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Abstract 

 

Sulfur (S) is an essential macronutrient for plant growth and development. In vitro grapevine 

callus, cells and shoots in culture media in the absence of sulfur (-S) respond markedly with 

a reduction of growth and shoot multiplication. This may result from an interference of -S with 

cytokinin signal pathway (CSP) or at shoot apical meristem (SAM) or axillary meristem (AM) 

identity level. Cytokinins are essential plant hormones that control various processes in 

plants. As in Arabidopsis, Vitis CSP is composed by receptors (HKs), phosphotransmitters 

(HPTs) and two types of response regulators (A-type and B-type RRs). Cells in -S in the 

presence of cytokinin show a downregulation of most CSP genes while -S without cytokinin 

leads to an upregulation of A-type RRs. CSP is not significantly affected by –S in in vitro 

shoots, so the multiplication inhibition can be caused by a downregulation of the expression 

of SAM and AM identity genes, respectively STM and LAS. In vitro conditions more similar to 

autotrophy as Temporary Immersion System, the scarce multiplication impairment must 

result from the reduction of B-type RRs transcription. As a whole the present work provides 

new insights on the crosstalk between –S and cytokinin signaling in in vitro grapevine model 

systems. 
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Resumo 

 

O enxofre é um macronutriente essencial ao crescimento das plantas. Callus, células e 

“plantinhas” de videiras in vitro, quando colocadas na ausência de enxofre (-S), registaram 

uma redução da sua taxa de crescimento. Este fenómeno pode dever-se à interferência do  

–S na via de sinalização das citocininas (VSC) ou devido a uma alteração nos genes 

responsáveis pela identidade do meristema apical e axilar. A citocinina é uma hormona que 

controla vários fenómenos nas plantas. Tal como em Arabidopsis, a VSC em videira é 

constituída por receptores HKs, HPTs e dois tipos de RR (RR Tipo A e B). Células em –S e 

na presença de citocinina mostraram uma diminuição na transcrição dos gene da VSC, 

quando em meio sem citocinina os RR tipo A aumentam a sua expressão. Os genes VSC de 

“plantinhas” in vitro, não são significativamente afectados em –S, a inibição do crescimento 

pode dever-se à diminuição da transcrição dos genes de identidade do meristema apical e 

axilar, STM e LAS respectivamente. Em condições mais semelhantes ao autotrofismo, como 

em TIS, a redução no crescimento das plantas pode dever-se a uma diminuição da taxa de 

transcrição do RR tipo B. Este trabalho fornece novas perspectivas da relação entre o –S e 

a sinalização das citocininas em videira. 

 

Palavras Chave: Enxofre, meristema apical, meristema axilar, via de sinalização das 

citocininas, videira.  
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Resumo alargado 

 

O enxofre desempenha um papel fundamental nas plantas devido ao seu papel crucial no 

metabolismo. As plantas têm a capacidade de reduzir o SO4
2- a S2- que depois é assimilado 

sobre a forma de cisteína. A absorção a partir do solo é realizada por transporte activo 

usando dois tipos de transportadores, de alta ou baixa afinidade, sendo os transportadores 

de alta afinidade fortemente transcritos numa situação de carência de enxofre. A 

assimilação de enxofre inicia-se com a activação do sulfato, que é convertido em APS. Em 

seguida o APS é reduzido, numa reacção de dois passos, dando origem a S2-. Por fim a 

cisteína incorpora o S2- através da acção das enzimas SAT e OASTL. Recentemente todos 

estes genes foram também identificados em videira.  

Videiras in vitro, num meio sem sulfato, apresentam uma redução no seu crescimento 

(branching). O peso fresco de callus sujeito à carência de sulfato sofreu uma redução 

acentuada em relação a cultura com sulfato. Durante as duas primeiras semanas a 

diferença entre as duas culturas não é significativa, só após a quarta semana as diferenças 

são significativas, com a diminuição do peso fresco na cultura sem sulfato. A taxa relativa de 

crescimento apresenta a mesma tendência. Os rebentos em caixa e em TIS apresentam a 

mesma tendência de diminuição do peso fresco e número de novos lançamentos, apesar do 

efeito de branching em TIS não ser tão acentuado. Este fenómeno pode dever-se a uma 

alteração da via do sinal das citocininas ou à alteração da expressão dos genes ligados à 

identidade do meristema.  

A citocinina é uma importante hormona das plantas que controla vários aspectos do seu 

desenvolvimento como a divisão celular. A via do sinal das citocininas foi descoberta em 

várias espécies como Arabidopsis, milho e arroz. Em Arabidopsis o sinal desta hormona é 

transmitido pelo que é conhecido como “two-component system”. A hormona é 

percepcionado por receptores de membrana conhecidos como Histidina Cinase (HK), estes 

vão transferir um grupo fosfato ao componente seguinte da cadeia os Fosfotransmissores de 

Histidina (HPts), estes vão transferir novamente o grupo fosfato ao componente seguinte na 

via, os Reguladores de Resposta (RR) tipo-B, por sua vez estes actuam como factores de 

transcrição dos RR tipo-A que produzem uma determinada resposta à presença da 

citocinina. Em Arabidopsis existem 3 HKs, 5 HPts, 11 RRs tipo-B e 12 RR tipo-A. Com a 

descoberta do genoma da videira foi possível identificar os componentes da via de 

sinalização das citocininas. Na videira foram identificados 3 HKs (VvCyt1, VvCyt2 e VvCyt3), 

quatro HPts (VvHP1, VvHP2, VvHP3 e VvHP4), 4 RRs tipo-A (VvRRa1, VvRRa2, VvRRa3 e 
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VvRRa4) e 6 RRs tipo-B (VvRRb1, VvRRb2, VvRRb3, VvRRb4, VvRRb5 e VvRRb6). 

Através da análise filogenética podemos concluir que estes genes apresentam uma grande 

semelhança com os genes já descritos em outras espécies, tanto monocotiledónias como 

dicotiledónias, o que nos permite concluir que esta via foi conservada ao longo do período 

evolutivo das plantas. 

A técnica de PCR em tempo real e largamente usada para estudar a expressão de genes 

em diferentes condições experimentais. Por isso escolhemos esta técnica para estudar o 

efeito da ausência de sulfato na via da sinalização da citocinina e nos genes ligados à 

identidade do meristema apical e axilar. Ao nível do receptor apenas os genes VvCyt1 e 

VvCyt2 responderam, na ausência de sulfato VvCyt2 apresentou uma diminuição na 

quantidade de transcrito. Na ausência de sulfato e citocinina, apenas VvCyt1 respondeu, 

também com uma redução da sua taxa de transcrição. No entanto a taxa de transcrição 

destes genes não foi alterada em plantas em meio gelificado (GM). Em células, os dois 

genes HPs (VvHP2 e VvHP3) foram afectados pela carência de enxofre, diminuindo a sua 

taxa de transcrição. Nas células sem enxofre e sem citocinina o nível transcrição também 

diminuiu, indicando que o efeito combinado é semelhante ao de ausência de enxofre. Em 

GM os HPs não foram afectados pela diminuição do sulfato. Em células em cultura a 

expressão dos genes VvRRa3 e VvRRa4 foi também afectada pela carência de sulfato, mas 

a sua expressão foi afectada diferencialmente dependendo da presença ou ausência de 

citocinina no meio. Na presença de citocinina a expressão de VvRRa4 diminuiu enquanto na 

ausência de citocinina o gene VvRRa3 aumentou a sua expressão. Este resultado 

aparentemente contraditório pode ser explicado pela capacidade dos RR funcionarem como 

reguladores positivos ou negativos do sinal da citocinina. Em células e em GM os RRs tipo B 

não foram afectados pela ausência de enxofre ou de citocinina no meio; apenas em plantas 

em Sistema de Imersão Temporária (TIS) estes foram afectados, o que indica que a 

condição mais próxima da autotrófia afecta a sua taxa de transcrição levando a uma 

diminuição do sinal das citocininas. 

A ausência de enxofre do meio pode também afectar a proliferação de células ao nível do 

meristema apical e axilar. Em videira foram identificados 3 genes ligados a identidade do 

meristema apical (VvWus, VvCLV e VvSTM). Apenas VvSTM e afectado pela ausência de 

sulfato, sofrendo uma redução da taxa de transcrição. Em Arabidopsis o STM é responsável 

pela manutenção de um nicho de células indiferenciadas no meristema apical. Com a 

redução da transcrição a planta perde a capacidade de repor estas células, não ocorrendo a 

renovação do meristema apical. Ao nível do meristema axilar foram identificados 5 genes 

(VvBRC1, VvBRC2, VvLAS, VvRAX e VvREV). Em plantas em GM apenas VvBRC1, 
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VvBRC2 e VvLAS foram afectados pela diminuição de enxofre no meio, sofrendo uma 

redução da sua taxa de transcrição. Em Arabidopsis os genes BRC1 e BRC2 são 

responsáveis pela diminuição do número de lançamentos laterais logo se a sua taxa de 

transcrição diminui ocorre um aumento do número de lançamentos laterais. Em Arabidopsis, 

o gene LAS é necessário para a iniciação do meristema. Os resultados obtidos confirmaram 

que a diminuição da transcrição do gene VvLAS conduziu à incapacidade da planta de obter 

um meristema funcional, apesar da diminuição na transcrição dos genes VvBRC1 e 

VvBRC2, o que indica que estes genes actuam posteriormente ao VvLAS. 
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1. Introduction 
 

1.1. Sulfur 
 

Sulfur (S) is the 14th more abundant element on earth crust (Chalson et al., 1992), the 9th and 

least abundant essential macronutrient in plants (Saito, 2004). The inter-conversion of 

oxidized and reduced sulfur states, the biogeochemical sulfur cycle, depends mainly on 

microorganisms (Falkowski et al., 2008) and plants. The inorganic forms of S in soil consist 

mainly of sulfates (SO4
2-) (Mengel and Kirkby, 1978). Assimilatory reduction of sulfate ion 

integrates, together with O2 bioproduction, CO2 fixation, nitrate ion reduction and N2 fixation, 

the biological processes essential to aerobic life. In the reduced state, S is the key element of 

the amino acids cysteine and methionine (Xavier and LeGall, 2007). It is commonly accepted 

that the key function of sulfur is to provide disulfide bonds between amino acids within 

proteins. The thiol group of cysteine radical is fundamental for protein structure and function. 

Other thiol compounds more stable than cysteine, e.g. the tripeptide glutathione (GSH), 

concur to the cell redox regulation (Rouhier et al,. 2008). Plants, yeasts and some bacteria 

can reduce sulfur from the oxidation/reduction state of SO4
2- (+6) to the sulfide (S2-) state (-

2). 

Plants are able reduce SO4
2- to S2- and incorporate it into cysteine; then the greater part of 

sulfate taken up by plants is used for protein synthesis (Brunold, 1976). This explains the 

involvement of sulfur in most essential metabolic pathways and its key role in plant growth. 

 

1.1.1. Sulfur nutrition and plant defense against pathogens 
 

Plants do not accumulate or remobilize S-reserves (Mengel and Kirkby, 1978). In the past, 

the sulfur used by crop plants resulted from two sources: sulfur-containing fertilizers and/or 

sulfur in rainfall (Jolivet, 1993). Due to environmental policies both these sources were 

significantly reduced in the last 25 years: atmospheric sulfur deposition significantly 

decreased and many of the currently used mineral fertilizers lack sulfur (Blake-Kalff et al., 

2000). Recent studies indicate that sulfur deficiency can be a limiting factor to crop yield and 
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quality (Saito, 2004; Hawkesford, 2005). Therefore, former research on plant adaptation to 

excessive inputs of sulfur due to aerial pollution moved now into the effects of S-deficiencies.  

It is demonstrated that sulfur nutrition exerts a positive influence of sulfur nutrition on plant 

health (Bloem et al., 2007). Elemental sulfur (S0) is probably the oldest pesticide, with 

references as old as 1000 BC (Williams and Cooper, 2004). Unexpectedly for eukaryotes, it 

was unraveled that some plant species produce S0 as a component of the defense system 

against vascular pathogens (Williams et al., 2002).  

In the group of defense compounds are included several S-secondary plant metabolites (Hell 

and Kruse, 2007), namely glucosinolates and alliins (Schnug, 1997).  

 

1.1.2. Sulfur in grapevine nutrition and health 

 

References to sulfur use are found since ancient times, as in the Bible and in Greek and 

Roman literature. As early as more than 2000 years ago, Romans discovered the beneficial 

effects of sulfur as a potent agent against plant pathogens and refer the application of 

elemental sulfur in the vineyards (Rausch, 2007). 

The effect of sulfur on plant growth, productivity and product quality mostly relates sulfur 

nutrition in interaction with nitrogen (Brunold, 1976; Byers et al., 1987; Schnug, 1997). In 

grapevine xylem sap while nitrate is the major anion sulfate, chloride and phosphate increase 

after N fertilizer treatments (Peuke, 2000). The protective effect of elemental S against 

grapevine pests and diseases has been mostly reported after foliar application although S-

fertilization can substitute for fungicide application in crop protection from pest attack (Bloem 

et al., 2007).  
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1.2. Sulfate as the main sulfur source  

 
1.2.1. Grapevine sulfate uptake and sulfate transporters  

 

Sulfate is acquired by plant roots from the soil by a multiphase rate mechanism (Clarkson et 

al. 1993). Two kinds of transporters mediate the initial uptake and the distribution of sulfate 

throughout the plant: one with low Km (10 μM) assuring a high-affinity sulfate transport 

(HAST), and another with much higher Km responsible for the low-affinity sulfate transport 

(LAST) (Amâncio et al., 2009). 

The primary response of numerous plant systems under sulfur depletion is a clear 

upregulation (or derepression) of HAST, at the transcription level (Smith et al., 1995 1997, 

Leustek et al., 2000; Takahashi et al., 1997 2000; Shibagaki et al., 2002; Yoshimoto et al., 

2002). The raise in the expression of sulfate transporter protein leads to an increase in 

uptake capacity (Hawkesford, 2000). Conversely, sulfate repletion leads to the down-

regulation (or repression) of the transporters transcription (Maruyama-Nakashita et al., 

2004). Apparently, the regulation imposed by sulfur-status at the molecular level is highly 

coordinated with the physiological responses, either in cells (Hatzfeld et al., 1998; Clarkson 

et al., 1999) or at whole plant level (Clarkson et al., 1993; Smith et al., 1997).  

The sulfate transporter sequences from different plant species, available in public databases, 

were organized into 5 groups based on the predicted protein sequences (Hawkesford, 2003). 

In Group 1 includes genes for HAST regulated by S external conditions. In Arabidopsis 

thaliana genome, three different sulfate transporters were identified (Yoshimoto et al., 2003). 

Previously to Vitis genome release, a homologous sequence from V. vinifera cv Touriga 

Nacional VvST (EF155630) was obtained by RT-PCR using degenerated primers (Tavares 

et al., 2008). Through its protein (and nucleotide) sequence but also the molecular and 

physiological data, VvST was assigned to sulfate transporter Group 1.  

The grapevine genome release (Jaillon et al., 2007, Velasco et al., 2007) made it possible to 

identify nine protein sequences related to the sulfate transporter family. Phylogenetic 

analysis showed that these sequences can be assorted to three of the five sulfate transporter 

family groups (Amâncio et al., 2009). 
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The common characteristic among Group 2 sulfate transporters is its low affinity to sulfate, 

expressed mainly in vascular tissue of both root and shoots tissues. V. vinifera only has one 

isoform assigned to Group 2 (VvST2), that is expressed both in roots and isolated cells 

(Tavares et al., 2008). 

Sulfate uptake by V. vinifera cells was significantly affected (Amâncio et al., 2009) under a 

time scale similar to that described previously for maize cells (Clarkson et al., 1999). In other 

systems like roots, after 15 days without S, the influx was twice the value of +S plants. The 

abundance of VvST mRNA matched the derepression of sulfate uptake capacity, suggesting 

a transcriptional regulation of the sulfate transport in response to S availability (Maruyama-

Nakashita et al., 2004).  

A large and diverse number of sulfate transporters isoforms has been assigned to Group 3 

(Hawkesford and De Kok 2006). In Arabidopsis only one isoform is characterized to date, 

which, apparently, is not a functional transporter but can contribute to sulfate uptake when 

co-expressed with a Group 2 sulfate transporter (Kataoka et al., 2004). In V. vinifera genome 

six sequences fall to this group, confirming an apparent redundancy. Five out the six Group 3 

V. vinifera sulfate transporters were expressed in roots and in culture cells, under a pattern 

equivalent to other Group 3 sulfate transporters identified in other species (Amâncio et al., 

2009). 

 

1.3. Sulfate assimilation 

 

The assimilation of sulfate is, with carbon fixation and nitrogen assimilation, one of the basic 

pathways used for the incorporation of inorganic elements into the organic molecules that 

drive cell metabolism. Up to 70% of the total sulfur content of plants is in the form of cysteine 

and methionine and this one’s mainly incorporated into proteins (Hankesford and De Kok, 

2006). Plant SO4
2- assimilation involves three main steps: sulfate activation, sulfate reduction 

and sulfide assimilation and cysteine synthesis. 

Sulfate (SO4
2-) is the most oxidative and thus stable form of sulfur present in the soil. Prior to 

reduction, sulfate is subjected to activation to adenosine 5’-phosphosulfate (5’-

adenylylsulfate [APS]) for further conversion. Since the reaction equilibrium of ATP-S favours 
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the reverse reaction (ATP and SO4
2- formation) the activity of ATP-S depends on the 

consumption of APS in further reactions (Saito 2004). 

The second step in sulfur assimilation is sulfate reduction. In plants, recent lines of evidence 

demonstrate that the two step-reduction of SO4
2- (S: +6) to S2- (S:-2) is carried out by GSH-

APS reductase (two electrons) (GSH:APS sulforeductase,) and the plastid enzyme sulfite 

reductase (S2-: ferredoxin oxidoredutase, sulfite reductase, SIR) (Gutierrez-Marcos et al., 

1996, 1997; Bick and Leustek 1998). The first reduction step is equivalent to the bacterial 

formation of free sulfite (SO3
2-) as a free intermediate. The reduction is completed by the 

production of sulphide S2- by the transfer of 6 electrons from reduced ferredoxin to sulfite to 

form sulphide (Amâncio et al., 2009). 

Cysteine incorporates S2- by the activity of the complex serine acetyl transferase (SAT) and 

O-acetyl-serine sulfydrilase (O-acetyl–L-serine(thiol)-liase, OASTL). The level of free 

cysteine in plants is very low but the flux can be quite high (Höfgen and Hess 2007). The 

only direct carbon/nitrogen precursor for cysteine is O-acetyl serine (OAS), which results 

from the acetylation of serine by SAT. This substrate incorporates S2
- into cysteine in a 

reaction catalysed by OASTL (Droux et al., 1998).  

 

1.3.1. Regulation of sulfate assimilation by sulfur availability 
 

Removal of S supply cause an increase in the protein activity or mRNA pools of some 

enzymes responsible for the uptake and the assimilatory pathway, such increase is observed 

after several days in whole plants (Hell et al., 1997; Buchner et al., 2004) or several hours in 

cell suspensions (Hatzfeld et al., 1998). Following re-supply of SO4
2- all fall in parallel with 

cysteine and GSH increase. In most plant systems analyzed so far, sulfate, cysteine, and 

GSH are described as negative regulators and OAS as positive regulator of sulfur genome 

(Droux, 2004). GSH-APS reductase is thought to be a prime regulation point of the pathway 

(Vauclare et al., 2002), since its activity and RNA increase concomitantly with S starvation 

and with stresses that increase the demand for GSH and then for cysteine (Amâncio et al., 

2009). 
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1.3.2. Grapevine genes for sulfate assimilation enzymes 
 

Partial sequences of V. vinifera genes encoding for APR, SAT and OASTL were identified. 

They were cloned and deposited at GenBank, respectively (EU275236), (EU275238) and 

(EU275237) (Amâncio et al., 2009). Subsequently to grapevine genome sequencing (Jaillon 

et al., 2007; Velasco et al., 2007), sequences of genes for putative isoforms of sulfate 

assimilation enzymes were identified in databases. 

For APS two isoforms were identified in V. Vinifera genome, VvATPS-1 and VvATPS-2. 

Unlike A. thaliana where 4 different APSR isoforms were described, only one isoform is 

present in grapevine, VvAPSR. As in Arabidopsis one sole isoform of sulfite reductase is 

present in Vitis, VvSIR (Amâncio et al., 2009).  

 

1.3.3. Expression of V. vinifera sulfur assimilation genes 
 

The analysis of the expression of genes for sulfate metabolism enzymes in response to 

sulfate depletion in grapevine isolated cells, but also in roots and leaves, showed that the 

relative abundance of VvATP-S1, VvSr and particularly VvAPR, are up-regulated in the three 

systems (Amâncio et al., 2009), confirming the crucial role of APR in sulfur metabolism 

pathway (Vauclare et al., 2002). 

 

 

1.4. Cytokinin 

 

Cytokinins are essential plant hormones that control various aspects of plant growth and 

development such as cell division, shoot formation, senescence and chloroplast 

development (Ito and Kurata, 2006). Cytokinins were discovered during the 1950s due to 

their ability to induce plant cell division (Miller et al., 1955). The most abundant cytokinins are 

adenine derivatives substituted at the N6-position with an isoprenoid side chain (Heyl et al., 

2006). Conclusions about the biological functions of cytokinins have mainly been derived 

from studies on the consequences of exogenous cytokinin application or endogenously 
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enhanced cytokinin levels (Klee and Lanahan, 1995). The previously widely accepted idea 

that cytokinin was synthesized only in root tips, is now overturned. This hormone has 

coordinated function as long-distance messenger as well as local signalling; cytokinin is 

synthesized and act at various sites in a plant body (Sakakibara, 2006). In the control of 

outgrowth and dormancy of axillary buds, the mutual regulation of auxin, ABA, and cytokinin 

has been proposed to play a central role (Shimizu-Sato and Mori, 2001). Although an 

antagonistic role of auxin and cytokinin in the regulation of axillary bud outgrowth has been 

postulated for a considerable time, little is known. Recent studies revealed that one role of 

apex-derived auxin in apical dominance is to repress cytokinin biosynthesis in the nodes and 

that after decapitation cytokinins are locally synthesized in the stem rather than being 

transported to the stem from the roots (Tanaka et al., 2006). 

Recent studies, carried out by Hwang and Sheen (2001), revealed genes implicated in the 

mechanism of cytokinin perception and signalling in Arabidopsis (Heyl and Scholuling, 2003). 

Signal transduction systems function as intracellular information-processing pathways that 

link external stimuli to specific adaptive responses (West and Stock, 2001). The signalling 

system, besides the membrane bound receptor kinase, which senses the signal and 

autophosphorylates, consists of phosphotransmitter protein and a response regulator, which 

upon phosphorylation, activates the transcription of its target genes or initiates another 

output reaction (West and Stock, 2001). 

 

1.4.1. Signal perception and transduction 

 

In bacteria, phosphorylation on a nitrogen atom of a histidine (His) residue and on an acyl 

group of an aspartate (Asp) residue is predominantly used to transmit the cytokinin signalling 

(Kakimoto, 2003; Klumpp and Krieglstein, 2002). The mode of signalling that uses this type 

of phosphorylation has been referred to as the “two-component system”. The signalling 

pathways, referred as “two-component system” are structured around two conserved 

proteins: a histidine protein kinase (HK) and a response regulator protein (RR) that are 

phosphorylated. Phosphotransfer from HK to RR results in the activation of the later and 

generation of the output response of the signalling pathway (West and Stock, 2001). 
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A more complex version of this two-component phosphotransfer scheme includes the His-

Asp-His-Asp phosphorelay. This phosphorelay involves multiple phosphotranfer steps and 

often more than two proteins (Perraud et al., 1999), as verified by Arabidopsis and grapevine 

(this research). In this system, in addition to HK and RR, also consists in a histidine 

phosphotransfer protein (HPt), which mediates the signal between the HK and RR (Suzuki et 

al., 2000).  

Three Arabidopsis HK genes (AHK4/CRE1, AHK2 and AHK3) (Hwang and Sheen, 2001), 

three maize HK genes (ZmHK1, ZmHK2 and ZmHZ3a) (Asakura et al., 2003) and five HK in 

rice (OHK1, OHK2, OHK3, OHK4 and OHK5) (Ito and Kurata, 2006) were described. The 

identification of orthologs for cytokinin signalling components in other plant species suggests 

evolutionary conservation of this pathway (Müller and Sheen, 2007). In Arabidipsis, the three 

cytokinin receptor genes differ in their expression location: CRE1/AHK4 is mainly expressed 

in the roots whereas AHK2 and AHK3 are expressed in all major organs.  

The analysis of Arabidopsis signalling pathway resulted in a model that distinguishes four 

major steps: (i) cytokinin sensing and initiation of signalling by receptor HKs; (ii) phosphoryl 

group transfer to HPts and their translocation to the nucleus; (iii) phosphotransfer to nuclear 

B-type RRs, which activate transcription; and (iv) negative feedback through cytokinin-

inducible A-type RRs, which are the products of early cytokinin target genes (Fig. 1) (Müller 

and Sheen, 2007).  

 

 

 

 

 

 

 

 

Fig. 1 Model for the cytokinin multistep two-component circuitry through histidine (H), and aspartate (D) phosphorelay,
involving histidine-kinase receptors (HK), phosphotransfer proteins (HPT), a “pseudo–HPT” with an asparagine
(N) instead of the D, and A-type and B-type RRs (Müller and Sheen, 2007). 
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The large majority of HKs are membrane-bound, homodimeric proteins with an amino-

terminal periplasmic sensing domain that is coupled to a C-terminal cytoplasmic kinase 

domain (Fig. 2) (West and Stock, 2001). All HKs share a domain in the predicted 

extracytoplasmic region, designated CHASE, which is the putative recognition site for 

cytokinin (Ueguchi et al., 2001; Du et al., 2007). 

The triple mutant for these three HK genes showed various cytokinin-related development 

defects and no cytokinin response, but is not lethal (Higuchi et al., 2004). This suggests that 

either cytokinin is not essential to Arabidopsis growth or another unknown signalling pathway 

of cytokinin may exist and support the cytokinin-dependent growth of Arabidopsis (Ito and 

Kurata, 2006). 

The HPts perceive a phosphate group from HKs and translocate the phosphate from 

cytoplasm to the nucleus where it is transferred to RRs. In Arabidopsis, AHPs are 

predominantly located in the cytoplasm and only a minor proportion in the nucleus (Tanaka 

et al., 2004). Importantly, it has been shown that upon induction by cytokinin some AHPs 

(AHP1 and AHP2) localize specifically and transiently to the nucleus, indicating it as 

cytoplasmic-nuclear shuttles, so HPts serves as a crucial intermediate in a His-to-Asp 

phosphorelay pathway by acquiring and transferring a phosphoryl group from and to a 

receiver (Suzuki et al., 2000). Recent findings have added some twists to the pathway. Aside 

from its kinase function, a cytokinin receptor was found to exhibit phosphatase activity that 

removes phosphoryl groups from AHPs when no cytokinin is bound. Many prokaryote HKs 

associated with phosphorelay systems that need to be shut off quickly have phosphatase 

activity. In Arabidopis, the HK phosphatase activity may ensure that, in the absence of 

cytokinin, the pathway is quickly and completely inactivated (Mähönen et al., 2006). 

The RRs are classified in two groups: A-type RR and B-type RR. The B-type RRs have a 

phosphorelatable receiver domain at their N-terminus and a GARP DNA-binding domain in 

the midpoint of the sequence; when phosphorylated the activated B-type RRs induce or 

repress the expression of target genes (Hwang and Sheen, 2001; Sakai et al., 2001). B-type 

ARRs were found in de nucleus and the structural analysis confirmed they bind to DNA. The 

predicted secondary structure of the binding domain, a helix-turn-helix motif similar to 

homeobox proteins, recognizes the major groove of DNA (Hosoda et al., 2002). The DNA 

motif optimal for binding is 5′-(A/G)GAT(T/C)-3′ with the GAT motif, in the middle, is of 

special importance (Sakai et al., 2000; Lohrmann et al., 2001; Hosoda et al., 2002). 5′-

AGATT-3′ was found to be optimal for ARR1, ARR2 and ARR10 (Sakai et al., 2000; Hosoda 

et al., 2002), whereas ARR11 binds preferentially to 5′-GGATT-3′ (Imamura et al., 2003). 
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Unlike the expression pattern of A-type ARR genes, the steady-state levels of B-type ARR 

transcripts are apparently not affected by the application of cytokinin or other plant hormones 

(Fig. 2). 

The A-type RRs have the receiver domain but lack the GARP domain (Fig. 2). Expression of 

A-type RRs is induced by cytokinin, and the induction is mediated by B-type RRs (D’Agostino 

et al., 2000). A-type RRs display properties of cytokinin primary-response genes: the 

elevation of the steady-state level of transcript occurs within 10 min of exogenous cytokinin 

application, the rapid induction is specific for cytokinin (D’Agostino et al., 2000). 

 

 

 

 

 

 

 

 

 

1.4.2. Cross-talk between mineral nutrition and cytokinin signalling 
 

As referred above, the primary response of most plant systems under sulfur deficiency is a 

clear upregulation (or derepression) of sulfate transporters at the transcription level (Smith et 

al., 1995, 1997; Leustek et al., 2000; Takahashi et al., 1997, 2000; Shibagaki et al., 2002; 

Yoshimoto et al., 2002). Conversely, sulfate repletion leads to the down-regulation (or 

repression) of the transporters transcription (Maruyama-Nakashita et al., 2004). 

Fig. 2 Structures of cytokinin receptors and other proteins of the cytokinin signalling pathway. Amino acids that

participate in the phosphorelay are circled. Other characteristic consensus motifs are also indicated. Abbreviations: 

aa, amino acids; AD, acidic domain; CHASE, cyclases/histidine kinases associated sensory extracellular; GARP,

DNA-binding motif; HK, histidine kinase; LB, putative ligand binding domain; NLS, nuclear localisation signal; OD,

output domain; RD, receiver domain; RLD, receiver-like domain; TM, transmembrane domain (Heyl and 

Schmülling, 2003). 
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It was verified in Arabidopsis that cytokinin down-regulates the expression of a HAST gene 

and the sulfate uptake which are induced by sulfur limitation and repressed by the presence 

of a sulfur source. Maruyama-Nakashita et al. (2004), proposed that cytokinin could act as a 

negative regulator of sulfur acquisition, suggesting the existence of at least two independent 

modes of regulation for sulfate acquisition, one induced by sulfate depletion and one 

dependent on cytokinin. 

More convincing evidence for the involvement of hormone signalling components in –S 

response came from the genetic study of the cytokinin receptor mutant cre1 (Maruyama-

Nakashita et al., 2004). The potential role of cytokinin in –S response was suggested by a 

study in which the –S activated expression of the β-subunit of seed storage protein β-

conglycinin show to be promoted by cytokinin (Ohkama et al., 2002). On the other hand the 

mutation in CRE1 reduced the cytokinin suppression of both the SULTR 1;2 expression and 

S uptake. This demonstrates that cytokinin perception plays a negative role at least in regard 

to sulfate transport (Dan et al., 2007). 

However, when zeatin was applied to sulfur-sufficient Arabidopsis an accumulation of sulfate 

transporter and APS reductase transcripts was observed (Ohkama et al., 2002), pointing to a 

positive regulation by exogenous cytokinin on the expression of sulfate-responsive genes. 

If cytokinins do, in fact, are the sole mediators of sulfur starvation signal to regulate the 

expression of sulfur responsive genes, its concentration in –S tissues was expected to 

increase. However, in leaf tissues, cytokinin concentration did not increase significantly after 

two days of sulfate starvation suggesting that it is unlikely that, at least in leaves, cytokinins 

mediate directly sulfur-deficiency (Ohkama et al., 2002). 

Other macronutrients, e.g. phosphate (P), may respond to the application of cytokinin. It has 

been shown that exogenous application of cytokinin represses the induction of many P 

starvation-responsive genes in Arabidopsis (Martin et al., 2000) and this effect is attenuated 

in cre1 mutants, implicating cytokinin in the negative regulation of P starvation responses 

(Franco-Zorrilla et al., 2002). 
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1.5. Shoot apical meristem (SAM) 

 

Post-embryonic development in higher plants is characterized by the reiterative formation of 

lateral organs from the flanks of the apical meristems (Steeves and Sussex, 1989). The 

shoot apical meristem (SAM), initially formed during embryogenesis, is located at the shoot 

apex and leaves, stems and axillary meristems are produced from its derivative cells (Shani 

et al., 2006). The SAM contains a population of pluripotent stem cells, with three primary 

functions: lateral organs, such as leaves, are produced from the peripheral regions of SAM; 

the basal region cells contribute to the formation of the shoot axis; and the stem cells of SAM 

must replenish those regions from which cells have been recruited and maintain the pool of 

stem cells required for further growth (Lenhard and Laux, 1999; Bowman and Eshed, 2000). 

The shoot apical meristem can be divided into different histological zones. This division is 

based in two different classifications, one based in histological analyses of shoot apical 

meristem (Lenhard and Laux, 1999) and the other based in the clonally distinct layers of cells 

in the zone of the shoot apical meristem (Satina et al., 1940). Based in the first classification, 

three distinct zones of SAM are defined by cytoplasmatic densities and cell division rate: the 

peripheral zone (PZ), the central zone (CZ) and the rib zone (RZ) (Shani et al., 2006). Lateral 

organs are produced from cells recruited from PZ. The CZ, at the summit of the SAM, 

contains self-maintaining, slowly dividing cells, which provides initials for the PZ (Shani et al., 

2006). The shoot axis tissue is derived from cells recruited from the RZ. The CZ acts as a 

reservoir of stem cells, which replenish both the peripheral and rib zone, as well as 

maintaining the integrity of the central zone (Fig. 3 a) (Bowman and Eshed, 2000).  

The SAM is also composed of clonally distinct layers of cells (Satina et al., 1940). The fact 

that the peripheral and central zone, as well as the lateral organs produced, contain cells 

from the three clonally distinct layers indicates that communication between cell layers is 

required to coordinate developmental processes. For example, leaves in most eudicot 

species are composed of derivatives from the epidermal layer (L1), the subepidermal layer 

(L2) and corpus (L3) (Fig. 3 b) (Satina et al., 1941; Bowman and Eshed, 2000). One of the 

earliest markers of leaf initiation from the PZ is the periclinal cell divisions in specific regions 

in L2. Cells in L1 and L3 adjust their growth accordingly, with the entire region acting 

coordinately to produce a leaf primordium (Bowman and Eshed, 2000). 
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Since 1957, after the work of Skoog and Miller, that the role of phytohormones in controlling 

the SAM differentiation is suggested. However, the pleiotropic nature of hormone action has 

made it difficult to understand exactly how hormones act to pattern development (Hay et al., 

2004). To this contributes the different effect of hormones depending on their concentration 

(Skoog and Miller, 1957) and may have opposite effects on the same process in different 

species (Grant et al., 1994). However, hormones such as auxin and cytokinin appear to 

display dynamic concentration gradients in SAM and in other plant tissues (Shani et al., 

2006). Recent molecular and imaging studies unraveled information on the endogenous 

spatial and temporal distribution of plant hormones. 

 

1.5.1. Regulation of shoot apical meristem 

 

Plant development depends on the continuous activity of meristem to produce organs 

throughout plants life. In the past decade, the genetic dissection of plant hormone 

biosynthesis and signalling pathways has offered new opportunities for studying the role of 

hormones (Hay et al., 2004). Several groups of transcription factors have been shown to take 

part in SAM differentiation. KNOTTED1-like homeobox (KNOX1) proteins are expressed in 

specific patterns in the SAM of different plant species (Shani et al., 2006). The control of 

hormone biosynthesis by the KNOX class of transcription factors has recently emerged as an 

example of perhaps unexpected interactions between hormones and developmental genes 

(Sakamoto et al., 2001; Hay et al., 2002; Hay et al., 2004). 

Fig 3 Histology of the shoot apical meristem (SAM). a) zones of SAM defined by cytoplasmic densities and cell division
rate: peripheral zone (PZ); central zone (CZ) and rib zone (RZ); b) SAM defined by different clonally distinct layers
of cells: epidermal layer (L1); subepidermal layer (L2) and Corpus (L3) (Bowman and Eshed, 2000). 
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KNOTTED1 defines the first homeobox gene family to be isolated in plants (Vollbrecht et al., 

1991). The Arabidopsis class 1 KNOX gene subfamily comprises SHOOT MERISTEMLESS 

(STM), KNAT1/BREVIPEDICELLUS (BP), KNAT2 and KNAT6 (Lincoln et al., 1994; Dockx et 

al., 1995; Long et al., 1996; Semiarti et al., 2001; Dean et al., 2004; Scofield et al., 2007). 

The gene STM is required for the initiation and maintenance of the shoot apical meristem in 

Arabidopsis. One of the earliest indicators of a switch in fate from indeterminate meristem to 

determinate leaf primordium is the down-regulation of KNOX1 genes orthologous to STM in 

the incipient primordia (Uchida et al., 2007). Embryos homozygous for strong loss-of-function 

mutations in the STM form cotyledons and other embryonic structures but fail to establish a 

population of self-renewing stem cells (Long et al., 1996). Another early gene expressed is 

WUSCHEL (WUS), whose expression, in mature shoot apical meristem, is limited to a small 

group of cells underneath the outer three layers (L3). The WUS expression pattern gradually 

becomes limited to deeper regions of the shoot apical meristem, since it is required to 

produce the stem cell maintenance signal (Mar Castellano and Sablowski, 2005). 

WUS expression is under negative control by the CLAVATA genes (CLV1, CLV2 and CLV3), 

which encode components of a presumed receptor-kinase signal transduction pathway 

(Fletcher et al., 1999; Lenhard et al., 2002). Stem cells express CLV3, and signalling of 

CLV3 through the CLV1/CLV2 receptor complex restricts WUS activity. Homeostasis of the 

stem cell population may be achieved through feedback regulation, whereby changes in 

stem cell number result in corresponding changes in CLV3 expression levels, and 

adjustment of WUS expression via the CLV signal transduction pathway. It was found that 

the expression of CLV3 depends only of WUS function in the embryonic shoot meristem. At 

later developmental stages, WUS promotes the level of CLV3 expression, together with 

STM. Within a meristem, competence to respond to WUS activity by expressing CLV3 is 

restricted to the meristem apex (Brand et al., 2000). In clv mutants, the SAM enlarges 

progressively by the accumulation of stem cells (Fletcher et al., 1999; Lenhard et al., 2002) 

and this enlargement appears to be a consequence of ectopic WUS expression in more 

apical and lateral cells in clv mutant SAMs (Schoof et al., 2000). This has led to a model in 

which stem cell maintenance is regulated by a negative feedback loop mediated by the WUS 

and CLV3 genes, with the organizing centre signalling to the apical neighbours to specify 

them as stem cells, which in turn signal back to restrict the size of the organizing centre 

(Brand et al., 2000; Schoof et al., 2000; Lenhard et al., 2002). In summary, the earliest acting 

genes (WUS and STM), are required for the establishment or maintenance of stem cell fate 

or alternatively, the repression of differentiation, whereas later expressed genes might be 



Introduction 

15 
 

involved in regulating the size of the central zone (CLV1) (Bowman and Eshed, 2000) (Fig. 

4). 

 

 

 

 

 

 

 

 

 

1.5.2 Hormones and shoot apical meristem 

 

Recent studies have revealed the relationships between genes for transcription factors and a 

variety of hormones like cytokinin, gibberellins and auxin in the shoot apical meristem (Shani 

et al., 2006). 

Cytokinin positively regulates cell division (Skoog and Miller, 1957; Riou-Khamlichi et al., 

1999). Recent advances in understanding the cytokinin-signal cascade in Arabidopsis 

enabled an assessment of the role of cytokinin in SAM function. This analysis focused on the 

triple mutant for the genes encoding cytokinin receptors (AHK2, AHK3 and AHK4/CRE1) 

(Riefler et al., 2006). This mutant displayed pleitropic phenotypes including a dramatic 

reduction in meristem size (Shani et al., 2006).  

The involvement of KNOX1 proteins and cytokinin in the response of SAM has been 

suggested by Hay et al. (2004). Two studies provided direct molecular evidence for the 

positive regulation of cytokinin biosynthesis by KNOX1 proteins in Arabidopsis. Ectopic 

activation of several KNOX1 proteins, including STM, in transgenic Arabidopsis plants result 

in a rapid increase in the expression of the cytokinin biosynthesis gene ISOPENTENYL 

TRANSFERASE 7 (IPT7) (Jasinski et al., 2005; Yanai et al., 2005). 

Fig. 4 Expression patterns of genes involved in maintaining the integrity of the central zone. CLAVATA3 (CLV3),
CLAVATA1 (CLV1) WUSCHEL (WUS) and FILAMENTOUS FLOWER (FIL) (Bowman and Eshed, 2000). 
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Arabidopsis type-A response regulators (RRs) are cytokinin-induced negative regulators of 

cytokinin signal (Ferreira and Kieber, 2005). Overexpression of a constitutively active form of 

ARR7 caused variable phenotypic aberrations, the most severe of which was the early 

meristem determination, similar to that of wus mutants (Leibfried et al., 2005). Conversely, 

STM activation results in an increase in ARR5 expression (Jasinski et al., 2005; Yanai et al., 

2005). Although these results appear contradictory, the induction of ARR5 by STM is a 

consequence of its effect on cytokinin accumulation and the direct effect of WUS. The 

repression of ARRs by WUS thus balances its induction by cytokinin and allows differential 

cytokinin responses in specific regions of the meristem (Shani et al., 2006). 

 

1.6. Axillary meristem 

 

After germination, the shoot apical meristem generates the main shoot, leaf primordia and 

new meristems (Aguilar-Martinez et al., 2007). In the axil of each leaf, at the base of the leaf 

petiole, one or more secondary axillary meristem can form (Ongaro and Leyser, 2008). New 

shoot meristems formed in the axils of the leaves are established at the time of leaf 

primordial initiation or later in the development from groups of cells that retain meristematic 

potential (Schmitz and Theres, 2005; Aguilar-Martinez et al., 2007). There are two theories 

about the initiation of axillary meristem. The detached meristem hypothesis proposes that 

axillary meristem is derived directly from cells of the SAM, which never lose their 

meristematic identity (Garrison, 1955; Leyser, 2003). The alternative model proposes that 

axillary meristem initiate de novo from cells in the leaf axil (Snow and Snow, 1942; Leyser, 

2003). These two models have persisted because axillary meristem origin appears to be 

species dependent. In potato, at the time of leaf inception, meristematic cells are observed at 

the base of each leaf on the flanks of the primary shoot apical meristem (McDaniel and 

Poethig, 1988; Leyser, 2003). By contrast, in Arabidopsis, axillary meristems are not visible 

until long after leaf initiation (Gribic and Bleecker, 2000; Leyser, 2003). 

During vegetative development, axillary meristems are initiated in an acropetal order, first in 

the axils of mature leaves distant from the shoot apex and later in younger leaves. Genes 

such as LATERAL SUPPRESSOR (LAS) (Greb et al., 2003) or REGULATOR OF AXILLARY 

MERISTEMS (RAX) (Keller et al., 2006; Muller et al., 2006) are necessary during axillary 

meristem initiation to maintain the meristematic potential of leaves and to allow the 

organization of a stem cell niche (Aguilar-Martinez et al., 2007). Other gene also involved in 
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early stages of axillary meristem is REVOLUTA/INTERFASCICULAR FIBERLESS1 

(REV/IFL1) (Talbert et al., 1995). 

Branching patterns depend on a key development decision: whether axillary buds grow out to 

give a branch or whether they remain small and dormant in the axils of the leaves. This 

decision is reversibly controlled by developmental and environmental stimuli (Horvath et al., 

2003). These environmental signals are likely to be relayed through the action of plant 

hormones. Of particular importance are auxin and cytokinin, as well as a new carotenoid-

derived hormone (Simons et al., 2007; Ongaro and Leyser, 2008). 

Auxin was the first hormone linked to the regulation of shoot branching. It is known that the 

apex of the plant inhibits axillary bud outgrowth (Ongaro and Leyser, 2008). In pioneer 

experiments conducted by Thimann and Skoog (1934), they showed that auxin applied to the 

top of a decapitated plant mimics the effect of the removed apex, preventing bud outgrowth. 

Long-rang signalling promoting bud arrest is controlled both by auxin produced in the shoot 

apex and transported basipetally and by a novel carotenoid synthesized in the root and 

transported acropetally (Dun et al., 2006; Aguilar-Martinez et al., 2007). Mutations in the 

MORE AXILLARY GROUTH (MAX) genes, which control’s the synthesis and activity of the 

carotenoid-derived hormone in Arabidopsis cause an excess of branch outgrowth (Booker et 

al., 2004, 2005).  

Another hormone that is involved in shoot branching is cytokinin. In contrast to the indirect 

inhibitory action of auxin, cytokinin directly promotes bud growth (Ongaro and Leyser, 2008). 

Cytokinin levels increase in buds as they activate (Emery et al., 1998; Ongaro and Leyser, 

2008). 

Genes promoting local bud arrest within the bud have been described in monocots. They are 

teosinte branched1 (tb 1) from maize (Doebley et al., 1997) and its rice ortholog, Os tb1 (Hu 

et al., 2003; Takeda et al., 2003). These genes are expressed in axillary meristem and buds 

where they suppress growth (Hubbard et al., 2002; Takeda et al., 2003). In 2007 Aguilar-

Martinez et al. described BRANCHED1 (BRC1) and BRANCHED2 (BRC2) as the most 

closely related to tb 1 in Arabidopsis, and showed that both genes play a central role in the 

control of axillary bud development. 
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1.7. Objectives 

 

Previous works in our group put in evidence that in vitro grapevine shoots respond markedly 

when transferred from full nutrition medium to sulfate starvation. Responses were measured 

at the sulfate uptake and metabolism level and noticed as qualitative traits, namely the 

reversion of apical dominance inhibition triggered by routinely added cytokinin. Those traits 

were noticed as growth impairment and branching inhibition.  

One explanation for such symptoms is the interference of sulfur deficiency with cytokinin 

signal pathway genes or with the expression of transcription factors acting at SAM or AM 

level. Therefore, and to elucidate those hypothesis, the crosstalk between cytokinin signalling 

and sulfur status deserved further investigation. 

In the present work, Vitis experimental systems, namely callus, isolated cells and in vitro 

shoots, were used to assess the effects of sulfur deficiency through the analysis of growth 

parameters. As a second approach, taking advantage of Vitis genome sequencing, we 

performed a database search of genes associated to the cytokinin signal pathway and genes 

related with SAM and AM identity. 

Finally, the expression of the former genes was analysed by quantitative real time PCR in the 

different biological systems under sulfur sufficient and deficient conditions.  

The discussion of the results obtained so far allowed fostering tentative, certainly far from 

definitive, conclusions. 
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2. Material and methods 
 

2.1. Plant material 
 

Callus, cell suspensions and in vitro shoots of Vitis vinifera var. Touriga Nacional were used 

in all experiments. 

 
2.1.1. Growth conditions of Vitis callus 

 

Callus of Vitis vinifera cv Touriga Nacional material was maintained in the dark at 25ºC, as 

described in Jackson et al. (2001). Circa 5 g callus tissue were used as initial explant to 

prepare 4 callus pieces distributed in petri dishes with medium containing MS basal salts 

supplemented with 2.5 µM 2,4-D (2,4-dichlorophenoxy-acetic acid); 1 µM kinetin; 5 g l-1 PVP-

40T; 20 g l-1, sucrose; 2 g/l Gelrite at pH 5.7. The cultures growing in the dark, at 25 ºC, were 

sub-cultured every two weeks. Two sulfate treatments were applied: full sulfate (+S) and 

sulfate deprivation (-S). Commercial MS (Duchefa Biochemie, Haarlem, NL) (1.5 mM sulfate) 

(Murashige and Skoog, 1962) was used for +S experiments while a modified MS medium 

where sulfates were substituted for chlorates was considered –S. In the second sub-culture 

the callus in +S treatment were sub-culture to +S medium and –S treatment for –S medium. 

During the three culture cycles of two weeks, at least 4 samples per treatment were collected 

in each sub-culture (Fig. 5). 

 

 

 
 
 
 
 
 
 
 
 
 

Fig. 5 Vitis callus in MS -S and +S medium after the first week of the first growth cycle. 

‐S   +S 
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2.1.2. Growth conditions of cell suspensions 
 

Cell suspensions were obtained by adapting to liquid culture, Vitis vinifera callus material 

maintained obtained as described in 2.1.1.. Ca 4 g callus tissue was dispersed in 50 ml of 

liquid MS medium (as in 2.1.1.) in 250 ml flasks. The cultures growing in a rotary shaker at 

100 rpm, in the dark, at 25 ºC were sub-cultured weekly by diluting 25 ml culture into 25 ml of 

fresh medium. After two cycles in +S conditions two sulfate treatments were applied: full 

sulfate (+S) and sulfate deprivation (-S). During the 7 days culture cycle, samples of at least 

three flasks per treatment were collected by filtration in day 1, 4 and 7 (Fig. 6). 

The growth condition for cells without cytokinin were the same as previously described, the 

only change was the withdrawal of cytokinin from the medium. 

 

 

2.1.3. Growth conditions of in vitro shoots 

 

2.1.3.1. Gel medium (GM) 

In vitro shoots of Vitis vinifera L., var. Touriga Nacional were used as explants for in vitro 

multiplication as described in Neves et al. (1998). Explants were sub-cultured every four 

weeks into MS basal medium supplemented with 0.5 µM α-naphthaleneacetic acid (NAA), 

5.0 µM 6-benzylaminopurine (BA), 30 g L–1 sucrose, pH 5.8, and 2 g L–1 Gelrite. Cultures of 5 

explants in 250 mL Magenta vessels (Sigma-Aldrich St. Louis, MO) were maintained in a 

growth chamber under light from cool-white fluorescent lamps with 16/8h photoperiod at 50 ± 

Fig. 6 Vitis cells growing for two weeks in a modified MS without sulfate (-S) or MS (+S) in liquid
medium.  

‐S  +S
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5 µmol m-2 s-1. Temperature was 25 ± 1ºC (light) and 22 ± 1ºC (dark). For sulfate replete (+S) 

experiments full MS medium was used; for sulfate deprived experiments (-S) shoots were 

transferred to a modified MS as described above (Fig. 7). During the treatment, samples 

were collected in week two (40 shoots), 4 (60 shoots) and 7 (20 shoots). 

 

 

 

 

 

 

 

2.1.3.2. Temporary immersion system (TIS) 

In vitro shoots of Vitis vinifera L., obtained as in 2.1.3.1. were used as explants for in vitro 

multiplication in Temporary Immersion System (TIS) in the same medium composition 

(without Gelrite) and physical conditions. TIS cultures were performed in pairs of 500 mL 

flasks (Schott, Duran) one containing 15 shoots and the other 300 mL of liquid medium. After 

two cycles of multiplication in +S conditions the shoots were sub-cultured for elongation 

medium for one week, and then to root expression medium for two weeks. This system 

enables the contact between all parts of the explant with the liquid medium. A pumping 

system transfers the medium from one flask to the other holding the shoots, which were 

immersed for 4 min every three hours (Fig. 8). During the treatment, samples were collected 

in week two (15 plantlets) and week three (15 plantlets). 

 

 

 

 

 

Fig. 7 Grapevine in vitro shoots in GM growing conditions. In vitro shoots were grown for 4 weeks in
a modified MS medium without sulfate (-S) or MS (+S). 

Fig. 8 Temporary Immersion System (TIS). Grapevine in vitro shoots were grown for three weeks in
a modified MS medium without sulfate (-S) or MS (+S). 

‐S   +S 
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2.2. Determination of growth parameters 

 

2.2.1. Biomass of callus and cells 

 

Several growth parameters were register at the 2nd, 4rd and 6th weeks, for callus, and 1st, 3rd, 

4th, 6th and 7th days of culture, for cells: fresh weight (FW) and dry weight (DW). The Relative 

Growth Rate (RGR) calculated as (Wf  - Wi) / Wi, where Wf is the final dry weight at 2nd, 3rd 

week of culture and Wi is the initial dry weight at day 0. 

 

2.2.2. Growth parameters of in vitro shoots 

 

At the 2nd, 3rd week of culture several growth parameters were registered: FW, DW and RGR 

as (Wf  - Wi) / Wi, where Wf is the final dry weight at 2nd, 3rd week of culture and Wi is the 

initial dry weight at day 0, number of new branches formed in vitro and number of new 

leaves. 

 

2.3. Total chlorophyll and chlorophyll a/b ratio 

 

Extraction of total chlorophyll was carried out using 4 leaf disks (total area 113.2 mm2) and 3 

ml of Dimethyl sulfoxide (DMSO) pre-heated to 65 ºC for one hour, according with the 

method described by Hiscox et al. (1978). Optical density (OD) was measured at 645 and 

663 nm against DMSO. The chlorophyll content of the extracts was using the equations 

described by Porra et al. (1989).  

 

Chla (μg mL -1) = 12,00 X A663 – 3.11 x A645 

Chlb (μg mL -1) = 20,78 x A645 – 4,88 x A663 

Tot Chl (μg mL -1) =17,67 x A645 + 7,12 x A663 

 



Material and methods 

23 
 

These results were converted to mg Chl cm-2 leaf area (Richardson et al., 2002). For this 

analysis explants from GM and TIS were used. 

 

2.4. Sequence retrieval and database search 

 

Multiple database searches in NCBI (http://www.ncbi.nlm.nih.gov/) and Genoscope 

(http://www.genoscope.cns.fr/spip/), were performed to identify members of the cytokinin 

signalling pathway in Vitis. 

To detect putative genes involved in the Vitis cytokinin two-component signalling, 

Arabidopsis protein sequences AHK2, AHK4, AHK3, AHP3 and ARRs (A-type RR17 and 

another for B-type RR18), WUS, CLV and STM for apical meristem and BRC1, BRC2, LAS, 

RAX and REV for axillary meristem, acquired from the NCBI databases were used as 

queries and then re-searched using Vitis proteins as queries. The phylogenetic trees were 

constructed using the PHYLIP, PRODIST and NEIGHBOR programs (Felsenstein, 2005).  

After obtaining the protein sequence for each hit, the same database was used to obtain the 

full-length cDNAs of all predicted genes. 

 

2.5. Gene expression 

 

2.5.1. RNA extraction and cDNA preparation 

 

Total RNA was extracted from Vitis cells of using RNeasy plant Mini Kit (Qiagen, Hilden, 

Germany). All RNA samples were treated with RNase free DNase I (Qiagen,  Hilden, 

Germany) according to the manufacturer protocol and quantified using absorption of U.V. 

light at 260 nm. Reverse transcription was carried out using superscript III RNase H- reverse 

transcriptase priming with oligo-d(T) (Invitrogen) according to the manufacturer's 

recommendations. 

Total RNA was extracted from Vitis shoots using the method described by Reid et al. (2006). 

Tissue was ground to a fine powder in liquid nitrogen using a mortar and pestle. The powder 

was added to pre-warmed (65°C) extraction buffer (300 mM Tris HCl (pH 8.0), 25 mM EDTA, 

2 M NaCl, 2% CTAB, 2% PVPP, 0.05% spermidine trihydrochloride, and just prior to use, 2% 

β-mercaptoethanol) at 20 ml per g of tissue and shaken vigorously. Tubes were 
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subsequently incubated in a 65°C water bath for 10 min and shaken every two min. Mixtures 

were extracted twice with an equal volume of chloroform:isoamyl alcohol (24:1) then 

centrifuged at 3,500 g, 15 min at 4°C. The aqueous layer was transferred to a new tube and 

centrifuged at 30,000 g, 20 min at 4°C to remove any remaining insoluble material. To the 

supernatant, 0.1 vol 3 M NaOAc (pH 5.2) and 0.6 vol isopropanol were added, mixed, and 

then stored at -80°C for 30 min. Nucleic acid pellets (including any remaining carbohydrates) 

were collected by centrifugation at 3,500 g, 30 min at 4°C. The pellet was dissolved in 0,5 ml 

miliQ H2O and transferred to a microcentrifuge tube. To selectively precipitate the RNA, 0.3 

vol of 8 M LiCl was added and the sample was stored overnight at 4°C. RNA was pelleted by 

centrifugation at 20,000 g, 30 min at 4°C then washed with ice cold 70% EtOH, air dried, and 

dissolved in 50μl DEPC-treated water. All RNA samples were treated with RNase free 

DNase I (Qiagen) according to the manufacturer protocol. Quantification and reverse 

transcription was carried out using the same protocol as described for Vitis cells.  

 

Table I Real-time PCR primers designed from Arabidopsis sequences and validated with Vitis genome. 
Arabidopsis 

protein 
Initial Seq. from 
data base (Vitis) 

Name Primer sequence Sequences tested 
by  

Real-Time PCR 
HK’s     
AHK2 CU459264  VvCyt1  5’ GAAGTGCTGAGACAGAGCTTGAATA 3’ 

5’ CTCCATTGAATCTGTGCAGCTTAAC 3’  + 
CRE1 CU459222  VvCyt2 5’ ATTCGAGACGAGTATGCACCTGTGA 3’ 

5’ ATGATGAGAACCAAGCAGCCTGAAG 3’ + 
AHK3 CU459353  VvCyt3 5' TAGCTGCTGGTGCATTGAAGAAGTA 3' 

5' TCGACTATTGACGTTCCGTTCCATT 3' + 
AHP3     

 CU459291 VvHP1  5' CTGGCGGAGATAATACCAATGT 3' 
5' ATGTATCTCGCATTACCTGAAC 3'  

 CU459224  VvHP2  5’ AATTCGTTCAGCTGGAGGAACT 3’ 
5’ TTCAGCTGTTGGAAGGTCTTCA 3’ + 

 AM484268  VvHP3  5’ CACAGCTTCAGCAACTACAAGA 3’ 
5’ TTGTTGCTCCAACCTGAAGAGA 3’ + 

 CU459321 VvHP4  5' GAATCTCCGAGGACTACTGATG 3' 
5' AACAGTACTCGTGTTCGACAAG 3'  

A-type RR17     
 CU459263 VvRRa1  5´ TGTATGCCTGGAATGACTGGAT 3’ 

5’ TGGACGGTGGTGATGATGATAA 3’  
 CU459229  VvRRa2  5’ TTGGGTTCCTCCACCACTGTAT 3’ 

5’ ACCTTCCGATCCACATGGCTAT 3’  
 CU459265  VvRRa3  5’ AAGGAGGTTCCAGTTGTGATAA 3’ 

5’ GCTTCTGTGCTTCAAGTAACAT 3’ + 
 CU459270 VvRRa4  5’ ACTGGCTATGATCTCCTCAGAA 3’ 

5’ GCTTGCTCACATCCGATAATTG 3’  + 
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To examine gene expression, specific primer pairs were designed (Table I), using the Clone 

Manager program (Scientific & Educational Software, NC, USA). The primers were designed 

to amplify fragments between 100 and 200 bp, so that they could be used for real-time PCR, 

except a primer pair designed to amplify a larger product of VvCyt1 (750 bp). To confirm the 

amplification of the targeted genes, a PCR reaction was conducted in a Master Cycler 

Gradient thermocycler from Eppendorf, under the following conditions: 95 ºC, 3 min (initial 

polymerase activation), 94 ºC, 3 min; 40 cycles at 95 ºC, 15 s (denaturation); 61 ºC, 30 s 

(annealing); 72 ºC, 20 s (extension). PCR products were resolved on 2% (w/v) agarose gels 

run at 4 V cm-1 in Tris-acetate-EDTA buffer (TAE), along with a 1Kb plus DNA ladder 

(Invitrogen Gmb H) to confirm the presence of a single product of the desired length. 

 

 

     
Table I Real-time PCR primers designed from Arabidopsis sequences and validated with Vitis genome (Cont.). 

Arabidopsis 
protein 

Initial Seq. from 
data base (Vitis) 

Name Primer sequence Sequences tested 
by  

Real-Time PCR 
B-type RR18     

 AM434392 VvRRb1  5’ CAGACGTGGAATGAAGTCCTAA 3’ 
5’TCTGAGGTCTCTGGATCTACAA 3’  

 AM432245 VvRRb2  5’ AACCAAGATTCCCTCGGCAACCT 3’ 
5’ TACCTGCACCGTTGGCTTGATA 3’  

 AM423607 VvRRb3  5’ GATTACTCATGGTGCTTGTGAC 3’ 
5’ CTCATTCTCTTCTCCGTTCTCT 3’  

 AM460059 VvRRb4  5’ AGTAACCTTGATCCGAGTAGAA 3’ 
5’ CTGCTGGAACAACATATCTTGA 3’  

 CU459292  VvRRb5  5’ TTCGAGTTCTCGTGGTCGATGA 3’ 
5’ CATGCACCATGCTGAACACCTT 3’  + 

 CU459281 VvRRb6  5’ TCCTGGTGGTTGATGATGATCC 3’ 
5’ TGATAACAGGCAGGTCCATCTC 3’ + 

Apical Meristem 
genes 

CU459300 VvWus 5' CTGGACTCCTACAACTGACCAGATA 3' 
5' TTCTTGCCTTCGATCTTGCCGTACT 3' + 

 CU459218 VvClv 5' TTCGGTTGTCGAACCTCCAAGGATT 3' 
5' AAGTCAAGAACTCGGAGCGAACTCA 3' + 

 AM483920 VvSTM 5' TCTATGGTGATGATGATGCCTCCTA 3' 
5' ATTGTTGCTGCTGTTGTTGTTGTTC 3' + 

Axillary 
Meristem genes 

CU459233 VvBrc1 5' TCTTCCTTCTTCTACTTTCCGTCTC 3' 
5' TTGCGATCTCCTATTAGTTCATTGC 3' + 

 CU459222 VvBrc2 5' TGCCCGTAAGTTCTTTGATCTCCA 3' 
5' GGTGAGTTCCTTGATTGCTGCTTTG 3' + 

 CU459359 VvLas 5' GAGCCATGTCTGCTAGTGCTAATAC 3' 
5' CCAGAATAGCTTGATTGGCAGTGAG 3' + 

 CU460733 VvRax 5' GAGCTAACTACGTCAAGCAAGAGAT 3' 
5' ATCTTGGTTCGGATGCACAGATACT 3' + 

 CU459220 VvRev 5' AAGGCTACAGGAACTGCTGTCGATT 3' 
5' TGCCACTCCACTGCAACTATGTGAA 3' + 
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2.5.2. Purification and sequencing of DNA fragments 

 

The PCR products obtain in 2.5.1. were purified using the Wizard® SV Gel and PCR Clean 

up system (Promega, Madison, USA). The fragments were then sequenced. The 

sequencings were performed by STABVIDA (Oeiras, Portugal) and Macrogen (Seoul, 

Korea). The sequence alignments were then carried out in BioEdit program, and their identity 

confirmed by searches in NCBI database, using the translated protein product. Nucleotide 

sequences of cDNAs are presented in supplementary data. 

 

2.5.3. Gene expression analysis by Real-Time PCR  

 

Real-time PCR was performed in 20 µL of reaction mixture composed of cDNA, 0.5 µM 

gene-specific primers and master mix iQ SYBR Green Supermix (Bio-Rad, Hercules, CA) 

using an iQ5 Real Time PCR (BioRad). Reactions conditions for thermal cycling were: 95º C 

for 3 min; 40 cycles of 95ºC for 10 sec; 61º C for 25 sec; 72º C for 30 sec and 71 cycles of 

60º C for 30 sec to obtain the melt curve. The detection of PCR product was monitored by 

measuring the fluorescence after each extension step caused by the binding of SYBR green 

dye to dsDNA. Each run was completed with a melting curve analysis to confirm the 

specificity of amplification and confirm the absence of primer dimmers. Relative amounts 

were calculated and normalized with respect to Actin (Act) mRNA levels. Data were analyzed 

with the iQ5 optical system software (Bio-Rad, Hercules, CA), which calculates the threshold 

cycle (CT) and exported into a MS Excel workbook (Microsoft Inc.) for further analysis. Each 

reaction was done in triplicate and corresponding CT values were determined. The method 

described by Bovy et al. (2002) was applied to compare the level of gene expression in –S to 

+S conditions. 

First, the CT values were normalized to the CT value of Act2 (An et al., 1996), a 

housekeeping gene found to be expressed at constant level in the conditions tested. Next, 

the expression level of each gene in –S condition was expressed relative to its expression in 

+S conditions according to the equation: 

∆∆CT(+S/–S)=∆CT(-S) – ∆CT(+S) 
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Finally, the relative expression of the genes in - S conditions was expressed according to the 

expression  

2 exp ∆∆CT(+S/–S) 

where exp=exponential. 

 

2.6. Statistics 

 

For each parameter, S treatment and control were performed at least twice. Data are 

presented as mean values ± standard deviation (SD).The results were statistically evaluated 

by variance analysis (ANOVA) comparing the two treatments applied in our study (+S and –

S) using MS Excel workbook (Microsoft Inc.) software and Statistica 8 (Statsoft Inc.).  
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3. Results 

3.1. Physiology of experimental systems under sulfate deficiency 

 

The measurement of physiological parameters is a valuable mean to assess whether 

imposed conditions affect the functioning of the biological systems including model 

experimental systems. Our main aim was to determine if the cytokinin signalling pathway 

was affected, in grapevine (Vitis vinifera L.) by sulfate deficiency. For that purpose different 

experimental models were used: Vitis callus, Vitis plantlets in gel medium and Vitis plantlets 

in Temporary Immersion System (TIS). Cell cultures were also used in cytokinin withdrawal 

experiments. The effect of sulfate nutrition on cell growth as previously analyzed (Tavares 

et al., 2008) is not included in the present study. 

 

3.1.1. Growth of Vitis callus 

 

The growth analysis of plant systems is an unequivocal way to assess the effect of any 

stressful situation. In the present study, the effect of sulfur depletion on the growth of Vitis 

callus was quantified. 

The fresh weight (FW) of Vitis callus grown in full MS culture medium (+S) and a modified 

MS medium without sulfate (–S) along three cycles of two weeks is showed in Fig. 9. The 

initial fresh weight of each cycle is ca the FW at time 0. At the end of the each cycle +S Vitis 

callus almost doubled the FW when compared with that at time 0. After the second cycle the 

FW was significantly affected by sulfur deficiency and, at the fourth week the FW of -S Vitis 

callus was ca 50% the value of +S callus, and even less after 6 weeks in –S conditions. No 

further growth cycles were attempted due to growth inhibition and also to oxidation 

symptoms of the tissues (Fig. 5). 

 

 

 

 

 

 

 

 

 
Fig. 9 Fresh weigth of Vitis callus in deficient (–S) and replete (+S) conditions grown for 2, 4 and 6 weeks. 

Bars represent means of the FW of 4 Vitis callus taken randomly ± SD. --- represents the FW of callus 
at installation of each cycle. Different letters indicate significant differences at p<0.05. 
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FW combines water content and dry matter. A way of measuring the relative content of water 

or dry matter is through the ratio between dry weight and fresh weight (DW/FW). 

In Table II we can notice that –S callus increase of DW/FW ratio, from the 2nd to the 6th week, 

what indicates that Vitis callus in –S medium produces more dry matter (Table II). 

 

 

 Dw/Fw 

 2 weeks 4 weeks 6 weeks 

+S 0,030 0,028 0,034 

-S 0,032 0,041 0,048 

 

 

For characterizing callus growth, Relative Growth Rate (RGR) is one useful parameter. As 

expected, the RGR of Vitis callus grown in +S did not change significantly. After two weeks in 

–S medium, no significantly different RGR was noticed while at the fourth (second cycle) and 

sixth week (third cycle) the RGR was negative (Fig. 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Relative Growth Rate (RGR) of Vitis callus in deficient (–S) and replete (+S) sulfate conditions grown 
for 2, 4 and 6 weeks. Bars represent means of 4 callus samples taken randomly ± SD. Different letters 
indicate significant differences at p<0.05. 

Table II Dw/Fw ratio of Vitis callus in +S and –S growing conditions. Vitis callus were grown for 2, 4 and 6 
weeks in MS medium with sulfate (+S) and without sulfate (-S). 
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3.1.2. Growth of Vitis cells in cytokinin deficiency 

 

Cell biomass was used to assess the effect of cytokinin on the growth of Vitis cells. 

The FW of Vitis cells grown for 7 days in MS medium with or without cytokinin is presented 

in Fig. 11. The biomass of Vitis cells was not significantly affect by cytokinin depletion 

during de first 5 days of treatment, only in day 7 the FW of cells without cytokinin was lower 

than in control cells (Fig.11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.3. Growth of in vitro shoots 

 
3.1.3.1. In gel medium (GM) 

 

3.1.3.1.1. Fresh Weight and Relative Growth Rate 

 

The FW of grapevine shoots grown in +S and –S MS gel medium along a 4 weeks culture 

cycle and after the transfer of –S plantlets for more two weeks into –S medium, is presented 

in Fig. 12 while Fig. 13 represents the RGR obtained at the same time points. The FW of 

shoots was significantly affected by the sulfur deficient conditions: +S shoots doubled in FW 

after 4 weeks when compared to time 0, while -S in vitro shoots showed no increase in FW in 

any of the reported time points (Fig. 12). Consequently RGR of –S Shoots was not far from 

null (Fig. 13). 

 

Fig. 11 Fresh weight of Vitis cells grown for 7 days in replete (+S) MS medium in the absence (-Cyt) or 
presence (+Cyt) of cytokinin. Bars represent means of the FW taken randomly ± SD.  
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3.1.3.1.2. Branching 

 

The raised branching, verified in in vitro multiplication, is based on the inhibition of apical 

dominance by exogenous cytokinin addition. The modification of the branching rate by – S 

nutrition could result from an effect of cytokinin signal transduction. We verified that the 

multiplication rate of +S shoots increased along the 4 weeks culture cycle , while the number 

of shoots maintained constant in –S shoots (Fig. 14). 

 

Fig. 12 Fresh weight of grapevine in vitro shoots in –S and +S growing conditions. In vitro shoots were grown 
for 2, 4 and 6 weeks in medium without (-S) and with (+S) sulfur. Each bar is the mean of the FW of ten 
in vitro shoots ± SD. Different letters indicate significant differences at p<0.05. 

Fig. 13 Relative Growth Rate (RGR) of in vitro shoots in deficient (–S) and replete (+S) multiplication 
conditions grown for 2, 4 and 6 weeks. Bars represent means of 40 (2nd week), 60 (4th week) and 20 (6th 
week) samples taken randomly ± SD. Different letters indicate significant differences at p<0.05. 
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The number of leaves was also affected by the –S conditions of the medium. +S conditions 

led to a higher number o leaves per shoot, especially because a higher number of branches 

were observed in this condition. However the number of leaves produced per branch was 

similar in –S and +S media, with a slight higher value in the last medium (results not shown). 

 
3.1.3.1.3. Total chlorophyll and chlorophyll a/b ratio 

 

As expected, the total chlorophyll content of +S V. vinifera shoots did not change during the 4 

weeks of multiplication but the –S conditions affected significantly the total chlorophyll 

content (Fig. 15), which decreased along the 6 weeks multiplication period. After 6 weeks in 

–S medium the shoots presented visible symptoms of chlorosis. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15 Total chlorophyll (mg cm-2) in leaves of in vitro shoots grown for 2, 4 and 6 weeks in deficient (–S) 
and replete (+S) multiplication conditions. Bars represent means of 10 samples taken randomly ± SD. 
Different letters indicate significant differences at p<0.05. 

Fig. 14 Number of shoots produced by one single node of in vitro shoots grown for 2, 4 and 6 weeks in 
deficient (–S) and replete (+S) multiplication conditions. Bars represent means of 40 (2nd week), 60 (4th 
week) and 20 (6th week) samples taken randomly from two independent experiments ± SD. Different 
letters indicate significant differences at p<0.05. 
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The chlorophyll a/b ratio presented similar values in the two conditions studied, so the 

decrease of total chlorophyll must indicate a slight tendency for a higher decrease in 

chlorophyll b (Fig. 16).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.3.2. In Temporary Immersion System (TIS) 

 

The use of TIS has proven to be an alternative to GM as an efficient propagation technique 

in what concerns plantlet morphology and physiology. The renovation of head-space 

atmosphere approaches TIS of autotrophic conditions. So the TIS was chosen to study the 

effect of the absence of sulfate in growth condition more close to autotrophic growth. 

 

3.1.3.2.1. Branching 

 

The –S multiplication medium affected drastically the multiplication rate of the in vitro shoots. 

After two weeks in +S multiplication medium V. vinifera shoots tripled the initial number of 

branches, while –S only doubled (Fig. 17) with an average of two branches per shoot. After 

three weeks in +S the majority of the plantlets (new roots start protruding at this time point) 

showed three or more growing buds, with an average of 5 new branches per plantlet, while in 

–S plantlets the highest number of growing buds was 4, with an average number of three, 

and very small in size (Fig. 17). 
 

 

Fig. 16 Chlorophyll a/b ratio in leaves of in vitro shoots grown for 2, 4 and 6 weeks in deficient (–S) and 
replete (+S) multiplication conditions. Bars represent means of 10 samples taken randomly ± SD. 
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In TIS culture, –S shoots started to show symptoms of chlorosis, after only two weeks in 

culture. The chlorosis was the result of an alteration of total chlorophyll in the plantlet (Fig. 

18). 

 

 

3.1.3.2.2. Total chlorophyll and chlorophyll a/b ratio 

 

In TIS the total chlorophyll content of +S shoots increased slightly at the third week of 

multiplication. The –S conditions affected significantly the total chlorophyll content, 

decreasing at the second week and attaining a value not higher than 30% the +S at the third 

week (Fig. 19). After two weeks in –S medium the shoots showed already visible symptoms 

of chlorosis. (Fig. 18) 

Fig. 18 V. vinifera shoots grown for two weeks in deficient (–S) and full (+S) sulfate conditions in TIS,
(n=15 shoots).  

Fig. 17 Number of shoots produced by one single node of in vitro shoots grown for 0, 2 and 3 weeks in 
deficient (–S) and replete (+S) multiplication conditions. Bars represent means of 30 (1st week), 6 
(2nd week) and 15 (3rd week) samples taken randomly ± SD. Different letters indicate significant 
differences at p<0.05. 
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The chlorophyll a/b ratio decreased in –S plantlets along the multiplication cycle, possibly 

due to a higher decrease in chlorophyll a (Fig. 20). 

 

 

 

 

 

 

 

 

 

 

 

 

3.2. Identification and characterization of genes associated with cytokinin signalling 

 
Sulfur affects plant by a decreasing its growth. Cytokinin is an essential plant hormone that 

controls various aspects of plant including plant growth. The effect of sulfur may be caused 

by a disruption in cytokinin signal pathway or an alteration of apical and axillary meristems. 

Fig. 19 Total chlorophyll (mg cm-2) in leaves of in vitro shoots in TIS grown for three weeks in sulfate 

deficient (–S) and replete (+S) multiplication conditions ± SD. Different letters indicate significant 

differences at p<0.05.

Fig. 20 Ratio chlorophyll a/b in leaves of in vitro shoots grown for three weeks in sulfate deficient (-S) and 

replete (+S) multiplication conditions. Different letters indicate significant differences at p<0.05. 
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The sequencing of the Vitis genome allowed a molecular analysis of the genes associated to 

the former mechanisms.  

Our first approach was to evaluate the phylogenetic relationship between Vitis cytokinin 

signalling genes and the annotated genes in other species. For that purpose we performed 

phylogenetic analysis by comparing different sequences through alignment techniques 

 
 

3.2.1. Cytokinin receptor (HK) 

 

Using the cytokinin receptors annotated in Arabidopsis and deposited at NCBI Database, 

AHK2, CRE1/AHK4, and AHK3, as initial queries, we performed a database search and 

identified three Histidine Kinases (HK) genes in Vitis genome, VvCyt1, VvCyt2 and VvCyt3. 

As the cytokinin receptors described so far, the VvCyt genes encode proteins with a CHASE 

domain, a Histidine Kinase A domain, a Histidine kinase-like ATPase domain and a signal 

receiver domain (Fig. 2). The phylogenetic analysis of the amino acid sequences identified a 

high degree of similarity to Arabidipsis, maize and rice cytokinin signalling HKs. More 

specifically, VvCyt1 shares 65% identity with AHK2, VvCyt2 is similar to CRE1/AHK4 in 69% 

of the aminoacids and VvCyt3 has a high correlation with AHK3, sharing 68% homology, and 

with HKs from Lupinus and maize. Therefore, there is a strong probability that these proteins 

correspond to cytokinin HK receptors in Vitis (Fig. 21). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21 Phylogenetic tree for HKs. The circled assignments correspond to sequences analyzed by real
time PCR for Vitis cells gene expression. The phylogenetic tree was constructed using the PHYLIP
programs, PRODIST and NEIGHBOR (Felsenstein, 2005). 
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3.2.2. Histidine-containing phosphotranmitter (HPt) 

 

A database search using the Arabidipsis Histidine-containing phosphotransmitter protein, 

AHP3, as initial query, four HPt genes were identified in Vitis, but only two (VvHP2 and 

VvHP3) were used for further studies. VvHPs encode proteins with a conserved Histidine 

Phosphotransfer domain (Fig. 2), involved in signalling through a two part component 

systems in which an autophosphorylating histidine protein kinase serves as a phosphoryl 

donor to a response regulator protein. The amino acid sequence of VvHP3 shares 59% 

identity with Arabidopsis AHP1 while VvHP2 shares 72% homology with Arabidopsis AHP4 

and is closer to some rice sequences, (Fig. 22). 

 

 

 

 

 

 

 

 

 

 

 

3.2.3. A-type response regulator (RRa) 

 

A database search using Arabidopsis ARRa17 protein as query, identified four Vitis RRas 

aminoacid sequences corresponding to the coding genes, from which two (VvRRa3 and 

VvRRa4) were used for further studies. VvRRas encode a signal receiver domain, known as 

REC, which receives the signal from the sensor partner (HPt) in a two-component system 

mechanism (Fig. 2). The aminoacid sequence of VvRRa3 shares 74% identity with ARRa17 

and 67% identity to ARRa16, while VvRRa4 is closer to rice RRa9 and Z. mays RRa6 (72% 

and 67% identity, respectively) (Fig. 23). 

 

Fig. 22 Phylogenetic tree for HPs. The circled assignments correspond to sequences analyzed  by real
time PCR for Vitis cells gene expression. The phylogenetic tree was constructed using the PHYLIP
programs, PRODIST and NEIGHBOR (Felsenstein, 2005). 
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3.2.4. B-type response regulator (RRb) 

 

A database search using Arabidopsis ARRb18 protein as query identified four RRbs genes in 

Vitis, but only two (VvRRb5 and VvRRb6) were used for further studies. B-type RRs encode 

a signal receiver domain which, as the A-type RRs, receives the signal from the sensor 

partner (HPt) in a two-component system mechanism (Fig. 2). The aminoacid sequence of 

VvRRb5 is closer to ARRb11, with an identity of 56%, while VvRRb6 is closer to ARR18 and 

Z. mays and rice RRb9, with a homology of 45% (Fig. 24). 

 

 

 

 

 

 

 

 

 

 

Fig. 23 Phylogenetic tree for RRa. The circled assignments correspond to sequences analyzed by real
time PCR for Vitis cells gene expression. The phylogenetic tree was constructed using the PHYLIP
programs, PRODIST and NEIGHBOR (Felsenstein, 2005). 

Fig. 24 Phylogenetic tree for RRb. The circled assignments correspond to sequences analyzed by real
time PCR for Vitis cells gene expression. The phylogenetic tree was constructed using the PHYLIP
programs, PRODIST and NEIGHBOR (Felsenstein, 2005). 
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3.3. Analysis of RT-PCR products 

 

3.3.1. Cytokinin signalling genes in Vitis cells 

 
For this point of the study cell suspensions were selected in order to deal with a 

homogeneous experimental system well adapted to molecular analysis, where sulfur and 

cytokinin manipulation in short periods was easy to achieve in short periods. 

The amplification of transcripts of Vitis cytokinin signalling genes with specific primers was 

confirmed by PCR analysis. The products were resolved on agarose gels (percentage of 

agarose (w/v) indicated in the legends) for confirming its presence in the cells suspension. 

When the presence of predicted fragments was identified, these fragments were then 

sequenced. 

The analyses of the gels revealed that primers designed for Vitis cytokinin receptors 

amplified fragments of the expected size, confirming the expression of cytokinin receptors in 

Vitis cells. As expected, primers designed for a conserved region of VvCyt1 (FJ822975) 

amplified a fragment of 751 bp while the primers designed for VvCyt2 and VvCyt3 

(FJ822976) amplified fragments of 127 bp and 190 bp, respectively (Fig. 25) 

 

 

 

 

 

 

 

 
 
 
 
 

In the PCR preformed with primers designed for VvHP2 (FJ822977), VvHP3 (FJ822978) and 

VvHP4 (FJ822979) we could verify the presence of the predicted fragments with 293 bp, 309 

bp and 208 bp, respectively (Fig. 26). Only the primers designed for VvHP1 never amplified 

any fragment. It is reasonable to assume that VvHP1 is not expressed in Vitis isolated cells. 

Fig. 25 PCR products from Vitis cells resolved on 1.5 % (W/V) agarose gel, 1) VvCyt1, 2) VvCyt2 and 3) 
VvCyt3. 
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The analyses of RR PCR products allowed to identify the presence of the predicted products 

with all primers pairs. The amplification of VvRRa3 and VvRRa4 showed more fragments 

than expected (Fig. 27 A), which, in a latter Real-Time PCR analysis, did not cause any 

interference. Primers designed for VvRRa1 (FJ822980), VvRRa2 (FJ822981), VvRRa3 

(FJ822982) and VvRRa4 (FJ822983) amplified fragments with 328 bp, 199 bp, 150 bp, 169 

bp, respectively. In the PCR preformed with primers designed for VvRRb1 (FJ822984), 

VvRRb2, VvRRb3 (FJ822985), VvRRb4 (FJ822986), VvRRb5 (FJ822987) and VvRRb6 

(FJ822988) we could verify the presence of the predicted fragments with 271 bp, 247 bp, 270 

bp, 206 bp, 268 pb and 220 bp respectively (Fig. 27 B). 

 

 
 
 
 
 
 
 
 

 
 

1Kb  1  2  3  4 5 6 7  8  9  10 1Kb 

Fig. 27 RR PCR products resolved on 1% (w/v) agarose gels. A) A-type RR and B) B-type RR. 1) VvRRa1,
2) VvRRa2, 3) VvRRa3, 4) VvRRa4, 5) VvRRb1, 6) VvRRb2, 7) VvRRb3, 8) VvRRb4, 9) VvRRb5,
and 10) VvRRb6. 
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Fig. 26 HP PCR products resolved on 1% (w/v) agarose gels. 1) VvHP2, 2) VvHP3, 3) VvHP4. 

31Kb 

100 – 

300 – 
500 – 
650 – 
850 – 

100 – 

300 – 
500 – 
850 – 
650 – 



Results 

41 
 

3.3.2. Cytokinin signalling and meristem identity genes in TIS plantlets 

 
Plantlets growing in TIS culture have the advantage of the close similarity to autotrophic 

plants although growing in controlled, easy to manipulate, in vitro conditions.  

The analyses of the gels where PCR products were resolved revealed that, as in isolated 

cells, the primers designed for VvHP1 never amplified any fragment, neither in root nor in the 

shoot, reinforcing the idea that this gene is not expressed in Vitis. The primers for VvHP2 

and VvRRb2 (Fig. 28, B, 4, 5, 13) did not amplify any fragment in root samples while all the 

other primers amplified the shoot and root predicted fragments, with sizes equivalent to cell 

fragments (Fig. 28 A and B). 

 
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

12  13  14  15 16  17 

Fig. 28 PCR products resolved on 1.5 % (W/V) agarose gel. A) Shoot and B) Root. 1) VvCyt1, 2) VvCyt2,
3) VvCyt3, 4) VvHP1, 5) VvHP2, 6) VvHP3, 7) VvHP4, 8) VvRRa1, 9) VvRRa2, 10) VvRRa3, 11)
VvRRa4, 12) VvRRb1, 13) VvRRb2, 14) VvRRb3, 15) VvRRb4, 16) VvRRb5, 17) VvRRb6. 
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The branching results in response to S depletion prompted for the analysis of genes 

associated to apical and axillary meristem cell identity. For that purpose and using the genes 

annotated in Arabidopsis and deposited at NCBI Database, WUS, CLV3 and STM as genes 

regulated in apical meristem cells and BRC1, BRC2, LAS, RAX and REV regulated in axillary 

meristem, as initial queries, we performed a database search and identified Vitis 

homologous, respectively VvWUS (FJ822989), VvCLV3 and VvSTM, and genes VvBRC1, 

VvBRC2, VvLAS (FJ822990), VvRAX and VvREV.  

In the analyses of PCR products with primers designed for VvWUS no fragments were 

amplified in roots and only a slight presence was observed in shoots. The other two apical 

meristem genes were present in gels prepared with root and shoot cDNA. These products 

have the predicted sizes of 135 bp, 106 bp and 102 pb respectively for VvWUS, VvCLV and 

VvSTM (Fig. 29 A). All axillary meristem genes were present in the analyzed tissues (Fig. 29 

B). The PCR fragments from shoot tissue amplified with primers for VvBRC1, VvBRC2, 

VvLAS, VvRAX and VvREV showed the expected sizes of 176 bp, 106 bp, 120 bp, 117 bp 

and 109 bp, respectively.  
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1Kb 7  8  9 10 11 

Fig. 29 Apical meristem and axillary meristem PCR products resolved in 1 % (w/v) agarose gels in Shoot
(S) and root (R). A) apical meristem genes, B) axillary meristem genes. 1) VvWUS S, 2) VvWUS R, 3)
VvCLV S, 4) VvCLV R, 5) VvSTM S, 6) VvSTM R, 7) VvBRC1 S, 8) VvBRC2 S, 9) VvLAS S, 10)
VvRAX S, 11) VvREV S. 
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3.4. Expression of cytokinin signalling and apical and axillary meristem genes: effect 

of –S conditions 

 

Expression levels of transcripts associated with cytokinin signalling pathway and apical and 

axillary meristem identity were analysed by qrt RT-PCR. Preliminary results from dilution 

analysis of the whole set of transcripts identified the candidate genes for further analysis. 

The expression patterns of VvCyt1, VvCyt2, VvCyt3, VvHP2, VvHP3, VvRRa3, VvRRa4, 

VvRRb5, VvRRb6, VvWUS, VvCLV, VvSTM, VvBRC1, VvBRC2, VvLAS, VvRAX and VvREV 

were then quantified by qrt RT-PCR.  

 

3.4.1. Vitis cells in the presence of cytokinin 

 
In cells growing in the presence of cytokinin, VvCyt1 and VvCyt3 were not affected by the 

absence of sulfur. The expression levels of VvCyt1 and VvCyt3 did not change significantly 

along the 7 days treatment. As presented in Fig. 30, VvCyt2 was the only cytokinin receptor 

gene that responded to sulfur deficiency with a downregulation of 10 times as compared to + 

S, at day 7. 

 

 

 

 

 

 

 

 

 

Fig. 30 Expression levels of VvCyts genes as quantified by real time PCR at days 1, 4 and 7 of -S 
treatment in the presence of cytokinin. 
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Concerning the expression of HPs genes, VvHP2 seemed to be unaffected by the –S during 

the 7 days of treatment. Only VvHP3, showed an 18 times decrease of its expression at day 

7 (Fig. 31). 

 

 

 

 

 

 

 

The analysis of VvRRs genes expression showed that B-type VvRRs were unaffected by 

sulfur depletion. The first 4 days of treatment didn’t show any response in the expression of 

tested genes. Only exception is VvRRa4, whose expression was reduced of about 7 times, at 

day 7 (Fig. 32). 

 

 

 

 

 

 

 

 

 

 

Fig. 31 Expression levels of VvHPs genes as quantified by real time PCR at days 1, 4 and 7 of -S 
treatment in the presence of cytokinin. 

Fig. 32 Expression levels of VvRRs genes as quantified by real time PCR at days 1, 4 and 7 of -S 
treatment in the presence of cytokinin. 
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The meristem genes VvWUS, VvClv and VvSTM are responsible for apical meristem identity 

and respond to hormonal regulation during meristem cell division. In the present cell system, 

although there is the presence of cytokinin, these genes were not affected by sulfur 

starvation (Fig. 33), during the 7 day treatment.  

 

 

 

 

 

 

 

 

 

 

3.4.2. Vitis cells in the absence of cytokinin 

 
It is well documented that cytokinin signal is regulated by components of its own signal 

pathway. To evaluate if the absence of cytokinin had any influence in the expression of the 

studied genes, a parallel experiment was conducted maintaining S treatment but removing 

the hormone from the medium. 

As shown in Fig. 34, the general response of the expression of cytokinin receptors was 

similar to that verified in the presence of the hormone. However, at day 7 the three receptor 

genes showed a tendency for downregulation with VvCyt1 showing a downregulation of 7 

times in –S as compared to the control +S, when in the presence of cytokinin that 

downregulation attained the expression of VvCyt2 (compare Fig. 34 to Fig. 30). 

 

 

Fig. 33 Expression levels of Vitis apical meristem genes as quantified by real time PCR at days 1, 4 and 
7 of -S treatment in the presence of cytokinin. 
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Considering the expression of HPs genes at day 7, VvHP2 had an alteration of its expression 

by downregulation of 5 times in –S when, in the presence of cytokinin, the downregulation 

was verified for VvHP3 (compare Fig. 35 to Fig. 31). 

 

 

 

 

 

 

 

 

The analysis of VvRRs genes, showed that only VvRRa3 was affected by sulfur depletion in 

the absence of cytokinin, with an up-regulation of five fold in day one and more than 10 times 

in day 7, a response significantly different of that obtained in the presence of cytokinin where 

the expression of this transcript was unaffected by the S starvation (compare Fig. 36 to Fig. 

32). 

Fig. 34 Expression levels of VvCyts genes as quantified by real time PCR at days 1, 4 and 7 of -S 
treatment in the absence of cytokinin. 

Fig. 35 Expression levels of VvHPs genes as quantified by real time PCR at days 1, 4 and 7 of -S 
treatment in the absence of cytokinin. 

VvCyt

1 4 7-10.0

-7.5

-5.0

-2.5

0.0

2.5
VvCyt1
VvCyt2
VvCyt3

Ex
pr

es
si

on
 le

ve
l r

el
at

iv
e 

to
 +

S

Days

VvHP

1 4 7

-10.0

-7.5

-5.0

-2.5

0.0

2.5
VvHP2
VvHP3

DaysE
xp

re
ss

io
n 

le
ve

l r
el

at
iv

e 
to

 +
S



Results 

47 
 

 

 

 

 

 

 

 

The apical meristem genes (VvWUS, VvClv and VvSTM) in cells growing in the medium 

without cytokinin have all the same behaviour as in the presence of the hormone. The 

expression of these transcripts was detected but they were not affected by sulfur or cytokinin 

starvation during the 7 days of treatment (compare Fig. 37 to Fig. 33). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 36 Expression levels of VvRRs genes as quantified by real time PCR at days 1, 4 and 7 of -S 
treatment in the absence of cytokinin. 

Fig. 37 Expression levels of Vitis apical meristem genes as quantified by real time PCR at days 1, 4 and 
7 of -S treatment in the absence of cytokinin. 
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3.4.3. Vitis GM shoots 

 
In full heterotrophic conditions as it occurs in GM medium, VvCyt genes were unaffected by 

the absence of sulfur since the expression levels of all VvCyt were not significantly different 

after 4 weeks treatment (Fig. 38). 

 

 

 

 

 

 

 

In the cytokinin signalling pathway HP genes come downstream of the cytokinin receptors. A 

slight downregulation of three times during the 4 weeks in –S medium was measured for 

VvHP2 (Fig. 39). 

 

 

 

 

 

 

 

Fig. 38 Expression levels of VvCyt genes as quantified by real time PCR in GM after 4 weeks -S 
treatment. 

Fig. 39 Expression levels of VvHP genes as quantified by real time PCR in GM after 4 weeks -S 
treatment. 
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A-type RR are known as cytokinin primary-response genes. The analysis of VvRR genes 

expression revealed that only A-type response regulators responded to –S condition. As in 

cells in the absence of cytokinin VvRRa3 was the only transcript to respond to -S conditions 

but, while an up-regulation was measured in isolated cells (Fig. 36), here its transcription 

level was reduced by more than three fold (Fig. 40). 

 

 

 

 

 

 

 

The transcripts of all apical meristem genes were expressed in shoots, with VvSTM being 

affected by sulfur starvation by a downregulation of about 8 times (Fig. 41). The transcription 

level of the other apical meristem genes (VvWUS and VvClv) are not affected by the 

absence of sulfur. 

 

 

 

 

 

 

 

Fig. 40 Expression levels of VvRRs genes as quantified by real time PCR in GM after 4 weeks -S 
treatment. 

Fig. 41 Expression levels of Vitis apical meristem genes as quantified by real time PCR in GM after 4 
weeks -S treatment. 
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In the analysis of axillary meristem genes expression only VvRAX and VvREV were not 

affected by –S condition. The other genes, VvBRC1, VvBRC2 and VvLAS were 

downregulated in their expression level by 8 and 11 times, respectively, for the former while 

VvLAS had a severe downregulation of more than 40 times (Fig. 42). 

 

 

 

 

 

 

 

 
3.4.4. Vitis TIS plantlets 

 
As referred previously, the tissue culture system TIS combines sterile heterotrophic 

conditions in liquid temporary immersion with the positive effects of renewable aeration. 

Altogether, this micropropagation technique occurs in conditions similar to autotrophic 

environment. 

Concerning the expression of VvCyts genes in plantlet shoots under +S and –S nutrition, 

only VvCyt2 was upregulated, by ca 7 times. Root VvCyt genes seem not be affected by 

sulfur starvation, with low and equivalent expression levels (Fig. 43). 

 

 

 

 

 

Fig. 43 Expression levels of VvCyt genes in TIS plantlets under +S and of -S treatment for two weeks as 
quantified by real time PCR. 

Fig. 42 Expression levels of Vitis axillary meristem genes as quantified by real time PCR in GM after 4 
weeks -S treatment. 
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The expression of HPs genes as shown in Fig. 43, VvHP2 and VvHP3, in the shoot, seemed 

to be unaffected by -S treatment, while in root VvHP2 had an upregulation of 8 times relative 

to +S (Fig. 44). 

 

 

 

 

 

 

 

Concerning the level of expression of VvRRs genes revealed that A-type response regulators 

do not respond to sulfur starvation either in shoots or in roots (Fig. 45). VvRRbs showed a 

tendency for a slight down-regulation of ca 4 times in the shoot and in the root, but only for 

VvRRb6, with an expression decrease of more than 3 fold (Fig. 45). 

 

 

 

 

 

 

 

The transcripts of all apical meristem genes were detected in the plantlet shoot. In the root 

VvWUS transcripts were absent. None of the expressed genes were responsive to sulfur 

starvation (Fig. 46). 

Fig. 44 Expression levels of VvHP genes in TIS plantlets under +S and of -S treatment for two weeks as 
quantified by real time PCR. 

Fig. 45 Expression levels of VvRR genes in TIS plantlets under +S and of -S treatment for two weeks as 
quantified by real time PCR. 
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The transcripts of all axillary meristem genes were detected in the shoot and root of TIS 

plantlets. As the apical meristem genes, the transcription rates of axillary genes (VvBRC1, 

VvBRC2, VvLAS, VvRAX and VvREV) were not affected by sulfur starvation (Fig. 47). 

 

 

 

 

 

 

 

 

Fig. 46 Expression levels of Vitis apical meristem genes in TIS plantlets under +S and of -S treatment 
for two weeks as quantified by real time PCR. 

Fig. 47 Expression levels of Vitis axillary meristem genes in TIS plantlets under +S and of -S treatment 
for two weeks as quantified by real time PCR. 
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4. Discussion 
 

Due to its involvement in essential metabolic pathways, sulfur has a marked effect on plant 

growth and productivity. Sulfur used by crop plants resulted from sulfur-containing fertilizers 

and/or sulfur in rainfall (Jolivet, 1993). Due to environmental policies both these sources 

were significantly reduced. Recent studies indicate that sulfur deficiency can be a limiting 

factor to crop yield and quality (Saito, 2004; Hawkesford, 2005). Therefore, former research 

on excessive sulfur due to atmospheric pollution moved to the effects of S-deficiencies. The 

beneficial effects of sulfur as a potent agent against grapevine pathogens are reported since 

ancient times (Rausch, 2007). 

Cytokinins are essential plant hormones that control cell division, shoot meristem initiation, 

leaf and root differentiation, chloroplast biogenesis, stress tolerance and senescence (Müller 

and Sheen, 2007). Cytokinin was found to be a negative regulator of sulfur acquisition 

(Maruyama-Nakashita et al., 2004) by down-regulating the expression of sulfate transporter 

genes and the sulfate uptake, both induced by sulphur limitation. Maruyama-Nakashita et al. 

(2004) suggest those two independent modes of regulation for sulfate acquisition, one 

dependent on sulfate depletion and one dependent on cytokinin. The evidence for the 

involvement of cytokinin signalling –S response came from the genetic study of the cytokinin 

receptor mutant CRE1 (Maruyama-Nakashita et al., 2004). Our main aim was to assess the 

influence of sulfur starvation on Vitis cytokinin signalling pathway and in meristem identity 

genes. 

Plant model systems analysed in controlled experimental conditions are useful tools to 

assess limitant nutrient situations as it is the case for sulfate deficiency. In a previous study 

with Vitis cell cultures sufate proved to be essential for normal growth (Tavares et al., 2008). 

Here we show that in callus, a second Vitis model system applied in the present study, fresh 

weight was significantly affected by sulfur deficiency. Although callus fresh weight in the 

absence of sulfate was not significantly different from full sulfate conditions in the first two 

weeks certainly due to previous sulfate accumulation, in the fourth and sixth week in –S the 

callus fresh weight reduced drastically comparing to the control. These results are 

corroborated by RGR data, which were negative in callus in –S medium from the fourth week 

ahead. In order to analyse a differentiated system under manipulated nutrient conditions, in 

vitro cultures of grapevine shoots in gel medium (GM) were used. In vitro shoots in -S 

maintained the initial fresh weight and RGR not far from null, confirming the need of sulfate 

for normal growth. As expected, the –S conditions affected significantly the total chlorophyll 
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content, confirming the impairment of basic physiological mechanisms by the lack of a 

macronutrient as sulfur. 

Most of the sulfate, as well as nitrate, taken up by plants is used in protein synthesis. In plant 

cell cultures –S condition often results in the accumulation of free amino acids in parallel with 

a decrease in protein content (Amâncio et al., 1997). Furthermore, when external S 

concentrations are low, plants do not redistribute S compounds to growing tissues, with an 

immediate response at growth and chlorophyll content levels (Cram, 1990). 

Temporary Immersion System (TIS) has proven to be an alternative to gel medium (GM) as 

an efficient propagation technique in what concerns plantlet morphology and physiology 

(Lorenzo et al., 2001; Escalona et al., 2003; Aragón et al., 2005). Multiplication of Vitis 

shoots in –S medium confirmed the use of this culture method since –S reduced to ca 50% 

the multiplication rate, a suitable parameter for validating the hypothesis that the effect of S 

depletion can operate through cytokinin signalling.  

Multiplication by tissue culture techniques grounds on the reversion of apical dominance by 

cytokinins. The branch impairment measured as a reduction in the number of new shoots in 

the shoot system used in the present study was only clearly verified from the third week on; 

the absence of effect during the first two weeks is certainly due to previous sulfate 

accumulation. These results can indicate that cytokinin signal pathway or the genes 

necessary for apical or axillary meristem identity are affected by sulfate starvation. 

Then our first approach was to test the effect of S depletion on cytokinin transduction 

signalling genes. 

It has been demonstrated that cytokinin is sensed by membrane-located HK receptors that 

transmit the signal by a multi-step phosphorelay (HPs) to the nucleus RRs that activate or 

repress transcription (Kiba et al., 2003). The signal is perceived and transmitted by a 

phosphorelay system through a complex form of the two-component signalling pathway 

which has long been known in prokaryotes and lower eukaryotes (Hwang and Sheen, 2001). 

Recent studies have described the major components of the cytokinin signalling pathway in 

Arabidopsis (Hwang and Sheen, 2001) maize (Asakura et al., 2003) and rice (Ito and Kurata, 

2006). Whereas Vitis genome was recently published (Jaillon et al., 2007; Velasco et al., 

2007) it was possible to analyse for the first time the pathway in this species, providing new 

insights into Vitis cytokinin signalling.  
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From database searches we identified three (HKs) cytokinin receptors, three 

phosphotransfer proteins (HPs), 4 A-type RRs and 6 B-type RRs. The three Vitis cytokinin 

receptors VvCyt1, VvCyt2 and VvCyt3 maintain a conserved CHASE domain, a His Kinase A 

domain and a Signal receiver domain, confirming them as cytokinin Histidine Kinases 

receptors. The phylogenetic analysis of Vitis receptors showed variable but high degree of 

homology (65 %) between Arabidopsis and Vitis. The degree of homology (58 %) to genes of 

the monocots maize and rice point to ancestral evolution of the pathway (Müller and Sheen, 

2007). 

Downstream of the cytokinin receptor are the HP genes. From the 4 HP genes present in 

Arabidopsis only VvHP1 was not expressed in any Vitis tissues analyzed so far. The three 

HPt genes (VvHP2, VvHP3 and VvHP4) identified in Vitis genome encode a Histidine 

Phosphotransfer domain common to all HPts. The phylogenetic analysis of Vitis HPs genes 

clustered into two groups, one formed by sequences homologous to Arabidopsis, and the 

second group enclosing sequences similar to rice, confirming the conservation of the 

pathway during evolution process (Müller and Sheen, 2007). 

The phosphate group present in HPs is then transferred to RRs (Hwang and Sheen, 2001). 

The RRs are categorized into two groups. Ten A-type response regulators genes were 

annotated in Arabidopsis genome while in Vitis only 4 genes were identified so far. The 

presence of A-type RRs in other species, e.g. rice, and the degree of homology of Vitis 

genes suggests they may play a similar role to A-type ARRs. 

The B-type RRs form the other RR group. These genes mediate the cytokinin signal to A-

type RR. Comparing to ten B-type ARRs we have identified 6 Vitis B-type response 

regulators. The degree of homology of Vitis genes also suggests that they may play a similar 

role to B-type ARRs.  

These results confirm that the “two-component system” predicted for cytokinin signalling 

pathway in Arabidopsis and rice also applies to Vitis. According to Müller and Sheen (2007) 

cytokinin signalling pathway is conserved in all plant species, suggesting an evolutionary 

conservation of this pathway. 

 

Real-time PCR is increasingly used in plants to study the expression patterns of particular 

genes in different experimental conditions, allowing the detection of a given target gene in a 

rapid, specific and sensitive manner (Gachon et al., 2004). Therefore to ascertain the effects 



Discussion 

56 
 

of –S conditions, real-time PCR was elected to quantify the expression of key genes of Vitis 

cytokinin signalling pathway. 

Explants of the cre1-1 mutant, which has a point mutation in the Histidine Kinase domain, 

showed a lack of typical cytokinin responses such as cell proliferation and subsequent shoot 

formation (Hwang and Sakakibara, 2006). The downregulation of VvCyt1 and VvCyt2 in 

sulfur deficient isolated cells irrespectively to the presence of cytokinin suggests that 

cytokinin receptors are not induced by the availability of the hormone. The lack of response 

to sulfur depletion of cytokinin receptor genes in Vitis shoots steers the different response of 

these genes to sulfur in dedifferentiated and differentiated cells.  

AHPs play a major role in cytokinin signalling, and the quintuple Arabidopsis ahp mutant 

(ahp1,2,3,4,5) has various abnormalities in growth and development, including reduced 

fertility, increased seed size, reduced vascular development, and a shortened primary root 

(Hutchison et al., 2006). The expression of HPs genes (VvHP2 and VvHP3) in isolated cells 

and shoots followed an equivalent pattern to cytokinin receptor genes, confirming the 

different regulation occurring in isolated cells and differentiated tissues. 

Regarding VvRRa3 and VvRRa4 in –S isolated cells, the presence or absence of cytokinin 

affected their expression differently, since VvRRa4 was downregulated in the presence of the 

hormone but VvRRa3 was upregulated after cytokinin removal. Hwang and Sheen (2001) 

propose A-type ARRs as negative regulators of cytokinin signalling because their disruption 

has a stimulatory effect on cytokinin signalling. Conversely, in experiments carried out by 

Brenner et al. (2005) in Arabidopsis, A-type RRs are upregulated when cytokinin is applied to 

the plants. How can we reconcile these findings? A possibility is related with the bell shape of 

cytokinin response curve, with a well defined optimum concentration (Taiz and Zeiger, 2006). 

The authors show that root supraotimal levels of endogenous cytokinin inhibit growth which 

is resumed when endogenous cytokinin levels are lowered by overexpressing cytokinin 

oxidase, while further decrease in the cytokinin content restores the inhibition of root growth. 

An equivalent rationale can be applied to Vitis cells. The fresh weigh of Vitis cells without 

cytokinin is significantly affected in 7th day. This suggests a scenario in which a stepwise 

activation of different cytokinin pathway is initiated by upregulation or downregulation of 

transcriptional control factors (Brenner et al., 2005). Osakabe et al. (2002) showed that 

overexpression of ARR4 in transgenic cultured stems markedly promoted shoot formation in 

the presence of cytokinin, while overexpression of ARR8 repressed greening and shoot 

formation of calli. These data suggest that different experimental systems have different 

behaviours, depending on their degree of complexity. Conversely to a more complex system 
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like shoots unaffected by sulfur starvation, in Vitis cells sulfur depletion seems to interrupt the 

cytokinin signal pathway at RRa level. 

From Arabidopsis results, the B-type RR genes are apparently not induced by cytokinin but 

can be involved in the transcription of cytokinin primary target genes (Kiba et al., 1999; 

D’Agostino et al., 2000 and Hwang and Sheen, 2001). The behaviour of Vitis B-type RRs 

was equivalent, since they did not respond either to cytokinin or S starvation. Only in TIS the 

B-type RRs were downregulated, suggesting a different regulation of cytokinin signalling. 

As a whole, in Vitis cells different cytokinin signalling genes, namely VvCyts, VvHPs and A-

type RR were downregulated by sulfur starvation independently of cytokinin. The unique up-

regulation of A-type RR in the absence of cytokinin suggests A-type RR as the cytokinin 

primary-response (D’Agostino et al. 2000) as negative regulator genes (Hwang and Sheen, 

2001). 

TIS conditions approach the environment of autotrophic growth. This feature can explain the 

different results obtained in response to –S treatment as compared to GM explants. The less 

notorious branching inhibition verified in TIS –S plantlets can be associated to the 

downregulation of B-type VvRRs. Hypocotyl elongation assays in B-type RRs knock-out 

Arabidopsis showed that the sensitivity to cytokinin was affected, reducing the hypocotyls 

elongation (Hass et al., 2004). B-type RRs act as transcription factors for A-type RRs 

transcription (Lorsmann et al., 2001), then a downregulation of B-type RRs must imply that 

A-type RR are not transcribed, impairing the downregulation of cytokinin signal verified in GM 

conditions. 

 

The plant shoot is derived from the primary shoot apical meristem (SAM) whose activity is 

regulated by environmental inputs, such as nutrient availability, that can be relayed by plant 

hormones (Ongaro and Leyser, 2007). We identified three apical meristem genes VvWus, 

VvClv and VvSTM and analysed their expression in cell cultures and shoots. The three 

genes were transcribed in Vitis cells but were unaffected by sulfur depletion, eventually 

because cells correspond to a dedifferentiated system. In shoots and plantlets the three 

transcripts are expressed, but VvWus is absent in the root. Only VvSTM expression 

decreased in –S GM shoots. The different roles of cells within the meristem are controlled by 

different regulatory genes. One of the earliest genes expressed is WUS (Bowman and 

Eshed, 2000) that encodes a homeodomain protein (Lindsay et al., 2006). WUS is required 

for stem cell identity (Lenhard et al., 2002), conferring stem-cell identity to overlaying 
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neighbouring cells (Mayer et al., 1998). In Arabidopsis CLV1 (CLAVATA1) and CLV3 

(CLAVATA3) are important genes for meristem maintenance. CLV1 is a leucine-rich repeat 

(LRR) receptor-like kinase (Lindsay et al., 2006) and mutations is this genes lead to an 

accumulation of cells in the central zone. Mutations in WUS and CLV1/CLV3 have essentially 

opposite effects on the cell population, suggesting that these genes act in pathways that 

promote and restrict cell division respectively (Bowman and Eshed, 2000). In Arabidopsis it is 

well demonstrated that Shootmeristemless (STM), a Homeobox transcription factor, is 

required for the establishment or maintenance of stem cell fate (Bowman and Eshed, 2000) 
which is critical for the initiation of primary shoot apical meristem (Barton and Poethig, 1993). 

One of the earliest indicators of a switch in fate from indeterminate meristem to determinate 

leaf primordium is the down-regulation of KNOX1 genes orthologous to STM in the incipient 

primordial. In Arabidopsis thaliana, loss-of-function of the STM gene results in loss of the 

SAM, in agreement with its role in meristem identity acquisition/maintenance (Long et al., 

1996). Since Vitis VvSTM is downregulated, in –S conditions it is reasonable to assume that 

apical meristem is not properly formed in sulfur starvation, and this may be one of the 

reasons of Vitis branching impairment.  

 

Shoot branching is the process by which axillary buds, located on the axil of a leaf, develop 

and form new branches. The process by which a dormant bud activates and becomes an 

actively growing branch is complex and very finely tuned. Bud outgrowth is regulated by the 

interaction of environmental signals and endogenous ones, such as plant hormones. 

Hormones known to have a major influence are auxin, cytokinin, and a novel, as yet 

chemically undefined, hormone. The novel hormone also moves acropetally as cytokinin but 

it inhibits bud outgrowth (Ongaro and Leyser, 2007). The identity of axillary meristems (AM) 

must be equivalent to SAM but differentially regulated (Greb et al., 2003), once the fate of 

axillary buds is to grow out to give a branch or to remain dormant in the axils of leaves 

(Aguilar-Martínez et al., 2007).  

Shoot multiplication in vitro is based on the inhibition of apical dominance and forced 

branching by adding exogenous cytokinin. In vitro shoots might then comprise a suitable 

model for analysing axillary meristem gene expression. Among the genes responsible for 

axillary meristem fate are Arabidopsis TCP transcription factors BRANCHED1 (BRC1) and 

BRANCHED2 (BRC2) (Aguilar-Martínez et al., 2007) the transcription factor from GRAS 

family LATERAL SUPPRESSOR (LAS) (Greb et al., 2003), the MYB gene REGULATOR OF 

AXILLARY MERISTEMS (RAX) (Keller et al., 2006; Müller et al., 2006) and the 
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Homeodomain-leucine zipper protein that acts like transcription factor REVOLUTA (REV) 

(Talbert et al., 1995; Otsuga et al., 2001;). 

An in silico approach followed by the amplification of the transcripts with specific primers 

designed for each gene allowed to identify in Vitis the homologous VvBRC1, VvBRC2, 

VvLAS, VvRAX and VvREV genes. In GM shoots VvRAX and VvREV seemed to be 

unaffected by sulfur starvation, while the other genes were downregulation. BRC1 responds 

to developmental and environmental stimuli controlling branching and when expressed in 

developing buds, arrests bud development. Genes promoting bud arrest have been 

described in monocots, e.g. teosinte branced1 (tb1) from maize (Doebley et al., 1997) and its 

homologs from rice Os tb1 (Hu et al., 2003; Takeda et al., 2003). In Arabidopsis when BRC1 

and BRC2 are downregulated the number of rosette branches increase, indicating that BRC1 

and BRC2 retard all stages of bud development. Mutant and expression analyses suggest 

that BRC1 is required for auxin-induced apical dominance. Therefore, BRC1 acts inside the 

buds as an integrator of signals controlling bud outgrowth and translates them into a 

response of cell growth arrest. LAS exerts important roles in very diverse processes such as 

signal transduction, meristem maintenance and development (Bolle, 2004). LAS transcripts 

accumulate in the axils of all primordial derived from the SAM. In Arabidopsis, the LAS gene 

is an essential component of the genetic mechanism governing the acropetal gradient of 

axillary meristem formation. Comparison of the phenotypes of tomato and Arabidopsis lateral 

suppressor mutants revealed that the described control mechanism is conserved during 

evolution (Greb et al., 2003). RAX expression is spatially more restricted than LAS, restricted 

to a small central domain within the boundary zone separating SAM and leaf primordia 

during early leaf primordium development and is currently the earliest spatial marker for 

future AMs. RAX is therefore the earliest known specific marker for AM position (Keller et al., 

2006). REV genes are necessary to promote the normal growth of apical meristem acting 

either indirectly to establish meristem identity or directly to activate the expression of other 

meristem regulators (Otsuga et al., 2001). The rev-1 mutation caused overgrowth of both 

rosette and cauline leaves (Talbert et al., 1995). These findings suggest that REV is involved 

in limiting cell division. REV acts either indirectly to establish meristem identity, or directly to 

activate the expression of other meristem regulators (Otsuga et al., 2001). 

LAS gene is necessary for axillary meristem initiation. Mutations in this gene showed a 

severe reduction in the number of axillary shoots (Greb et al., 2003). The downregulation of 

VvLAS is one of the explanations for the decrease in Vitis branching. The apparent 

contradictory result of expression patterns of VvBRC1, VvBRC2 and VvLAS may be solved 

by the VvLAS function upstream of VvBRC1 and VvBRC2, preventing any phenotypic 
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expression due to the activation of the latter genes. Taken together, the expression patterns 

of VvSTM and VvLAS could explain the branching pattern of GM shoots in response to S 

deficiency. 
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5. Conclusion 

 

Sulfur is essential macronutrient for plants. Vitis shoots growing in vitro in full MS medium 

responded drastically to sulfur starvation. The responses in sulfur uptake and metabolism 

level namely the reversion of apical dominance inhibition triggered by routinely added 

cytokinin. These explants developed symptoms of growth impairment and branching 

inhibition. One possible explanation is the interference of sulfur with cytokinin signal pathway 

genes or with the expression of transcription factors acting at SAM or AM level. Our aim was 

to assess whether a -S situation affects Vitis physiology and the cross talk between the 

hormone signalling and sulfur status deserves further investigation at the molecular level. 

Sulfur nutrition proved to be essential for grapevine sustained growth as put in evidence by 

the results of experiments carried out with undifferentiated cells and callus and differentiated 

in vitro shoots.  

Differentiated in vitro model systems where apical dominance is inhibited by exogenous 

cytokinin addition allowed to identify the drastic effect of S deficiency on shoot branching 

stimulating to investigate the effect of -S on cytokinin signalling pathway  

Thanks to the opportunity brought about by the recent sequencing of Vitis genome, it was 

possible to confirm in Vitis the “two-component system” predicted for cytokinin signalling 

pathway in Arabidopsis and rice. 

The results present in this work suggest that cytokinin signalling pathway is affected by sulfur 

starvation, but differently according to the models system.  

The different roles of cells within the meristems are controlled by different regulatory genes. 

To ascertain whether the branching reduction in shoots under –S treatment a line of research 

focused on the expression of shoot apical meristem (SAM) and axillary meristem (AM) 

genes. The presence, in Vitis, of transcripts of most of those genes annotated in Arabidopsis 

comprises a stimulating result. The long term influence of Sulfur deficiency crosstalk with 

cytokinin signalling and meristematic activity needs further investigation. 
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Suplementary data I – Culture mediums 

 

Callus and Cells medium 

 

 Concentration

MS 0.2203 g 

PVP 40T 0.5 % 

Sacarose 2 % 

2.4 D 2,5 μM 

Cinetina 10-6 M 

Hydrolysate of caseina 0.01 % 

gelrite 0.2 % 

pH 5.7 

 

 

Vitis multiplication mediums 

 

  Fase  

component Multiplication Elongation Root expression

Biotin 0.98 μM 0.98 μM  

Ca Pantothenate 5 μM 5 μM 5 μM 

Riboflavin 10 μM 10 μM  

Cistein 133.6 μM 133.6 μM  

NAA 0.50 μM  2 μM 

BA 5 μM 1.67 μM  

Sacarose 3 % 2 % 1.5 % 

Ascorbic acid 1.76 mg. L-1 1.76 mg. L-1 1.76 mg. L-1 

PVP 40T 0.1 % 0.1 % 0.1 % 

Gelrite 0.2 % 0.2 % 0.2 % 

pH 5.8 5.8 5.8 
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Altered MS medium for –S  

 

 

Component 
Concentration

(mg/100ml) 

NH4NO3 16,5 g 

KNO3 19 g 

CaCl2 3,32 g 

MgCl2 3 g 

KH2PO4 1,7 g 

Fe Na EDTA 734 g 

MnCl2 1690 g 

H3BO3 620 g 

ZnCl2 860 g 

KI 83 g 

Na2MoO4 25 g 

CoCl2 2,5 g 

CuCl2 2,5 g 

Myo-inositol 2000 g 

Nicotinic Ac. 100 g 

Piridoxine 100 g 

Tiamine 100 g 

Glicine 200 g 
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Suplementary data II – Nucleotide sequence 

 

VvCyt1 (FJ822975) 

tgttttaggtatgctgaaaatgctgatggactcgggtcttgatgcaaaccaacaggattatgctgagactgctcatgctagtgggaaagatctaata

tcactgataaatgaggttcttgatcaggctaagatagaatcaggaaggctcgagcttgaagctgttccttttgatttgcgtgctgctcttgataatgt

tttatcactcttctcaggcaaatctcatgaaaaggggatcgagttggctgtctacatctctgatcaagtgcctgaatttgtcattggagacccygggc

gcttcaggcagataattaccaatcttgttggaaattcaataaagttcacacatgacaaagggcatatctttgtctcggtgcatctggcagatgaagt

ggtggggccacctgatctcagggacgaagtgctgagacagagcttgaatatagtccatgacagctcaaacaattcctataatacattgagtgggtt

tcctgtggtcaacagatggaaaagctgggagaagtttaaaaagttaagctgcacagattcaatggaggaaaccagcataattaaattattagtga

ctgtcgaggatacgggtgtgggaataccttcagaagctcaaagtcgaattttcatgccttttatgcaggctgacagttccacttctcgaacgtatggt

gggactggaataggattaagcattagcaa 

 

 

 

VvCyt3 (FJ822976) 

gctgatgtcgtctgtgcagacagtgggaaaagtgcaatcccactgcttaaacctccccacgactttgatgcctgtttcatggatatccagatgccag

aaatggaccgggttgaag 

 

 

VvHP2 (FJ822977) 

ctggaggaactgcaggatgatgctaaccctaattttgtagaagaagttgttacattgttttaccgggattcagctcgactcgtccttaacatagacc

aggcactggacaagacccctcttgatttttctaagttggacagctacatgcaccagttcaaaggaagtgcttcaagcattggagccaaaaaggta

aagggtgaatgcacactgtttagagaatattgcaaggcaggaa 

 

 

 



Supplementary data 

 

VvHP3 (FJ822978) 

gagagcaaccctgattttgtggttgaagtggtgtccctcttctttgaggattctgagaagcttctcaatgatctgtccagagccctagatcagcaa

aatgtagatttcaagagggttgattcccatgttcatcagttgaagggcagcagctccagcataggagcacagagagtcaaaaatgcctgcattg

cctttcgcaactactgtgaggaacagaacactgatgcgtgcctgagctgcctgcagcaagtgaaacaagagtactcccttgcgaagagcaagc

ttgaac 

 

 

 

 

 

 

VvRRa1 (FJ822980) 

atgaattgctcaagaagatcaaggaatcgtccactttccgggaaactccggtggtaatcatgtcatcagaaaacatcctaacgcgaatagaca

gatgtttggaggaaggtgcagaggatttcatagtaaagcccgtaaaattgtcggacgtgaagcggctgaaaagattacatgaccagagaaag

acagagatggcagtgagggcagagggcatcaataaaagaaagctggga 

 

 

 

VvRRa2 (FJ822981) 

aaatattggaagcagattccccgcacatttctggttatgggttccgccgccggcgaatttcttcggcatgtgttaccggagaaagttggggtttct

gatcactccgctgctgggtcggaggagctccatgttcttgctgttgatg 

 

VvHP4 (FJ822979) 

cgttaaaatgggaatccatctgaatcagttcatgggaagcagttctagcataggtgctaaaagagtcagaaatgtatgcgttgcttttcgcgcgg

cttccgagcagaacaac 
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VvRRa3 (FJ822982) 

tgtcatcagaaaacatcccaactcgaatcaataagtgcctggaggaaggagctcaaatgttcatgctaaagcccctcaagcagtctgatgtgaa

gaaactaag 

 

 

 

VvRRa4 (FJ822983) 

aagatcaaggaatcttcatctctgaagacattaccaagttgtgatcagtcctctgagaatatcccctcaaggattaacagatgtctggaagaag

gagcagaagatttcttcctgaagccggtcctctatcaggatgtggaa 

 

 

 

VvRRb1 (FJ822984) 

ctatagcaacaattcaaacagcctccaaatcaagcatcctgagctgtatgttctgctagatgatgactttagccatgcactgctgtctgctccaca

acatcttctccaagttgatctccaatgttctgctaatgctgtgtggtccgggacttcagttccagaaagagataagcccggctctgtcatgatcat

acctctgtgctcgcaatccagaagtga 

 

 

 

VvRRb3 (FJ822985) 

tatttgttgaaaccggttcgaattgaggagctcaagaacatatggcaacatgtaatcaggagaaagaagatcgactccaaggaccaaaacaa

gtctgnagatcaggacaacgccctacatgcagatggagaaggtggagaaggccccccatcatccagcaatgcagatcagaatgggaaacta

aatagaaagcggaaggaccaaaatgaggatgaggaggaagagggta 
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VvRRb4 (FJ822986) 

aaggggccgncgcctatcacatgctgccatcttttctgaaagccaaggctatggttcaagaaccccggatagcagatgggaagtaaatggtga

tactaaagctgagaagccttatacacctagctcttcc cttatgtatg caaagcccct cctgcaaacc tgtggagaaa 

 

 

VvRRb5 (FJ822987) 

cgaccccacttggttgaaaatccttgaaaagatgctcaagaagtgcttgtatgaagtgaccatttgtggtttggcaagggatgctttgaacttgct

tcgggaaagaaaagatggatatgacattgtaatcagtgatgttaacatgcctgacatggatggttttaaacttcttgagcttgttgggcttgagat

ggatcttccagtaattatgatgtctgttgacggcgaaacaaagcagggtaatga 

 

 

VvRRb6 (FJ822988) 

cttgtctcatgatcttggagaagatgctccggacttgcctttatgaagttactaaatgcaatcgagcagaaacagcattatccctgttgcgaggg

aataaaagcgggtttgatattgttataagcgatgtacacatgcccgacatggacggattcaaactccttgagcacattgggc 

 

 

VvWUS (FJ822989) 

ctacacaatggagttaggtccccaagtgctgaacagattcagaggatctcagctaggctgaggcagtacggcaagatcgaaggcaagaaaag

ttatct 

 

 

VvLAS (FJ822990) 

gtcgatcctgnggcgtttcattccacgtatctctccctgaaccaaataaccccattcatcaggt 
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Suplementary data III – Statistics 

 

Fig. 9 statistics 

 

 

 

 

 

 

 

 

 

Fig. 10 statists 

 

 

 

 

 

 

 

 

 

 

Bonferroni test; variable Var2 (Spreadsheet13) 
Homogenous Groups, alpha = ,05000 Error: Between 

MS = 1,9104, df = 24,000 
 Var1 Var2 1 2 3 
4 -S6 3,81833 ****   
3 -S4 5,20750 **** ****  
1 -S0 6,47667 **** ****  
5 +S0 7,49333  ****  
8 +S6 11,97333   **** 
7 +S4 12,09000   **** 
2 -S2 13,75333   **** 
6 +S2 14,69000   **** 

Bonferroni test; variable Var2 (Spreadsheet15) 
Homogenous Groups, alpha = ,05000 Error: 

Between MS = ,06144, df = 16,000 

 Var1 Var2 1 2

2 -S4 -0,140588 ****  
3 -S6 -0,025595 ****  
4 +S2 0,962638  ****

1 -S2 1,125815  ****

5 +S4 1,165068  ****

6 +S6 1,373448  ****
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Fig.16 statistics 

 

 

 

 

 

 

 

 

 

 

Fig.18 Statistics 

 

 

 

 

 

 

 

 

 

 

 

Bonferroni test; variable Var2 (Spreadsheet1) 
Homogenous Groups, alpha = .05000 Error: Between 

MS = 1.4025, df = 66.000

 Var1 Var2 - Mean 1 2 3

4 -S0 1.000000 ****   
1 +S0 1.000000 ****   
5 -S2 1.833333 **** ****  
6 -S3 3.000000  ****  
2 +S2 3.000000  ****  
3 +S3 5.533333   ****

Bonferroni test; variable Var2 (Spreadsheet4) Homogenous Groups, alpha 
= .05000 Error: Between MS = .00000, df = 6.0000

 Var1 Var2 - Mean 1 2 3 4 
6 -S3 0.000853   ****  
5 -S2 0.001493 ****    
4 -S0 0.001787 **** ****   
1 +S0 0.001787 **** ****   
2 +S2 0.001974  ****   
3 +S3 0.002471    **** 
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Fig.19 Statistics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bonferroni test; variable Var2 (Spreadsheet6) Homogenous 
Groups, alpha = .05000 Error: Between MS = .02069, df = 6.0000

 Var1 Var2 - Mean 1 2 3

6 -S3 2.580847   ****

5 -S2 3.471365 ****   
4 -S0 3.732117 ****   
1 +S0 3.732117 ****   
3 +S3 3.948937 **** ****  
2 +S2 4.456173  ****  
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Supplementary data IV – Molecular marker 

 

Molecular marker “1 Kb Plus DNA Ladder”  

  

1 Kb Plus DNA LadderTM 

(Invitrogen)   

  48 μL 

10x Blue JuiceTM (Invitrogen)               96 μL 

TE                                                       336 μL 

 

The products were mixed in a 1.5 mL Eppendorf tube and vortex. The molecular marker was 

kept at 4 ° C. 

 

Molecular marker “1 Kb Plus DNA Ladder” (Invitrogene) after resolving in 0,9% agarose gel. 
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