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A B S T R A C T   

B and T-lymphocytes are major players of the specific immune system, responsible by an efficient response to 
target antigens. Despite the high relevance of these cells’ activation in diverse human pathophysiological pro-
cesses, its analysis in clinical context presents diverse constraints. In the present work, MIR spectroscopy was 
used to acquire the cells molecular profile in a label-free, simple, rapid, economic, and high-throughput mode. 

Recurring to machine learning algorithms MIR data was subsequently evaluated. Models were developed 
based on specific spectral bands as selected by Gini index and the Fast Correlation Based Filter. To determine if it 
was, possible to predict from the spectra, if B and T lymphocyte were activated, and what was the molecular 
fingerprint of T- or B- lymphocyte activation. 

The molecular composition of activated lymphocytes was so different from naïve cells, that very good pre-
diction models were developed with whole spectra (with AUC=0.98). Activated B lymphocytes also present a 
very distinct molecular profile in relation to activated T lymphocytes, leading to excellent prediction models, 
especially if based on target bands (AUC=0.99). The identification of critical target bands, according to the 
metabolic differences between B and T lymphocytes and in association with the molecular mechanism of the 
activation process highlighted bands associated to lipids and glycogen levels. 

The method developed presents therefore, appealing characteristics to promote a new diagnostic tool to 
analyze and discriminate B from T-lymphocytes.   

1. Introduction 

B and T-lymphocytes are major key players of the adaptive (specific) 
immune system, where an efficient response to target antigens implies 

its activation mediated by the innate immune system. Lymphocytes are 
triggered through antigen-specific receptors present at their surface, 
leading to their activation and proliferation into a large number of 
specialized identical effector lymphocytes [1,2]. The initial trigger of 
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that response is usually associated to pathogen-associated immunosti-
mulants (dependent on receptors recognizing molecular patterns asso-
ciated to pathogens), leading to the production of extracellular signaling 
that promote inflammation and help activate specific immune responses 
[2]. 

The activation of lymphocytes occurs in stages that will, inevitably, 
impact the cellular metabolism. In each transition, the cell will pass 
through specific metabolic states, orchestrated in a succession of 

transcriptional factors and transduction signals working in a network, 
leading to cellular differentiation and expansion. For example, when-
ever a naïve lymphocyte is activated, the change in the cellular state 
leads to a more rapid intake of glucose and an increase in demand for 
metabolic precursors necessary to the biogenesis of proteins, nucleic 
acids and lipids, where, understandably, these changes will be trans-
mitted to the cell metabolomic profile [3–6]. 

The assessment of activation of lymphocytes is essential in several 
clinical scenarios, in the diagnosis and prognosis of diseases, e.g., in 
auto-immune disorders, cancer progression and in allograft rejection. 
Notwithstanding the knowledge of lymphocyte activation, it is also 
relevant to define what type of lymphocytes are activated. For example, 
allograft rejection may result from immune-cellular mechanisms, 
mediated by T-lymphocytes and primed by donor-derived antigens, or 
be associated to an acute or chronic antibody-based rejection mediated 
by B-lymphocytes [7–9]. Therefore, the identification of the type of 
activated lymphocytes (B or T) will enable the identification of the 
immune-rejection mechanism and, consequently, to define the immune 
or rescue therapy. The monitoring of the type of activated lymphocyte 
will result in more efficient and personalized therapy [1,7,10–13]. 

Despite the importance of lymphocyte activation in diverse patho-
physiological processes, conventional clinical laboratories do not 
routinely conduct these analysis, due to diverse limitations associated to 
the conventional analytical techniques [10,12–16]. For example, most 
techniques based on interaction of antigens among a high diversity of 
the cells polyclonal populations (e.g., enzyme-linked immunosorbent 
assay (ELISA), enzyme-linked immune absorbent spot (ELISPOT), flow 
cytometry and proliferation assays, may present low sensitivity and/or 
specificity [17]. One of the most used techniques is ELISPOT due to its 
high sensitivity and due to allowing automatic analysis. 

The method usually rapid, since it does not require a period for cell 
activation and proliferation. This is due to the fact that ELISPOT, is 
based on the analyses of produced cytokines. Therefore, a major limi-
tation is the indirect prediction of the immune cell’s activation, carrying 
only a somewhat reasonable specificity since these assays lack the ability 
of providing information on the ability of antigen-specific lymphocytes 
to mediate other effector functions. Proliferation or cytotoxicity-based 
assays, such as mixed lymphocyte culture, limiting dilution assays or 
functional assays as the ImmunoKnow® assay, measuring ATP on CD4 
cells, are usually expensive and time consuming, while others resort to 
radioactive isotopes [10,12–16,18]. Therefore, it is relevant to develop a 
new method enabling to predict these immune cells activation, in a 
highly specific, sensitive, reproducible, rapid, simple and economic 
mode. Vibrational spectroscopy, including Raman and InfraRed (IR) 
spectroscopy, measures vibrational modes of biomolecules and presents 
diverse characteristics that could enable achieving that goal. In Raman 
and Mid-infrared (MIR) spectroscopy, it is possible to analyze diverse 
human samples, e.g., blood, blood cells, serum, and urine, resulting in 
the identification of diverse pathologies with a high degree of specificity 
and sensitivity, e.g., in neurology [19–21], nephrology [22,23], or 
oncology [24–26]. 

Due to the high potential of vibrational spectroscopy based-methods, 
many researchers have explored Raman and MIR spectroscopy to iden-
tify immune-cells or activated immune-cells. Unfortunately, some works 
are based on animal cell lines, which lack the natural variability asso-
ciated with in vivo models, i.e., to primary lymphocytes as acquired 
from human peripheral blood (Table 1). From the experiments based on 
primary cells, it is worthy to highlight 3 Raman spectroscopy-based 
works, that, however, were based on an very low dimension sample 
(with only 2 samples from peripheral blood monocyte cells, PBMC) [27], 
or where the activation was based on a long period between 2 and 7 days 
of incubation [28,29]. Theoretically, MIR spectroscopy may be advan-
tageous over Raman spectroscopy, due to the low probability of a 
molecule to undergo Raman state transition, usually, higher concen-
trations of the target analyte is required, which can decrease the analysis 
sensitivity and specificity in relation to MIR spectroscopy [30]. Probably 

Table 1 
Examples of studies exploring Raman and MIR spectroscopy to discriminate or 
detect activation of immune cells. Assays based on primary cells are highlighted 
in bold.  

Study goal & sample dimension & 
activation mode 

Technique: detection 
mode 
Model used: predicting 
values 

Reference 

Discriminate non-activated blood 
primary B (n = 25) from primary T- 
lymphocytes (n = 25) 

MIR spectroscopy: 
transmission 
SVM: accuracy 98 %, 
precision 95 % 

[31] 

Activation of blood primary T- 
lymphocytes (n = 8), after 60 min 
incubation with 
phytohaemagluttinin 

MIR spectroscopy: 
transmission 
HCA: Sens. & Spec. 100 % 

[32] 

Activation of Jurkat T cells (n = 2), 
after 75 min incubation with anti- 
CD3 antibody 

MIR spectroscopy/ ATR 
Two-tailed paired student’s 
t-test (absorbance at 1367 
and 1358 cm-1): p < 0.02 

[33] 

Activation of murine macrophage (n 
= 20), after 60 min incubation with 
lipopolysaccharide and gamma 
interferon 

MIR spectroscopy: ATR 
LDA: accuracy 80 % 

[34] 

Activation of Raji B (n = 1), Jurkat T 
cell (n = 1), THP1 monocytes (n =
1), PBMC healthy volunteer (n =
2), after 24–72 hr incubation with 
phytohaemagluttinin or phorbol 
12-myristate 13-acetate or 
lipopolysac- charide 

Raman Spectroscopy 
PCA and LDA: 
Raji B: Sens. 95.2 % Spec. 
81.6 % 
Jurkat: Sens. 91 % Spec. 70 
%; 
Monocyte: Sens. 91 % Spec. 
91 % 

[27] 

Discriminate mouse primary B (n =
60) from T-lymphocyte (n = 96) 
and mouse activation of primary T- 
lymphocyte after 48 hr incubation 
anti-CD3 and anti-CD28 

Raman spectroscopy 
PCA and LDA 
B vs T-lymphocytes error 
rate 2.2 %; 
T-lymphocytes error rate 2.3 
% 

[28] 

Activation of primary T-lymphocytes 
(n = 37) in kidney transplanted, 
mitomycin C inactivated (n = 28), 
resting T-lymphocytes (n = 35) and 
after 7-day incubation in mixed 
lymphocyte culture 

Raman spectroscopy 
DFA 
785 nm Sens. 95.7 %, Spec. 
100 % 
514.5 nm Sens. 89.3 %, 
Spec. 93.8 %, 

[29] 

Activation of primary T- 
lymphocytes, after 180 min 
incubation with 
phytohemagglutinin 

MIR spectroscopy: 
transmission 
PCA 

[35] 

SVM, Support Vector Machine; HCA, Hierarchical Cluster Analysis; Sens., 
Sensitivity; Spec., Specificity; ATR, Attenuated Total Reflection; LDA, Linear 
Discriminant Analysis; PCA, Principal Component Analysis; DFA, Discriminant 
Function Analysis; k-NN; K-Nearest Neighbors 

Table 2 
Machine Learning algorithm models to discriminate activated from resting 
lymphocytes (B and T).  

Model AUC CA F1 Precision Recall 

2nd derivative of complete spectra 
k-NN  0.95  0.85  0.83  0.86  0.85 
SVM  0.975  0.864  0.85  0.87  0.86 
2nd derivative with target bands defined by the Gini index 
k-NN  0.98  0.94  0.94  0.94  0.94 
SVM  0.94  0.89  0.89  0.90  0.89  
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due to this, both works previous referred needing 2–7 days incubation, 
in order to detect cells activation based on Raman spectroscopy. 

From works conducted in MIR spectroscopy, it is important to 
highlight our laboratory previous work, enabling to discriminate pri-
mary non-activated T- from B-lymphocyte with a 98 % accuracy [31], 
and the T-lymphocyte activation (n = 8) after 1 hr. incubation with 100 
% accuracy [32]. The main goal of the present work was to develop 
predictive methods based on MIR spectra of the activation of lympho-
cytes (B and T lymphocytes) obtained from PBMC of 18 volunteers, and 
to predict which lymphocytes (B-or T) were activated. Furthermore, the 
MIR spectra acquisition was conducted with use of a 96-wells microplate 
to enable an automatic and high-throughput analysis. Therefore, we aim 
to promote a reliable method of predicting, from the MIR spectra of 
PBMC, in a rapid, economic, and high-throughput mode, the lymphocyte 

activation, and in the case of activation, be able to quickly ascertain as to 
which type of lymphocyte population was activated. 

2. Materials and methods 

2.1. Biological assay 

Ten milliliters of heparinized sodium whole venous blood was 
collected from 18 healthy volunteers, whose informed consent was 
collected from. Whole blood was diluted at 1:1 (v/v) with RPMI medium 
(Lonza) and centrifuged at 800xg for 10 min. Buffy coat was extracted 
and used for T and B lymphocyte isolation, being negatively sorted with 
immunomagnetic beads using an EasySep® Kit (StemCell Technologies, 
Vancouver, British Columbia, Canada), according to the manufacturer’s 
recommendations and resuspended in RPMI medium until usage. Cells 
were counted in a Neubauer chamber and their viability was verified 
with trypan blue. 

2.2. T and B Lymphocyte activation 

Lymphocyte populations were subdivided into two groups resting 
and activated, resuspended at a 4 × 105 cells per 50 µL of saline phos-
phate buffer (PBS). T and B lymphocytes activation was conducted by 
incubation with the lectin mitogen phytohemagglutinin (PHa, Sigma 
Aldrich, St. Louis, MO) at 12.5 µg/ml, for 60 min at 37 ◦C. Cells were 
washed with PBS and resuspended in 50 µL PBS, according to Kwack 
et al. [36]. Resting T- and B- lymphocytes were submitted to the same 
protocol, but without PHa. In the end 72 samples were obtained, 18 
activated T-cell (LyT-PHa_yes), 18 resting T-cell (LyT-PHa_no), 18 acti-
vated B-cell (LyB-PHa_yes) and 18 resting B-cell (LyB-PHa_no). Samples 
were resuspended in PBS and adjusted to a concentration of 8 × 103/µL. 

2.3. MIR spectra acquisition 

Samples of 25 µL with 2 × 105 of T or B lymphocytes were plated into 
a 96-wells Si microplate and then dehydrated in a desiccator for 150 min 
under vacuum. Spectra were collected using a FTIR spectrometer (Ver-
tex 70, Bruker), equipped with an HTS-XT (Bruker) accessory. Each 
spectrum represented 64 coadded scans, acquired in transmission mode 
between 400 and 4000 cm− 1, with a resolution of 2 cm− 1. The first well 
of the 96-wells microplate was left without a sample and the corre-
sponding spectra used as background, according to the HTS-XT 

Fig. 1. t-SNE of second derivative spectra from non-activated (Blue) and activated B- and T-lymphocytes (red).  

Fig. 2. Violin plot of the 1432 cm− 1 spectral band relative to activated (by PHA 
incubation) and non-activated T and B lymphocytes. 
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manufacturer. 

2.4. Spectra pre-processing and processing 

Spectra were pre-processed by atmospheric compensation and a 
second derivative spectra based on a Savitzky-Golay filter, with a 2nd 
polynomial and a corresponding window size of 19 points [31,37]. At-
mospheric compensation was conducted with OPUS® software, version 
6.5 (Bruker, Germany), while second derivative spectra and following 

spectra processing methods were conducted by Orange3 version 3.19.0 
(Bioinformatics Lab, University of Ljubljana, Slovenia). 

2.5. Machine learning models and statistical analysis 

Machine learning models, namely, t-distributed stochastic neighbor 
embedding (t-SNE), k-nearest neighbors (k-NN) and support-vector 
machine (SVM) models were applied. k-NN and SVM models used a 
3rd degree polynomial kernel with a cross-validation random sampling, 
based on 80 % and 20 % of data for model training and validation, 
respectively, were conducted by Orange3 version 3.19.0 (Bioinformatics 
Lab, University of Ljubljana, Slovenia). Models were assessed by the area 
under the curve (AUC), classification accuracy (CA), F-1 score, precision 
and recall. Models were also developed based on specific spectral bands 
as selected by Gini index and the Fast Correlation Based Filter (FCBF) 
[38,39]. The number of selected spectral bands, i.e., features, was based 
on the lower number of features needed to obtain the highest accuracy 
(CA). ANOVA was conducted to analyze the impact of specific spectral 
bands between data sets. 

3. Results and discussion 

Considering a future application of the technique, two important 

Fig. 3. t-SNE of activated T- and activated B- lymphocytes, based on whole second derivative spectra (3a) or based on bands selected by FCBF (3b).  

Table 3 
Machine Learning algorithms performance based on different pre-processing 
methods for discriminating activated T-lymphocytes from activated B- 
lymphocytes.  

Model AUC CA F1 Precision Recall 

Activated T vs B Lymphocyte 
2nd derivative 
k-NN 0.77 0.76 0.68 0.82 076 
SVM 0.91 0.88 0.87 0.88 0.88 
2nd derivative based on wavelengths as defined by FCBF (n = 10) 
k-NN 0.95 0.88 0.88 0.88 0.88 
SVM 0.99 0.96 0.96 0.96 0.96  
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Fig. 4. Discriminating activated from resting T-lymphocytes. 4a) t-SNE plot based on the cells complete spectra, 4b) t-SNE plot based on bands selected by FCBF, 4c) 
Heatmap of differentially absorbed wavenumbers of 2nd derivative 73 spectral bands identified by FCBF. 
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questions first need to be answered, based on the patient PBMC spectra:  

– Are these cells activated?  
– If so, are these activated B- or T-lymphocytes? 

To answer these questions, after lymphocyte isolation (based on 
negatively magnetic-activated cell sorting), from the PBMC of 18 vol-
unteers, cells were subdivided into 4 populations (2 of T- and 2 B- 
lymphocytes), one of T-lymphocytes and the other of B- lymphocytes, 
were submitted to 1 h. PHa stimulus, and the other two cellular pop-
ulations were submitted to the same process without PHa stimulation. 
Regarding these cells, it was evaluated by MIR spectra: 

• The activation of lymphocytes (considering both B- and T- lympho-
cytes), in relation to resting lymphocytes.  

• The discrimination between activated T- lymphocytes and activated 
B- lymphocytes 

The individual analysis of B- and T-lymphocyte activation to further 
identify molecular features associated to each of these cells was also 
conducted. 

3.1. Discriminating activation of whole (B and T) lymphocytes 

The t-SNE score plot, based on the lymphocytes 2nd derivative of the 
complete spectra (400–4000 cm− 1), points to a perfect separation be-
tween naïve and activated lymphocyte, highlighting a significant 
different biochemical composition of activated immune cells in relation 
to resting cells. This is in accordance to the significant metabolic change 
occurring during the activation process [40,41]. For instance the acti-
vation of T-lymphocytes can result in expression changing of approxi-
mately 27,000 out of 39,500 genes compared to resting cells [42], that 
leads, for example, to the change of around 20 % of the proteome (1119 
out of 5237 proteins) [40]. 

To quantify and develop predictive models of the activation process 
based on the cells spectra, k-NN and SVM models were built based on the 

complete second derivative spectra. According to the previous t-SNE 
analysis, excellent K-NM and SVM models were developed (with AUCs 
between 0.95 and 0.98), enabling to predict if the lymphocyte popula-
tion under evaluation was a naïve or an activated population (Table 2). 
From the Gini index and the FCBF methods to select the most significant 
wavelength bands between naive and activated lymphocytes, the Gini 
index based on the following regions, resulted in the best accuracy to 
predict lymphocytes activation (from the highest to the lowest impact): 
1047, 1469, 1043, 2880, 1432, 768, 1461, 589, 1252, 787 and 1486 
cm− 1. Fig. 2 displays a violin plot of one of these bands as an example. 
The k-NN based on these bands presented an increased AUC (from 0.95 
to 0.98), and the model’s accuracy, F1, precision and recall, also 
increased from values between 0.83 and 0.86–0.94. The SVM model 
predictability slightly decreased from an AUC of 0.98–0.94 (Table 2). 

The band at 2880 cm− 1, associated with lipids (C–H stretching), and 
the band at 1252 cm− 1 associated with phosphate groups such as from 
phospholipids[43], are according to the effect of immune cells activa-
tion on the membrane lipid rafts, as pointed either on T-lymphocyte[3, 
5, 44] either on B-lymphocyte[3,6]. Titus et al. [33], also observed the 
~1250 cm− 1 band as relevant in the T- lymphocyte activation. The 
1043 cm− 1 band, associated to glycogen, is highly affected during the 
cell’s activation, due to the process needed for energy. 

3.2. Discriminating activated T cell from activated B lymphocytes 

The scores between activated T and activated B-lymphocytes are not 
separated in the t-SNE score plot based on the cells whole second de-
rivative spectra (Fig. 3a). This highlights a more similar biochemical 
composition between these two (B and T) lymphocytes, than observed 
between non-activated and activated B- and T-lymphocytes. 

A very good separation between scores in t-SNE were, however 
achieved, based on the following target second derivative bands, as 
identified by the FCBF (Fig. 3b):1043, 1049, 2850, 1488, 1197 and 
604 cm− 1, respectively. Interestingly, the bands at 2850 and 1043 cm− 1 

are highlighted as the ones with higher values for activated B-lympho-
cytes when compared to activated T-lymphocytes (data not shown). 
While 2850 cm− 1 band is most probably reflecting lipids constitution 
and organization at the cells membrane, 1043 cm− 1 band reflects the 
cells glycogen levels [45]. B-lymphocytes are known to be lower energy 
demanding than T- lymphocytes [46], which could explain the higher 
glycogen levels on these cells as detected by MIR spectroscopy. 

An excellent SVM predicting model was obtained based on the cells 
complete second derivative spectra, enabling to predict if the activated 
cells are lymphocytes B or T-lymphocytes (AUC=0.91) (Table 3). The 
model’s predictability was improved when based on second derivative 
bands pointed by FCBF, according to the observed on the t-SNE (Fig. 3, 
Table 3). A SVM model was achieved, with an AUC of 0.99 and with an 
accuracy, F1, precision and recall of 0.96. 

The excellent models predicting which lymphocyte population was 
presented is according to the fact that the mitogen-independent cell 
cycle progression in B-lymphocytes are different from T-lymphocytes 
[47,48]. 

3.3. Assessing the molecular fingerprint of T lymphocyte activation 

In a previous work, with a smaller population (n = 8), it was possible 
to discriminate, based on hierarchical cluster analysis of MIR spectra, 
naïve from activated T- lymphocytes [32]. In the present work, we have 
tested a higher dimension population (duplicate assays from samples 
obtained from 18 patients, i.e., 36 assays were conducted) and devel-
oped predictive models of -lymphocytes activation. 

The t-SNE plots based on the complete second derivative spectra, 
points to a separation between naïve and activated T-lymphocytes 
(Fig. 4a), further increased in the score-plot based on bands as selected 
by FCBF (Fig. 4b). The heatmap shows distinct bands associated to T- 
lymphocytes activation, including decreased values associated to 30 

Table 4 
Spectral bands selected by FCBF as contributing to the separation between naïve 
and activated T or B- lymphocytes.  

wavelengths cm− 1 B- lymphocytes % bands T- lymphocytes % bands 

0500–1000  43  16 
1000–1500  35  52 
1500–2000  3  8 
2500–3000  15  23 
3000–3500  3  0  

Table 5 
Machine Learning algorithms performance based on different pre-processing 
methods for discriminating activated from resting T cell and activated from 
resting B lymphocytes.  

Model AUC CA F1 Precision Recall 

T-Lymphocytes 
2nd derivative complete spectra 
k-NN 1.0 1.0 1.0 1.0 1.0 
SVM 1.0 1.0 1.0 1.0 1.0 
2nd derivative of selected bands based on FCBF 
k-NN 1.0 1.0 1.0 1.0 1.0 
SVM 1.0 1.0 1.0 1.0 1.0 
B-Lymphocytes 
2nd derivative complete spectra 
k-NN 1.0 0,96 0,96 0,96 0,96 
SVM 1.0 0,96 0,96 0,96 0,96 
2nd derivative of selected bands based on FCBF 
k-NN 1.0 0,96 0,96 0,96 0,96 
SVM 1.0 1.0 1.0 1.0 1.0  
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Fig. 5. Discriminating activated from resting B- lymphocytes. 5a) t-SNE plot based on cells second whole spectra, 5b) t-SNE plot based on bands selected by FCBF, 5c) 
Heatmap of differentially absorbed wavenumbers of 2nd derivative 60 spectral bands identified by FCBF. 
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bands (e.g., 1464, 767, 1178 and 1321 cm− 1) and increased values 
associated with 43 bands (e.g., 506, 1013, 1162 and 946 cm− 1). 

To note that 68 % of the second derivative bands pointed by FCBF, as 
represented in the heatmap, are comprised between 500 cm− 1 and 
1500 cm− 1 (Table 4). The fingerprint region includes a high diversity of 
molecular vibrations, including C-O, C-C, and C-N single bond stretches, 
C-H bending vibrations, and bands related to benzene rings, primarily 
reflecting differences in phosphate and sugar absorptions in DNA 
structures. Despite the complexity of these regions as reviewed by Liu 
et al. [49], and Bunaciu et al. [50], this is a very important region in 
terms of lymphocyte activation and, as observed by Wood et al. [35] 
major spectral changes can be observed within this region after activa-
tion, as a result from an increase in overall RNA synthesis. The region 
between 2500 and 3000 cm− 1, due to vibration bond of lipids, has also 
impact in the discrimination between naïve and activated T-lympho-
cytes, most likely reflecting the relevance of the change at the cells 
membrane occurring during cell activation, and general lipids meta-
bolism relevance in the differentiation, effector function and survival of 
T-lymphocyte [3,51,52]. 

Excellent k-NN and SVM models were achieved, enabling the pre-
diction of T- lymphocytes activation, based either on the complete sec-
ond derivative spectra or based on features selected by FCBF, resulting 
in models with AUC of 1.0 (Table 5). 

3.4. Assessing the molecular fingerprint of B lymphocyte activation 

Due to lower quantities of B-lymphocytes obtained from the isolation 
process from PBMC (usually, circulating B-lymphocytes represents 
approximately 10–20 % of lymphocyte population [53]), only one assay 
was conducted per sample of each patient. 

The t-SNE plots presents a good separation between naïve and acti-
vated B-lymphocytes based on whole second derivative spectra (Fig. 5a). 
The separation between these two types of samples increases as based on 
bands selected by FCBF (Fig. 5b). The heatmap shows distinct bands 
associated to B-lymphocytes activation, including decreased values 
associated to 35 bands (e.g., 780, 756, 1294 and 1298 cm− 1) and 
increased values associated with 25 bands (e.g., 1636, 762, 635 and 
586 cm− 1). 

From the bands pointed by FCBF as relevant for lymphocytes acti-
vation, 78 % are comprised in the fingerprint region (Table 4.). Once 
again, 15 % of relevant bands were from the lipids region, according to 
the relevance of the organization of the membrane lipids rafts during the 
cells activation process [52]. 

Excellent k-NN and SVM models predicted B-Lymphocyte activation 
based either on whole second derivative spectra or based on bands 
selected by FCBF, pointing models with AUC of 1.0 (Table 5). 

4. Conclusions 

The ability to identify lymphocyte activation in a simple procedure, 
economically and based on a high-throughput mode is a fundamental 
need in varied clinical scenarios, e.g., solid organ transplantation and 
evaluation of immunosuppressive regimes. To achieve that goal, in the 
present work, it was considered B and T-lymphocytes obtained from 
PBMC of 18 volunteers. The lymphocytes activation was conducted on 
1 h. incubation with PHA, a potent mitogen inducing activation and 
proliferation of lymphocytes. MIR spectra of activated and non- 
activated lymphocytes were acquired in a 96-well Si microplate. It 
was subsequently evaluated if it was possible to predict from the spectra, 
if lymphocytes (B and T) were activated, and if so, which cells popula-
tion (B or T) were activated. To evaluate this, non-supervised methods 
(i.e., t-SNE) and supervised methods of machine learning algorithms (i. 
e., SVM and k-NN) were conducted based on the complete second de-
rivative spectra or, in order to improve the classification, models were 
based on specific bands selected by the Gini index and FCBF. The mo-
lecular composition of activated lymphocytes was so different from 

naïve cells that very good prediction models were developed while 
making use of the complete spectra (with AUC=0.98). Activated B- 
lymphocytes also present a very distinct molecular profile in relation to 
activated T-lymphocytes, leading to excellent prediction models, espe-
cially if based on target bands (AUC=0.99). It was also possible to 
predict, for individual B and T-lymphocytes, the process activation 
(AUC=1.0). When considering isolated cells, a higher dimension of 
bands (i.e., n > 60) as selected by the FCBF, it was possible to identify as 
relevant, according to the high impact of the activation process on the 
gene’s expression. To discriminate activated B from activated T-lym-
phocytes, a fewer number of bands were identified (i.e., n < 10) as 
significant, pointing more similar compositions between activated B- 
lymphocytes and activated T-lymphocytes, when compared to the cor-
responding naïve cells. Interestingly, from these critical bands, the 
bands associated to lipids and glycogen levels were highlighted, 
revealing the metabolic differences between B and T-lymphocytes. This 
work has made some interesting findings and laid down the basis for 
future work to improve on the classification models and understanding 
of the spectral difference detected. 
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[50] A.A. Bunaciu, Ş. Fleschin, V.D. Hoang, H.Y. Aboul-Enein, Vibrational spectroscopy 
in body fluids analysis, Crit. Rev. Anal. Chem. 47 (2017) 67–75, https://doi.org/ 
10.1080/10408347.2016.1209104. 

[51] D. Howie, A. Ten Bokum, A.S. Necula, S.P. Cobbold, H. Waldmann, The role of lipid 
metabolism in T lymphocyte differentiation and survival, Front. Immunol. 8 
(2018), https://doi.org/10.3389/fimmu.2017.01949. 

[52] S.K. Pierce, Lipid rafts and B-cell activation, Nat. Rev. Immunol. 2 (2002) 96–105, 
https://doi.org/10.1038/nri726. 

[53] E. Kokuina, M.C. Breff-Fonseca, C.A. Villegas-Valverde, I. Mora-Díaz, Normal 
values of T, B and NK lymphocyte subpopulations in peripheral blood of healthy 
Cuban adults, MEDICC Rev. 21 (2019) 16–21, https://doi.org/10.37757/MR2019. 
V21.N2-3.5. 

L. Ramalhete et al.                                                                                                                                                                                                                             

https://doi.org/10.3389/fimmu.2017.01467
https://doi.org/10.3389/fimmu.2017.01467
https://doi.org/10.1038/nrm.2017.16
https://doi.org/10.1007/s00467-008-1020-x
https://doi.org/10.1097/MOT.0000000000000189
https://doi.org/10.1097/MOT.0000000000000189
https://doi.org/10.1016/j.coi.2005.07.018
https://doi.org/10.1067/mai.2003.122
https://doi.org/10.1016/j.leukres.2005.10.011
https://doi.org/10.1084/jem.156.6.1650
https://doi.org/10.1080/15476910701385638
https://doi.org/10.1080/15476910701385638
https://doi.org/10.1136/jcp.41.11.1155
https://doi.org/10.1038/sj.bmt.1700869
https://doi.org/10.1038/sj.bmt.1700869
https://doi.org/10.1016/j.jid.2016.04.009
https://doi.org/10.1016/j.jid.2016.04.009
https://doi.org/10.1128/9781555818722.ch28
https://doi.org/10.1128/9781555818722.ch28
https://doi.org/10.1016/j.trre.2016.02.002
https://doi.org/10.1016/j.trre.2016.02.002
https://doi.org/10.1016/j.neulet.2007.03.075
https://doi.org/10.1016/j.neulet.2007.03.075
https://doi.org/10.3233/JAD-122041
https://doi.org/10.1039/D0AN00083C
https://doi.org/10.1039/D0AN00083C
https://doi.org/10.1016/j.microc.2012.05.006
https://doi.org/10.1016/j.microc.2012.05.006
https://doi.org/10.1016/j.crci.2016.08.007
https://doi.org/10.1016/j.crci.2016.08.007
https://doi.org/10.1016/j.vibspec.2006.08.005
https://doi.org/10.1016/j.vibspec.2006.08.005
https://doi.org/10.1016/j.saa.2012.09.072
https://doi.org/10.1016/j.saa.2012.09.072
https://doi.org/10.3389/fbioe.2022.856591
https://doi.org/10.3389/fbioe.2022.856591
https://doi.org/10.1016/j.saa.2020.119118
https://doi.org/10.1038/srep37562
https://doi.org/10.1016/j.jim.2008.10.001
https://doi.org/10.1016/j.jim.2008.10.001
https://doi.org/10.2174/97898114648671200101
https://doi.org/10.1016/j.vibspec.2020.103177
https://doi.org/10.1109/ENBENG.2019.8692471
https://doi.org/10.1109/ENBENG.2019.8692471
https://doi.org/10.1016/j.vibspec.2008.07.017
https://doi.org/10.1016/j.vibspec.2008.07.017
https://doi.org/10.1366/0003702001949627
https://doi.org/10.1155/2017/7682083
https://doi.org/10.1016/j.chemolab.2012.03.011
https://doi.org/10.1039/C7AY00428A
https://doi.org/10.1039/C7AY00428A
https://doi.org/10.5430/air.v4n2p22
https://doi.org/10.3390/ijms22010275
https://doi.org/10.1038/s41467-019-12464-3
https://doi.org/10.1016/j.bbrc.2004.09.113
https://doi.org/10.3233/BSI-200189
https://doi.org/10.1186/s12865-014-0058-8
https://doi.org/10.1371/journal.pone.0264347
https://doi.org/10.1111/imm.13098
https://doi.org/10.1111/imm.13098
http://refhub.elsevier.com/S0924-2031(23)00036-X/sbref47
http://refhub.elsevier.com/S0924-2031(23)00036-X/sbref47
http://refhub.elsevier.com/S0924-2031(23)00036-X/sbref47
https://doi.org/10.1073/pnas.2115567119
https://doi.org/10.1111/j.1365-2141.2006.06474.x
https://doi.org/10.1111/j.1365-2141.2006.06474.x
https://doi.org/10.1080/10408347.2016.1209104
https://doi.org/10.1080/10408347.2016.1209104
https://doi.org/10.3389/fimmu.2017.01949
https://doi.org/10.1038/nri726
https://doi.org/10.37757/MR2019.V21.N2-3.5
https://doi.org/10.37757/MR2019.V21.N2-3.5

	Label-free discrimination of T and B lymphocyte activation based on vibrational spectroscopy – A machine learning approach
	1 Introduction
	2 Materials and methods
	2.1 Biological assay
	2.2 T and B Lymphocyte activation
	2.3 MIR spectra acquisition
	2.4 Spectra pre-processing and processing
	2.5 Machine learning models and statistical analysis

	3 Results and discussion
	3.1 Discriminating activation of whole (B and T) lymphocytes
	3.2 Discriminating activated T cell from activated B lymphocytes
	3.3 Assessing the molecular fingerprint of T lymphocyte activation
	3.4 Assessing the molecular fingerprint of B lymphocyte activation

	4 Conclusions
	Ethical Approval
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


