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Positivity of discrete singular systems and their stability:
AnLP-based approach
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Abstract

In this paper we present an efficient approach to the analysis of discrete positive singular systems. One of our main objectives
is to investigate the problem of characterizing positivity of such systems. Previously, this issue was not completely addressed.
We provide easily checkable necessary and sufficient conditions for such problem to be solved. On the other hand, we study
the stability of discrete positive singular systems. Note that this is not a trivial problem since the set of admissible initial
conditions is not the whole space but it is represented by a special cone. All the conditions we provide are necessary and
sufficient, and are based on a reliable computational approach via linear programming.
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1 Introduction

Over the past few years, singular systems (also referred
to as descriptor systems, semi-state systems, implicit
systems, differential-algebraic systems, or generalized
state-space systems) have constantly gained a great in-
terest. This kind of systems naturally appears in many
practical areas such as robotics, compartmental sys-
tems, circuit systems, Leontief dynamic models, etc...,
see [20,22,30,32]. Their solutions and fundamental prop-
erties such as stability and controllability have been
fully studied. Important developments took place in the
80’s, see for instance the survey paper [24] and [7,12].
In the last three decades, some interesting monographs
entirely devoted to many topics of this type of systems
have been presetnted [7,12,14,22,30,23,35] along with a
vast amount of contributions extending the framework
of standard systems to deal with stabilization and ro-
bustness. These intensive developments are a testimony
of the vitality and the maturity of this field that remains
an area of active research, see for instance recent works
among others [3,16,34,31].

In this paper, our focus is on discrete singular systems
under positivity constraint on their states. This is inher-
ent to many real-world systems for which the states are

Email addresses: musta.ait.rami@gmail.com (M. Ait
Rami), diegonapp@gmail.com (D. Napp).

intrinsically nonnegative since they can represent real
physical quantities such as concentrations, level and vol-
ume of matter transfer, size of populations, etc. Singu-
lar systems which have nonnegative states whenever the
initial conditions are nonnegative are referred to as posi-
tive systems [15,21,26] or evenly as nonnegative systems
[11].

Although many fundamental issues have been well-
investigated for standard singular systems and, in par-
ticular for standard positive systems, they have not
been sufficiently investigated for the specific class of
positive singular systems. To the best of our knowl-
edge few works on such systems can be found in the
literature [4,5,10,18,19,29,36]. These works are based
on a common standing, but unnecessary, assumption
for positivity of a singular system. That is, the matrix
that represents the projector on the set of admissible
initial conditions, is nonnegative. Most of the reported
results have focused on other fundamental properties
such as reachability and controllability. The stability
issue was considered only in [36,1]. In this paper, unlike
the previous reported results on discrete positive singu-
lar systems, positivity is fully investigated without any
unnecessary assumption. Note that, in general, numer-
ically checking positive invariance for a particular set
of initial conditions even for a standard linear system
can be quite complicated. This fact also applies to the
stability analysis for a given set of initial conditions.
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This issue has been investigated in [33] and [28] for LTI
systems with respect to a closed convex pointed cone for
which necessary and sufficient conditions for positive in-
variance and stability have been provided. However, the
proposed results are rather theoretical and cannot be
checked numerically. In the case of positive singular sys-
tems we have to deal with a specific conic set of the form
im(P ) ∩ Rn

+, where the matrix P represents the projec-
tor on the admissible set of initial conditions. For such
set the stability issue is also addressed. The proposed
approach is numerically appealing for checking positiv-
ity and stability of a given discrete singular system. All
the proposed conditions are necessary and sufficient and
can be checked by using Linear Programming (LP).

The structure of the paper is as follows. Section 2 gives
the necessary background on singular systems. Section 3
is concerned with the positivity of discrete singular sys-
tems for which some characterizations are provided to-
gether with an illustrative example. Section 4 deals with
the stability issue. In Section 5 the notion of internal pos-
itivity is investigated. Section 6 gives some conclusions.

Notation: Rn
+ denotes the nonnegative orthant of the n-

dimensional real space Rn and Ṙn
+ its interior. A real

matrix (or a vector)M = [M(i, j)] is called nonnegative,
denoted byM ≥ 0, if all its components are nonnegative
(i.e., M(i, j) ≥ 0); analogously, a positive matrix or vec-
tor is denoted by M > 0 if its components are strictly
positive. M+ is used to denote the Moore-Penrose pseu-
doinverse of the matrix M and σ(M) its spectrum.

2 Solvability

This section provides preliminary results regarding the
existence and characterization of the solution of the fol-
lowing time-invariant homogeneous singular system

Ex(k + 1) = Ax(k) (1)

where E,A ∈ Rn×n. In contrast to standard linear sys-
tems for which E is invertible, system (1) may not pos-
sess a solution for arbitrary initial conditions.

Definition 2.1 The set of initial conditions for which
system (1) has a solution is called the set of admissible
initial conditions.

The characterization of the admissible set of initial con-
ditions with their associated trajectories involves the
Drazin inverse. Hence, we first present some basic prop-
erties of this kind of inverse (see [8,13] for more de-
tails). For any matrix M ∈ Rn×n there always exists a
unique matrix MD, which is called the Drazin inverse of
M , such that MDM = MMD, MDMMD = MD and
MDMν+1 = Mν , where ν is the smallest nonnegative
integer such that rank(Mν) = rank(Mν+1). In [22], it is

shown how the Drazin inverse can be computed, see also
[9,37,38] for more details on this issue. One way to com-
pute it is the following: by using the Jordan canonical
form, any matrix M can be decomposed as

M = T

(
C 0

0 N

)
T−1, (2)

where C is invertible and N is a nilpotent matrix. Then,
its Drazin inverse is given by

MD = T

(
C−1 0

0 0

)
T−1. (3)

The following result presents a characterization for the
solvability of system (1). In [7], a precise explicit solution
to system (1) has been given (see also [22]).

Theorem 2.2 [7] The singular system (1) admits a
unique solution for each admissible initial condition if
and only if (E,A) is regular (i.e., there exists a λ ∈ C
such that (λE − A)−1 exists). Moreover, the set of ad-
missible initial conditions is given by X0 := im(ÊDÊ)
and the solutions of (1) have the following form

x(k) = (ÊDÂ)kÊDÊv, (4)

where v is an arbitrary vector in Rn, the matrices Â and
Ê are given by,

Ê = (λE −A)−1E, Â = (λE −A)−1A, (5)

with λ any complex number such that (λE−A)−1 exists,
and ÊD is the Drazin inverse of Ê.

Remark 2.3 Theorem 2.2 summarizes the results of
Theorem 3.6.1 and Theorem 3.6.2 in [7]. Based on this
theorem, one can see that the trajectory (4) is the solu-
tion to the difference equation x(k+1) = ÊDÂx(k) with
x(0) = ÊDÊv ∈ im(ÊDÊ). Note that the solution (4)
does not depend on the value of λ used to define Ê and
Â. For more details see [7,22].

According to Theorem 2.2 we assume throughout the
rest of the paper that (E,A) is regular.

In the sequel, we shall make use of some useful prop-
erties of the matrices P := ÊDÊ and A = ÊDÂ that
characterize the admissible set of initial conditions. Such
properties are presented in the following result.

Lemma 2.4 [1, Lemma 3.2] The following properties
hold true.
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(i) P is idempotent or a projector (i.e., P 2 = P ).
(ii) PA = AP = A.
(iii) For any solution x(k) to system (1) we have

Px(k) = x(k).

3 Positivity

This section deals with the characterization of positivity
of system (1). Although the positivity analysis is sim-
ple when the set of addmissible initial conditions is the
positive orthant, the characterization of positivity for
an arbitrary set of initial conditions is not, in general,
an easy task. The positive invariance for LTI systems
with respect to a given cone has been studied in [28,33].
However, the reported results are rather theoretical and
cannot be checked numerically. In what follows, we shall
investigate computationally sound conditions for posi-
tivity of system (1) in connection with the conic set of
the form im(P ) ∩ Rn

+. Observe that when the matrix E
is nonsingular, system (1) reduces to the standard linear
system x(k + 1) = E−1Ax(k). Obviously, in this case
system (1) is positive if and only if E−1A is a nonnega-
tive matrix (i.e., E−1A ≥ 0).

Definition 3.1 We say that system (1) is positive if
for any nonnegative admissible initial condition x(0) ∈
X0 = im(P ) ∩ Rn

+ we have that x(k) ≥ 0 for all k ≥ 0.

In order to derive our results for the positivity of system
(1) we shall make use of the following lemma which has
been first established in [27].

Lemma 3.2 Let M,N be matrices with appropriate
sizes. The following statements are equivalent:

(1) Mx ≥ 0 implies that Nx ≥ 0,
(2) there exists H ≥ 0 satisfying the matrix equation

N = HM.

Now, consider the system

x(k + 1) = Ax(k)

x(0) ∈ im(P ).
(6)

Note that the previous result of Theorem 2.2 and Re-
mark 2.3 show that system (6) and system (1) possess
the same set of solutions for any initial condition in the
image of P . Based on such relationship one can see that
the positivity of system (1) is equivalent to the positivity
of system (6) for the set im(P ) ∩ Rn

+. Keeping in mind
this fact, we are now in a position to characterize the
positivity of system (1).

Theorem 3.3 The following statements are equivalent.

(1) System (1) (or (6)) is positive for the set of nonneg-
ative admissible initial condition S = im(P ) ∩ Rn

+.
(2) There exists a matrix H that satisfies the following

conditions

{
H ≥ 0

A = HP.
(7)

Proof. (1 ⇒ 2) : Let x(0) = Pv. By assumption, since
x(1) = Ax(0), we have that APv ≥ 0 if Pv ≥ 0. By
Lemma 3.2 there exists a matrix H ≥ 0 such that AP =
HP . Further, AP = A, by statement (ii) of Lemma 2.4,
which yields A = HP .

(1 ⇐ 2) : We have that x(k + 1) = Ax(k) = HPx(k).
Then by statement (iii) of Lemma 2.4 one can use the
property Px(k) = x(k) and therefore the system reduces
to x(k+1) = Hx(k). SinceH is nonnegative then system
(1) is positive.

We next provide an example to illustrate Theorem 3.3.
Indeed, despite the fact that P and A are not nonnega-
tive, the associated system is positive.

Example 3.4 Let system (1) be given by

E =

(
−1 1

1 −1

)
=

(
−1 1

1 1

)(
−2 0

0 0

)(
−0.5 0.5

0.5 0.5

)

and A =

(
1 0

0 1

)
. In order to check the regularity con-

dition one can choose λ = 0, so that Â = −A and
Ê = −E. Then, by using equation (3) it is easy to see
that 4ÊD = Ê = −E. This leads to

P = 0.5

(
1 −1

−1 1

)
and A = 0.25

(
−1 1

1 −1

)
.

Since the nonnegative matrix H = 0.5

(
0 1

1 0

)
satisfies

A = HP , then by Theorem 3.3 we conclude that this
system is positive.

The result of Theorem 3.3 characterizes the positivity of
system (1) in terms of the existence of a matrixH that is
nonnegative and satisfies a linear equality which can be
effectively checked via Linear Programming. However,
this characterization can be improved by getting rid of
the equality constraint in condition (7) and then obtain-
ing a single linear inequality. To this end, we need the
following well-known lemma which is due to Penrose.
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Lemma 3.5 [8] The matrix system XM = N has a
solution in the variable X if and only if

N(I −M+M) = 0.

Moreover, all the solution are given by

X = NM+ +D(I −MM+)

where D is an arbitrary matrix.

We now state the following simplified positivity result.

Theorem 3.6 The following statements are equivalent.

(1) System (1) (or (6)) is positive for the set of nonneg-
ative admissible initial condition S = im(P ) ∩ Rn

+.
(2) There exists a matrix D such that

A+D(I − P ) ≥ 0.

Proof. Obviously, by Theorem 3.3 it is enough to show
the equivalence between statement (2) of Theorem 3.3
and statement (2) of Theorem 3.6.

Assume that statement (2) of Theorem 3.3 holds true.
That is, the equation Ā = HP is solvable and has a so-
lution H ≥ 0. First note that the MoorePenrose pseu-
doinverse of any idempotent matrix P = P 2 equals P ,
i.e., P+ = P . By applying Lemma 3.5 to the equation
Ā = HP we have that H = AP + D(I − PP+), for
some matrix D. Since AP = A and PP+ = P 2 = P , we
readily obtain statement (2) of Theorem 3.6.

For the converse implication denoteH := A+D(I−P ).
Then, by using the statements (i) and (ii) of Lemma 2.4
it is straightforward to verify that A = HP ≥ 0.

Next, we show how the derived positivity conditions can
be reexpressed in terms of standard Linear Program-
ming. For this purpose, it suffices to use the Kronecker
product ⊗ and the vec operation (which consists of tak-
ing the columns of a given matrix from left to right
and stack them one above the other). Also, for matrices
M, N and X with appropriate sizes, one can make use
of the following well-known identity

vec(MXN) = [NT ⊗M ]vec(X).

Hence, by using these basic operations, the reformula-
tion of the positivity criterium given in Theorem 3.6 goes
as follows. The linear matrix inequality in the variable
matrix D ∈ Rn×n

A+D(I − P ) ≥ 0 (8)

can be reexpressed as the following standard linear in-
equality [

(PT − I)⊗ I
]
x ≤ b, (9)

where x = vec(D) and b = vec(A).

Note that there exist many algorithms that efficiently
solve standard LP problems such as simplex method or
interior point method. In addition, there are many avail-
able softwares that can be used for this purpose, e.g. lin-
prog function inMatlab. One can also use Cplex for large
scale systems or the free Sedumi software supported by
Yalmip.

4 Stability Analysis

In order to provide our main stability result, we shall
first state some stability conditions for standard discrete
positive systems. We next establish an intermediate sta-
bility criterion from which we shall deduce the remark-
able fact that for a given positive system (1), its stability
for the cone im(P )∩Rn

+ is equivalent to the fact that Ā
is a Schur matrix. This result is quite different from the
stability result for a continuous positive singular system
[1,29,36] for which the associated matrix Ā is not neces-
sarily a Hurwitz matrix.

In the sequel, we make use of the following definition.

Definition 4.1 We say that system (1) is stable for a
set S if for any initial condition x(0) ∈ S, x(k) → 0 as
k → ∞.

The following result will play a key role in the derivation
of our main stability result. It includes different equiva-
lent stability conditions.

Proposition 4.2 Let N be a nonnegative matrix and
consider the following standard linear system

z(k + 1) = Nz(k). (10)

Then the following statements are equivalent.

(a) N is Schur, or equivalently, the system (10) is stable
for any initial condition.

(b) There exists z(0) = z0 > 0 such that z(k) goes to zero
as k goes to infinity or equivalently

lim
k→∞

Nkz0 = 0

(c) There exists ν ∈ Rn such that

ν > 0 and (N − I)ν < 0.

(d) There exists γ ∈ Rn such that

γ > 0 and γT (N − I) < 0.
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(e) (N − I)−1 exists and (N − I)−1 ≤ 0.
(f) There exists a definite positive diagonal matrix Q such

that the matrix

A
T
QA−Q < 0,

is definite negative.

Proof. See [2,15,17].

The very special case P ≥ 0 is the only case that has
been extensively investigated in the literature and where
positivity and stability conditions for system (1) can be
derived in a simple manner, see for instance [5]. Below,
we investigate the general case im(P )∩Ṙn

+ += ∅ for which
a more elaborated analysis is needed.

Note that the condition im(P ) ∩ Ṙn
+ += ∅ simply means

that we require that system (1) admits trajectories that
are not just on the boundary of Rn

+ and therefore it can
be considered as a reasonable assumption.

Next, we present a characterization of the stability of
system (1) for which the projector P is not necessary
nonnegative.

Theorem 4.3 Assume that there exists v ∈ Rn such
that Pv > 0. Then, the following statements are equiva-
lent.

(1) System (1) (or (6)) is positive and stable for the set
of admissible initial conditions:

S = im(P ) ∩ Rn
+.

(2) There exists a matrix D such that

H := A+D(I − P ) is nonnegative and Schur.
(11)

Proof. (1 ⇒ 2) : By assumption there exists x0 ∈ Ṙn
+ ∩

im(P ). Since the system is positive we have that z :=
T−1∑

k=0

x(k) > 0 with x(0) = x0. Using the assumption that

x(k) → 0 as k → ∞, there exists T ∈ N large enough
such that x(T )− x(0) < 0. Hence,

x(T )− x(0) = (A− I)
T−1∑

k=0

x(k) = (A− I)z < 0.

Further, note that Pz = z because of statement (iii) of
Lemma 2.4. Now since the system is positive, by Theo-
rem 3.3, there exists a nonnegative matrixH of the form
H = A+D(I − P ). Moreover, as (I − P )z = 0 we get

(H − I)z = (A− I)z < 0,

which implies, by Proposition 4.2, that H is Schur.

(2 ⇒ 1): By statement (ii) in Lemma 2.4, Px(k) = x(k),
and therefore we obtain that x(k+1) = Ax(k) = Hx(k)
which implies that system (6) is positive and stable for
S, as H is nonnegative and Schur.

Remark 4.4 It is worth mentioning that from the proof
of Theorem 4.3 it follows that if system (1) is positive
and stable for S = im(P ) ∩ Rn

+ then any matrix of the
form A+D(I − P ) satisfying (8) is necessarily a Schur
matrix.

In the following result, we show how we can simultane-
ously check stability and positivity of system (1) based
on LP.

Theorem 4.5 Assume that there exists v ∈ Rn such
that Pv > 0. Then, the following statements are equiva-
lent.

(i) System (1) (or (6)) is positive and stable for the set
of admissible initial conditions S = imP ∩ Rn

+.
(ii) There exists γ ∈ Rn, Z ∈ Rn×n such that






γT (A− I) + 1
T
nZ(I − P ) < 0

diag(γ)A+ Z(I − P ) ≥ 0

γ > 0,

(12)

where 1n := [1 1 · · · 1]T ∈ Rn denotes the unit vector.

Proof. In light of Theorem 4.3 it is enough to show the
equivalence between the statement (ii) and the existence
of a matrix D such that A + D(I − P ) is nonnegative
and Schur.

By pre-multiplication of the last equation in (12) by
diag(γ)−1 from the left we obtain that

A+ diag(γ)−1Z(I − P ) ≥ 0. (13)

which is to say thatA+D(I−P ) is nonnegative withD =
diag(γ)−1Z. Finally, using the fact that γT = 1diag(γ)
and Z = diag(γ)D we have that

γT (A− I) + 1
T
Z(I − P ) = γT (A− I) + γTD(I − P )

= γT (A− I +D(I − P )) < 0.

This, together with γ > 0, is equivalent, by statement
(d) of Proposition 4.2, to A + D(I − P ) being a Schur
matrix. The reverse implication can be proved following
similar arguments.

Remark 4.6 As we have previously seen, we can solve
the matrix inequalities (12) as a standard LP problem.
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We can use the identity vec(MXN) = [NT ⊗M ]vec(X)
and the fact that for any vector v it holds diag(v) =
n∑

i=1

eiv
T eie

T
i , where ei is the i-th element of the canonical

basis of Rn. Hence, it can be easily seen that (12) can be
reexpressed as

[
A

T ⊗ I (I − PT )⊗ 1n

−I 0

]
x< 0 (14)

[
−

n∑

i=1

(A
T
eie

T
i )⊗ ei (PT − I)⊗ I

]
x≤ 0, (15)

where the new variable is x =

[
γ

vec(Z)

]
.

The above linear inequalities involve a strict inequality
and non strict one. Since they are homogenous in the
vector variable x, then a feasible solution can be found by
solving the following standard LP problem.





A
T ⊗ I (I − PT )⊗ 1n

−I 0

−
n∑

i=1

(A
T
eie

T
i )⊗ ei (PT − I)⊗ I




x≤

[
−1n(n+1)

0

]
.

Next, we are going to present our main stability result.
In fact, based on the previous result of Theorem 4.3, it
turns out that the stability condition for the case P ≥ 0,
is also valid for the case im(P ) ∩ Ṙn

+ += ∅, that is, A is a
Schur matrix. We show this fact in the following result.

Theorem 4.7 Assume that system (1) is positive and
there exists v ∈ Rn such that Pv > 0. Then, the following
statements are equivalent.

(i) System (1) is positive and stable for the set of ad-
missible initial conditions S = im(P ) ∩ Rn

+.
(ii) A is a Schur matrix.

Proof. Since the implication (ii) ⇒ (i) is obvious, we
only show the reverse implication. Clearly, it is enough
to show that does not exist an unstable eigenvector of A
that is not in the kernel of P . Now, assume that there
exists w ∈ Rn with Pw += 0 such that Aw = αw with
|α| ≥ 1. Then, by using the identity AP = PA given by
statement (ii) in Lemma 2.4 we obtain APw = PAw =
αPw, which means that Pw is also an eigenvector of A.
Next, note that by Theorem 4.3 there exists a matrix D
such that H = A+D(I − P ) is nonnegative and Schur.
ThusHPw = (A+D(I−P ))Pw and by keeping in mind

the fact that P 2 = P (statement (i) of Lemma 2.4) we
obtain the following identities

APw = (HP )Pw = HP 2w = HPw.

Therefore, since we have already seen that APw =
PAw = αPw, it comes HPw = αPw, i.e., Pw is an un-
stable eigenvalue of H, which is a contradiction to the
fact that the matrix H is Schur. Henceforth, necessarily
we have that A has no unstable eigenvectors and the
proof is complete.

In what follows, we show how the previous results can be
applied to the very important class of discrete positive
singular systems that are described by a Leontief model
[25].

A Leontief model of multi-sectors economy is described
by

x(k) = Lx(k) + C[x(k + 1)− x(k)] + d(k), (16)

where x(k) is the vector of output levels, d(k) is the
vector of final demands (excluding investments), L is
the Leontief input-output matrix and C in the capital
coefficient matrix. This model fits into our framework by
considering system (1) with E = C and A = C −L+ I.
Thus, based on our previous results, the autonomous
Leontief model (16) (d(k) = 0) has a unique solution if
and only if there exists λ such that (λ− 1)C + L− I is
invertible. In this case, define Ê = ((λ−1)C+L−I)−1C
and Â = ((λ − 1)C + L − I)−1(C − L + I), then the
system is positive if and only if there exists a matrix
H ≥ 0 such that

A = HP,

where A = ÊDÂ and P = ÊDÊ.

Example 4.8 Consider the Leontief model given in
([20, Example1]) with no inputs (i.e., d(k) = 0) where

C =





0.3 0.4 0.45

0 0 0

0.6 0.8 0.9



 , L =





0.3 0.3 0.3

0.4 0.1 0.5

0.3 0.5 0.2



 .

Since A = C − L + I is invertible, we can select λ = 0.
Then, by using Jordan decomposition and formula (3) we
can compute the Drazin inverse of Ê = −(C+L−I)−1C
and obtain

ÊD = ĈD = −





0.2347 0.3129 0.3520

0.2526 0.3368 0.3789

0.2669 0.3559 0.4004



 .
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By using Â = −I, the given system can be reexpressed as
in the form (6) where its dynamic matrix is given by

A = −ĈD =





0.2485 0.3313 0.3727

0.2674 0.3566 0.4011

0.2826 0.3768 0.4239





and its associated projector P is given by

P = ÊDÊ =





0.2415 0.3220 0.3622

0.2599 0.3466 0.3899

0.2747 0.3662 0.4120



 .

As P and A is nonnegative, then this Leontief model
is positive. Since A is not a Schur matrix (σ(A =
{1.0289, 0.0000, 0.0000}), then by using Theorem 4.7, we
can conclude that this Leontief model is not stable. This
illustrates the fact that a Leontief model is inherently
positive and unstable.

5 Internal positivity

In this section we extend the previous positivity results
for autonomous singular systems to singular systems
with inputs and outputs described by

Ex(k + 1) =Ax(k) +Bu(k)
y(k) =Cx(k) (17)

where E,A ∈ Rn×n, B ∈ Rn×q and C ∈ Rp×n are time-
invariant matrices.

In the sequel, we assume that (E,A) is regular and as
previously, we use similar notation: A = ÊDÂ, Ê =
(λE − A)−1E, Â = (λE − A)−1A, B̂ = (λE − A)−1B
and P = ÊDÊ.

For ease of notation we also define the following quanti-
ties

Di := −(I−P )(ÊÂD)iÂDB̂ for i = 0, . . . , ν−1, (18)

where ν is the smallest nonnegative integer such that
rank(Eν) = rank(Eν+1).

Next, an explicit solution to (17) is stated, see for in-
stance, [7] or [6].

Theorem 5.1 Every solution x(k) of system (17) satis-
fies

x(k) = A
k
Pv +

k−1∑

τ=0

A
k−1−τ

ÊDB̂u(τ) +
ν−1∑

i=0

Diu(k + i)

(19)

for some v ∈ Rn. Moreover, system (17) has a unique
solution and it is of the form (19), if and only if the pair
(E,A) is regular and its initial conditions x(0) are of the
form

x(0) = Pv +
ν−1∑

i=0

Diu(i) (20)

where v ∈ Rn.

If (x(0), u(·)) satisfies (20) we say that (x(0), u(·)) is an
admissible pair.

Now, let us define precisely the notion of internal posi-
tivity.

Definition 5.2 System (17) is said to be internally pos-
itive if for any x(0) ≥ 0 and u(k) ≥ 0 satisfying equation
(20) it follows that x(k) ≥ 0 and y(k) ≥ 0 for all k.

We are now in a position to state the main result of this
section.

Theorem 5.3 System (17) is internally positive if and
only if there exists nonnegative matrices H ≥ 0, H̃ ≥ 0
such that the following conditions hold






A = HP

CA = H̃P

ÊDB̂ −HD0 ≥ 0

CÊDB̂ − H̃D0 ≥ 0

Dν−1 ≥ 0

CDν−1 ≥ 0

Di −HDi+1 ≥ 0, CDi − H̃Di+1 ≥ 0, i = 0, ..., ν − 2,

(21)

where the Di’s matrices have the form (18).

Proof. Necessity: Assume that the system is inter-

nally positive. Thus, x(0) = Pv +
ν−1∑

i=0

Diu(i) ≥ 0 and

u(0), u(1), . . . , u(ν) ≥ 0, i.e.,



 P

0

D0 . . . Dν−1 0

I









v

u(0)
...

u(ν)




≥ 0

imply that x(1) = APv+ÊDB̂u(0)+
ν−1∑

i=0

Diu(i+1) ≥ 0
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and y(1) = Cx(1) ≥ 0, that is to say



 AP

CAP

ÊDB̂ D0 . . . Dν−1

CÊDB̂ CD0 . . . CDν−1









v

u(0)
...

u(ν)




≥ 0.

The result of Lemma 3.2 ensures the existence of a ma-

trix H =

[
H H0 . . . Hν

H̃ H̃0 . . . H̃ν

]
≥ 0 such that



 AP

CAP

ÊDB̂ D0 . . . Dν−1

CÊDB̂ CD0 . . . CDν−1



 =

=H



 P

0

D0 . . . Dν−1 0

I



 ,

or equivalently,






AP = HP

CAP = H̃P

ÊDB̂ = HD0 +H0

CÊDB̂ = H̃D0 + H̃0

Dν−1 = Hν

CDν−1 = H̃ν

Di = HDi+1 +Hi+1

CDi = H̃Di+1 + H̃i+1 for i = 0, . . . , ν − 2.

(22)

Since AP = A (by statement (ii) of Lemma 2.4) and all
the matricesHi, H̃i are nonnegative, then the conditions
(21) of the theorem readily follow.

Sufficiency: Let x(0) = Pv+
ν−1∑

i=0

Diu(i) ≥ 0 and u(k) ≥

0 be given such that (x(0), u(k)) is an admissible pair.
We shall prove that x(k) is nonnegative for all k by in-
duction. First, let us show that x(1) is nonnegative. Since
H ≥ 0 and Dν−1 ≥ 0.

x(1) =APv + ÊDB̂u(0) +
ν−1∑

i=0

Diu(i+ 1)

x(1)≥HP +HD0u(0) +
ν−2∑

i=0

HDi+1u(i+ 1) +Dν−1u(ν)

x(1)≥HP +
ν−1∑

i=0

HDiu(i) +Dν−1u(ν)

Hence, it follows that

x(1) ≥ H[P +
ν−1∑

i=0

Diu(i)] = Hx(0) ≥ 0.

Assume now that x(k) = A
k
Pv+

k−1∑

τ=0

A
k−τ−1

ÊDB̂u(τ)+

ν−1∑

i=0

Diu(k+ i) is nonnegative. At this stage it suffices to

show that x(k + 1) ≥ Hx(k) and as H ≥ 0 then we can
conclude that x(k + 1) ≥ 0. This fact goes as follows.

x(k + 1)

=A
k+1

ÊDÊv +
k∑

τ=0

A
k−τ

ÊDB̂u(τ) +
ν−1∑

i=0

Diu(k + 1 + i)

=AA
k
ÊDÊv +

k−1∑

τ=0

AA
k−τ−1

ÊDB̂u(τ) +

+ÊDB̂u(k) +
ν−1∑

i=0

Diu(k + 1 + i)

≥A[A
k
ÊDÊv +

k−1∑

τ=0

A
k−τ−1

ÊDB̂u(τ)] +HD0u(k) +

+
ν−2∑

i=0

HDi+1u(k + 1 + i) +Dν−1u(k + ν)

=A[A
k
ÊDÊv +

k−1∑

τ=0

A
k−τ−1

ÊDB̂u(τ)] +

+
ν−1∑

i=0

HDiu(k + i) +Dν−1u(k + ν)

≥A[A
k
ÊDÊv +

k−1∑

τ=0

A
k−τ−1

ÊDB̂u(τ)] +

+
ν−1∑

i=0

HDiu(k + i).

Taking into account that A = HP we have

x(k + 1) ≥ HP [A
k
ÊDÊv +

k−1∑

τ=0

A
k−τ−1

ÊDB̂u(τ)]

= +
ν−1∑

i=0

HDiu(k + i).

Next, note that ÊDÊDÊ = ÊD, i.e., PÊD = ÊD. From
this, together with the fact that PA = AP = P (see
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statement (ii) of Lemma 2.4) it holds that

x(k + 1)

≥HP [A
k
ÊDÊv +

k−1∑

τ=0

A
k−τ−1

ÊDB̂u(τ) +
ν−1∑

i=0

Diu(k + i)]

=H[A
k
ÊDÊv +

k−1∑

τ=0

A
k−τ−1

ÊDB̂u(τ) +
ν−1∑

i=0

Diu(k + i)]

=Hx(k) ≥ 0.

The proof of y(k) = Cx(k) ≥ 0 follows the same lines of
arguments, and therefore it is skipped. This concludes
the proof.

Remark 5.4 We can reformulate conditions (21) in the
variables H and H̃ as a unique standard LP problem by
using the vec and Kronecker operations as it was done
previously for the LP problem (9).

Hereafter, we show how our general result given by con-
ditions (21) can be simplified for the case P ≥ 0. Specifi-
cally, for this case, our result can be viewed as a comple-
tion of Theorem 3.8 in [36] and Proposition 1 in [5]. We
stress out that in [5] only the case C = I was treated.
Also in [36] the characterization of internal positivity
uses a condition on the matrix C that cannot be directly
checked.

In the case P ≥ 0, we provide an explicit and simplified
characterization for internal positivity of system (17)
that solely involves its dynamic matrices.

Corollary 5.5 Assume P ≥ 0. Then, system (17) is
internally positive if and only if the following conditions
hold






A ≥ 0

CA ≥ 0

ÊDB̂ ≥ 0

CÊDB̂ ≥ 0

Di ≥ 0, CDi ≥ 0 for i = 0, . . . , ν − 1.

(23)

Proof. Necessity: Clearly, by using the conditions (21)
in Theorem 5.3, as P ≥ 0 andH ≥ 0, H̃ ≥ 0 this implies
that A ≥ 0 and CA ≥ 0. Also, since Dν−1 ≥ 0 we have
that Di ≥ 0 for i = 0, . . . , ν − 1 and thus it holds also
ÊDB̂ ≥ 0, CÊDB̂ ≥ 0.

Sufficiency: Since Pv = Px(0), x(k) can be expressed as

x(k) = A
k
Px(0)+

k−1∑

τ=0

A
k−1−τ

ÊDB̂u(τ)+
ν−1∑

i=0

Diu(k+i).

As P ≥ 0, A ≥ 0, ÊDB̂ ≥ 0 and Di ≥ 0 for i = 0, . . . , ν
then, obviously x(k) ≥ 0. In the same manner we notice
that

y(k) = (CA)A
k−1

Px(0) +
k−2∑

τ=0

(CA)A
k−2−τ

ÊDB̂u(τ) +

+CÊDB̂u(k − 1) +
ν−1∑

i=0

CDiu(k + i),

since CA ≥ 0, A ≥ 0, CÊDB̂ ≥ 0 and CDi ≥ 0 for
i = 0, . . . , ν then, it is straightforward to see that y(k)
is nonnegative.

6 Conclusions

We have provided an efficient approach to the analysis
of discrete positive singular systems. The derived con-
ditions for which a singular system is positive or inter-
nally positive are necessary and sufficient. The stability
analysis of autonomous positive singular systems was
also addressed, and different stability criteria were pro-
vided. In addition, we have shown that all the proposed
conditions can be reformulated and efficiently solved in
terms of linear programming. Our future work concerns
the stabilization issue. Due to the positivity constraint
the stabilization problem can be very difficult to solve
within the proposed framework.
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