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RESUMO 

Madeira de Eucalyptus globulus com 18 anos foi usada para estudar a influência do cerne e do borne 

na deslenhificação kraft (170ºC) com vários tempos de reacção (1 a 95 min). O cerne possuía maior 

conteúdo em extractivos (9,8 % vs. 3,9 %) e mais xilose (17,5 % vs. 13,7 %) mas idêntico teor em 

lenhina total (23,5 % vs. 24,3 %) comparativamente ao borne. Após 95 min de deslenhificação, o 

cerne apresentou menores rendimentos em pasta (52,4 % vs. 56,7 %) e com maior teor em lenhina 

residual (3,0 % vs. 1,2 %), enquanto que o conteúdo em xilose e glucose foi semelhante 

respectivamente, 12,6 % e 84,5 %. As pastas de borne apresentaram-se mais luminosas (L*, 67 a 80) 

do que as de cerne, mas não se verificaram diferenças em relação aos parâmetros de cor a* e b*. 

Dois modelos de cinética de deslenhificação foram aplicados: o consecutivo e o simultâneo. Ambos 

os modelos explicaram bem a cinética de deslenhificação do borne mas o modelo simultâneo 

explicou melhor a deslenhificação do cerne.  
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ABSTRACT 

A 18-year-old Eucalyptus globulus tree was used to study the influence of heartwood and sapwood in 

kraft pulping along different reaction times (1 to 95 min). Heartwood had more extractives (9.8 % vs. 

3.9 %) and more xylose content (17.5 % and 13.7 %) compared to sapwood, but no differences were 

found in total lignin content (23.5 % vs. 24.3 %). After 95 min, heartwood pulps had lower yields (52.4 

% vs. 56.7 %) and higher residual lignin content (3.0 % vs. 1.2 %) but no differences were found in 

sugar content. Sapwood pulps presented higher luminosity (L*, 65 to 80), but no differences at a* and 

b* values. Two models of delignification kinetics were applied: consecutive and simultaneous. Both 

models explained well the delignification kinetics of sapwood but the simultaneous model explained 

better the heartwood delignification.  
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RESUMO ALARGADO 

Neste trabalho foi usada madeira de Eucalyptus globulus com 18 anos para estudar a influência do 

cerne e do borne na deslenhificação kraft (170ºC) ao longo de vários tempos de reacção (1 a 95 min). 

As fracções 20-40 mesh de borne e cerne foram caracterizadas por parâmetros químicos e ópticos. O 

cerne apresentou maior conteúdo em extractivos (9,8 % vs. 3,9 %), mas idêntico teor em lenhina total 

(23,5 % vs. 24,3 %) e apresentou uma percentagem mais elevada de xilose em relação ao borne 

(17,5 % vs. 13,7 %), enquanto o conteúdo em glucose foi superior neste último (81,1 % e 75,1 %). O 

cerne é mais amarelo que o borne respectivamente, 17 e 14, não apresentando diferenças nos 

parâmetros L* (83) e a* (3). A madeira de borne, por conter menor teor em extractivos 

comparativamente ao cerne, apresentou após 95 min de deslenhificação, rendimentos superiores 

(56,7 % vs. 52,4 %) e menor teor em lenhina residual respectivamente, 3,0 % e 1,2 %. O conteúdo 

em açucares totais foi semelhante em ambas as amostras: arabinose (0,5 %), manose (1,7 %) e 

galactose (0,8 %), glucose (84 %) e xilose (13 %). O borne apresentou valores de luminosidade (L*) 

mais elevados que o cerne, respectivamente, 66,5 e 74,5, não se verificando diferenças quanto aos 

parâmetros a* e b*. Foram aplicados dois modelos matemáticos baseados numa cinética de 1ª 

ordem, para explicar a remoção de lenhina. O modelo consecutivo descreveu a reacção de 

deslenhificação em duas fases: uma fase principal (que nas condições usadas inclui a fase inicial) 

mais rápida e onde é removida a maior parte da lenhina e uma fase residual, mais lenta. Quando 

aplicado ao borne, este modelo explicou na fase principal maior extracção de lenhina 

comparativamente ao cerne (86,0 % vs. 80,0 %), com uma constante de velocidade superior no borne 

(k = 0,061 min-1 vs. k = 0,048 min-1); na fase residual a extracção foi de respectivamente, 9,0 % e 7,0 

% do total de lenhina, com constantes de velocidades correspondentes a 0,017 e 0,007 min-1, 

permanecendo no cerne cerca de 13,0 % de lenhina na matriz lenhocelulósica e no borne apenas 5,0 

%. O modelo simultâneo mostrou a existência de duas fracções da lenhina com diferente 

reactividade, uma mais reactiva e outra menos reactiva. O borne mostrou 76,0 % da lenhina mais 

reactiva (L1) que foi removida a uma constante de velocidade k1 de 0,077 min-1, sendo a remoção de 

24,0 % da lenhina menos reactiva (L2) feita a um k de 0.018 min-1. No cerne estas fracções 

representaram respectivamente, 71,0 % e 29,0 %, que apresentaram respectivamente constantes de 

velocidade: k1 = 0,080 min-1 e k2 = 0,010 min-1. Ambos os modelos explicaram bem a deslenhificação 

do borne (SQR = 0,041 vs. 0,033), enquanto que o modelo simultâneo explicou melhor a 

deslenhificação do cerne (SQR = 0,0030). Em conclusão, o cerne foi mais difícil de deslenhificar 

supondo-se que devido a diferenças anatómicas e químicas. 
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1. Introduction 

1.1. Eucalyptus globulus as a raw material for pulping 
The species Eucalyptus globulus Labill. belongs to the Mirtaceae family, and is one of the nearly 500 

species of the Eucalyptus genus (Cremer et al., 1984). The Latin globulus (a little button) refers to the 

shape of the operculum and the species has the common name Tasmanian Blue Gum. E. globulus 

was classified by the botanist Jacques-Julien de Labillardière when he arrived in Tasmanian in the 

XVIII century (Figure 1) and was proclaimed the floral emblem of Tasmania on 1962. 

 

 

Figure 1.  The illustration of Eucalyptus globulus published in 1800 and the botanist Labillardière  

(http://git-forestry-blog.blogspot.com/search/label/Blue%20Gum). 

 

There are several species of Eucalyptus in Australia that are important for wood production (Turnbull 

and Pryor, 1984). In Portugal, the most important one is E. globulus, which was planted in the XIX 

century for timber production used for railway sleepers (Alves et al., 2007). It was first used for pulping 

in 1925, in the Caima pulp mill and subsequently in 1957 in the Cacia pulp mill (Goes, 1978), and then 

expanded to other mills in Portugal.  

E. globulus occupied a total area of 22 941 ha in 1965 (Goes, 1978), increased to 672 149 ha in 2005 

and to 748 100 ha in 2006 (Celpa, 2005, 2006). In 2006, it represented 22% of the forest area of 

Portugal, distributed especially in the north and central coastal regions. A total of 152 537 ha are 

managed by the pulp industry. In 2006, from the overall wood consumed for pulping the majority 

belonged to eucalypt (5240 000 m3 eq. without bark), and compared to 2005 represented an increase 

of 2 % in the pulp production using this species (Celpa, 2006).  
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The importance of eucalypt pulps in the world is also evident, as it has been increasingly dominating 

the world hardwood pulp markets. The total pulp production equals 10 million t/year and the annual 

increment of production amounts to 6%, twice as much as the general pulp production increment (Patt 

et al., 2006).  

Eucalyptus globulus combines fast growth under appropriate conditions with good tree form and 

excellent wood quality for pulp production, and high pulp yield, which result in pulps with excellent 

technical properties (Patt et al., 2006), while offering a favourably low wood consumption in terms of 

volume due to its basic density (Pereira and Sardinha, 1984; Cotterill and Macrae, 1997). The growth 

rates may reach an average of 20 m3ha-1year-1 in good site conditions, but are strongly influenced by 

soil water and mineral nutrient availability (Cromer and Williams, 1982; Pereira et al., 1989; Miranda et 

al. 2006).  

The characteristics that are most appreciated by the pulp industries are a high content in cellulose, 

and low contents in lignin and extractives (Trugilho et al., 2005). Eucalyptus globulus is well suited to 

kraft pulping because of its chemical characteristics. Low values of extractives content were referred 

by Kojima et al. (2008), ranging between 1.9 % to 6.8 %; Santos et al. (2006) reported 4.7 %, while 

Miranda et al. (2002c) obtained 3.7 % in 9-year-old trees, increasing to 5.0 %-8.7 % in 18-year-old 

trees (Miranda et al., 2003). Lignin content is low, ranging from 18.8 to 21.5 % (Pereira and Sardinha, 

1984; Santos et al., 2004; Neto et al., 2004) with total lignin varying between 21.9 % and 27.0 % (Patt 

et al., 2006; Cotterill and Macrae, 1997; Gilarranz et al., 1999; Miranda and Pereira, 2002c), and 

cellulose content is high (40.1-53.6 %, Pereira and Sardinha, 1984; Kojima et al., 2008) as well as 

pentosan content (12.0-17.8 %) compared to other hardwoods (Pereira and Sardinha, 1984).  

Other important factors are the fibre characteristics, such as fibre length, diameter and collapsibility. E. 

globulus is characterized by short fibres varying from 0.87 mm to 1.04 mm in length (Jorge et al., 

2000) and with a fibre width and wall thickness of respectively, 21.3 µm and 5.7 µm (Miranda et al., 

2003). Miranda et al. (2003) reported for 18-year-old trees that fibres are shorter near the pith, 

increasing to the outside and are influenced by spacing. The wall thickness is higher than reported for 

7-year-old trees (Miranda et al., 2001) indicating that wall thickness increases with age.  

 

1.2. Heartwood and sapwood  
Wood can be divided in two different physiological regions: sapwood and heartwood. Sapwood is the 

outer part of the trunk and contains almost 80 % of living cells; it is responsible for fluid conduction 

between roots and leaves, and participates in the respiration among other physiological processes 

(Bierman, 1996). Compared to heartwood, sapwood is less dark, has higher water content in green 

wood and has less extractives, but more starch that is accumulated in the ray cells and axial 

parenchyma cells (Hills, 1962; 1987). 
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Heartwood is found in the centre of the tree stems, after a certain age. It contains only dead cells, from 

where the accumulated substances were removed (e.g. starch) or transformed to protective 

substances, which give a darker coloration. These substances are extractives that can be removed 

from wood by extraction with solvents with different polarities (Fengel and Wegener, 1989). Heartwood 

is characterized by higher density, lower pH and less permeability compared to sapwood (Hills, 1987). 

During the formation of heartwood, the moisture content decreases with air replacing some of the 

water (Bierman, 1996).  

The visual distinction between sapwood and heartwood can be defined or undefined. In the first case, 

heartwood delimitation in the transversal section is a curved line which may correspond to the growth 

rings or not. Heartwood can also be classified as regular or irregular, depending on its shape in the 

radial section being similar to the profile stalk or not (Hills, 1962; 1987). 

 

1.2.1. Heartwood formation 

The sapwood transformation in heartwood is complex, and still not totally explained (Buchanan et al., 

2000). Several theories have been presented. One is based on the natural aging and consequent 

death of parenchyma cells, starting with a gradual degeneration at the internal sapwood and ending at 

the transition area (Kramer and Kozlowski, 1960; Hillis, 1962; Desh and Dinwoodie, 1996). In 

sapwood, the ray parenchyma cells accumulate several organic compounds in the neighbour cell wall 

(such as tannins, gums, resins, and other coloured materials) which will originate heartwood cells 

(Kramer and Kozlowski, 1960; Hills, 1962; Desh and Dinwoodie, 1996; Buchanan et al., 2000). 

Several authors support the theory called “pipe-model”, proposed by Shinozaki et al. (1964), which 

explains heartwood formation by saying that the area of the tissues responsible for nutrient 

transportation (sapwood) in roots, stalks and branches is proportional to the leaf area (Grier and 

Waring, 1974; Albrektson, 1984). However some studies found that when a tree is pruned, the 

sapwood decrease does not match the leaf area removed (Margolis et al., 1988; Lǻngström and 

Heliqvist, 1991). This is considered a static model due to several reasons, namely the assumption that 

sapwood area by leaf area is constant and that all sapwood cells have the same permeability rate and 

that every leaf has the same transpiration rate. Nikinmaa (1992) introduced a dynamic aspect to the 

relation between the leaf mass and the sapwood area, by admitting that sapwood could remain active 

after the decrease of leaf area and assumed that sapwood would only be inactive after the branch 

death. This will explain the difference between the increase of sapwood and the increase of aerial 

biomass. 

Bamber (1976) proposed another theory based on the idea that heartwood formation is controlled by 

hormones produced by parenchyma cells at the cortex area. The hormones are transported through 

the ray cells to the pith, where they accumulate. When a certain hormone level is reached, the tree is 

induced to transform sapwood into heartwood.  
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Hillis (1980) considered that heartwood formation is due to the combination of two factors: the gradual 

decline of parenchyma cells in sapwood as a result of aging, and the distance between these cells and 

the active part of the stem. 

Heartwood formation is also explained by other factors, such as enzymatic processes (Shah et al., 

1981; Datta and Kumar, 1987; Taylor et al., 2002), air accumulation with consequent vascular 

cavitation (Harris, 1954), fungal attacks or accumulation of toxic substances (Hillis, 1962; Bamber, 

1976, Hillis, 1987). 

 

1.2.2. Factors affecting heartwood formation  

Heartwood in a tree is determined by several factors (Bamber and Fukazawa, 1985; Hills, 1987; Taylor 

et al., 2002). The genus and the species are two of them, but the age, the position in the tree, the 

growth rate, the silvicultural treatments are also considered important factors. 

In some species, heartwood can be distinguished by colour differences, as in Betula alleghaniensis, 

Betula lenta, Acer tartaricum, but not in others, like in Betula verucosa, Acer pseudoplatanus and Acer 

platanoides (Hillis, 1987). In Eucalyptus, heartwood proportion can be quite different, for example E. 

urophyla presents more heartwood than E. pellita, respectively, 52.8 % and 36.0 % (Semple et al., 

1999). 

The age of heartwood formation is very important, and varies with genus and species. For example, in 

Eucalyptus it starts at 5 years of age (Hillis, 1972; Gominho et al., 2001), namely in E. globulus 

(Gominho and Pereira, 2000; 2005). In Pinus ponderosa, Hillis (1962) found that heartwood starts 

after 36 years, while in Pinus pinaster it starts after 18 years (Esteves et al., 2005), and in Pinus 

sylvestris after 15 years (Björklund, 1999). Heartwood volume increases with age, as observed by 

Walker (1993) in E. grandis, with respectively 5 and 50 years, where it increased from 25% to 80%. 

The growth rate is also one of the factors affecting heartwood development. In fact, the heartwood 

quantity is directly related to diameter growth as found by Wilkes (1991) in Pinus radiata and by 

Purkayastha et al. (1980) in E. tereticornis. In E. globulus the heartwood area was also positively 

correlated with stem radial growth (Gominho and Pereira, 2000; Miranda et al., 2006). 

Silvicultural treatments can also influence heartwood development, such as pruning, as found by 

Margolis et al. (1988) with Abies balsamea or Pinus sylvestries (Lǻngström and Heliqvist, 1991). The 

stand density is another factor, and for instance in a trial with Pinus glauca and P. mariana, reducing 

stand density increased heartwood (Yang and Hazenberg, 1992). Miranda et al. (on line) reported for 

18-year-old E. globulus trees an increase of heartwood area with the increase of spacing, where in 

wide spacing (4x5) the heartwood area reached 206 cm2, while in closer spacing (3x2), just 99 cm2. 

The conclusion that eucalypt trees growing at higher plant densities present less heartwood was also 
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examined by Gominho and Pereira (2005) in trees with 8.8 years of age, where heartwood reached 62 

% of total tree height in wide spacing (3x3) and by Gominho and Pereira (2000) in 9 year-old trees 

where heartwood attained 60-75 % of total tree height varying with sites and within the tree decrease 

from the base to top. Miranda et al. (2006) found that irrigation and fertilization increased the 

proportion of heartwood in the stem. 

 

1.2.3. Properties of heartwood and sapwood 

Heartwood formation induces changes at anatomical and chemical levels which are responsible for 

different behaviour of sapwood and heartwood. The chemical modification is the most important one, 

and involves the production of extractives in parenchyma cells, followed by accumulation and 

transport through the bordered pit, to the neighbouring lignified cells. Heartwood presents more 

extractives of phenolic type (e.g. flavonoids) while sapwood is composed by starch, soluble sugars 

and triglycerides (Hillis, 1962). 

As tree ages, an anatomical modification occurs and the pores in the wood become blocked with 

deposits and the sapwood turns into heartwood (Clark, 1978). In many hardwood species, tyloses are 

produced within the vessels. Tyloses (Figure 2) are defined as parenchyma cell outgrowths through a 

pit into the cavity of a vessel (Esau, 1960; Fahn, 1990). In softwoods, it involves the obstruction of 

bordered pits in tracheid cells (Hillis, 1962; Hillis, 1980). These anatomical changes decrease 

heartwood permeability to fluids (McIntosh, 1970; Bierman, 1996).  

        a)        b) 

   

Figure 2. Tyloses present at Q. suber L, images obtained in optical microscope: a) tyloses in tangential section; 

 – Scale bar = 100 µm; b) dissociate vessel with tyloses (→); Scale bar = 100 µm (Sousa, et al., in press). 

The extractives present in heartwood are acid, as for example, in Eucalyptus and Quercus pH is 

inferior to 3 (Hillis, 1987). Because of this, heartwood can be visually distinguished by application of 

indicator solutions, e.g. methyl orange. Due to the extractives, heartwood presents in general higher 



Introduction 

  6 

density compared to sapwood, although heartwood formation has no influence in wood mechanical 

resistance, because no modification at cell wall occurs (Kai, 1991). 

In many species, the heartwood presence is an advantage for the tree. Some researchers suggest 

that the compounds accumulated in heartwood add durability, proposing the physiological importance 

of heartwood in the tree (Taylor et al., 2002; Hills, 1987). The majority of the extractives accumulated 

in heartwood are toxic to microorganisms, while in sapwood the extractives (e.g. starch) are more 

susceptible of attack. Another important fact to heartwood natural durability is the obstruction of the 

cells, which difficult the biotic attacks.  

As already pointed out, sapwood and heartwood present no differences related to physical and 

mechanical properties, but a higher amount of sapwood decreases the efficiency of tree growth, due 

to the dependence of higher levels of respiration (Chapman and Gower, 1991). In fact heartwood, as 

being constituted by dead cells, does not need maintenance although contributing to diameter growth 

(Ryan et al., 1995). 

Heartwood can be distinguished from sapwood by colour differences, but this is not always possible. 

To overcome this fact, several methods can be applied. A chemical method involves the pH 

differences between sapwood and heartwood (Campbell et al., 1990; Winandy and Morrell, 1993; 

Clarke et al., 1997). In this work the heartwood was detected by application of methyl orange as can 

be seen at Figure 3. There are also methods based in permeability differences, where the wood is 

immersed in water. More recently, some detection methods allow heartwood quantification in logs, 

such as X-rays (Grundberg, 1999) or infrared (Gjerdrum, 2002).  

 

                 

Figure 3 . E. globulus wood: A – log showing sapwood and heartwood areas; B – the same log after application of 

methyl orange (used to increase distinction between both areas); C – transversal section of one wood disc after 

methyl orange application. 
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1.2.4. The influence of heartwood in pulping 

Heartwood presence is negative in several aspects concerning pulp production and paper formation. 

The extractives in heartwood promote higher chemical consumption, reducing pulp yield and 

brightness (Higgins, 1984). The low permeability of heartwood makes more difficult the liquor 

circulation into the chips, reducing the lignin removal, while the accumulation of some extractives in 

the equipment as well as depositions on cellulosic fibres causes sticky and pitch problems (Kai, 1991; 

Campbell et al., 1990; Higgins, 1984; del Rio et al., 1998).  

On the contrary, sapwood is easier to pulp than heartwood (Nolan, 1970; Clark, 1978; Bierman, 1996) 

because it usually has less extractive matter and generally yields a lighter-coloured pulp (Clark, 1978).  

Several authors used Eucalyptus to study heartwood influence in pulp production specially relating 

extractives content and pulp production (Miranda et al., 2006; Miranda et al., 2007; Gominho, 2003; 

Mariani et al., 2005). Miranda et al. (2007) obtained in 8-year-old E. globulus trees a negative 

correlation between extractives and pulp yield. Heartwood pulps presented lower yields compared to 

sapwood (mean values of 47.9 % vs. 52.1 %) due to higher extractives content, corresponding to a 

ratio of heartwood to sapwood extractives on average 1.8. In trees with 18 years of age, heartwood 

presented 1.6 % more extractives than sapwood, and pulp yield values were respectively, 52.1 % and 

55.8 % (Miranda et al., 2006). The same behavior was observed by Gominho (2003) who compared 

pulp yield from extractive-free wood and wood with extractives, and found a tendency to decrease 

pulp yield with the presence of extractives. 

Heartwood also influences pulp brightness due to the presence of extractives and lignin which will 

difficult the bleaching. Although no relation was obtained between extractives and brightness, samples 

with lower extractives content produced brighter pulps (Gominho, 2003). 

Esteves et al. (2005) reported for Pinus pinaster chemical differences between heartwood and 

sapwood, in particular extractives content, respectively, of 19.7 % and 5.8 %, and their influence on 

pulping was negative, with lower yield values in heartwood (40.0 % vs. 49.7 %).   

Although Eucalyptus globulus is the raw material commonly used for pulping in Portugal, little 

information is available about the effect of heartwood on kraft delignification.  

 

1.3. Modeling of delignification kinetics 
Lignin removal is the principal objective of chemical pulping and therefore optimized delignification 

kinetics is an important issue for pulping improvement. Lignin is a heterogeneous non-linear plant cell 

wall polymer, constituted by different structural elements and linkages that originate fractions, or 

moieties, with different stability, causing heterogeneity during the chemical process (Bierman, 1996). 

The kraft process is complex and involves many chemical reactions between the pulping chemicals 
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(sodium hydroxide and sodium sulphide) and the components of wood (Dang and Nguyen, 2007). 

These chemical reactions degrade lignin, extractives and carbohydrates. The behavior of lignin is 

explained as a competition between degradation reactions, mainly those involving aryl ether cleavage, 

and condensation reactions, comprising addition of carbanions to quinone methide intermediates 

(Gierer, 1980). The degradation of lignin is accomplished by the liberation of α- and β-aryl ether 

structures (Clayton et al., 1983). 

Although those reactions are not fully understood, many models have been established to describe 

delignification kinetics (Gilarranz et al., 2002; Miranda and Pereira, 2002b; Santos et al., 1997, Pérez 

et al., 2000). The expressions used were developed considering the lignin reaction as first-order 

(Kleppe, 1970; Gierer, 1980; Oliet et al., 2000) where the reaction velocity (or rate constant) is 

proportional to the concentration of lignin removed. The equation of lignin degradation in function of 

time is 

Lk
dt
dL

L ∗=−  

being L, the residual lignin in pulp; kL, the rate constant and t, the reaction time (min). This equation 

can be integrated obtaining  

tk
L
L

ln L
0

∗−=  

where L0 is the lignin present in the wood. The graphic representation of ln (L/L0) vs. time is a straight 

line which the slope is (-kL).  

The dissolution of lignin can be described in three phases with different reaction rates: initial, bulk and 

residual. 

The initial phase is characterized by the quick removal of lignin as a result of the cleavage of α and β–

aryl ether bonds in the phenolic units, inducing a loss of 20-25 % of total lignin (Gellersted et al., 1992; 

Miranda and Pereira, 2002b). The alkali consumption is high, with almost 50 % consumed in the 

hydrolysis of acetyl side groups associated to hemicelluloses, and in the removal of the carbohydrates 

by peeling reactions (Santos et al., 1997; Clayton et al., 1983; Labili and Pla, 1992). This phase is also 

characterized by the diffusion and extraction of low weight polymers. The delignification velocity 

depends on temperature but is independent of the reagents concentration (Vanchinathan and 

Krishnagopalan, 1995; Labidi and Pla, 1992; Gustafson, 1988; Nguyen and Dang, 2006). 

The bulk phase is the period during which most of the lignin is removed, 70% (Gellersted et al., 1992). 

In this phase, the reaction velocity is of 1st order relatively to the NaOH concentration (De Groot et al., 

1995; Labili and Pla, 1992; Pérez et al., 2000). The lignin polymer is degraded by: cleavage of β–aryl 

ether bonds in the nonphenolic units, and of α and β–aryl ether bonds in the phenolic units, by 
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condensation reactions and cleavage of carbon-carbon bonds. Although all these reactions occur, 

most of the lignin is removed due to the cleavage of β–aryl ether bonds in the phenolic units and then 

dissolved in the liquor (De Groot et al., 1994; De Groot et al., 1995; Labili and Pla, 1992; Hubbard et 

al., 1992). The carbohydrates are removed by hydrolysis of glycosidic bonds (which reduces the 

degree of polymerization of cellulose), followed by peeling (which reduces yield), stopping reactions 

and cleavage of carbon-carbon bonds (Clayton et al., 1983).  

In the residual phase, the removal of lignin is slow, due to the cleavage of carbon-carbon bonds and 

condensation reactions; carbohydrates are also removed by cleavage of carbon-carbon bonds, and as 

in the bulk phase, cellulose polymerization decreases. The alkaline consumption is mainly due to the 

neutralization of the peeling reaction products (Santos et al., 1997). The delignification velocity is also 

of 1st order relatively to the NaOH concentration.  

The delignification can be interpreted as the dissolution of a single lignin species whose reaction 

mechanism changes as delignification proceeds, or as the dissolution of different lignin species with 

different reaction rates, which is the most common used (Oliet et al., 2000). This hypothesis can also 

be divided in two interpretations: the most usual approach assumes that the different lignin species 

react consecutively and are removed in three phases: initial, bulk and residual (consecutive model); 

the other assumes that the lignin fractions react simultaneously with specific reaction velocities 

(simultaneous model).  

 

1.3.1. Consecutive model 

Several studies demonstrate that the rate of degradation and extraction of lignin, as well as the 

removal of carbohydrates, during alkaline pulping, is not uniform. The consecutive model is the most 

frequently applied to delignification, assuming that lignin is dissolved in three phases (initial, bulk and 

residual) with different reaction rates in each phase (Labidi and Pla, 1992; Oliet et al., 2000). It is also 

assumed that lignin reacts consecutively during the delignification process according to a first-order 

kinetic model (Gillarranz et al., 1999; Dolk et al., 1989). The lignin that remains in the lignocellulosic 

matrix can be calculated using the initial material (L0) and described as 

( ) ( ) ( )tkexpatkexpatkexpa
L
L

rLrLbLbLiLiL
0

−+−+−=  

L - the lignin present in the pulp; L0 - lignin in wood at time zero; t - time (min); ki - rate constant (min-1) 

with i, b and r, corresponding to initial, bulk and residual phases; aiL - mass fragments of the lignin 

removed in the initial phase; abL - mass fraction of the lignin removed in bulk phase; arL - mass 

fragments of the lignin removed in the residual phase. 
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The lignin removed in the three phases is assumed to be the result of the predominant cleavage of α-

O-4 phenolic bonds, β-O-4 phenolic bonds and C-C bonds, respectively in the initial, bulk and residual 

phases. 

Several authors applied the consecutive model reactions for the study of Eucalyptus globulus 

delignification, under kraft conditions (De Groot et al., 1995; Santos et al., 1997; Pérez et al., 2000; 

Gilarranz et al., 2002; Miranda and Pereira, 2002b) and organosolv (Gilarranz et al., 1999; Miranda 

and Pereira, 2002b; Pereira et al., 1986; Oliet et al., 2000). In general, in kraft pulping the transition 

between initial to bulk phase can be distinguished at lower temperatures (100-120ºC), with lignin 

removal of 20-25 % (Santos et al., 1997), while the transition from bulk to residual is recognized at 

higher temperatures (140-180ºC), with 97 % lignin conversion (Santos et al., 1997) or 95 % (Pérez et 

al., 2000).  

 

1.3.2. Simultaneous model 

The simultaneous model assumes that the different lignin fractions start to react at the same time at 

the beginning of pulping and continue to dissolve concurrently along the pulping progress (Dolk et al., 

1989; Labidi and Pla, 1992). Considering three different fractions of lignin with different reactivity, the 

total amount of lignin removed from the wood material (L) at an instant of cooking time (t) can be 

calculated from the equation:  

( )( ) ( )( ) ( )( )tkexp1*Ltexp1*Ltkexp1*LL 33,022,011,0 −−+−−+−−= k  

where L1,0; L2,0; L3,0 are different lignin fractions with different reactivity, from the most reactive (1) to 

the less reactive (3), and kn the reaction rate constants correspondent to each lignin fraction removed 

and can be calculated by the following equation 

( ) ( )n,0ttn,0n tt//LLlnk −=  

where n = 1, 2 or 3; Ln,0 is the lignin (%) at time 0, Lt the lignin (%) at time t. 

Several authors mentioned this model, but few applied it to Eucalyptus delignification. Gilarranz et al. 

(1999) proposed several equations, two referring to a simultaneous model approach and other two 

referring to a consecutive model approach, for Eucalyptus globulus organosolv delignification, but 

selected the consecutive model to explain the influence of temperature on the delignification rate.  

A recent approach applying the simultaneous model was followed for the delignification of Arundo 

donax (Shatalov and Pereira, 2005) which could identify three lignin fractions (1, 2 and 3), which 

represented, respectively, 62 %, 22 % and 16 % of the total lignin. It also compared the simultaneous 
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model with the consecutive model, and for Arundo the simultaneous model explained better the 

delignification. 
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2. Material and methods  

2.1. Experimental site 
The raw material used was obtained from one first-rotation Eucalyptus globulus tree, with 18 years of 

age. The plantation was established in 1986 with 3-month-old E. globulus seedlings, planted at 

3mX3m spacing in Quinta do Furadouro, Óbidos, Portugal (Miranda et al., 2006; Madeira et al., 2002). 

The site is located in the central coastal region, approximately 10 km from the Atlantic Ocean 

(39º20’N, 9º15’W, 30 m of altitude). The climate is of the Mediterranean type, characterized by 607 

mm annual rainfall, with mean maximum and minimum temperature, respectively 19.5 and 11.1ºC. 

The relative humidity during summer may be as high as 80 % at 9 a.m., and fogs are frequent 

(Madeira et al., 2002). The soils are of low fertility and low organic carbon content (0.23 % to 0.28 %), 

mostly sandy and classified as Arenosols (Fontes et al., 2006). A detailed description of the site and 

experimental design was presented elsewhere (Pereira et al., 1989). 

 

2.2. Sampling 
The tree chosen for this work belonged to an irrigation and fertilization trial, established by CELBI (at 

present, CAIMA), where several studies were performed (Pereira et al., 1989; Madeira et al., 2002; 

Miranda et al., 2006; Fontes et al., 2006). One of them involved a total of 20 trees that were harvested 

and sampled by cutting discs at different heights (Miranda et al., 2006). One of these 20 trees was 

selected for this study due to its high total extractive content (sapwood 3.9 % and heartwood 9.8 %). 

This tree had 27.7 cm at DBH and a height of 36.1 m. A 10 cm thick disc was taken at 1.3 m, 

characterized by a total cross-sectional area of 423.6 cm2 and a heartwood area of 293.5 cm2. This 

disc was divided into two thinner discs with a saw. One was used to identify heartwood and sapwood 

areas with methyl orange (Gominho, 2003): heartwood area turned red (due to pH<4), as can be seen 

in Figure 4.a, and was used as reference for separation of heartwood and sapwood in the other disc. 

Analyses were performed on the individual heartwood and sapwood fractions.  

 

2.3. Wood characterization 

2.3.1. Basic density and bulk density 

Basic density of heartwood and sapwood was determined using Tappi standards (Tappi 258 os-76) 

and calculated by dividing the oven-dry mass by the green (maximum swollen) volume. The green 

volume was determined by weighing in immersion in water, which is equal to the mass of the 

displaced water. The following formula was applied 
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( ) ( )
( )3

3

cmvolume green

gmass wooddry
g.cmdensityBasic =−  

For bulk density determination, wood was reduced to 20-40 mesh granulometric fraction (850 µm-425 

µm, Figure 4.b), with a knife mill (Retsch SM 2000) and sieved (Retsch AS 200). The material was 

oven dried, weighted in a box of known volume, and the formula applied as 

( ) ( )
( )3

3

cmvolume

gmass wood
g.cmdensityBulk =−  

                        (a)                                                      (b) 

    
Figure 4. (a) Disc used for heartwood identification; (b) 20-40 mesh wood fraction used for pulping. 

 

2.3.2. Chemical characterization 

Sapwood and heartwood (20-40 mesh) material were chemically characterized in relation to total 

extractives, total lignin and sugar composition. 

The extractives were determined with procedures adapted from Tappi 204 cm-97, in a soxhlet system 

with dichloromethane, ethanol and water in successive extractions. Total lignin was calculated by the 

sum of Klason lignin and soluble lignin, which were determined respectively, as adapted from Tappi 

222 om-02 and Tappi UM 250 standards. The neutral sugars were determined after total hydrolysis as 

alditol acetates, by gas-liquid chromatography with a method adapted from Tappi 249 cm-00. The 

procedures was conducted in a GC (HP 5890A gas chromatograph) equipped with a FID detector, 

using helium as carrier gas (1 ml/min) and a fused silica capillary column S2330 (30 m x 0.32 mm i.d. 

x 0.20 µm film thickness). The column program temperature was 225-250ºC, with 5ºC/min heating 

gradient, the injector and detector temperature was 250 ºC, while split and septum purge were defined 

as 17.5ml/min and 2.5 ml/min, respectively. The volume inject was 0.3 µl and the run total time, 9 min. 

These conditions were established by several experiments, where the GC was calibrated with pure 

references compounds and inositol was used as internal standard in each run. Figure 5 presents a 

chromatogram of standard sugars and inositol that was used as reference for determination of 

retention time, sugar identification and quantification of the injected samples. A calibration factor was 

determined in a previous work for each sugar using the formula 
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( )
Mi
Ms

As
Ai

ffactornCalibratio ×=  

where Ai = chromatographic area of inositol peak, As = chromatographic area of the sugar peak; Ms = 

sugar mass (mg); Mi = inositol mass (mg). 

 

Figure 5. Standard sugars and inositol chromatogram (GC-FID) showing the retention times of each 

compound for the conditions used in this study. 

 

2.3.3. Optical properties 

Optical measurements were performed with a spectrophotometer (Minolta CM-3630) with d/0º 

geometry, which means that the illumination is diffuse and the measurement is made perpendicularly 

to the sample. The milled wood material was characterized by colour parameters of the L*a*b* CIE 

scale (Figure 6), using the software PaperControl ver.2 (2000). In CIE Lab colour scale, the L* axis 

represents nonchromatic changes in lightness from an L* value of 0 (black) to an L* value of 100 

(white). The a* and b* parameters range in absolute value from 0 to 100, a* varying from red (positive 

values) and green (negative values); and b from yellow (positive values) to blue (negative values). 
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Figure 6.  CIE L*a*b* colour scale. 

 

2.4. Pulping 
Sapwood and heartwood (20-40 mesh fraction) were dried and 5 g weighted for each batch of kraft 

pulping. The samples were placed in 100 ml stainless steel autoclaves (microdigesters) with kraft 

liquor and introduced in an oil bath with temperature control. 

The pulping conditions were: liquor-to-wood ratio (mL/g) 4:1; sulfidity 30% (% as Na2O); active alkali 

20% (% as Na2O); cooking at constant temperature of 170ºC. Heating time to temperature was 5 min. 

Pulping time at temperature was: 1, 3, 5, 10, 15, 20, 35, 35, 50, 65, 80 and 95 min.  

After each pulping time, the autoclaves were removed from the oil bath and cooled in ice to stop the 

reaction. The sample was defibrated in a standard pulp ultrasound disintegrator (Dr Hielscher 

UP200H), thoroughly washed with de-ionised hot water, air-dried in an acclimatized room overnight 

(55 % relative humidity and 25ºC, as described in Tappi 402 os-70), dried and weighted for yield 

determination. All pulping experiments were replicated.  

The material obtained from the delignification process was characterized by yield, lignin content and 

polysaccharides composition, and by colour parameters.  

 

2.4.1. Yield  

The delignified material yield (o.d.) was determined at each pulping time using the following formula  
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( ) ( )
( )gwoodofmass

gpulpofmass
%Yield =  

The difference between the replicates was calculated and accepted for mean calculation when it was 

lower or equal to 0.5 %. Otherwise, pulping was repeated. 

 

2.4.2. Chemical characterization 

The samples were washed by extraction in a Soxhlet system with dichloromethane and water, with 

procedures adapted from Tappi 204 cm-97, to remove residual extractable material. The samples 

were dried and 1 g weighted and milled using a 0.05 sieve in a Retsch ZM 100 apparatus. Milling was 

necessary to homogenize the material, because at the early pulping stages the wood structure was 

still maintained. 

The chemical determinations were performed as described for wood characterization. 

 

2.4.3. Optical properties 

The delignified material was characterized by the same colour parameters as in wood. Additionally 

delta values (∆) of L*, a* and b* were calculated, as 

woodsample *L*L*∆L −=  

woodsample *a*a*∆a −=  

woodsample *b*b*∆b −=  

Positive values of ∆L*, ∆a* and ∆b* mean that the samples are lighter, redder and yellower than the 

wood sample, while negative values represent darker, greener and bluer samples. 

 

2.5. Modeling of delignification kinetics 

2.5.1. Consecutive model 

The delignification can be described by three consecutive phases (initial, bulk and residual) with 

different reaction velocities. The reaction rate of delignification at each pulping phase was 

mathematically described as a first order reaction with respect to lignin remaining in the pulps, and 

calculated as  
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( )∑
=

=

−=
3i

1i
ii

0

tkexpa
L
L

 

being ai (experimental value) the lignin fraction susceptible to solubilization by the process in phase i, 

and ki the corresponding rate constant; while i represents the reaction phase (i = 1, 2, 3). 

First, the curve ln (L/L0) was graphically represented and the phases defined. The ai fractions were 

calculated by the difference of L/L0 values at the beginning and the end of the corresponding i phase. 

The determination of ki was made from a plot of the logarithm (L/L0) versus time, which gives a straight 

line with slope representing ki values. 

 

2.5.2. Simultaneous model  

The simultaneous model assumes that the different fractions (moieties) of lignin start to react at the 

same time since the beginning of pulping, and continue to dissolve simultaneously during pulping, 

although at different reaction rates, until at the end only the less reactive lignin species remains. 

The logarithm of total lignin values (reported to wood material) was graphically represented during 

pulping. From this representation, the extraction of the less reactive lignin fraction (L2) was visualized 

by drawing a straight line passing through the last value and the aligned previous values until 

obtaining the intercept parameter. The exponential of this intercept value is the percentage of the less 

reactive lignin present in the initial wood lignin. The corresponding velocity rate constant (k2) was 

calculated by the following equation 

( ) ( )2tt2,02 tt//LLlnk −=  

where L2,0 is the lignin at time 0 and Lt the lignin at time t.  

Having determined the proportion of the less reactive lignin fraction (L2) in the initial total lignin and its 

reaction rate, it was possible to calculate the amount of this fraction in the earlier pulping times, by 

applying the following equation 

( )( )tkexp*LL 22,0n,t −=  

The subtraction of these values from the lignin at each point of time gives the points (L-L2), which 

represents the next more reactive lignin fraction (L1). The logarithm of these values is graphically 

represented describing the delignification without the less reactive lignin fraction. A straight line is 

drawn passing through these values, the intercept parameter is determined and the exponential of it 

gives the amount of the type of lignin fraction. The velocity rate constant of this stage is calculated as 

before. The analysis ends when the values obtained by subtraction represent a line and not a curve. 
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The total amount of lignin dissolved from the wood material (L) at an instant of cooking time (t) can be 

calculated from the equation:  

( )( ) ( )( )tkexp1*Ltkexp1*LL nn,01-n1,0-n −−+−−=  

where Ln-1,0 and Ln,0 are respectively the lignin fractions, from the more reactive (Ln-1) to the less 

reactive (Ln) and k the respective reaction rate constants.  

The most suitable model was chosen after calculation of the sum of square residuals (SQR) which 

was obtained by the equation, ∑=
n

2
nESQR  which was for this study  

 

( ) ( )[ ]∑
=

−=
95

0t

2

model0talexperiment0t /LL/LLSQR  
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3. Results  

3.1. Heartwood and sapwood characterization 
The physical, chemical and optical characterization of the 20-40 mesh wood fraction used for the 

delignification studies is presented in Table 1.  

Heartwood and sapwood had the same value of basic density (0.74 g.cm-3). The bulk density of chips 

was higher for heartwood them for sapwood (0.52 g.cm-3 vs. 0.44 g.cm-3). 

 

Table 1. Characterization of the E. globulus sapwood and heartwood material used for pulping. 

 Sapwood Heartwood 

Basic density (g.cm-3) 0.74 0.74 

Bulk density (g.cm-3) 0.44 0.52 

Extractives (% o.d. wood)   

Dichloromethane 0.1 0.3 

Ethanol 2.0 6.8 

Water 1.8 2.7 

Total 3.9 9.8 

Lignin (% o.d. wood)   

Soluble 3.7 3.6 

Klason 20.6 19.9 

Total 24.3 23.5 

Monosaccharides (% of total)   

Arabinose 1.2 1.3 

Xylose 13.7 17.5 

Mannose 1.7 2.7 

Galactose 2.3 3.3 

Glucose 81.1 75.1 

Colour   

L* 82.9 82.9 

a* 2.9 3.0 

b* 13.9 16.6 

 

Heartwood had more extractives (9.8 %) than sapwood (3.9 %). The difference was due to ethanol 

soluble material (6.8 % vs. 2.0 %) and also, but to a much smaller extent, to water soluble extractives 

(2.7 % vs. 1.8 %). Lignin content in sapwood and heartwood presented similar values, at respectively, 

24.3 % and 23.5 %. The monossacharides composition of heartwood and sapwood was also similar, 
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although heartwood showed slightly higher xylose and lower glucose content (17.5 % and 75.1 %) 

than sapwood (13.7 % and 81.1 %).   

As regards colour, heartwood was more yellowish than sapwood, as confirmed by higher b* value 

(16.6 vs. 13.9). 

 

3.2. Pulping 

3.2.1. Yield 

The 20-40 mesh fractions of sapwood and heartwood were submitted to kraft pulping during different 

cooking times. The obtained yields are presented in Table 2 and Figure 7. The solubilization of the 

wood material by pulping was very rapid in the initial reaction phase and somewhat higher in 

heartwood than in sapwood. After 1 min, the yield was 85.9 % and 92.6 %, for heartwood and 

sapwood, respectively, and after 5 min it was 74.9 % and 82.6 %. Similar yield values were obtained 

for heartwood and sapwood after 10 min (69.1 % and 68.7 %) and 20 min (60.9 % and 61.8 %). For 

longer reaction times, the yield obtained with sapwood was always higher than with heartwood: with 

95 min pulp yield was 56.7 % and 52.4 % for sapwood and heartwood respectively.  

 

 
Figure 7.  Effect of pulping time on total yield from sapwood and heartwood of E. globulus. 

 

Figure 8 shows the macroscopical aspect of the wood samples after reaction with different pulping 

times. It can be seen that only after 35 min of delignification the fibres were separated and enough 
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individualized to be networked in what can be considered as pulp. Before that time, the material was 

less delignified and the wood structure was maintained. 

 

Figure 8. Samples of 20-40 mesh fractions of sapwood and heartwood of E. globulus after delignification with 

different times (1 to 95 min). 

 

 

3.2.2. Chemical characterization 

The delignified samples were chemically analysed and the results are shown in Table 2 and Table 3.  

During pulping, lignin was progressively removed from the wood structure and the content in lignin of 

the pulped material decreased steadily, especially in the first stages of reaction. The behaviour of 

heartwood and sapwood in delignification, as regards content of residual lignin in the samples, was 

similar in the first part of pulping up to approximately 20 min reaction time, and subsequently sapwood 

showed lower residual lignin content. For example, after 15 min of pulping, the residual total lignin 

contained in the material was 11.0 % and 10.8 % in heartwood and sapwood respectively; after 20 min 

of pulping, it was 8.1 % and 8.9 % in sapwood and heartwood, and after 95 min, the total residual 

lignin was 3.0 % in heartwood and 1.2 % in sapwood. The differences between heartwood and 

sapwood in relation to residual lignin in the delignified samples were due to Klason lignin, since the 

acid soluble lignin showed similar values.  
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Table 2.  Yield (% of o.d. wood) and lignin content (% o.d sample) of sapwood and heartwood, after delignification 

with different pulping times (mean of two samples). 

 

  Sapwood  Heartwood 

  Yield  Lignin (% of sample)  Yield  Lignin (% of sample) 

Time (min)  (% of wood)  Soluble Klason Total  (% of wood)  Soluble Klason Total 

Wood  100.0  3.7 20.6 24.3  100.0  3.6 19.9 23.5 

1  92.6  3.7 19.3 23.0  85.9  3.8 18.8 22.6 

3  86.5  3.3 18.1 21.4  79.4  3.2 17.3 20.5 

5  82.6  3.3 16.2 19.5  74.9  3.2 15.0 18.2 

10  68.7  2.3 9.2 11.6  69.1  2.4 11.9 14.3 

15  62.3  1.8 9.2 11.0  64.1  2.0 8.8 10.8 

20  61.8  1.5 6.6 8.1  60.9  1.4 7.5 8.9 

25  60.5  1.1 2.8 3.9  58.1  1.4 4.8 6.2 

35  58.3  0.7 2.7 3.4  54.9  0.9 3.8 4.7 

50  57.7  0.7 1.4 2.1  53.7  0.8 3.2 4.0 

65  57.1  0.7 1.0 1.6  52.9  0.6 3.1 3.7 

80  54.3  0.7 0.6 1.3  52.9  0.6 2.9 3.5 

95  56.7  0.8 0.3 1.2  52.4  0.7 2.3 3.0 

 
 

The monossacharides composition is presented in Table 3. There were no significant differences 

between the samples after the various delignification times, although arabinose and galactose 

proportion decreased and glucose content increased with time.  No differences were found between 

heartwood and sapwood. 
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Table 3.  Monosaccharide composition (% of total neutral sugars) of sapwood and heartwood after delignification 

with different pulping times. 

  Sapwood  Heartwood 

  Monosaccharide (%)  Monosaccharide (%) 

Time 

(min) 
 Arabinose Xylose Mannose Galactose Glucose Total  Arabinose Xylose Mannose Galactose Glucose Total 

Wood  1.2 13.7 1.7 2.3 81.1 100.0  1.3 17.5 2.7 3.3 75.1 100.0 

1  0.9 11.8 1.7 2.0 83.0 100.0  1.2 12.9 2.7 2.5 72.2 100.0 

3  0.8 13.1 1.5 2.3 82.4 100.0  0.8 13.7 1.9 2.9 80.7 100.0 

5  0.9 12.3 1.8 2.2 82.9 100.0  0.8 12.9 2.0 2.2 82.2 100.0 

10  0.7 10.0 1.8 1.6 85.9 100.0  0.7 12.2 1.9 1.9 83.3 100.0 

15  0.3 9.5 1.7 1.4 87.1 100.0  0.7 11.8 1.7 1.4 84.4 100.0 

20  0.5 11.1 1.7 1.3 85.4 100.0  0.7 11.6 1.9 1.4 84.4 100.0 

25  0.6 10.7 1.8 1.2 85.7 100.0  0.6 12.2 1.7 1.2 84.3 100.0 

35  0.9 9.2 2.0 0.9 85.8 100.0  0.6 11.6 1.6 1.2 85.0 100.0 

50  0.6 11.4 2.2 0.5 85.4 100.0  0.5 11.8 1.7 0.9 85.1 100.0 

65  0.4 10.4 1.6 0.8 86.8 100.0  0.4 11.4 1.7 0.9 85.6 100.0 

80  0.4 11.4 1.7 0.8 85.7 100.0  0.2 12.4 1.8 0.4 85.2 100.0 

95  0.5 12.7 1.7 0.8 84.4 100.0  0.5 12.5 1.7 0.8 84.6 100.0 

 

3.2.3. Optical properties 

The colour characterization and the CIE L*a*b* parameters measured for each sample are presented 

in Table 4 and Figures 9 to 11.  

Delignification reduced the L* value for both sapwood and heartwood samples. The values of delta 

lightness (∆L* = L*wood – L*sample) show that all delignified samples were darker than the wood, with the 

less darker between 3 to 5 min with values of -5.9 (Figure 9). The delignified samples of sapwood 

were lighter (L*) than those of heartwood, as well as more reddish (values of a*) and less yellowish 

(values of b*). 

Positive ∆a* values, corresponding to reddish samples, were found in both sapwood and heartwood 

samples (Figure 10), although sapwood showed higher values, varying from 0 to 3 (close to red area), 

whereas heartwood varied from -2 (greener region) to 2 (reddish region). The delta b* values (Figure 

11) show an increase in the initial pulping stages and a gradual reduction as pulping time increased. 

After 15 min, the heartwood material became bluer varying from -0.4 to -2.4, while sapwood 

maintained values near 0. 
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Table 4. Results from colour measurements of sapwood and heartwood samples after delignification with different 
pulping times. Values of L* a* b* parameters. 

 Sapwood  Heartwood 

Time (min) L* a* b*  L* a* b* 

Wood 82.9 2.9 13.9  82.9 3.0 16.6 

1 76.3 4.1 19.3  75.2 3.1 22.0 

3 77.0 3.1 20.0  75.8 1.7 23.0 

5 77.0 3.6 19.2  74.5 2.6 19.9 

10 73.3 4.6 16.2  69.7 4.0 17.2 

15 73.2 4.6 14.9  67.9 4.8 16.1 

20 74.0 5.4 15.1  67.2 5.0 15.5 

25 74.1 5.9 15.1  65.8 5.0 15.1 

35 74.0 5.3 14.0  65.3 4.8 14.2 

50 73.0 5.8 14.2  63.6 4.8 13.8 

65 73.4 4.9 13.4  61.9 4.9 14.4 

80 73.6 4.1 13.0  63.4 4.7 14.1 

95 74.5 5.0 13.9  66.5 4.8 14.1 
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Figure 9. Values of ∆L* from sapwood and heartwood along the delignification period. Wood as reference. 
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Figure 10. Delta a* values (CIE lab colour scale) of sapwood and heartwood during delignification. 
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Figure 11. Delta b* values (CIE lab colour scale) of sapwood and heartwood samples during delignification. 
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3.2.4. Modelling of delignification kinetics  

The content of lignin in the heartwood and sapwood samples decreased with reaction time (Table 2) 

and is shown graphically in Figure 12. The mathematical description of the kraft pulping process was 

made in relation to the delignification by analysing the results of lignin removal. Two modelling 

approaches were applied: the consecutive model and the simultaneous model. 
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Figure 12. Lignin content of sapwood and heartwood samples with different reaction times. 

 
 

 

3.2.4.1. Consecutive model 

The consecutive approach assumes that the dissolution and removal of lignin proceeds in three 

phases, which occur consecutively, each of them characterized by a removal of lignin with different 

reaction rates.  

A graphic representation of ln L/L0 (where L = residual lignin; L0 = initial lignin) vs. time is represented 

in Figure 13 and Figure 14, respectively for sapwood and heartwood. For both cases the initial phase 

of delignification could not be visualized and only two phases with different kinetics could be observed: 

the first included therefore the initial and bulk phases, and the second the residual phase. 
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Figure 13. Logarithm variation of total lignin (L/L0) for sapwood samples during delignification. 
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Figure 14. Logarithm variation of total lignin (L/L0) for heartwood samples during delignification. 

 

Table 5 presents the delignification rates (k) and the lignin fractions susceptible to solubilization (ai) by 

the kraft process under the studied conditions. For sapwood (Figure 13) the first phase (initial and 

bulk) had a duration of 35 min, extracting 86% of the initial total lignin present in the wood, at a 
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reaction rate characterized by a constant, ki+b. of 0.061 min-1 (R2 = 0.961). The residual phase 

removed 9 % of the initial lignin, at a lower reaction constant (k = 0.017 min-1, R2 = 0.945), while 5 % 

of the lignin remained in the lignocellulosic matrix after 95 min of pulping. For heartwood (Figure 14) 

less lignin was removed, the first phase (initial and bulk phases) lasted 35 min, extracting 80 % of the 

initial lignin, while the residual phase extracted 7 % and the residual lignin present in the pulp material 

after 95 min was 13 %. The reaction rate constants were, respectively, ki+b = 0.048 min-1 (R2 = 0.991) 

and kr = 0.007 min-1 (R2 = 0.966). The reaction rates and the fraction of lignin removed in both reaction 

phases were lower for heartwood than for sapwood. The mathematical expression for the total 

reaction can be described as: 

 ( ) ( ) 0.050.017texp0.090.061texp0.86L/L0 +−+−=  for sapwood 

and 

( ) ( ) 0.130.007texp0.070.048texp0.80L/L0 +−+−=  for heartwood 

 

Table 5. Reaction rate constants (ki) and mass fractions (ai) of sapwood and heartwood delignification. 

Delignification phases: i+b=initial and bulk; r=residual. 

 Sapwood Heartwood 

ai+b  0.86 0.80 
ki+b (min-1) 0.061 (R2 = 0.961) 0.048 (R 2 = 0.991) 
ar 0.09 0.07 
kr (min-1) 0.017 (R 2 = 0.945) 0.007 (R 2 = 0.966) 

 

The lignin values obtained by simulation using the obtained model equations were plotted versus the 

respective experimental values (Figure 15). There is an overall good correlation of experimental and 

modeled values, although slightly less in the late stages of pulping. For model validation the sum of 

square residuals (SQR) were determined (statistical criteria for data reproducibility) and the values 

obtained for sapwood and heartwood samples were respectively, 0.041 and 0.101. Sapwood 

delignification was better explained by this model, while heartwood was overestimated.   
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Figure 15. Reproduction of experimental data on lignin conversion by the consecutive model. 

 

3.2.4.2. Simultaneous model 

The simultaneous model assumes that the dissolution and removal of the different lignin fractions 

occur at the same time, although at different rate constants. 

Figure 16 and Figure 17 present the logarithm of lignin content, respectively for sapwood and 

heartwood. A two-step analysis was enough to complete the kinetic description, corresponding to the 

presence of only two lignin fractions that behaved differently under these pulping conditions, L1 and L2. 

Their kinetics are represented by the two straight lines in the figures. In sapwood the less reactive 

lignin fraction L2 corresponded to 24.2 % of the total lignin and was removed at a rate constant k2 of 

0.018 min-1, while the more reactive lignin fraction L1 was extracted with a higher rate (k1 = 0.077 min-

1) and represented 75.8 % of total lignin. The application of this model to the values obtained for 

sapwood gives the following equation 

( )( ) ( )( )0.018texp1*24.20.077texp1*75.8L −−+−−=  

Heartwood presented the same behavior and also two types of lignin fractions. The less reactive lignin 

L2 was approximately 29.4 % of the total lignin and was removed at a rate k2 of 0.010 min-1, while the 

more reactive lignin fraction L1 represented 70.6 %  and had a k1 of  0.080 min-1. The model equation 

for heartwood can be written as 

( )( ) ( )( )0.010texp1*29.40.080texp1*70.6L −−+−−=  
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Figure 16. Delignification curves from sapwood samples. Straight lines represent lignin fractions. 
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Figure 17. Delignification curves from heartwood samples. Straight lines represent lignin fractions. 
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The data obtained by the model and the experimental data were plotted (Figure 18). The correlation 

between them was high for heartwood and sapwood as shown by R2 values of respectively, 0.994 and 

0.984.The sum of square residuals (SQR) was also calculated and the values obtained were 0.033 

and 0.009 for sapwood and heartwood, respectively. 

 

Figure 18. Reproduction of experimental data on lignin conversion by the simultaneous model. 
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4. Discussion  

4.1. Heartwood and sapwood characterization 

The basic density of sapwood and heartwood from E. globulus used in this study was 0.74 g.cm-3. This 

value is higher than reported by other authors for E. globulus although it is in the broad range of 

values found for the Eucalyptus species growing in Australia forests (0.30-1.00 g.cm-3, Higgins, 1984). 

For E. globulus trees with the same age of 18 years, Miranda et al. (2003) obtained lower wood basic 

density values, ranging from 0.57 to 0.59 g.cm-3, while Valente et al. (1993) reported 0.45-0.62 g.cm-3 

for trees with eight and twelve years, Cotterill and Macrae (1997) 0.53 g.cm-3 for ten-year-old trees, 

Miranda and Pereira (2002c) 0.53-0.55 for nine-year-old trees, and Gil et al. (1999) and Wimmer et al. 

(2002) 0.46 and 0.59 g.cm-3 for eight-year-old trees.  

A wood basic density between 0.65 and 0.70 g.cm-3 was considered by Bootle (1983) as an economic 

advantage for pulping, because this wood occupies less volume per unit of papermaking material 

during transportation and more material can be treated per digester charge. Although wood density is 

one of the most studied wood variables, its influence on pulp properties is not significant in eucalypts 

(Trugilho et al., 2005, Collins et al., 1990).  

It would be expected that because sapwood has thicker cell wall fibers it would have higher basic 

density compared to heartwood, as reported by Monteiro (2003) for E. globulus trees with 14 years of 

age (0.60 vs. 0.57 g.cm-3). The similar value of 0.74 g.cm-3 obtained for both heartwood and sapwood, 

might be due to higher extractives deposition on heartwood fiber walls, that compensate the thicker 

sapwood cells.  

One important chemical characteristic of wood is its content in extractives, whose presence is 

undesirable for pulping and papermaking. In general E. globulus has a moderate extractive content, 

e.g. 3.7 % total extractives in 9-year-old trees (Miranda et al., 2002c) although increasing with age to 

5.0-8.7 % for 18-year-old trees (Miranda et al., 2003).  

In this work the wood material was selected from a tree with a high extractive content in heartwood 

compared to sapwood (9.8 % vs. 3.9 %), essentially due to the contribution of ethanol extractives (6.8 

% and 2.0 % respectively). Heartwood has more extractives than sapwood and some data are 

available for E. globulus:  Gominho (2003) obtained in 9-year-old E. globulus trees, values of ethanol-

extractives ranging from 1.8 % to 5.4 % in heartwood and 1.0 % to 1.5 % in sapwood. In 8-year-old 

trees values for ethanol extractives ranged from 1.9 % to 4.3 % in heartwood and 1.3 % to 2.2 % in 

sapwood (Miranda et al., 2007). Similar differences between heartwood and sapwood are found in 

other species in respect to total extractives, and Gominho et al. (2001) with urograndis eucalypt hybrid 

trees obtained 3.7 % and 7.6 % respectively, in sapwood and heartwood, where the main extractives 

were removed by ethanol respectively, 1.8 % and 3.9 %. In E. grandis, 5.1 % of extractives were 
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found in sapwood and 5.6 % in heartwood (Mariani et al., 2005), and in E. pilularis 2.9 % and 8.4 % 

(Higgins, 1984). For total wood, Silva et al. (2005) attained with E. grandis respectively in 10 and 20-

year-old trees 4.0 % and 6.3 %, showing the influence of a higher proportion of heartwood in the older 

trees. 

Lignin content was similar in sapwood and heartwood respectively, 24.3 % and 23.5 %. These values 

are in the range of those reported for E. globulus, e.g. 21.9 % (Patt et al., 2006, Gilarranz et al., 1999), 

25.5 % (Miranda and Pereira, 2002c) or 27.0 % (Cotterill and Macrae, 1997). E. globulus has lower 

lignin than other eucalypt species, a favourable characteristic for pulping, for example, 32.9 % in E. 

degluta and 33.7 % in E. tereticornis (Collins et al., 1990), 29.0 % in E. vitaminis and 30.0 % in E. 

grandis (Cotterill and Macrae, 1997). Ona et al. (1997) studied the radial and axial variation in respect 

to lignin S/G ration in E. globulus, presenting higher ratio at pith area, decreasing with height. In E. 

nitens, Mariani et al. (2005) reported a lignin content of 21.8 % and 25.1 %, respectively in sapwood 

and heartwood. The content in extractives may obscure the composition of cell wall structural 

components; in our material, lignin in sapwood and heartwood represented respectively, 25.3 % and 

25.8 % of extractive-free wood, in agreement with the general trend of higher lignin content in the 

inner part of the stem. This was also observed in maritime pine by Esteves et al. (2005) where 

heartwood-extractive free wood presented higher value than sapwood (28.7 % vs. 26.7 %).  

The major monosaccharides were glucose and xylose that attained in sapwood respectively, 81.1 % 

and 13.7 %, and in heartwood, 75.1 % and 17.5 %. For E. globulus wood, mean values reported for 

glucose were 71.9 % (Miranda et al., 2003) and 75.3 % (Pinto et al., 2005a); and for xylose 28.4 % 

(Miranda et al., 2003) and 20.0 % (Pinto et al., 2005a).  

Distinction of heartwood and sapwood by colour is one very common feature in most species and 

used as heartwood identification method. In E. globulus, heartwood is usually distinct from sapwood 

although often the difference is not very large and other methods are used for delimitation of 

heartwood (Gominho et al., 2004), as it was the case in the present study. In accordance, the CIELab 

colour measurements in sapwood and heartwood presented no difference in lightness (L*), and a* 

parameter (3.0), and the distinction occurred only at b* values, with heartwood more yellowish 

(positive b*) than sapwood (16.6 vs. 13.9). Mori et al. (2005) with Eucalyptus spp found differences 

between sapwood and heartwood in b* (18 vs. 22), a* (4-7 vs. 9-13) and L* (70 vs. 81) parameters.  

 

4.2. Pulping 
The primary objective of pulping is to remove lignin from wood, without depolymerization in great 

extent of polysaccharides (Clayton et al., 1983) and therefore pulp yield is directly influenced by the 

lignin and cellulose contents (Patt et al., 2006). The pulp yields obtained after 95 min pulping time 

(Table 2) are high at a mean value of 55 %, as it is usual for E. globulus wood. For example, Simão et 

al. (2005) reported 55.0 %, Miranda and Pereira (2002a) 56.2 %; Miranda and Pereira (2002c) 57.6 % 

to 58.5 %; Miranda and Pereira (2002b) 52.2 %; Wallis et al. (1996) 54.4 %; Patt et al. (2006) 54.6 %. 
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Pulp yield from heartwood was lower than from sapwood, respectively 52.4 % and 56.4 %. This 

difference was expected due to the higher content of extractives of heartwood and similar results have 

been reported already, e.g. Miranda et al. (2007) obtained 48.3 % for heartwood and 54.1% for 

sapwood, and Miranda et al. (2006) obtained 56.2 % and 57.4 %, respectively. The lower yield 

obtained from heartwood in relation to sapwood was also reported in other species: in Acacia 

melanoxylon 52.9 % and 56.2 % respectively (Lourenço et al., 2008), in E. grandis composite samples 

where samples with more heartwood yielded less pulp (Mariani et al., 2005). The same was observed 

with P. pinaster kraft pulps, 40.0 % and 49.7 %, respectively, for heartwood and sapwood (Esteves et 

al., 2005). 

 

The fiber dissociation from the wood structure was only obtained for yield values less than 59 % for 

sapwood and 55 % for heartwood, representing a lignin removal of respectively, 86 % and 80 %, 

comparable to the yield results obtained by Miranda and Pereira (2002b) for E. globulus wood (60 %) 

although less lignin was removed (63 % during 35 min). Esteves et al. (2005) reported for pine 

heartwood a total yield of 40 % and 86 % lignin solubilization, while for sapwood respectively, 50 % 

and 84 % after 60 min. 

 

Heartwood presents differences at chemical levels (extractives content) compared to sapwood, which 

are responsible for higher chemical consumption during pulping and higher residual lignin (3.0 % vs. 

1.2 %, Table 2). Other authors studied the sapwood and heartwood behavior during delignification and 

obtained lower differences in respect to residual lignin content: E. grandis heartwood presented 2.6 % 

and sapwood 2.4 % (Mariani et al., 2005) and P. pinaster the klason lignin represented respectively 

4.2 % and 4.4 % (Esteves et al., 2005). 

In respect to sugar composition, sapwood and heartwood showed similar results, for example at 95 

min, xylose and glucose content in both were respectively, 12.6 % and 84.5 %. These results can be 

compared with those reported by Pinto et al. (2005b) for E. globulus total wood where the percentage 

of glucose is similar to the obtained, 79.9 %, but xylose is higher, 18.8 %.  

Compared to wood, all pulp samples were darker (Figure 19) due to the formation of lignin 

chromophores during pulping (Bierman, 1996). Other authors obtained for softwood kraft pulps L* 

varying from 68 to 71; a* from 5 to 7 and b*, 17 to 20 (Lachenal et al., 2005). Birch kraft pulps were 

lighter, but less yellowish, compared to softwood kraft pulps (Lachenal et al., 2005); for E. globulus 

commercial unbleached pulps, Lourenço (2003) reported respectively, 78, 4 and 16. In this study, 

heartwood pulps presented lower luminosity values (L*), ranging from 65 to 75, while sapwood values 

were around 75. Lourenco et al. (2008) with Acacia melanoxylon pulps obtained differences between 

heartwood and sapwood referring to lightness values respectively of 45-60 and 60-75.  

Sapwood and heartwood delignified samples presented similar a* values, between 4 and 5, but 

presented differences at b* values, where sapwood became bluer (19.3-13.9) compared to heartwood 

(22.0-14.1). Lourenco et al. (2008) with Acacia melanoxylon pulps found smaller differences between 



Discussion 

  35 

sapwood and heartwood pulps: b* values were lower, 10 to 15, but similar a* values were attained 

(around 5). 
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Figure 19. Correlation between lightness (L*) in sapwood and heartwood delignified fractions and initial wood. 

 

 

4.2.4. Modeling of delignification kinetics  

4.2.4.1. Consecutive model 

The application of a consecutive model to Eucalyptus globulus kraft pulping at 170ºC explained 

delignification in two phases, as shown by Labidi and Pla (1992), Gilarranz et al. (2002), as well as for 

organosolv delignification under the same temperature (Gilarranz et al., 1999; Oliet et al., 2000; 

Miranda and Pereira, 2002b). The initial phase was not identified at the high temperature of 170ºC that 

was used in this study, because it might be coincident with the heating period. An initial phase was 

observed by Chiang et al. (1988) with temperatures varying from 90 to 140ºC, who found that in this 

phase, 25 % of lignin was extracted in red oak and red alder, 20 % in aspen and sweetgum.  

For E. globulus kraft delignification, the transition from bulk to residual delignification was observed at 

a lignin removal ranging from 94 % to 98 % (Gilarranz et al., 2002) or 97 % (Santos et al., 1997) at 

temperatures of 150 to 180ºC with several alkali concentrations. Miranda and Pereira (2002b) reported 

for delignification at 170ºC a lignin removal in the bulk phase of 66 % and 10 % in the residual phase, 

with rate constants of respectively, -0.035 and -0.0034 min-1. In organosolv pulping, initial, bulk and 
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residual phases represented a lignin extraction of respectively: 10, 69 and 21 % (Gilarranz et al., 

1999) or 9, 75 and 16 % (Oliet et al., 2000); in the bulk and residual phases, respectively, 55 and 12 % 

of lignin were removed (Miranda and Pereira, 2002b).  

In this study, delignification of sapwood and heartwood was explained by two phases, and in both, 

heartwood was more difficult to delignify. The bulk phase corresponded to a lignin removal of 86 % 

and 80 %, respectively for sapwood and heartwood and the residual phase to 9 % and 7 %. 

Heartwood samples retained more lignin in the solid matrix, 13 % vs. 5 %. 

Several authors have studied the kraft pulping of Eucalyptus globulus, but no literature was found 

comparing sapwood and heartwood kinetics relatively to a consecutive model approach. For pine 

sapwood and heartwood delignification at 170ºC, Esteves et al. (2005) reported lower lignin removal in 

the bulk phase, respectively 59 % and 47 % for sapwood and heartwood, with more residual lignin 

present in the pulps, respectively, 11 % and 13 %. Pine heartwood was more difficult to delignify 

compared to eucalypt due to their differences at phenolic units. Pine is mostly constituted by guaiacyl 

(G) and p-hydroxyphenyl (H) (Saito et al., 2005) and only in a minor degree (if at all) by syringyl (S) 

phenolpropanoid units (Obst and Landucci, 1986; Plomion et al., 2001), with a relation G:S:H of 95:0:5 

(Alves, 2004). In Eucalyptus globulus the S:G ratio is high, ranging from 2.0 to 2.8 (Rodrigues et al., 

2001). Because the S-type lignin is less condensed than G-lignin, eucalypt lignin is more easily 

solubilized during pulping (Ibarra et al., 2005) compared to pine. 

 

4.2.4.2. Simultaneous model 

Same authors refer a model where lignin fractions are removed at the same time, the simultaneous 

model (Dolk et al., 1989; Labidi and Pla, 1992; Oliet et al., 2000). Even though several references 

exist mentioning this approach, none was found applying it to Eucalyptus globulus. Two types of lignin 

were found regarding delignification kinetics: one more reactive lignin (L1) that represented 71-76% of 

the lignin and a less reactive lignin (L2) that represented 24-29% of the lignin. It may be possible that 

during the heating period a more reactive lignin was removed, but with this pulping temperature it 

could not be identified. The more reactive lignin (L1) was easier to extract in sapwood compared to 

heartwood (75.8 % vs. 70.6 %), the inverse occurred for the less reactive lignin (L2, 24.2 % vs. 29.4 

%). The SQR analysis demonstrated that sapwood and heartwood delignification was well explained 

by this model with lower differences between the experimental data and the model predictions (0.033 

vs. 0.030). 

The only reference found applying a simultaneous model was for Arundo donax delignification at 

temperatures from 130 to 150ºC (Shatalov and Pereira, 2005). They could identify three different lignin 

fractions, the more reactive represented about 62 % of total lignin, the medium reactive lignin 22 % 

and the less reactive, 16 %. The simultaneous model explained better the delignification in Arundo 

compared to consecutive model, as tested by SQR (0.0036 vs. 0.0856).  
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The experimental values and those obtained by the two models are presented in Figure 20. It can be 

seen that sapwood delignification can be explained by both models, while heartwood delignification is 

better explained by the simultaneous model.  
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Figure 20. Comparison of total lignin remaining during pulping obtained by experimental data and by model 
simulations. 
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5. Conclusion 
Eucalyptus globulus wood was used in this work to study the influence of heartwood and sapwood in 

delignication by kraft pulping. Heartwood had more extractives but similar lignin contents compared to 

sapwood and was more yellowish. 

 

The major conclusions are:     

- there were differences in pulping and in delignification between heartwood and sapwood; 

- pulp yields were lower in heartwood in comparison to sapwood; 

- heartwood was more difficult to delignify with more residual lignin in pulp;  

- sapwood pulps were lighter than heartwood pulps, but in relation to a* and b* parameters no 

differences were found; 

- heartwood delignification was better explained by a simultaneous kinetic model, while for 

sapwood both models could be applied;  

- apparently sapwood delignification presented higher velocity reaction rates compared to 

heartwood when a consecutive model was applied but this difference was lower when the 

simultaneous model was used. 

 

Further studies should be performed to better understand the differences of sapwood and heartwood 

in pulping. In relation to the delignification kinetics, lower temperatures should be tested to better 

explain the lignin removal, namely in the initial stages, with the calculation of other kinetics 

parameters, e.g. activation energy. The influence of liquor impregnation should also be tested using 

different chip sizes.  

 

Another important issue is the influence of extractives, and their solubilisation during kraft pulping, 

namely in the initial phase, should be studied, also including discrimination by chemical composition. 

As regards the wood raw material there is a lack of information about the seasonality of extractives in 

commercial stands of Eucalyptus globulus and on their compositional variability.  
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