, Web APIs, or others. Because we are dealing with
asynchronous data sources, our repositories produce asynchronous effects. In this case, we
choose a CompletableFuture return type to represent an asynchronous computation that
may complete at some point and produce a result.

4.1.1 Thymeleaf

Web templates (such as JSP, Handlebars or Thymeleaf) are based on HTML documents, which
are augmented with template-specific markers (e.g. <%, {{}} or ${}) representing dynamic
information that can be replaced at runtime by the results of the corresponding computations
to produce a view. In addition to specific Thymeleaf templating marks (i.e. ${}) we may find

62

4. VALIDATION 4.1. Disco Non-blocking web application

1 <html>
2 <body>
3 <div>
4 <h3>The Rolling Stones</h3>
5 <hr>
6 <h3>MusicBrainz info:</h3>
7
8 Founded: 1962
9 From: London

10 Genre: rock, blues rock, ...
11
12 <hr>
13 Spotify popular tracks:
14
15 Paint it Black, Start Me Up, ...
16
17 <hr>
18 </div>
19 <footer>
20 <small>
21 3003 ms (response handling time)
22 </small>
23 </footer>
24 </body>
25 </html>

Listing 4.1: Expected HTML source code for the web page of Figure 4.1c

1 class MusicBrainz(
2 val artist: String,
3 val year: Int,
4 val from: String,
5 genresList: List<String>)
6 {
7 val genres = genresList.joinToString(", ")
8 }
9

10 class SpotifyArtist(
11 val artist: String,
12 val popularSongs: List<String>
13)

Listing 4.2: Disco domain entities definition in Kotlin for MusicBrainz and SpotifyArtist.

Thymeleaf attributes that define the execution of predefined logic, such as, foreach loop (i.e.
th:each).

In Listing 4.3 we present the Thymeleaf template that produces the view of Figure 4.1c. For
simplicity, we are just including the dynamic parts, since the static blocks are equal to those
presented in Listing 4.1. This template deals with 4 model attributes: artistName (line 1),
musicBrainz (lines 3), spotify (line 10) and start (line 15).

Except for attributes artistName and start that are a String and a long, both musicBrai-
nz and spotify are instances of CompletableFuture. In this case, passing a Completable-
Future or any other kind of promise to a Thymeleaf template will postpone processing and
releasing the thread to other tasks. When data becomes available and the promise is ful-
filled, the template processing resumes making the CompletableFuture’s content available
as model attributes.

63

4. VALIDATION 4.1. Disco Non-blocking web application

1 <h3 th:text="${artistName}"></h3>
2 ...
3 <ul th:each="item : ${musicBrainz}">
4 <li th:text="*{'Founded: ' + item.year}">
5 <li th:text="*{'From: ' + item.from}">
6 <li th:text="*{'Genre: ' + item.genres}">
7
8 ...
9 <th:block

10 th:each="track : ${spotify.popularSongs}"
11 th:text="${track + ', '}">
12 </th:block>
13 ...
14 <small
15 th:text="${#dates.createNow().getTime() - start} + 'ms (response handling time)'">
16 </small>

Listing 4.3: Example of Thymeleaf template of Disco web application.

Yet, until model attributes musicBrainz and spotify become available, the browser is dis-
playing an unresponsive blank page waiting for the server response. To address this issue on
Spring WebFlux, the asynchronous objects must be wrapped into a ReactiveDataDriver-
ContextVariable, which we already discussed in chapter 2.

However, there are two notable limitations of ReactiveDataDriverContextVariable, re-
garding the issues 1) limited asynchronous idiom and 2) single data model, described in of
Section 2.4.1. First, the model attribute must be a reactive stream Publisher [25], mean-
ing that dealing with any other kind of asynchronous model always requires a conversion to
Publisher. Second, the web template can only have a single model attribute of this type.

Regarding 1) limited asynchronous idiom, actually, converting from CompletableFuture to
Publisher can be achieved through the Mono.fromFuture()method of the Reactor library,
which returns a new instance of Mono that implements Publisher. A Publisher represents
multi-valued data and it is expected that The Thymeleaf web template contains some kind of
iteration on the data-driver variable, normally by means of an th:each attribute. This means
that it requires a th:each block to access musicBrainz even if it just contains a single value
(i.e. line 3 of Listing 4.3). However, this requirement may introduce a semantic mismatch
when dealing with a single value, such as the CompletableFuture<MusicBrainz>. The
use of the th:each block implies an iteration, whereas in this case, a continuation-based idiom
would be more appropriate to convey the intended meaning.

On the other hand, regarding 2) single data model use, when we have multiple asynchronous
objects, we can compose them into a single object using operators such as zip, combineLatest,
or merge. However, when we do this, we won’t have the benefit of progressive rendering that
we get with ReactiveDataDriverContextVariable. Instead, we will have to wait for all
the asynchronous operations to complete before the final result can be rendered.

64

4. VALIDATION 4.1. Disco Non-blocking web application

4.1.2 KotlinX.html

Since KotlinX.html is a Kotlin DSL library for HTML we can take advantage of its host pro-
gramming language features to deal with data models, without any special constructs like
ReactiveDataDriverContextVariable to handle data-driven rendering. The Java Comp-
letableFuture API provides completion handlers that can be used to chain dynamic blocks
of a template to be processed only when data become available.

Here, we are using the thenAccept handler to register a callback that is called when the
CompletableFuture completes. In the next example, the callback function mb -> ... is
passed as an argument to the thenAcceptmethod of the musicBrainz CompletableFutu-
re:

1 musicBrainz.thenAccept { mb -> ... }

This callback function will be executed when the musicBrainz future completes, and it will
receive the result of the future, which is represented by the mb parameter.

KotlinX.html can emit HTML to any output compatible with the Appendable interface. The
extension function appendHTML() takes a receiver of a type that implements the Appendable
interface, and returns a TagConsumer object that we can use to write HTML tags and at-
tributes. On the other hand, WebFlux allows building reactive responses from a Publisher<String>.
Thus, to use KotlinX.html in WebFlux, we use an auxiliary type AppendableSink that is able
to produce a Publisher<String> from an Appendable.

In Listing 4.4 we present the definition in KotlinX.html for the web page of Figure4.1c. In
Kotlin, a block of code enclosed in curly braces {...} is known as a lambda, and can be
used as an argument to a function that expects a function literal. For example, when we write
body{...}, we are invoking the body function with a lambda as its argument. This lambda
can be used to define the contents of the HTML tag represented by the body function.

The constructor of AppendableSink used in In Listing 4.4 receives a lambda that is called with
that AppendableSink object as the receiver (i.e. this). The last statement of the web template
definition (line 31) should close the AppendableSink to make the resulting Publisher be
completed. This is mandatory to let WebFlux know that the HTML emit is completed and
the HTTP connection can be terminated. Finally, notice how AppendableSink is converted
into a Publisher in line 39 through its method asFlux, where Flux is an implementation of
Publisher.

Notice we make plain use of thenAccept completion handler to deal with the resulting data
model (i.e. mb in line 16 and spt in line 23), without the need for a special construct like
th:each in Thymeleaf. Using the non-blocking API of CompletableFuture we achieve a
progressive rendering, which first emits the resulting web page of Figure 4.1a, and then pro-
ceeds to the next partial page of Figure 4.1b resulting from the completion of MusicBrainz data

65

4. VALIDATION 4.1. Disco Non-blocking web application

1 fun artistView(
2 start: Long,
3 artisName: String,
4 musicBrainz: CompletableFuture<MusicBrainz>,
5 spotify: CompletableFuture<SpotifyArtist>
6): Publisher<String> = AppendableSink {
7 this
8 .appendHTML()
9 .html {

10 body {
11 div {
12 h3 { text("$artisName") }
13 hr()
14 h3 { text("MusicBrainz info:") }
15 ul { musicBrainz
16 .thenAccept { mb ->
17 li { text("Founded: ${mb.year}") }
18 li { text("From: ${mb.from}") }
19 li { text("Genres: ${mb.genres}") }
20 hr()
21 b { text("Spotify popular tracks: ") }
22 span { spotify
23 .thenAccept { spt ->
24 text(spt.popularSongs.joinToString(", "))
25 hr()
26 footer {
27 small {
28 text("${currentTimeMillis()-start} ms (response handling time)")
29 }
30 }
31 this.close()
32 } // thenAccept
33 } // span
34 } // thenAccept
35 } // ul
36 } // div
37 } // body
38 } // html
39 .asFlux()
40 }

Listing 4.4: Example of KotlinX.html template of Disco web application.

66

4. VALIDATION 4.1. Disco Non-blocking web application

model and before completion of Spotify data. The web page will finish with the expected out-
put of Figure 4.1c when the last data model completes.

Unlike Thymeleaf, building a web template with KotlinX.html is not limited either to any spe-
cific kind of asynchronous API nor to any number of asynchronous data models.

Yet, there are still some issues to deal with. First, the call to thenAccept returns immediately
and the enclosing HTML builder (i.e. ul on line 15 and span on line 22) will emit the end
tag before the continuation has been performed, leading to the issue 3) ill-formed HTML. The
resulting HTML will be out of order as presented in Listing 4.5. Notice, elements ul, div, body
and html are closed (lines 7, 8, 9, and 10) before their inner elements have been emitted with
data from MusicBrainz and Spotify web APIs.

1 <html>

2 <body>

3 <div>

4 <h3>The Rolling Stones</h3>

5 <hr>

6 <h3>MusicBrainz info:</h3>

7

8 </div>

9 </body>

10 </html>

11 Founded: 1962

12 From: London

13 Genres: rock, blues rock, ...

14 <hr>

15 Spotify popular tracks:

16 Paint it Black, Start Me...

17 <hr>

18 <footer>

19 <small>

20 3011 ms (response handling time)

21 </small>

22 </footer>

Listing 4.5: Example of ill-formed HTML source resulting from undesirable interleavings
between template processing and asynchronous data access.

Secondly, we can observe an emerging idiomatic anti-pattern in the source code, specifically
in the chaining of callbacks (e.g., between lines 16 and 23). This anti-pattern often leads to a
pyramid-like structure, particularly when dealing with nested callbacks, regarding the issue 4)
nested callbacks. As the template becomes dependent on more asynchronous data models, the
callbacks become nested deeper within each other, exacerbating the issue of callback nesting.

67

4. VALIDATION 4.2. Evaluation

4.2 Evaluation

In the first subsection, we describe the testing environment, followed by our analysis of the
performance results in the next section.

4.2.1 Environment

To perform an unbiased comparison we used one of the most popular benchmarks for template
engines, the Comparing Template engines for Spring MVC, simply denoted as Spring templates
benchmark[31]. This benchmark uses the Spring MVC middleware to host a web application
that provides a route for each template engine. Each route deals with the same information to
fill the template (i.e. List<Presentation>), which makes it possible to flood all the routes
with a high number of requests and asserts which route responds faster. The Presentation
domain entity is according to the Java definition of Listing 4.6

1 record Presentation(long id, String title, String speakerName, String summary) { }

Listing 4.6: Presentation domain entity.

The repository has 10 instances of Presentation and each template produces an HTML doc-
ument with a table of 10 rows. The generated HTML code is approximately 80 lines long and
has a size of around 9 KB.

We have implemented three modifications to evaluate template engines in a non-blocking con-
text: 1) changed repository to return a reactive Publisher<T> rather than a List<T>, 2)
replaced Spring MVC with Spring WebFlux and their controllers with functional routes [37],
and 3) integrated Java Microbenchmark Harness (JMH) [29] to conduct performance tests and
gather precise results.

To execute requests to the functional routes during the JMH benchmark, we utilized the Spring
WebTestClient. This approach differed from the original Spring templates benchmark, which
employed an external Apache HTTP server benchmarking tool to stress test and perform HTTP
requests. By directly testing the functional routes within the same process, we eliminated the
need for the external tool and excluded the HTTP communication from the performance re-
sults.

Our tests were done on a local machine running Ventura 13.3.1 on a MacBook Pro with Apple
M1 Pro, 8 cores (6 performance and 2 efficiency), and OpenJDK 64-Bit Server VM Corretto-
17.0.5.8.1.

68

4. VALIDATION 4.2. Evaluation

4.2.2 Results

Spring WebFlux supports progressive rendering through a ServerResponse object constructed
from a Publisher<String> that emits the generated HTML. While progressive rendering of-
fers several user experience advantages, it incurs higher overhead compared to a single emis-
sion of the complete HTML document. So, first, we tested the three template views with
a single emission of the resulting web page. To achieve this, we collected all instances of
Presentation into an auxiliary List<Presentation>, without blocking, by mapping the
Publisher<Presentation> to a CompletableFuture<List<Presentations>>, i.e. cf
in next listing:

1 cf.thenAccept { l -> template.render(l) }

Upon cf completion, we can then proceed to render the template using the resulting List.
In this case, the template handles a synchronous model and accumulates the generated HTML
into an intermediate StringBuilder, sending the resulting documents at once.

4.2.3 Performance Evaluation

We conducted our tests in JMH by varying the number of worker threads, specifically 1, 2,
4, and 8. As the number of worker threads increased, the level of concurrent requests also
escalated, allowing us to observe the scalability of each template view. In Figure 4.2a we present
the throughput of each template view.

(a) Single emission of the complete HTML docu-
ment. (b) Progressive rendering.

Figure 4.2: Throughput of Thymeleaf, KotlinX.html and HtmlFlow in Spring templates bench-
mark with WebFlux and JMH.

Based on the results shown in Figure 4.2a, it is evident that Thymeleaf does not exhibit scalabil-
ity beyond 4 threads. When comparing these findings to the results obtained in Table 2.1, which
were collected using Spring MVC, we can observe that Thymeleaf’s performance is approxi-
mately 32% of that of HtmlFlow. However, in the context of WebFlux, Thymeleaf experiences
a similar slowdown of around 25%.

Despite HtmlFlow having slightly better throughput than KotlinX.html, it does not match the
performance as observed in Table 2.1. The new HtmlContinuation infrastructure presented

69

4. VALIDATION 4.2. Evaluation

in Chapter 3, which supports asynchronous data models incurs additional overhead that did
not exist in the former implementation of HtmlFlow.

According to the results presented in Figure 4.2b, when running these tests with progressive
rendering, a generalized slowdown is observed, with throughput decreasing to approximately
half of what was observed in Figure 4.2a. Thymeleaf also demonstrates limitations in scala-
bility under these conditions. On the other hand, KotlinX.html now exhibits slightly better
throughput than HtmlFlow.

This is because KotlinX.html does not ensure well-formed HTML with an asynchronous data
model, and it does not require any special care to guarantee the correct chaining of HTML
elements, as HtmlFlow does. This alleviates the rendering process in KotlinX.html, resulting in
slightly better performance compared to HtmlFlow.

4.2.4 Memory Allocation Evaluation

JMH also offers the -prof gc profiler, which listens for Garbage Collector (GC) events, ac-
cumulate them, and normalize the allocation/churn rates based on the number of benchmark
operations.

Our results demonstrate that, for all evaluated templates, the memory allocated in Eden space is
equal to the amount that the GC removes from that space. Additionally, the amount of memory
allocated in Survivor space [12] tends to be zero, indicating that most of the memory allocated
in this benchmark is garbage that is completely reclaimed by the GC.

In our scenario, the benchmark code runs with a single thread, allowing the GC threads to
run on separate threads and handle the garbage generated by the benchmark thread. Adding
more benchmark threads creates competition between benchmark and GC threads for CPU
resources, implicitly overwhelming the GC and generating more garbage.

Figure 4.3: Memory allocation in Kb/op for each template engine in Spring templates bench-
mark for single HTML emission and progressive rendering.

Based on the results in Figure 4.3, it is evident that all templates undergo an increase in allo-
cation pressure when supporting progressive rendering. In this scenario, HtmlFlow exhibits a
higher value compared to KotlinX.html due to the use of continuations supported by instances
of AwaitConsumer that require an additional resume function. All these functions are man-
aged through lambdas, which correspond to the allocation of new anonymous objects, slightly
increasing the allocation pressure in the JVM.

70

4. VALIDATION 4.3. Summary

4.3 Summary

As demonstrated in this concise example, both Thymeleaf and KotlinX do not facilitate the
utilization of multiple asynchronous sources.

We were already aware in advance that KotlinX lacks support for asynchronous sources in
the context of well-formed HTML and progressive rendering. Therefore, the suboptimal per-
formance of KotlinX and its absence of embedded support for multiple asynchronous types
should not come as a surprise.

However, Thymeleaf, as previously indicated, possesses the capability to manage an asyn-
chronous source for progressive rendering but encounters limitations in handling multiple
asynchronous sources. It not only falls short of delivering progressive rendering but also, due
to its reliance on ReactiveDataDriverContextVariable, whose constraints were previ-
ously outlined, prevents us from outright using multiple sources.

HtmlFlow is currently the only one that can support multiple asynchronous sources and main-
tain a well-formed HTML and progressive rendering. Even if the current solution of HtmlFlow
dropped the score in the benchmarking test.

71

5
Conclusions

SSR and web templating continue to play crucial roles in the realm of web development. While
SPAs have gained popularity for their dynamic capabilities, SSR remains a vital choice for
rapidly crafting web pages. The inherent simplicity and efficiency of SSR in generating initial
page content, make it a resilient choice that is unlikely to wane in importance.

Moreover, it’s worth acknowledging that several of the present-day prominent web platforms,
such as Facebook, still leverage SSR in various aspects of their operations. In light of this, our
work assumes added significance as it strives to modernize web templating within the current
landscape of server-side programming.

Our contribution is instrumental in enabling the development of HTML templates capable of
seamlessly accommodating multiple asynchronous data sources.

5.1 Main contributions

This contribution can be already seen in the article accepted for WebIst 2023 Enhancing SSR
in Low-Thread Web Servers: A Comprehensive Approach for Progressive Server-Side Rendering with
Any Asynchronous API and Multiple Data Models, where we take advantage of the proposed
idiom in asynchronous fragments with calls to asynchronous APIs. In KotlinX the resulting
HTML is out-of-order and thymeleaf has the already discussed limitations. HtmlFlow is the
only one capable of dealing with any asynchronous API while keeping the HTML in the correct
order.

In this article, through JMH benchmarking and a use case, we conclude that the HtmlFlow
solution with the async idiom better suits the needs of the current state-of-the-art server-side
programming paradigm.

73

5. CONCLUSIONS

This innovation not only streamlines the creation of dynamic web content but also facilitates
the implementation of progressive rendering, a pivotal feature that enhances user experiences
by incrementally displaying content as it becomes available. As a result, our work bridges the
gap between traditional web templating and the evolving demands of modern, data-intensive
web applications, ultimately bolstering the state-of-the-art in server-side programming.

5.2 Future Work

Now we plan to take a step further and take advantage of the async/await idiom [3] in asyn-
chronous fragments. The async/await idiom enables writing asynchronous code that looks
like synchronous code, without the need for callbacks. In Kotlin, the async/await idiom is
implemented using coroutines and suspending functions. Yet, KotlinX.html builders use non-
suspending functions as parameters, which means that they cannot be used directly with the
async/await idiom.

Since HtmlFlow uses a method chaining approach, it is possible to extend its API through
Kotlin extension functions that provide the ability to extend a class or an interface with new
functionality without having to inherit from the class. Thus, can we simplify the asynchronous
idiom of HtmlFlow through Kotlin extensions and async/await? Is there any intrinsic overhead
on that approach? How do we compare it with the present proposal? Those are some of the
research questions for future work.

74

References

[1] Adam L. Davis, “Akka http and streams”, in Reactive Streams in Java: Concurrency with
RxJava, Reactor, and Akka Streams. Berkeley, CA: Apress, 2019, pages 105–128, ISBN: 978-1-
4842-4176-9.

[2] Deepak Alur, Dan Malks, and John Crupi, Core J2EE Patterns: Best Practices and Design
Strategies. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001, ISBN: 0130648841.

[3] Don Syme, Tomas Petricek, and Dmitry Lomov, “The f# asynchronous programming
model”, in Practical Aspects of Declarative Languages, Ricardo Rocha and John Launchbury,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pages 175–189, ISBN: 978-3-
642-18378-2.

[4] Kennedy Kambona, Elisa Gonzalez Boix, and Wolfgang De Meuter, “An evaluation of
reactive programming and promises for structuring collaborative web applications”, in
Proceedings of the 7th Workshop on Dynamic Languages and Applications, ser. DYLA ’13,
Montpellier, France, 2013, ISBN: 9781450320412. DOI: 10.1145/2489798.2489802.

[5] Fernando Miguel Carvalho. and Luis Duarte., “Hot: Unleash web views with higher-
order templates”, in Proceedings of the 15th International Conference on Web Information
Systems and Technologies, ser. WEBIST ’19, Vienna, Austria, 2019, pages 118–129, ISBN:
978-989-758-386-5. DOI: 10.5220/0008167701180129.

[6] Christopher T. Haynes, Daniel P. Friedman, and Mitchell Wand, “Continuations and
coroutines”, in Proceedings of the 1984 ACM Symposium on LISP and Functional Program-
ming, ser. LFP ’84, Austin, Texas, USA, 1984, 293–298, ISBN: 0897911423. DOI: 10.1145/
800055.802046.

[7] B. Evans, M. Verburg, and J. Clark, The Well-Grounded Java Developer, Second Edition. Man-
ning, 2022, ISBN: 9781638355281.

[8] Martin Fowler, Patterns of Enterprise Application Architecture. 2002. [Online]. Available:
https://martinfowler.com/books/eaa.html.

[9] ——, Patterns of Enterprise Application Architecture. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002, ISBN: 0321127420.

75

https://doi.org/10.1145/2489798.2489802
https://doi.org/10.5220/0008167701180129
https://doi.org/10.1145/800055.802046
https://doi.org/10.1145/800055.802046
https://martinfowler.com/books/eaa.html

REFERENCES

[10] ——, Domain Specific Languages, 1st. Addison-Wesley Professional, 2010, ISBN: 0321712943,
9780321712943.

[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Ele-
ments of Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Co., Inc.,
1995, ISBN: 0-201-63361-2.

[12] P. Pufek, H. Grgić, and B. Mihaljević, “Analysis of garbage collection algorithms and
memory management in java”, in 2019 42nd International Convention on Information and
Communication Technology, Electronics and Microelectronics (MIPRO), 2019, pages 1677–
1682. DOI: 10.23919/MIPRO.2019.8756844.

[13] David Ase, “Kotlin dsl for html”, https://j2html.com/, Tech. Rep., 2015. [Online].
Available: https://j2html.com/.

[14] Xiaolong Jin, Benjamin W. Wah, Xueqi Cheng, and Yuanzhuo Wang, “Significance and
challenges of big data research”, Big Data Res., vol. 2, no. 2, pages 59–64, Jun. 2015, ISSN:
2214-5796. DOI: 10.1016/j.bdr.2015.01.006.

[15] Rod Johnson, Juergen Hoeller, Keith Donald, Colin Sampaleanu, Rob Harrop, Thomas
Risberg, Alef Arendsen, Darren Davison, Dmitriy Kopylenko, Mark Pollack, et al., “The
spring framework–reference documentation”, interface, vol. 21, page 27, 2004.

[16] Hans Bergsten, JavaServer Pages. O’Reilly Media, Inc., 2003, ISBN: 9780596005634.

[17] Krishna Kant and Prasant Mohapatra, “Scalable internet servers: Issues and challenges”,
ACM SIGMETRICS Performance Evaluation Review, vol. 28, no. 2, pages 5–8, 2000.

[18] Sergey Mashkov, “Kotlin dsl for html”, https://github.com/Kotlin/kotlinx.
html, Tech. Rep., 2015. [Online]. Available: https://github.com/Kotlin/kotlin
x.html.

[19] Andrey Breslav, Kotlin Language Documentation. 2016. [Online]. Available: https://
kotlinlang.org/docs/kotlin-docs.pdf.

[20] Peter J Landin, “The next 700 programming languages”, Communications of the ACM,
vol. 9, no. 3, pages 157–166, 1966.

[21] Erik Meijer, “Your mouse is a database”, Queue, vol. 10, no. 3, 20:20–20:33, Mar. 2012,
ISSN: 1542-7730. DOI: 10.1145/2168796.2169076.

[22] N. Maurer and M. Wolfthal, Netty in Action. Manning, 2015, ISBN: 9781638353041.

[23] Ioannis Chaniotis, Kyriakos-Ioannis Kyriakou, and Nikolaos Tselikas, “Is node.js a viable
option for building modern web applications? a performance evaluation study”, Comput-
ing, vol. 97, Mar. 2014. DOI: 10.1007/s00607-014-0394-9.

[24] Friedman and Wise, “Aspects of applicative programming for parallel processing”, IEEE
Transactions on Computers, vol. C-27, no. 4, pages 289–296, 1978. DOI: 10.1109/TC.
1978.1675100.

76

https://doi.org/10.23919/MIPRO.2019.8756844
https://j2html.com/
https://j2html.com/
https://doi.org/10.1016/j.bdr.2015.01.006
https://github.com/Kotlin/kotlinx.html
https://github.com/Kotlin/kotlinx.html
https://github.com/Kotlin/kotlinx.html
https://github.com/Kotlin/kotlinx.html
https://kotlinlang.org/docs/kotlin-docs.pdf
https://kotlinlang.org/docs/kotlin-docs.pdf
https://doi.org/10.1145/2168796.2169076
https://doi.org/10.1007/s00607-014-0394-9
https://doi.org/10.1109/TC.1978.1675100
https://doi.org/10.1109/TC.1978.1675100

REFERENCES

[25] Netflix, Pivotal, Red Hat, Oracle, Twitter, Lightbend, Reactive streams specification, 2015.
[Online]. Available: https://www.reactive-streams.org/.

[26] Douglas C. Schmidt Irfan Pyarali Tim Harrison, “Significance and challenges of big data
researchan object behavioral pattern for demultiplexing and dispatching handlers for
asynchronous events”, 1997. [Online]. Available: https://www.dre.vanderbilt.
edu/~schmidt/PDF/proactor.pdf.

[27] D. Schmidt, “Reactor. an object behavioral pattern for concurrent event demultiplexing
and event handler dispatching”, Jan. 1995.

[28] G.J. Sussman and G.L. Steele, Scheme: an interpreter for extended lambda calculus, ser. AI
Memo No. MIT, Artificial Intelligence Laboratory, 1975.

[29] Aleksey Shipilev, Java microbenchmark harness (the lesser of two evils), 2013. [Online]. Avail-
able: https://openjdk.java.net/projects/code-tools/jmh/.

[30] P. Klauzinski and J. Moore, Mastering JavaScript Single Page Application Development. Packt
Publishing, 2016, ISBN: 9781785886447.

[31] Jeroen Reijn, “Comparing template engines for spring mvc”, https://github.co
m/jreijn/spring-comparing-template-engines, Tech. Rep., 2015. [Online].
Available: https://github.com/jreijn/spring-comparing-template-engi
nes.

[32] Harsha Kiran, Php usage statistics: What you need to know in 2023), 2023. [Online]. Available:
https://techjury.net/blog/php- usage- statistics/#:~:text=77%

25%20of%20all%20live%20websites,today%20by%20around%2018%2C000%

20websites.

[33] Fernando Miguel Carvalho, Luis Duarte, and Julien Gouesse, “Text web templates con-
sidered harmful”, in Web Information Systems and Technologies, Alessandro Bozzon, Fran-
cisco José Domínguez Mayo, and Joaquim Filipe, Eds., Cham: Springer International
Publishing, 2020, pages 69–95, ISBN: 978-3-030-61750-9.

[34] Ken Thompson, “Programming techniques: Regular expression search algorithm”, Com-
mun. ACM, vol. 11, no. 6, 419–422, Jun. 1968, ISSN: 0001-0782. DOI: 10.1145/363347.
363387. [Online]. Available: https://doi.org/10.1145/363347.363387.

[35] Daniel Fernández, “Thymeleaf”, https://www.thymeleaf.org/, Tech. Rep., 2011.
[Online]. Available: https://www.thymeleaf.org/.

[36] Tim Fox, “Eclipse vert.x tool-kit for building reactive applications on the jvm”, https:
//vertx.io/, Tech. Rep., 2001. [Online]. Available: https://vertx.io/.

[37] Marten Deinum and Iuliana Cosmina, “Building reactive applications with spring webflux”,
in Pro Spring MVC with WebFlux: Web Development in Spring Framework 5 and Spring Boot
2. Berkeley, CA: Apress, 2021, pages 369–420, ISBN: 978-1-4842-5666-4.

77

https://www.reactive-streams.org/
https://www.dre.vanderbilt.edu/~schmidt/PDF/proactor.pdf
https://www.dre.vanderbilt.edu/~schmidt/PDF/proactor.pdf
https://openjdk.java.net/projects/code-tools/jmh/
https://github.com/jreijn/spring-comparing-template-engines
https://github.com/jreijn/spring-comparing-template-engines
https://github.com/jreijn/spring-comparing-template-engines
https://github.com/jreijn/spring-comparing-template-engines
https://techjury.net/blog/php-usage-statistics/#:~:text=77%25%20of%20all%20live%20websites,today%20by%20around%2018%2C000%20websites
https://techjury.net/blog/php-usage-statistics/#:~:text=77%25%20of%20all%20live%20websites,today%20by%20around%2018%2C000%20websites
https://techjury.net/blog/php-usage-statistics/#:~:text=77%25%20of%20all%20live%20websites,today%20by%20around%2018%2C000%20websites
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/363347.363387
https://www.thymeleaf.org/
https://www.thymeleaf.org/
https://vertx.io/
https://vertx.io/
https://vertx.io/

	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation
	Asynchronous APIs Matter
	Outline of the Dissertation

	State of the Art
	 Related Work
	Spring SSR Basics
	Web Templates
	Thymeleaf
	KotlinX SSR with Reactive Streams
	Handlebars for SSR with Reactive Streams
	HtmlFlow for SSR with Reactive Streams

	Resolvers
	Thymeleaf Resolvers
	KotlinX Resolvers
	Handlebars Resolvers
	HtmlFlow Resolvers

	Summary

	Functional Reactive Templates
	Former HtmlFlow internal processing
	Kinds of Templates
	Visitors

	DSL Proposal for asynchronous fragments
	Why a new version was needed
	An event-driven way of working

	HtmlFlow asynchronous internal processing
	Summary

	Validation
	Disco Non-blocking web application
	Thymeleaf
	KotlinX.html

	Evaluation
	Environment
	Results
	Performance Evaluation
	Memory Allocation Evaluation

	Summary

	Conclusions
	Main contributions
	Future Work

	References

