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“ACID STRESS RESPONSE IN CAMPYLOBACTER JEJUNI” 

ABSTRACT 

Considering that the acid tolerance is an important virulence factor of foodborne pathogens 

and the expressive increasing of incidence of Campylobacter jejuni in recent years as 

etiologic agent of human campylobacteriosis, this work aimed to evaluate the ability of C. 

jejuni to survive under acid stress. Strains of different origins (reference, turkey isolates) and 

tolerance to particular stresses (acid and temperature) were tested for survival in liquid 

defined media with pH values of 5.0 and 7.0 adjusted with 1M HCl. Experimental conditions 

were performed at 2 different temperatures: 4 ºC and 37 ºC. C. jejuni cells were found to be 

very sensitive to acid stress at 37 ºC, whereas they were more resistant at 4 ºC. A strain effect 

was observed at 37 ºC. Temperature of 37 ºC combined with acid stress allowed a rapid 

decrease in the C. jejuni population, whereas low temperature (4ºC) considerably decreased 

the effect of acid stress. The survival curves were either described by the Weibull or 

traditional first-order model and goodness of fit of these models was investigated. Regression 

coefficients (R2), root mean square error (RMSE) and correlation plots suggestted that 

Weibull model produced a better fit to the data than the traditional model. 

Fluorescence Ratio Imaging Microscopy (FRIM) was used to determine intracellular pH (pHi) 

as an indicator of the physiological state of C. jejuni cells at the single cell level after 

treatment with hydrochloride acid (1M HCl, pH 4.0) in liquid defined medium. For all the 

tested strains pHi of healthy cells was found to be above 7.0. After exposure to HCl in liquid 

medium an immediate decline in pHi to 5.5 (detection limit) was observed in the majority of 

cells (75%) of one strain within 15 minutes. The FRIM results revealed that the 

subpopulations with pHi>5.5 increased for this strain, especially subpopulations with 

5.5<pHi<6.0 and 6.0<pHi<6.5 following 200 min. of exposure to HCl. This indicates that 

some strains of C. jejuni may employ certain recovery strategies to extrude protons and to 

increase pHi.  

 

 
 
 
Keywords: Campylobacter jejuni; acid stress; survival; temperature; intracellular pH; 

Fluorescence Ratio Imaging Microscopy. 



 vii

"EFEITO DE STRESSE ÁCIDO NA SOBREVIVÊNCIA DE CAMPYLOBACTER JEJUNI" 

RESUMO 

Considerando que a tolerância ao ácido é um importante factor de virulência de agentes 

patogénicos veiculados por alimentos, condicionando a sobrevivência dos microrganismos, e 

o expressivo aumento, nos últimos anos, da incidência de Campylobacter jejuni como agente 

etiológico de campilobacteriose humana, este trabalho teve como objectivo avaliar a 

capacidade do patogénico C. jejuni sobreviver em condições de stresse ácido. Estirpes de 

diferentes origens (referência, isolados de peru) sujeitas a diferentes factores de stresse 

(acidez e temperatura) foram testadas avaliando-se a sua sobrevivência em meio líquido (pH 

5.0 e 7.0). As condições experimentais foram efectuadas a duas temperaturas diferentes: 4 ºC 

e 37 ºC. Células de C. jejuni mostraram-se muitos sensíveis a stresse ácido a 37 ºC, enquanto 

a 4 ºC foram mais resistentes. O efeito estirpe foi evidenciado a 37 ºC. A temperatura 37ºC 

em combinação com um pH 5.0 (stresse ácido) causou rápido decréscimo da população de C. 

jejuni, enquanto que a 4ºC o efeito do stresse ácido diminuiu consideravelmente. As curvas de 

sobrevivência foram descritas pelos modelos Weibull ou pelo modelo clássico de inactivação 

de primeira ordem, tendo-se concluído através dos coeficientes de regressão (R2), raízes 

quadradas do erro médio (RMSE) e gráficos de correlação que o modelo Weibull se adequa 

melhor aos dados apresentados que o modelo tradicionalmente utilizado. 

O racio da emissão de fluorescência medida pela técnica de microscopia óptica invertida foi 

utilizado para determinar o pH intracelular (pHi) como indicador do estado fisiológico das 

células de C. jejuni, a um nível celular único, após aplicação de um tratamento com ácido 

clorídrico (1M HCl, pH 4.0) em meio de cultura líquido. Para todas as estirpes testadas, o pHi 

de células saudáveis encontrava-se acima de 7.0. Após exposição a HCl em meio líquido, foi 

detectado para uma das estirpes, um decréscimo imediato do pHi para 5.5 (limite de detecção) 

na maioria das células observadas (75%) ao fim de 15 minutos. Os resultados da medição de 

fluorescência revelaram um aumento de subpopulações com pHi>5.5 para essa estirpe, 

nomeadamente subpopulações com 5.5<pHi<6.0 e 6.0<pHi<6.5 em 200 min. de exposição a 

HCl. Estes resultados indicam que algumas estirpes de C. jejuni poderão utilizar determinadas 

estratégias de recuperação para exteriorizar protões e elevar o pHi. 

 

Palavras-chave: Campylobacter jejuni; stress ácido; sobrevivência; temperatura; pH 

intracelular; microscopia de fluorescência. 
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1 INTRODUCTION 

Campylobacter is recognized as the most frequent agent of foodborne bacterial diarrhoea in 

humans worldwide. Human cases are mostly caused by Campylobacter jejuni, a Gram-

negative, spiral, microaerophilic bacterium that exists as a commensal organism in the 

intestinal tract of many wild and domestic birds and mammals. Recent studies led in Europe 

demonstrate that the number of declared cases of human campylobacteriosis in Europe is 

increasing. The incidence rate is 46.1 cases/100,000 people and is higher than that of 

salmonellosis (34.6/100,000) (European Food Safety Authority [EFSA], 2007). 

 

Campylobacters are much more fragile than Salmonella or Gram-positive bacteria, like 

Enterococcus. While most food-borne pathogens are considered to be relatively robust 

organisms, as a consequence of the necessity to survive under diverse conditions both inside 

and outside the host, Campylobacter species have uniquely fastidious growth requirements 

and an unusual sensivity to environmental stress (Mead, 2004). Adding to this, 

Campylobacter spp. appear to lack many of the occurring survival mechanisms and adaptive 

responses that can be correlated with resistance to stress in other foodborne pathogens (Park, 

2002). Despite this, C. jejuni has the potential for remarkable survival under conditions 

nonpermissive to growth (Chan, Le Tran, Kanenaka & Kathariou, 2001) being able to persist 

in the food chain and survive to be regarded as the greatest causative agent of bacterial 

foodborne illnesss in humans (Humphrey, O’Brien & Madsen, 2007). This is often referred to 

as the Campylobacter conundrum (Jones, 2001) and underlines the fact that the multiple 

survival mechanisms in the environment of this important human pathogen are poorly 

characterized.  

 

The nature and the intensity of the stress response may vary between pathogenic species (e.g., 

C. jejuni and C. coli) (Chaveerach, ter Huurne, Lipman & van Knapen, 2003; Chaveerach, 

Lipman & Knapen, 2004; Shaheen, Miller & Oyarzabal, 2006) and, moreover, stress response 

varies widely between strains of C. jejuni (Chan et al., 2001; Cools et al., 2003). Pathogenic 

campylobacters are known to exhibit a stress response to sublethal environmental stresses 

(Moen et al., 2005; Gaynor, Wells, MacKichan & Falkow, 2005; Georgsson, Ϸorkelsson, 

Geirsdóttir, Reiersen & Stern, 2006; Tangwatcharin, Chanthachum, Khopaibool & Griffiths, 

2006; Mihaljevic et al., 2007; Garénaux et al., 2008). These stress responses may enable 

survival of foodborne pathogens under more severe conditions, such as a variety of 

environmental or processing parameters (Murphy, Carroll & Jordan, 2003b; Purnell, Mattick 
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& Humphrey, 2003; Shaheen et al., 2006), and/or enhance virulence. Therefore, 

understanding the effects of stress on tolerance of Campylobacter is important in order to 

assess and minimize the risk of food-borne illness (Chung, Bang & Drake, 2006). 

 

C. jejuni encounters a wide range of temperature and acid conditions in its contamination 

cycle and must therefore respond to these conditions. While travelling through the 

gastrointestinal tract they must endure extreme low pH in the stomach as well as volatile fatty 

acids present in the intestine and faeces. Even upon exiting a host, enteric organisms confront 

acid stress in the form of industrial waste, or in decaying organic matter (Bearson, Bearson & 

Foster, 1997). Organic acids are also used in food processing procedures to control 

contaminating pathogens on meat surfaces and in animal feeds, as they are found in fermented 

foods, and in a variety of minimally processed foods. In response to environmental encounters 

with acid, different pathogenic bacteria have evolved complex, inducible acid survival 

strategies (Chung et al., 2006). Thus, the ability of C. jejuni to survive acid stress is of 

obvious relevance to its transmission cycle and ultimately to food safety and public health. 

Low temperature is also widely applied in the food chain, and it is vital that more become 

known about how this pathogen responds to these conditions with regard to survival and 

subsequent behaviour, as this has the greatest overall relevance to food safety. 

 

Currently, however, survival of this pathogen under acid conditions remains poorly 

understood. Understanding these mechanisms of survival is crucial to the design of 

intervention strategies to reduce C. jejuni in the food chain and to reduce the burden of C. 

jejuni-associated disease (Moen et al., 2005). Inactivation and challenge studies are important 

to know how these organisms will respond to conditions that may be present in the host and 

the environment, as well as when foods are prepared and/or stored. Additionally, as a species, 

C. jejuni exhibits high genetic heterogeneity (Park, 2005; Wieland et al., 2006; Zorman, 

Heyndrickx, Uzunovic-Kamberovic & Mozina, 2006). For effective control of resistant 

pathogens in the food chain, it is necessary that genetics and physiology of resistant strains 

are studied as well as the mechanisms of survival and resistance development in stressful 

environment. 

 

The aim of this work was to investigate Campylobacter jejuni behaviour under acid stress. 

The first part of the experimental work focuses on nongrowth survival conditions and 

emphasizes the interaction between pH and temperature in the experimental design. Various 

other approaches can be used to investigate the resistance of enteric bacteria to pH stress. A 
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number of fluorescence techniques have been introduced for assessment of viability and 

activity of microorganisms, which has contributed to a better understanding of the 

mechanisms involved in selective survival of microorganisms under different stress 

conditions (Breeuwer & Abee, 2000; McFeters, Yu, Pyle & Stewart, 1995). The purpose of 

the present study was also to investigate potential strain variations on C. jejuni’s ability of 

regulating intracellular pH under acid stress conditions on a single cell level applying the 

principles of Fluorescence Ratio Imaging Microscopy (FRIM). 

 

Strains were selected based on previous data to investigate strain variations in response to 

acid. The experimental work was divided in two parts: 

 

• Inactivation studies of C. jejuni strains from different origins under acid stress 

conditions, at different temperatures.  

 

• Intracellular pH regulation in C. jejuni under acid stress conditions. 

 

The first part of the thesis gives a brief introduction to the organism Campylobacter jejuni, 

their survival potential in food and the environment. In the later chapters of the review more 

emphasis is given to acid stress response in Enterobacteria and Campylobacter jejuni.  
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2 CAMPYLOBACTER JEJUNI 

2.1 Pathogenesis  

Campylobacters are found in a wide range of animal systems with some causing infections of 

the reproductive tract of certain domestic species which can lead to either abortion and/or 

infertility. Others are mainly involved in periodontal diseases. Campylobacters are principally 

known, however, as zoonotic pathogens. Depending on the country, either Campylobacter or 

Salmonella is the most frequently isolated bacterial pathogen from cases of diarrhoea (Tauxe, 

2002).  

 

Campylobacteriosis in humans is caused by thermotolerant Campylobacter spp. which grow 

in a temperature range of 30-46ºC. The species most commonly associated with human 

infection are Campylobacter jejuni followed by Campylobacter coli, and Campylobacter lari, 

although in the developing world Campylobacter upsaliensis is also important (Coker, 

Isokpehi, Thomas, Amisu & Obi, 2002).  

 

The incubation period averages from two to five days. Patients may have mild to severe 

symptoms; the common clinical symptoms include watery, often bloody diarrhoea, abdominal 

pain, fever, headache and nausea (Skirrow & Blaser, 2000). Usually, infections are self-

limiting and last only a few days but, in a fraction of patients, serious sequelae occur such as 

reactive arthritis and Guillain-Barré syndrome (Hannu et al., 2002; Hughes & Cornblath, 

2005), a polio-like form of paralysis that can result in respiratory and severe neurological 

dysfunction and even death. Disease outcome is likely to be dependent on virulence of the 

infecting strain and host immune status. 

 

2.2 General Characteristics 

2.2.1 Taxonomy 

C. jejuni belongs to the epsilon class of proteobacteria in the order Campylobacteriales. The 

genus Campylobacter is included in the family Campylobacteriaceae and comprises 18 

species and six subspecies (Euzéby, 2008). Table 2.1 shows the current members of 

Campylobacter in the family Campylobacteriaceae.  
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Table 2.1 Current listing of Campylobacter spp. (adapted from Humphrey et al. 2007). 
Disease associations 

Family member Known source(s) 
Human Veterinary 

C. coli  
(includes former C. 
hyoilei) 

Pigs, poultry, cattle, 
sheep, birds 

Gastroenteritis, 
septicaemia 

Gastroenteritis, porcine 
proliferative enteritis 

C. concisus  Man Periodontal disease, 
gastroenteritis 

None at present 

C. curvus  Man Periodontal disease, 
gastroenteritis 

None at present 

C. fetus subsp. fetus  
 

Cattle, sheep Septicaemia, 
gastroenteritis, 
abortion, meningitis 

Bovine and ovine 
spontaneous 
abortion 

C. fetus subsp. 
venerealis  

Cattle Septicaemia Bovine infectious 
infertility 

C. gracilis  Man Periodontal disease, 
empyema, abscesses 

None at present 

C. helveticus  Cats, dogs None at present Feline and canine 
gastroenteritis 

C. hyointestinalis 
subsp. hyointestinalis 

Pigs, cattle, hamsters, 
deer 

Gastroenteritis Porcine and bovine 
enteritis 

C. hyointestinalis 
subsp. lawsonii  

Pigs None at present Unknown 

C. jejuni subsp. doylei  Man Gastroenteritis, 
gastritis, septicaemia 

None at present 

C. jejuni subsp. jejuni  
 

Poultry, pigs, cattle, 
sheep, dogs, cats, 
water, birds, mink, 
rabbits, insects 

Gastroenteritis, 
septicaemia, 
meningitis, abortion, 
proctitis, Guillain–
Barré syndrome (GBS) 

Gastroenteritis, avian 
hepatitis 

C. lari  
 

Birds (including 
poultry), water, dogs, 
cats, monkeys, horses, 
seals 

Gastroenteritis, 
septicaemia 

Avian gastroenteritis 

C. mucosalis  Pigs None at present Porcine necrotic 
enteritis and ileitis 

C. rectus  Man Periodontal disease None at present 

C. showae  Man Periodontal disease None at present 

C. sputorum bv. 
Sputorum  

Man, cattle, pigs Abscesses, 
gastroenteritis  

None at present 

C. sputorum bv. 
Faecalis  

Sheep, bulls None at present None at present 

C. upsaliensis  Dogs, cats Gastroenteritis, 
septicaemia, abscesses 

Canine and feline 
gastroenteritis 

C. insulaenigrae  Seals, porpoises None at present None at present 

C. lanienae  Cattle, pigs and 
humans 

None at present None at present 

C. hominis  Humans Gastroenteritis in 
immunocompromised 

 

C. canadensis Whooping cranes  None at present None at present 
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Within the species C. jejuni two subspecies, ssp. doylei (Cjd) and ssp. jejuni, (Cjj) can be 

distinguished on the basis of nitrate reduction, cephalotin susceptibility or growth at 42°C 

(Allos, 2001). Nearly all of C. jejuni strains isolated are Cjj; nevertheless, although Cjd strains 

are isolated infrequently, they differ from Cjj in two key aspects: they are obtained primarily 

from human clinical samples and are associated often with bacteremia, in addition to 

gastroenteritis. Despite the unusual clinical symptomatology, Cjd is isolated infrequently and 

few strains exist (compared to Cjj) for this subspecies (Parker, Miller, Horn & Lastovica, 

2007). In this work where C. jejuni is mentioned it refers to C. jejuni ssp. jejuni. 

 

2.2.2 Morphology 

C. jejuni is a Gram negative organism which is 0.5 to 5 μm long and 0.2 to 0.8 μm wide 

(Vandamme, 2000). C. jejuni has a single polar flagellum on one or both of its ends (Park, 

2002), which gives it its unique, “rapid darting” motility characteristics. It is usually spiral in 

shape when it is in its normal state (Vandamme, 2000; Park, 2002); however, exposed to 

oxygen, cells become slightly elongated and less coiled, with decreased motility (Boysen, 

Knøchel & Rosenquist, 2006); older cultures tend to take on a spherical or coccoid shape 

mostly due to starvation (Vandamme, 2000). Campylobacter spp. are non-forming-spores 

bacteria. Sometimes when daughter cells remain joined, long spiral forms may be seen. 

 

 
Figure 2.1 Photomicrograph of Campylobacter jejuni in the process of dividing. Institute of Food 
Research, Norwich, UK. (Humphrey et al., 2007). 
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2.2.3 Identification 

Confirmation of Campylobacter spp. is mostly based on colony morphology, microscopic 

appearance and the following phenotypic characteristics: motility, production of oxidase and 

catalase, and hippurate hydrolysis reaction (Nachamkin, 1995). Characteristic Campylobacter 

colonies are greyish and slightly pink with a metallic sheen on blood-containing agars. C. 

jejuni can be distinguished from other Campylobacter spp. on the basis of the hydrolysis of 

hippurate, as this is the only hippurate-positive species (Vandamme, 2000). However, 

hippurate hydrolysis negative C. jejuni do exist (Totten et al., 1987) making it impossible to 

differentiate from C. coli using purely biochemical tests (Fields & Swerdlow, 1999). Most 

isolates of C. jejuni produce catalase; however, atypical strains are known to be catalase 

negative so that it is not considered a common feature of all isolates of the species 

(Hernandez, Owen, Costas & Lastovica, 1991). Additional major phenotypic characteristics 

that assist in species identification of C. jejuni include nitrate reduction to nitrite, absence of 

urease, nalidixic acid susceptibility, cephalothin resistance and the inability to utilize 

carbohydrates. Like other Campylobacter spp., they give negative results for both the methyl-

red and Voges-Proskauer tests, and are unable to hydrolase gelatin. 

 

Biochemical speciation may be supplemented or replaced by molecular methods. A variety of 

polymerase chain reaction (PCR)-based methods for identifying thermophilic Campylobacter 

spp. have been developed (Best, Fox, Frost & Bolton, 2005). 

 

2.2.4 Growth 

Campylobacter spp. are relatively slow-growing, fastidious bacteria that require specialised 

culture conditions. Most Campylobacter spp. are microaerophilic, growing best under reduced 

oxygen tension, but a few species show a range of oxygen tolerance and some are almost 

anaerobic. The possession of several oxygen-sensitive enzymes may be one important factor. 

Oxygen can present more generalized problems owing to the toxic effects of the products of 

its stepwise one-electron reduction, which results in the formation of the superoxide radical, 

hydrogen peroxide and the product of their interaction, the highly reactive hydroxyl radical 

(Kelly, Park, Bovill & Mackey, 2001). C. jejuni possesses well known major defence 

mechanisms against such oxidative stress, including proteins such as superoxide dismutase, 

catalase and ferritin, yet this organism is still oxygen sensitive (Kelly et al., 2001). 

Campylobacters studied so far have shown high sensitivity to oxidative stress (Boysen et al., 

2006; Garénaux et al., 2008). Despite their possession of protective enzymes, oxygen radicals 
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can be easily generated spontaneously in growth media by, for example, exposure to light 

(Kelly et al., 2001). Blood components (usually 5-10% blood) and charcoal are used on a 

nutritional basal media to remove such toxic oxygen derivates. Optimal growth is obtained in 

an atmosphere containing approximately 5% oxygen and approximately 10% CO2 (Humphrey 

et al., 2007), and the growth of some species is enhanced by the presence of hydrogen 

(Goodman & Hoffman, 1983). Several methods are available to achieve the optimal gas 

mixture, by appropriate gas-generating envelopes such as Campygen (Oxoid Basingstoke 

UK), or airtight jars with valves for evacuation and filling of gas, for example the Oxoid 

anaerobic jars. 

 

Campylobacter jejuni has a restricted temperature growth range and whilst they grow 

optimally at 42-45 ºC, this organism does not grow at 30 ºC and below or at 47ºC and above 

(Doyle & Roman, 1981). This in addition to its microarerophilic nature, place severe 

restrictions on its ability to multiply outside of an animal host and, consequently, unlike most 

other bacterial foodborne pathogens, these bacteria are not normally capable of multiplication 

in food during either processing or storage and in the environment (Park, 2002).  

 

The early work of Doyle and Roman (1981) also determined that the best growth at 42 ºC for 

three strains used occurred in broth adjusted from pH 6.0 to pH 8.0, with the optimum pH 

ranging from 6.5-7.5. Remarkably, of the strains evaluated, there was one that was able to 

grow in a medium having an initial pH as low as 4.9 and as high as 9.5. This underlines the 

importance of strain-to-strain variation in C. jejuni’s response. On the other hand, it is not 

know for certain that the strains they used would also be called C. jejuni today. 

 

2.2.5 Metabolism 

Understanding aspects of metabolism can shed light on how bacteria grow and persist in their 

hosts. The ability of a pathogen to alter its metabolism in response to different conditions can 

also significantly affect its ability to traverse diverse environments. C. jejuni is unable to 

metabolize externally supplied carbohydrates as the key glycolitic enzyme 

phosphofructokinase is absent (Kelly, 2005); instead they obtain energy from amino acids, or 

tricarboxylic acid (TCA) intermediates (Velayudhan, Jones, Barrow, David & Kelly, 2004). 

This organism has a complete citric acid cycle, a complex and highly branched respiratory 

chain which allows both aerobic and anaerobic respiration with a variety of electron 

acceptors, and a large complement of regulatory functions. The C. jejuni NCTC 11168 
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genome (Parkhill et al., 2000) predicts orthologues of several membrane-bound 

oxidoredutases (e.g. hydrogenase and dehydrogenases for succinate, formate, lactate, sulphite 

and malate) that may catalyse reactions that donate electrons to the menaquinone pool, 

initiating electron transport and energy conservation through a highly branched electron 

transport chain (ETC) (Kelly, 2005) These properties enable it to colonize and survive in a 

number of environments in addition to the mammalian or avian gut (Kelly et al., 2001).  

 

2.3 Epidemiology 

2.3.1 Incidence 

Campylobacteriosis has been highlighted as the most frequently reported zoonotic disease in 

humans within the EU (EFSA, 2006). In most European countries, the number of reported 

cases of Campylobacteriosis increased during the 1990s, with a total of 200,122 cases of 

Campylobacteriosis in humans being reported in 22 Member States (MS) and two non-MS in 

2005 (EFSA, 2006). The overall incidence of Campylobacteriosis was 51.6 per 100,000 

inhabitants, with a remarkably wide range of variation in the incidence among the reporting 

countries, as Poland reported 0.1 cases per 100,000 inhabitants, France 3.3 and Czech 

Republic 302.7 (EFSA, 2006). No data were available from Greece, Italy and Portugal. In 

2006, a total of 175,561 confirmed cases of Campylobacteriosis were reported from 21 MS 

(EFSA, 2007). The EU incidence was 46.1 per 100,000 population ranging from 0.3 – 220.2. 

There was a drop in the incidence compared to 2005, which is primarily explained by 

decreases in the number of reported cases in Czech Republic and Germany (EFSA, 2007). 

Campylobacteriosis is also one of the most common intestinal disorders in non-European 

countries. In 2001, the incidence was 125 cases per 100,000 inhabitants in Australia and 14 in 

the United States (Vally et al., 2005). The highest national rate of reported 

Campylobacteriosis in the developed world is in New Zealand, exceeding 400 cases per 

100,000 inhabitants (Baker et al., 2006). However, these figures take no account of 

differences in healthcare systems or laboratory practices among the countries. 

 

2.3.2 Sources and transmission of infection 

Most (85-95%) human infections involve C. jejuni, with C. coli accounting for the majority of 

the remainder (Friedman, Neimann, Wegener & Tauxe, 2000); however, C. coli strains 

comprise almost 20% of the human clinical isolates (Gürtler, Alter, Kasimir & Fehlhaber, 

2005). Many meat animals such as swine, sheep and cattle are regularly colonized with 
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Campylobacter spp. (Stanley & Jones, 2003; Nielsen, 2002). C. jejuni is more commonly 

detected among poultry and cattle than C. coli; however, this is not the case with swine where 

C. coli is more common (Payot, Dridi, Laroche, Federighi & Magras, 2004; Boes et al., 

2005). C. jejuni and C. coli can cause severe disease in infected people but are carried in the 

intestinal tracts of all types of domestic livestock and many wild animals, almost always 

without any harmful effects (asymptomatic carriers). This carriage does have major 

consequences for human health in terms of food-borne disease. The differences in pathogen 

behaviour in man and in animals are not yet fully understood but are likely to be due to 

differential bacterial gene expression in different hosts (Humphrey et al., 2007). 

 

Campylobacter jejuni has a very low infectious dose (500 cells) (Robinson, 1981) and 

therefore it is of concern as a foodborne pathogen. Although outbreaks of infection account 

for a small fraction of Campylobacter infections in humans (Frost, Gillespie & O’Brien, 

2002), consumption of unpasteurized milk is the most frequently reported cause of outbreaks 

of infection (Gillespie, Adak, O’Brien & Bolton, 2003). In most cases when human infection 

by Campylobacter is concerned, the cases are classified as sporadic making it extremely 

difficult to track the source. Sources of sporadic infection include sausages or red meat 

(especially in Scandinavian countries), contaminated water, contact with pets (especially birds 

and cats), and international travel (Neimann, Engberg, Molbak & Wegener, 2003).  

 

2.3.2.1 Poultry  

As a result of contamination at preharvest and harvest levels, foods of animal origin, in 

particular poultry have been identified as the major source of infection of this pathogen 

(Corry & Atabay, 2001). 

 

Campylobacters in birds are isolated in the large intestine, ceacum and cloaca (Corry & 

Atabay, 2001). In broiler chicks, intestinal colonization is usually detected after day seven. 

Once colonized, the birds remain asymptomatic until they reach maturity. Previous 

surveillance studies have reported 100% colonization of flocks (Jacobs-Reitsma, 1997) 

however, the exact route of transmission of Campylobacter to these poultry flocks remains 

unclear. The external environment around the broiler house is thought to be the most 

important source of campylobacters. A study has reported that flies may be an important 

source of Campylobacter infection of broiler flocks in summer (Hald et al., 2004). 
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Contaminated water, flock thinning and carry over from a previous flock have all been 

suggested to contribute to infection of poultry (Humphrey et al., 2007). 

 

Various on-farm strategies have been advanced to reduce the incidence rates of poultry 

contamination: introduction of competing microbial populations into newly hatched chicks, 

chlorination of poultry drinking water, vaccination and treatment with bacteriophagues or 

selective breeding of poultry for resistance to pathogens (Wagenaar, Mevius & Havelaar, 

2006). Sound management practices incorporating good husbandry and hygiene practices also 

play a part in limiting the occurrence of C. jejuni in poultry flocks (Kazwala, Jiwa & Nkya, 

1993). Farms that use these practices tend to have lower rates of intestinal colonization with 

Campylobacter spp. (Humphrey, Henley & Lanning, 1993). 

 

Mass raising of poultry in closed houses, spread of the bacteria during catching and transport 

to the slaughterhouses and a slaughter technology which give rise to gross faecal 

contamination, all result in high number of Campylobacter on the finished product 

(Humphrey et al., 2007). During the slaughter process campylobacters are easily spread from 

the intestinal content to carcasses and may spread to poultry flocks free of Campylobacter 

during processing. In a recent study of Klein, Reich, Beckmann and Atanassova (2007), out of 

99 samples examined, collected at a German poultry slaughterhouse, 51 (51.5 %) were 

positive for Campylobacter, with bacterial counts ranging from log10 6.5 cfu sample-1 for 

carcasses to log10 3.6 cfu ml-1 for scalding water. Strains found in cloacal swabs before 

processing could also be isolated from carcasses at different processing steps. The highest 

concentration of Campylobacter is therefore, found on meat directly after processing. In all 

subsequent steps in the food chain (for example transportation to retail refrigerator storage), 

the concentration may stabilise but is more likely to decrease, due to die-off of the bacteria 

(Wagenaar et al., 2006).  

 

There is no doubt that poultry is a major source of campylobacters (Jørgensen et al., 2002). 

Although all commercial poultry species can carry campylobacters, the risk is greater from 

chicken because of the high levels of consumption (Humphrey et al., 2007). Two additional 

pieces of evidence support the thesis that poultry is an important source of human 

Campylobacter infection (Humphrey et al., 2007). The first comes from Belgium and 

occurred when Belgian poultry and eggs were withdrawn in May/June 1999 because of 

contamination with dioxins (Vellinga & Van Loock, 2002). There was a coincident 40% 

reduction in human Campylobacter cases. The second piece of evidence comes from Iceland. 
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In common with many other Nordic countries chicken was sold frozen in Iceland prior to 

1996. However, increased consumer demand for poultry and market driven pressures led to 

the sale of chilled chicken after 1996. Following this, human Campylobacter infections 

increased and peaked in 1999, at a rate of 116/100,000. At this time 62% broiler carcass rinses 

were positive for campylobacters. A number of preventative measures were introduced, 

including improving biosecurity on farms, freezing of animals from flocks testing positive 

and public education. In 2000 human infection dropped to 33/100,000 and only 15% of 

broiler carcass rinses were Campylobacter-positive (Stern et al., 2003). No specific measure 

was identified as contributing to the fall in cases but the combination of measures was 

effective. Today there is already sufficient data which support that freezing of carcasses lead 

to a significant reduction of Campylobacter counts after storage of frozen carcasses 

(Georgsson et al., 2006). 

 

2.3.2.2 Other animals 

Other meat animals such as pigs and cattle have also been found to have the gastrointestinal 

tracts frequently colonized by campylobacters (Boes et al., 2005). Several data suggest that 

Campylobacter of bovine origin contributes significantly to human illness (Nielsen et al. 

2000). It is believed that these animals acquire the organisms by contact with a contaminated 

environment. Humphrey and Beckett (1987) demonstrated a link between the consumption of 

water from natural sources and the presence of campylobacters in dairy cows. Some instances 

of shellfish contamination due to harvesting of these shellfish in Campylobacter contaminated 

waters has also been reported (Wilson & Moore, 1996). 

 

2.3.2.3 Food 

Campylobacter infections are usually a result of consumption of inadequately cooked foods of 

animal origin. There has been a strong association between Campylobacter infection and 

handling and consumption of raw or undercooked poultry (Friedman et al., 2000). In general, 

the frequency of contamination of red meat products at retail is lower than that seen in poultry 

(Humphrey, Mason & Martin, 1995). The slower rate of slaughter in red meat abattoirs will 

be a factor in this. The most important reason for the differences between red and white meat, 

however, is that carcasses of the former will be subjected to an extended chilling prior to entry 

into the food chain. Of the many stresses experienced by these pathogens in food production, 

desiccation appears to be the most damaging and campylobacters survive poorly on dry 
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surfaces. This means that when red meat carcasses are chilled the numbers of campylobacters 

present on exposed surfaces will be markedly reduced by drying (Humphrey et al., 2007).  

 
Another common related source is foods that have been infected by cross contamination in 

kitchens during food preparation (Cogan, Bloomfield & Humphrey, 1999). Given the high 

numbers of the pathogen on the meat surface in comparison with low levels of internal 

contamination, it has been concluded that cross-contamination during preparation of 

contaminated chicken is a more important pathway for consumers’ exposure to 

Campylobacter than the consumption of undercooked meat (Luber & Bartelt, 2007). There 

have been reports of the incidence of Campylobacter in raw milk in the past (Gillespie et al., 

2003) possibly due to faecal contamination and more rarely due to udder infections with C. 

jejuni (Orr et al. 1995). 

 
Although limited, Campylobacter has been found on some fresh fruits and vegetables (Buck, 

Walcott & Beuchat, 2003). There have been some reported incidences of Campylobacter in 

some modified atmospheric packaged ready-to-eat (RTE) foods (Phillips, 1998).  

 
C. jejuni can enter the water supply, possibly by excretion of various animals or through 

waste from animal operations or sewage being dumped into the water system to name a few. 

It can associate with protozoans, such as freshwater amoebae, and possibly form biofilms.  

Figure 2.2 summarizes the sources and outcomes of Campylobacter jejuni infection. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Figure 2.2 The sources and outcomes of Campylobacter jejuni infection (Young, Davis & DiRita, 
2007).  
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3 LITERATURE REVIEW OF STRESS RESPONSE AND RESISTANCE 

3.1 Campylobacters in food supply 

3.1.1 Food processing control measures 

In general, foods are made safe through inactivation, e.g. heat treatment, and/or through 

inhibition of growth to prevent multiplication of pathogens to harmful levels. However, since 

campylobacters remain a concern even at low levels, their presence in foods at the point of 

consumption must be prevented, so growth inhibition is not relevant as a method of control 

(Humphrey et al., 2007). Compared to other pathogenic bacteria campylobacters are relatively 

heat sensitive, so commercial heat processes set within HACCP framework should guarantee 

control of these pathogens. Modelling pathogen behaviours in the food chain as a means of 

identifying the most effective and cost-effective control measures is of irrefutable value. Such 

approach is possible with campylobacters. However, these pathogens are inherently variable 

and a large body of data, using many strains examined under a multiplicity of conditions, is 

needed before modelling can be used with the necessary confidence (Humphrey et al., 2007). 

 

3.1.1.1 Control during poultry processing 

Avoidance of fecal contamination during evisceration is an important control measure. Owing 

to the high concentration of Campylobacter in the intestines, in particular, the ceaca, the 

outside surfaces of chicken carcasses also become contaminated during processing. Carcasses 

from Campylobacter-negative broilers can be contaminated by machinery when they are 

processed after a positive flock. Critical control points and good manufacturing practices 

identified to prevent contamination of carcasses during processing (e.g. scalding, 

defeathering) include temperature controls (washer and product), chemical interventions, 

water replacements, counter-flow technology in the scald tank and chiller, equipment 

maintenance, chlorinated water sprays for equipment and working surface, the use of chlorine 

in process water and removal of unnecessary carcass contact surfaces (Mead, Hudson & 

Hinton, 1995).  

 

Studies indicate that reduction in bacterial numbers obtained when carcasses are scalded may 

be beneficial in terms of reducing the likelihood of cross contamination during subsequent 

processing or in the domestic kitchen but it does not render the product ‘Campylobacter-free’ 
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as it can be observed in Figure 3.1 (Purnell et al., 2003). Significant variation in 

Campylobacter survival can be observed after the same temperature/time treatment is applied.  

 
Figure 3.1 Mean log10 counts of Campylobacter from broiler carcasses before and after various water 
treatments. Counts are from a single 300 ml rinse of which serial dilutions were made and plated on 
selective agar. Each point represents an individual carcass. Treatments are given as temperature of 
exposure in °C followed by the length of exposure in seconds. Data from Purnell et al. (2003). 
 

Table 3.1 gives details of the death rates of C. jejuni isolates under conditions relevant to food 

production. Data are taken from an International Commission on Microbiological 

Specifications for Foods (ICMSF) publication (Anonymous, 1996) and should be used as a 

guide only. Data do not take into account either strain-to-strain variation or the recovery and 

challenge methods used.  

 

Table 3.1 Death rates in Log10 units of Campylobacter jejuni in food production-relevant 
environmenta 

Environment Temperature Death rate (log10) 
Skim milk −20 −4.4 to −7.5 over 5 days 
Ground chicken  −18 −1.5 to −1.6 over 5 days 
Raw milk 5 −2.8 over 2 days 
Ground chicken 4 −0.5 to −2.0 over 7 days 
Chicken scald water 52 −1.0 over 9 minutes 
Ground beef 56 −1.6 to −1.04 per minute 
Lamb cubes 60 −5 to −3.8 per minute 
Ground cod with 0.5% NaCl 10 −1.6 over 5 days 
Ground cod with 2.5% NaCl 10 −2.8 over 5 days 
Egg white at pH 9.3 42 −7.1 over one day 
Yoghurt at pH 4.4–5.4 NSb −7.4 per hour 
Ground turkey and 0.32 kGy −30 −1.0 

a from Anonymous (1996) 
b Not stated. 
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3.1.1.2 Carcass decontamination methods other than heat 

Chemical treatment of carcasses is not permitted in the EU but chlorine can be used in other 

countries such as the United States and Brazil. Oyarzabal, Hawk, Bilgili, Warf and Kemp 

(2004) found that the post-chill application of acidified sodium chlorite (ASC) to chicken 

carcasses caused a significant reduction in Campylobacter numbers and in the number of 

contaminated carcasses. A recent study also suggests that introduction of antimicrobial 

treatments with ASC, trisodium phosphate (TSP) and ASC followed by TSP into poultry 

processing systems could provide an added measure of safety (Ӧzdemir, Gücükoğlu & 

Koluman, 2006).  

 

There are several organic acids that have proven to be effective in poultry processing such as, 

acetic acid, lactic acid, citric acid and succinic acid. In some studies, addition of 0.1% acetic 

acid to scald water was found to reduce the level of C. jejuni by 1.5 log10 CFU/ml (Okrend, 

Jonhston & Moran, 1986). Several studies have shown the sensitivity of Campylobacter spp. 

to organic acids, such as formic, acetic, ascorbic, and lactic acids (Chaveerach, Keuzenkamp, 

Urlings, Lipman & van Knapen, 2002; Chaveerach et al., 2003). 

 

Rapid freezing of chicken carcasses may also offer additional control measures (Bhaduri & 

Cottrell, 2004; Sandberg, Hofshagen, Ostensvik, Skjerve & Innocent, 2005). Georgsson et al. 

(2006) recently studied the effects of freezing, method of thawing, and duration of frozen 

storage on levels of Campylobacter spp. Their findings warrant consideration of the public 

health benefits related to freezing contaminated poultry prior to commercial distribution to 

reduce Campylobacter exposure levels associated with contaminated carcasses. Although C. 

jejuni can still be isolated from frozen meats and poultry products (Bhaduri & Cottrell, 2004; 

Sandberg et al., 2005; Georgsson et al., 2006), freezing significantly reduces their survival 

(Chan et al., 2001; Moorhead & Dykes, 2002; Zhao, Ezeike, Doyle, Hung & Howell, 2003; 

Georgsson et al., 2006). These data confirm that frozen poultry poses a significant lower risk 

to health than fresh meat. Whilst several factors, including ice nucleation and dehydration, 

have been implicated in the freeze-induced injury of bacterial cells, more recently oxidative 

stress has been shown to be a mechanism that contributes to freeze-thaw induced killing of 

campylobacters, since it has been predicted that an oxidative burst occurs upon thawing (Park, 

Grant, Davies & Dawes, 1998). In addition, a superoxide dismutase (SOD)-deficient mutant 

has demonstrated sensitivity to freezing and thawing (Stead & Park, 2000). 
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3.1.2 Factors affecting survival of C. jejuni 

Campylobacter spp. have been reported to survive in water, at low temperatures, for up to 4 

months (Rollins & Colwell, 1986; Buswell et al., 1998; Hazeleger, Wouters, Rombouts & 

Abee, 1998), during processing (Cools et al., 2005) and in the environment in general (Park, 

2002). Kärenlampi and Hänninen (2004) showed that C. jejuni can survive on fresh produce 

long enough to pose a risk to the consumer. Survival times will depend on the environmental 

stresses present, on the food matrix involved and the conditions under which foods are stored.  

 

Campylobacters can respond to changes in pH, temperature and available oxygen although the 

consequences that this has for food safety have yet to be examined. Campylobacters will not 

survive pasteurisation treatments or proper cooking (Sorqvist, 1989). Also, C. jejuni shows an 

increased susceptibility to slow-air-drying on surfaces (Kusumaningrum, Riboldi, Hazeleger 

& Beumer, 2003), poorly survives Ultraviolet B (UVB) exposure (Obiri-Danso, Paul & Jones, 

2001), hydrostatic pressure (Solomon & Hoover, 2004), as well as, low pH of the 

microenvironment (Waterman & Small, 1998). Campylobacters are also particularly sensitive 

to osmotic shock (Hamedy, Bori, Froeb-Borgwardt & Alter, 2005). Nutrient insufficiency has 

been shown to be the most powerful stress factor significantly affecting C. jejuni culturability 

and viability, as well as, adhesion and invasion properties (Mihaljevic et al., 2007). When 

challenged in broth culture, campylobacters are more sensitive to heat and acid, for example, 

than Salmonella or E. coli (Humphrey et al., 2007). This may not reflect what happens in food 

as the data on the heat treatment of chickens (Figure 3.1) suggest. Additionally, the methods 

used in many studies are not sufficiently sensitive to recover damaged cells and this may lead 

to an underestimation of resistance. Chicken juice has been proved to be a food-based model 

system suitable to study survival of C. jejuni at low temperatures (5 and 10ºC) and heat stress 

(48ºC) (Birk, Ingmer, Andersen, Jørgensen & Brøndsted, 2004). The liquid model with 

chicken juice was also found to be the best model system to study the freezing tolerance of C. 

jejuni when compared to chicken skin surface (Birk et al., 2006).  

 

Despite the reported sensitivity of this pathogen to the extra-intestinal environment, it seems 

clear that its infection potential is not compromised by such exposures. A myth has developed 

that thermophilic campylobacters are sensitive to conditions outside the host. This does not 

seem to be coincident with the fact that these bacteria are able to infect approximately 1% of 

the population of Western Europe largely as a result of the consumption of contaminated food 

(World Health Organization [WHO], 2000). 
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The increasing incidence of human enteric campylobacteriosis indicates that Campylobacter 

has developed mechanisms for survival such as entry into a viable but nonculturable state 

(Baffone et al., 2006), the transition from rod to coccoid shape (Moran & Upton, 1987), 

biofilm mode of growth (Joshua, Guthrie-Irons, Karlyshev & Wren, 2006) or extreme 

heterogeneity of the isolates, mainly for C. jejuni (Zorman et al., 2006).  

 

3.1.2.1 Viable but nonculturable state (VBNC) 

In the adaptation to coccoid morphology, Campylobacter spp. may lose their ability to grow 

on media, as they can enter a viable but non-culturable stage (Baffone et al., 2006). This has 

been suggested to be a dormant state required for survival under conditions not supporting 

growth, e.g. during transmission or storage (Rollins & Colwell, 1986). However, the coccoid 

form is not necessarily associated with non-culturability. The role of these coccoid forms in 

the pathogenesis of Campylobacter is not known and the question whether or not VBNC 

Campylobacter is capable of causing infection is unclear. However, it has been reported that 

the coccoid forms retain virulence (Oliver, 2000). In a recent study, VBNC were unable to 

revert to the viable Campylobacter form and colonise chicken gut with normal caecal flora 

(Ziprin & Harvey, 2004). 

 

The VBNC state in bacteria (reviewed by Oliver, 2005) remains the subject of much 

controversy, but it is clear that many of the techniques used to assess culturability are sub 

optimal. In this context, in the experimental work viability is not distinguished from 

culturability. A viable cell is a cell that will proliferate and produce a colony after serial 

dilutions and plating. 

 

Chaveerash et al. (2003) studied the culturability of ten strains of C. jejuni and C. coli after 

the bacteria were exposed to acid conditions for various periods of time. Campylobacter cells 

could not survive 2 h under acid conditions (formic acid at pH 4). The ten Campylobacter 

strains could not be recovered, even when enrichment media were used. Viable cells, 

however, could be detected by a double-staining technique, demonstrating that the treated 

bacteria changed into a viable but nonculturable (VBNC) form (Figure 3.2). 
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Figure 3.2 Numbers of total (♦), viable (■), and culturable (▲) cells of C. jejuni C350 over time. The 
bacteria were incubated with acidified Mueller-Hinton broth (formic acid at pH 4), and the double-
staining (5-cyano-2,3-ditolyl tetrazolium chloride [CTC]–4’,6’-diamidino-2-phenylindole [DAPI]) and 
culture technique was used (Chaveraash et al., 2003). 
 

3.2 Stress responses in food and the environment 

3.2.1 Factors affecting stress response 

Despite their importance as human pathogens little is known about how campylobacters cope 

with hostile conditions in the transmission chain from animals to humans and how these 

bacteria persist in foods or non-food environments. There is similarly scant information about 

the molecular mechanisms that enable Campylobacter strains to survive environmental stress 

conditions relevant to food production (Humphrey et al., 2007).  

 

3.2.1.1 Genetic Variability 

C. jejuni, along with other members of the order Campylobacteriales (e.g., Helicobacter 

pylori, Wolinella succinogenes) has a small genome (about 1700 kilobase pairs) and can 

establish long-term associations with their hosts, sometimes with pathogenic consequences. 

The small size of the genome is perhaps reflected in a parasitical life-style as these related 

organisms appear to be host adapted and can establish and maintain their niches without 

generating a response in the host that is sufficient for clearance (Young et al., 2007). 

 

The sequence of the first C. jejuni genome revolutionized the Campylobacter research field in 

2000 (Parkhill et al., 2000), and the relatively small size of the genome has facilitated 
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additional genome sequencing (Poly & Guerry, 2008). Today a total of 8 C. jejuni genomes 

are available, either on websites (http://msc.tigr.org/campy/index.shtml) or published 

(Parkhill et al., 2000; Fouts et al., 2005; Hofreuter et al., 2006; Poly et al., 2007).  

 

Analysis of several sequenced microbial genomes has revealed a close relationship between 

the size of the genome and the proportion of the genome devoted to regulatory genes 

(Neidhardt, 2002). The genome of C. jejuni encodes 1654 proteins of which only about 3% 

have putative regulatory or signal transduction functions (Parkhill et al., 2000; 

http://www.sanger. ac.uk/Projects/C_ jejuni). The GC content ranges from 29 to 35 % (Fouts 

et al., 2005). This organism is regarded as having a restricted capacity for genetic regulation 

and adaptation to environment. 

 

However, C. jejuni displays extensive genetic variation, which has arisen from intragenomic 

mechanisms, as well as genetic exchange between strains (Young et al., 2007). Sequencing 

the genome has revealed the presence of hypervariable sequences that consist of 

homopolymeric tracts1, at which high frequency insertion and deletion frameshift mutations 

occur (Parkhill et al., 2000; Park, 2002). Genome sequence data has also indicated that the 

high frequency of variation within these sequences may be partly due to the lack of clear 

homologues of many E. coli DNA-repair genes (Parkhill et al., 2000). Most of the 

hypervariable sequences that have been found are in regions that encode proteins that are 

involved in the biosynthesis or modification of surface-accessible carbohydrate structures, 

such as the capsule, lipooligosaccharide (LOS)2 and flagellum (Parkhill et al., 2000). 

 

C. jejuni is also naturally competent, meaning that it can uptake DNA from the environment. 

Flocks are usually infected with multiple strains (Jacobs-Reitsman, 2000). This leads to 

recombination between strains, which allows the generation of even more genetic diversity 

(Young et al., 2007). The horizontal transfer of both plasmid and chromosomal DNA occurs 

both in vitro and during chick colonization, which indicates that natural transformation could 

have an important role in genome plasticity and in the spread of new factors such as antibiotic 

resistance, even in the absence of selective pressure (de Boer et al., 2002; Wilson et al., 2003; 

Avrain, Vernozy-Rozand & Kempf, 2004). This diversity is evidenced by significant strain-

to-strain variability in virulence and tolerance to particular stresses (Park et al., 2005). This 

implies that strains can have important differences in their genetic makeup and this is 

                                                 
1 A stretch of DNA that contains multiple repetitions of a single nucleotide. 
2 Found in the outer leaflet of the outer membrane of some Gram-negative bacteria, it consists of lipid A linked to a polysaccharide, but lacks 
the O-specific polysaccharide of the LOS that is found in other Gram-negative bacteria.  
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confirmed by studies showing much more extensive differences in genetic content compared 

to other enteric bacteria (Humphrey et al., 2007). 

 

Studies illustrate C. jejuni diversity and highlight the presence of additional material in some 

strains and, in turn, the potential for strain-specific mechanisms of stress tolerance (reviewed 

by Park, 2005). A considerable variability is observed among C. jejuni isolated from poultry 

at flock level (Wittwer et al., 2005). A significant decrease of genetic variability among C. 

jejuni isolates from the start of the slaughter-line to the end of the slaughter process has been 

shown in turkeys (Alter & Fehlhaber, 2003) and in broilers (Newell & Wagenaar, 2000), thus 

suggesting that some specific stress-resistant strains survived the slaughter and chilling 

process (Wieland et al., 2006). Survival of this pathogen in water has also been shown to vary 

markedly among different strains (Jones, Sutcliffe & Curry, 1991; Terzieva & McFeters, 

1991). One study indicated substantial variability among strains in cold survival, with human 

isolates being significantly more capable of prolonged survival at 4 ºC than poultry-derived 

strains (Chan et al., 2001). Robust and stress-resistant strains were also found among 

environmental strains (Hänninen, Perko-Mäkelä, Pitkälä & Rautelin, 2000). An extracellular 

component of one strain, CI 120, has also been shown to confer acid tolerance to other C. 

jejuni strains (Murphy, Carroll & Jordan, 2003a). The conferred acid tolerance may have 

important implications in the environment as one strain could give protection to all strains 

present (Murphy, Carroll & Jordan, 2006). 

 

3.2.1.2 Response regulators 

Gram-negative bacteria have regulators, which mediate responses to environmental change. In 

this context, campylobacters appear to lack many of the adaptive responses that can be 

correlated with resistance to stress in other foodborne pathogens (Table 3.2; Park 2000). 

These include the oxidative stress defence SoxRS and OxyR, the osmoprotectants BetAB, 

GbsAB, OtsAB and ProP, the RpoS-encoded sigma factor stationary phase responsive genes, 

the major cold-shock protein (CspA) the leucine-responsive regulator (Lrp) and the alternative 

sigma factor (RpoH) that regulates the heat-shock response in E. coli (Murphy et al., 2006). 

C. jejuni contains several of the heat-shock proteins (HSPs), including GroELS, DnaJ, DnaK 

and Lon, but it also contains two negative regulators of the heat-shock response, HspR and 

HrcA (Murphy et al., 2006). They also possess several two-component regulatory systems 

(not generally found in other bacteria) that appear to be involved in stress defence (Murphy et 

al., 2006). 
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Table 3.2 The distribution of key orthologues from pathways responsible for resistance to 
environmental stress in C. jejuni and model bacterial species (Park, 2000). 

Presence in: 
Protein Function C. 

jejuni 
E. 
coli 

B. 
subtilis 

Oxidative stress     

SoxRS  Positive regulators of the response to 
superoxide stress  - + - 

OxyR  Positive regulator of the response to peroxide 
stress  - + - 

PerR  Negative regulator of the response to peroxide 
stress  + + + 

SodB or SodF  Iron cofactored superoxide dismutase  + + + 
SodA  Manganese cofactored superoxide dismutase  - + + 
KatA or KatE  Hydroperoxidase (HP) II, catalase  + + + 
KatG  HP I, catalase  - + - 
AhpC  Alkyl hydroperoxide reductase  + + + 
     
Osmoregulation     
ProP  Low-affinity uptake of proline/glycine betaine + + + 

ProU or OpuC  High-affinity osmoregulatory uptake of 
compatible solutes  - + + 

OtsAB  Osmoregulatory trehalose synthesis  - + - 

BetAB or GbsAB  Osmoregulatory choline– glycine betaine 
synthesis pathway  - + + 

     
Stationary phase starvation     
CsrA  Carbon storage regulator  + + + 

RpoS  General stress/stationary phase sigma factor in 
Gram negative bacteria  - + - 

SigB  General stress sigma factor in Gram positive 
bacteria - - + 

     
Heat and cold shock     

RpoH  Alternative sigma factor regulating the heat 
shock response  - + - 

HspR  Negative regulator of the heat shock response + - - 
HrcA  Negative regulator of the heat shock response  + - - 
GroELS, DnaJ, DnaK and 
Lon  Heat shock proteins  + + + 

CspA  Major cold shock protein  - + + 
     
Quorum sensing     
LuxI  Homoserine lactone synthesis  - - - 
LuxS  Autoinducer 2 synthesis protein  + + + 
ComQX  Peptide pheromone synthesis  - - + 

PhrC  CSF, extracellular signalling pentapeptide 
synthesis  - - + 

     
Global regulation     
Lrp  Global regulator of metabolism  - + + 

Crp/Fnr  Catabolite gene activator or anaerobic 
regulatory protein  + + + 
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3.2.1.3 Cellular stage of growth and bacterial resistance 

Entry into the stationary phase and/or starvation is accompanied by profound structural and 

physiological changes that result in increased resistance to heat shock, oxidative, osmotic and 

acid stress (Hengge-Aronis, 1996). For many foodborne pathogens, this adaptive process has 

an important bearing on the ability of the organisms to survive the physical challenges 

encountered during food processing. The central regulator for many of these stationary phase 

induced changes in a number of Gram-negative bacteria is the RpoS sigma-factor, which, 

accordingly, is critical for the survival of the bacterial cell in stationary phase and following 

exposure to many types of environmental stress (Hengge-Aronis, 1996). The RpoS response 

confers resistance to a range of stresses, and exposure to one factor such as low pH, and high 

osmotic pressure, can confer increased resistance to other stresses such as heat (Hengge-

Aronis, 1996). The genome of C. jejuni contains only three sigma factors (rpoD, rpoN and 

fliA) and is unusual in lacking the stationary associated sigma factor rpoS (σs) (Parkhill et al., 

2000).   

 

A sublethal stress induces an adaptive tolerance response and provides protection towards 

subsequent exposure to a lethal stress, a mechanism known as the ATR. For instance, both E. 

coli and Salmonella will survive low pH by employing multiple acid defence systems geared 

toward different physiological states (e.g. log vs stationary phase), different levels of stress or 

the availability of different extracellular cofactors. Both organisms induce an ATR when 

exposed to acid pH in exponential phase, but the more effective acid resistance systems are 

present in stationary phase (Hersh, Farooq, Barstad, Blankenhom & Slonczewski, 1996; Lin, 

Lee, Frey, Slonczewski & Foster, 1995; Lin et al., 1996), although this regulator was also 

recognized as playing a significant role during exponential growth under a range of conditions 

(Cheville et al., 1996; Audia, Webb & Foster, 2001). 

 

Induction of an ATR has been described for C. jejuni and differences in stress resistance have 

been detected in different physiological growth phases of C. jejuni (Murphy et al., 2003b; 

Shaheen et al., 2006). Early stationary phase C. jejuni CI 120 cells adapted at pH 5.5 

increased tolerance to pH 4.5 (Figure 3.3), but no ATR was induced when cells were in mid-

exponential and late stationary phase, where cells exposed to pH 5.5 for 5 hours exhibited 

similar or increased death rate when compared to nonexposed cells (Murphy et al., 2003b; 

Murphy, Carroll & Jordan, 2005). The adapted C. jejuni strain CI 120 had a 3 log10 cfu/mL 

survival advantage over control cells at pH 4.5 at approximately 4.6 h (Murphy et al., 2005). 
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However, Shaheen et al., (2006) observed an acid tolerance response in C. jejuni 2002-439 in 

late stationary phase cells that conferred adapted cells no more than 1 log10 cfu/mL survival 

advantage over unadapted cells. This underlines the variability encountered in the 

physiological properties of different C. jejuni. It is possible that changes in acid resistance 

might also be due to different challenge conditions. Nevertheless, it has been suggested 

(Shaheen et al., 2006) that stationary phase cells of C. jejuni may exhibit an acid tolerance 

response that can be described as moderate when compared to the exponential and stationary 

phase responses described for Salmonella (Audia et al, 2001), E. coli (Lin et al., 1995, 1996; 

Hersh et al., 1996) and Listeria monocytogenes (Phan-Thanh, Mahouin & Alige, 2000).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Early stationary phase cells of C. jejuni CI 120 challenged at pH 4.5 (Murphy et al., 
2003b). Cells were either unadapted (open squares) or adapted at pH 5.5 for 5 h (solid squares). 
Cultures were grown to the appropriate phase in Brucella broth (pH 7.0) at 42 ºC under microaerobic 
conditions. Experiments were undertaken in triplicate. Average values are shown with the standard 
error of the mean as error bars. Error bars are present but cannot be seen.  
 
It is important to note that, in contrast to results found at low pH, stationary phase cells of C. 

jejuni NCTC 11351 have been reported to be more sensitive to heat and aeration than mid-

exponential phase cells and this could physiologically confirm the lack of an RpoS mediated 

phenotypic stationary phase response (Kelly et al., 2001). This organism does undergo 

selected physiological changes as the cells enter stationary phase, such as modulation of 

membrane composition, particularly the increase in cyclopropane fatty acids, which results in 

increased cell membrane integrity and pressure resistance, but not increased acid or heat 

resistance (Martıínez-Rodriguez & Mackey, 2005). Thus, the known RpoS-mediated acid 

tolerance response triggered in the stationary phase cells of E. coli and Salmonella does not 

appear to be present in C. jejuni. In E. coli, cyclopropane fatty acids (CFA) in the cell 

membrane have a significant effect in protecting against acid stress and their synthesis are 

Adapted at pH 5.5, 5 h 

unadapted
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under regulation of rpoS (Grogan & Cronan, 1997). Cyclopropane fatty acids appeared to play 

little role in acid resistance in C. jejuni and since the organism lacks rpoS, the regulation of 

cyclopropane fatty acid synthesis must depend on different genetic regulatory mechanisms 

(Martínez-Rodriguez & Mackey, 2005).  

 
A study also suggests that proteins produced by C. jejuni during growth may play an active 

role in the induction of acid stress response (Figure 3.4). Murphy et al. (2003a) determined 

the presence of a phase specific extracellular component that was secreted during growth and 

contributed to acid (and heat) stress tolerance during the growth phase. Cells resuspended in 

cell free spent medium showed a higher survival rate during challenge at pH 4.5 compared 

with cells in fresh medium especially in the mid-exponential phase.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Survival of C. jejuni in cell-free spent medium (squares) and fresh medium (triangles) at 
pH 4.5 (Murphy et al., 2003a). C. jejuni CI 120 was grown to the desired growth phase in Brucella 
broth at 42 ºC under microaerophilic conditions. Experiments were undertaken in triplicate. Mid-ex = 
Mid exponential phase cells; stat = Stationary phase cells. 
 
Cappelier, Rossero and Federighi (2000) also reported an increase in heat resistance in C. 

jejuni strain 79 as cells entered starvation in a surface water microcosm. Genetic differences 

between strains of C. jejuni have been described (Ahmed, Manning, Wassenaar, Cawthraw & 

Newell, 2002; Gaynor et al., 2004) hence it is not surprising that strain differences in stress 

resistance occur in this organism. Analogous differences in stress resistance among strains of 

Salmonella or E. coli O157 appear to be related to polymorphisms in the rpoS gene 

(Jørgensen et al., 2000; Robey et al., 2001). Thus, the basis of the strain variation in C. jejuni 

stress resistance must be due to other causes (Martínez-Rodriguez & Mackey, 2005). 
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A recent study revealed that C. jejuni mounts a relA/spoT-dependent stringent response 

(Figure 3.5), a global stress response that alters gene expression pathways to allow survival 

under a multitude of adverse conditions (Gaynor et al., 2005). The stringent response has been 

confirmed to play several important roles, such as capnophilic growth and aerotolerance. 

Interestingly, it was found to participate in the pathogen–host cell interaction such as 

adherence, invasion, and intraepithelial survival, indicating a correlation between stress 

response regulation and the pathogenic mechanism. This response has been demonstrated to 

play a role in C. jejuni survival during their ‘non-traditional’ stationary phase. However, as C. 

jejuni lacks rpoS, the precise mechanisms by which this occurs are likely to be distinct from 

those in E. coli (Figure 3.5) (Gaynor et al., 2005). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.5 The stringent response in E. coli (Magnusson, Farewell & Nystrӧm, 2005). Guanosine 
pentaphosphate (pppGpp) is produced from GTP and ATP by two parallel pathways in response to 
starvation and stress and is subsequently converted to guanosine tetra-phosphate (ppGpp). ppGpp 
binds RNA polymerase (RNAP) and redirects transcription from growth-related genes to genes 
involved in stress resistance and starvation survival. Nutrient deprivation has also been shown to 
induce a similar spoT-dependent (p)ppGpp synthesis in C. jejuni (Gaynor et al., 2005). 
 

3.2.1.4 Heterogeneity in cellular response to stress 

In the absence of a recognizable phenotypic response to stationary phase, it has been 

suggested that it is possible that some, if not all strains, of campylobacters have developed an 

alternative strategy to promote survival that involves genetic variation (Park, 2002). E. coli 

mutants of increased fitness and which have a growth advantage in stationary phase have been 

associated with loss of function of both RpoS (Zambrano, Siegele, Almiron, Tormo & Kolter, 

1993) and Lrp, the global regulator (Zinser & Kolter, 1999). C. jejuni lacks both RpoS and 
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Lrp (Parkhill et al., 2000), thus, a similar process, which results in the evolution of fitter 

mutants, may operate in this species (Park, 2002).  

 
Martínez-Rodriguez, Kelly, Park and Mackey (2004) have proposed that generation of variant 

emergent strains with altered phenotypes may play a role in the survival of C. jejuni in 

stationary phase. These authors reported that the secondary increase in viable count following 

the initial decline (Figure 3.6) might be due to the emergence of a new strain better able to 

survive in stationary phase. Prolonged aging of stationary phase cells of C. jejuni resulted in 

permanent phenotypic changes, such as a small increase in resistance to aeration, peroxide 

challenge and heat. 

 

 

 

 

 

 

 
 
Figure 3.6 Stationary phase behaviour of C. jejuni NCTC 11351 (Adapted from Martínez-Rodriguez 
et al., 2004).  
 

3.2.2 Responses of C. jejuni to low pH 

The ability of enteric pathogens to adapt and survive acid stress is fundamental to their 

survival and pathogenesis and therefore acid resistance is an important feature. 

 
Gastric survival is a complex phenomenon that depends on a number of factors related to 

host, food and pathogen. For example, the level of gastric pH can greatly differ between hosts, 

food may act as a protective buffer against low pH (Waterman & Small, 1998), and previous 

exposure to sublethal acid stress enables many enterobacterial species to survive in otherwise 

lethal environments (Bearson et al., 1997). Indeed, enteric pathogens that have developed 

efficient survival strategies to cope with acidic environments are known to have a low 

infective dose (ID) (Robinson, 1981). Thus, the low ID for C. jejuni suggests that this 

bacterium is well equipped to sense and respond to a sudden drop in pH (Reid, Pandey, 

Palyada, Naikare & Stintzi, 2008a). This implies that C. jejuni can tolerate exposure to acid in 

the stomach, subsequently being capable of colonizing both the large and small intestine, and 

causing infection (Babakhani, Bradley & Joens, 1993; Naikare, Palyada, Panciera, Marlow & 

Stintzi, 2006). 
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In fact, HCl does not have a significant effect on the survival of C. jejuni after 12 min of 

exposure at pH 4.0 in liquid medium and on a solid surface, although lactic acid at pH values 

of 4.0 inactivated C. jejuni significantly in the same conditions (Smigic et al., 2008) 

(submitted for publication). HCl has little inhibitory effect on the survival of C. jejuni at pH 

values above 5.0 (Shaheen et al., 2006). Unlike undissociated lipid-permeable weak acids, 

which can diffuse freely through the cell membrane and ionize in the cell to yield protons that 

acidify the interior of the cell, strong acids lower the external pH (pHex) but are not able to 

permeate through the cell membrane (Beales, 2004). These acids exert their antimicrobial 

effect by denaturing enzymes present on the cell surface and by lowering the cytoplasmic pH 

due to increased proton permeability when the pH gradient is very large (Beales, 2004). 

Gastric acid is a potent barrier against ingested pathogens and is primarily a pH-HCl-

dependent mechanism. It is not currently known if an acid tolerance response expressed by C. 

jejuni at low pH with HCl will protect the cells against volatile fatty acids frequently found in 

the intestine, as it has been described for Salmonella serotype Typhimurium (Baik, Bearson, 

Dunbar & Foster, 1996). 

 
Several studies have shown the sensitivity of Campylobacter spp. to acids, such as formic, 

acetic, ascorbic, and lactic acids (Chaveerach et al., 2002, 2003). Due to the sensitivity of C. 

jejuni to acid, it has been suggested that ingesting Campylobacter spp. with buffers, such as 

milk or with water that aid rapid wash through, could reduce the oral infective dose (Blaser, 

Hardesty, Powers & Wang, 1980). The increased survival of acid-sensitive pathogens in vitro, 

when inoculated onto the surface of certain solid food sources, compared with their survival 

in an acidified broth environment demonstrates the ability of pathogens to survive extreme 

acid conditions when ingested with certain food sources (Waterman & Small, 1998; 

Bjӧrkroth, 2005). 

 
Chicken is often sold as pieces marinated by chicken industry. Treatment with marination is 

based on low pH (often adjusted with acetic and lactic acids), high NaCl concentration, and 

on various spices into a marinated sauce. Perko-Mäkelä, Koljonen, Miettinen and Hänninen 

(2000) studied the survival of C. jejuni in plain marinade (pH 4.5, NaCl 5.9% (wt/wt) and in 

both marinated and non-marinated drumsticks and sliced breast meat strips during storage at 4 

ºC. Surprisingly, marination was not shown to affect significantly the survival of C. jejuni. 

Bjӧrkroth (2005) has hypothesised that this may be due to the buffering capability of meat 

that quickly neutralizes the pH of the acidic marinade. This would result in dissociation of the 

lipophilic acids making their antimicrobial effect nonexistent.  
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Even though C. jejuni can mount an ATR to acid it has been shown to survive poorly in both 

cheese (Bachmann & Spahr, 1995) and yoghurt (Cuk, Annan-Prah, Janc & Zajc-Satler, 1987). 

In fact, rather than pose a risk of Campylobacter infection, the consumption of yoghurt has 

been shown to be protective in a study in Switzerland (Schorr et al., 1994). The death rate of 

C. jejuni on strawberries (pH 3.4) has also been shown to be significantly higher than on other 

fresh produce (Kärenlampi & Hänninem, 2004). 

 
Campylobacter jejuni genes involved in the response to acid conditions have recently been 

identified (Reid et al., 2008a,b). Exposure to in vitro and in vivo (piglet stomach) acid shock 

(pH 4.5) caused down-regulation of genes involved in protein synthesis and the up-regulation 

of genes typically associated with numerous stress responses. This reflects the need to 

reshuffle energy toward the expression of components required for survival (Reid et al., 

2008a). These included heat shock genes (genes encoding the transcriptional regulator HrcA, 

chaperones DnaK, GroES, and GroEL, and cochaperones GrpE and ClpB), the stringent 

response genes, as well as genes involved in the response to oxidative (genes encoding the 

peroxide stress regulator PerR) and nitrosative stress. A role for the cochaperone ClpB in acid 

resistance was also confirmed in vitro. This is referred to as cross protection. Exposure to low 

pH environment is likely to cause acidification of the cytoplasm and protein misfolding. Heat 

shock proteins are part of a general stress response, and their expression is probably activated 

in response to unfolded or misfolded proteins. Phospholipid modification and hydrogenase 

activity may also be important for acid resistance in vitro (Reid et al., 2008a). Some genes 

showed expression patterns that were markedly different in vivo and in vitro, which likely 

reflects the complexity of the in vivo environment (Reid et al., 2008a). Interestingly, no heat 

shock genes were up-regulated under mildly acidic conditions and a clpB mutant was not 

impaired at steady-state acid stress (pH 5.5) (Reid et al., 2008b). This proves that different 

mechanisms are required to protect C. jejuni cells against a lethal acid shock than those that 

are required for growth under mildly acidic conditions (Reid et al., 2008b). The 

transcriptional profile at mildly acidic pH is characterized by the differential expression of 

respiratory pathways, by the induction of genes involved in phosphate transport, and by the 

repression of genes involved in energy generation and intermediary metabolism (Reid et al., 

2008b). While environmental stresses usually cause the induction of a large set of genes 

involved in coping with the particular stresses and/or repairing ensuing damages, the 

adaptation of C. jejuni to acidic conditions is characterized most notably, by the down-

regulation of genes.  
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Several studies have shown that acid adaptations confer resistance to a wide range of stress 

conditions (Murphy et al., 2003b; Reid et al., 2008a,b). However, adaptation to other stresses 

does not typically induce significant acid tolerance. This implies that exposure to acid may be 

perceived by bacteria as a more general stress indicator whereas heat, salt and H2O2 may be 

more specific stress signals (Bearson et al., 1997). Furthermore, the demonstration that acid 

shock induces cross-resistance to a variety of stresses (e.g. oxidative stress) suggests that cells 

undergoing acid shock in the stomach will be prepared to tolerate the environmental stresses 

subsequently confronted in the intestine (Bearson et al., 1997). 

 
This stress response in C. jejuni induces many different survival mechanisms and provides a 

first insight into mechanisms that lead to tolerance to acid conditions. Some of these 

mechanisms will be described more in detail in the next chapter. 

 

3.2.3 Responses of C. jejuni to low temperature 

Campylobacters are unable to grow below 30 ºC and, consequently, in moderate climates will 

not actually multiply during handling or storage at room temperature. Nevertheless, 

temperature impacts dramatically on the survival of campylobacters in food and, generally, 

survival is greater at temperatures below room temperatures (Park, 2002). In surface waters 

and water microcosms survival was shown to be limited to a few days at ambient 

temperatures of 20 ºC, but was noticeably enhanced (up to several weeks) at 4 ºC (Buswell et 

al., 1998).  

 
Low temperature is used at all stages of the poultry production process. Carcasses are 

submitted in the abattoir to low temperature regimes; whole chicken, chicken portions and 

cook–chill products are prepared and maintained under low temperature conditions; and the 

distribution and supply chain are, of course, maintained at low temperature. Very similar 

factors apply to other foods that can act as vehicles for infection by campylobacters such as 

raw cow's milk. Low temperatures are therefore central to the preparation, storage and 

distribution of food that may be contaminated with these organisms and a deeper 

understanding of how the bacteria respond to and survive in these conditions may help to 

inform interventions via the cold chain. Campylobacters, like other bacterial pathogens, can 

survive for extended periods at low temperature on key foods such as raw chicken and very 

high contamination levels have been reported (Luber & Bartelt, 2007). The means by which 

the bacteria do this are currently unknown. Data have shown that campylobacters numbers on 

chicken carcasses can remain largely unchanged for over 7 days at refrigeration temperatures 
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(Jørgensen et al., 2002; Georgsson et al., 2006). Substantial variability among strains in cold 

survival has been suggested, with human isolates being significantly more capable of 

prolonged survival at 4 ºC than poultry-derived strains (Chan et al., 2001). 

 
C. jejuni cells show considerable metabolic activity, including de novo protein synthesis, 

chemotaxis and aerotaxis at low temperature, even as low as 4 °C (Hazeleger et al., 1998). 

Lázaro, Cárcamo, Audícana, Perales and Fernández-Asorga (1999) also demonstrated 

motility, oxygen consumption, protein synthesis and survival of C. jejuni at 4 ºC. C. jejuni 

strains have been demonstrated to exhibit a dramatic and sudden growth rate decline near the 

lower temperature limit (Hazeleger et al., 1998). This suggests that C. jejuni does elicit a cold 

shock response that regulates gene expression at low temperatures (Murphy et al., 2006). 

However, the major coldshock protein, CspA, which acts as an RNA chaperone to allow more 

efficient protein translation at cold temperatures (Qoronfleh, Debouck & Keller, 1992) and 

that is associated with the ability of bacteria to replicate at temperatures below the optimum 

growth temperature, is not present in the sequenced strain of C. jejuni (Parkhill et al., 2000). 

This may explain why campylobacters cannot multiply below 30 ºC (Park, 2002). 

 
In campylobacters the adaptive mechanisms underlying the responses to cold stress have not 

been examined in any detail although this is of considerable interest, given the involvement of 

chilled foods in infection (Murphy et al., 2006). The analysis of transcript profiles at 4 and   

10 ºC highlight that the most notable subgroup of genes that have their transcript abundance 

reduced upon cold shock encode proteins predicted to be involved in chemotaxis, flagellin 

biosynthesis, and flagellar motility (Stintzi & Whitworth, 2003). A number of genes involved 

in energy metabolism were upregulated at 5 ºC when compared with 25 ºC (Moen et al., 

2005). This indicates that C. jejuni has a greater need for energy at lower temperatures.  

 
Campylobacters also show marked changes in the fatty acid composition of chilled cells 

compared to those held at higher temperatures. Data have shown that C. jejuni responds to 

chill in a manner different from Salmonella and E. coli (Mattick et al., 2003). Unlike these 

bacteria it does not become heat sensitive when chilled. This may have important implications 

for food manufacturers and caterers, as the data demonstrate that campylobacters may be 

better able to survive certain processes than previously thought. It is important that food 

processors and caterers apply treatment regimes that take all relevant food-borne pathogens, 

their resistance to particular control measures and their probable maximum numbers into 

consideration (Humphrey et al., 2007). 
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4 INTRACELLULAR pH IN ENTERIC BACTERIA 

4.1 Role of intracellular pH (pHi) for cellular functions 

Bacteria have developed different ways to withstand stressful situations, such as a decrease in 

the extracellular pH (pHex). Most enteric bacteria are considered neutrophiles, i.e. they grow 

in the pH range of 4 to 9 with an optimum near neutrality. These bacteria maintain pH 

homeostasis, a very tight control with pHi, which is kept close to 7.6 when the pHex is 

decreased and therefore generate large proton gradients (∆pH=pHi-pHex) (Padan, Zilberstein 

& Schuldiner, 1981). Thus, bacteria that grow in the acid to-neutral pH range usually maintain 

pHi at a more alkaline value than the pH of the environment (Booth, 1985), which is essential 

for the optimal activity of many important cellular processes, such as ATP and protein 

synthesis, DNA transcription and enzyme activity (Kobayashi, Saito & Kakegawa, 2000). 

 

Since enzymatic activity is dependent on pH, changes in cytoplasmic pH disturb cellular 

metabolism, seriously challenging bacterial life (Kobayashi et al., 2000). Several stress 

conditions can originate a decrease in pHi (e.g. osmotic stress, acid stress).  

 

Acidic conditions affect the capacity for nutrient acquisition and energy generation, 

cytoplasmic pH homeostasis and protection of proteins and DNA (Booth, Cash & O’Byrne, 

2002). It has been reported that neutrophilic bacteria such as Escheria coli and Listeria 

inoccua maintain their pHi close to the neutral despite variations in the pH of the 

environment, until the moment when differences between the external and internal pH 

become too high and pH homeostasis can not be maintained anymore which might result in 

cell death (Booth, 1985; Shabala, McMeekin, Budde & Siegumfeldt, 2006). Results recently 

obtained by Smigic et al. (2008) (submitted for publication) indicated that C. jejuni is as well 

a homeostatic bacterium. Therefore, pHi is a physiological parameter that can be used to 

assess bacterial viability and subsequently their ability to cope with a multiplicity of stresses.  

 

4.2 Mechanisms of pHi regulation 

The ability of a microorganism to maintain its pHi at a value close to neutral is achieved by a 

combination of passive and active mechanisms (Siegumfeldt, 2000).  

 

Mechanisms of active regulation of pHi are numerous and involve active H+ extrusion via 

ATP-driven pumps (Cotter, Gahan & Hill, 2000), proton/cation exchange systems (Foster, 
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1999), buffering of the cytoplasm (Foster, 1999), or decarboxylation processes (Cotter, Gahan 

& Hill, 2001). The literature does not suggest, however, which of these mechanisms is 

predominant in C. jejuni.  

 

4.2.1 Proton translocating ATPase 

H+-ATPases play an important role in conferring acid tolerance to bacteria. As intracellular 

pH drops, certain bacteria up-regulate the F1F0 ATPase (Cotter et al., 2000), which can pump 

proton out of the cell at the expense of ATP. However, this response was not detected in C. 

jejuni, as these genes either were unaffected or were down regulated in response to acid 

conditions (Reid et al., 2008a,b).  

 

4.2.2 Proton/cation exchange systems 

The movement of protons across the membrane generates a membrane potential, preventing 

further proton removal. This membrane potential is, however, broken up by the movement of 

cations into the cell such as potassium ions (K+/H+ antiporter), which generates a 

transmembrane pH gradient and helps maintain the internal pH (Booth & Kroll, 1989). 

 

The Na+/H+ antiporter of E. coli exhibits low activity at acid pH, is markedly more active 

above pH 7 and is required in the mildly alkaline pH range for reducing the sensivity of cells 

to high Na+ concentrations (Padan et al., 2004). Reid et al. (2008a,b), recently demonstrated 

the down-regulation of a putative Na+/H+ antiporter gene in C. jejuni under acid conditions, 

suggesting that decreased expression of this gene is an important component of this 

organism’s response to acid stress. 

 

4.2.3 Metabolic and energy generation processes 

The growth of E. coli and Shigella under acidic or basic conditions leads to the preferential 

expression of metabolic systems that are compatible with the bacterium’s environment. For 

instance, growth under acidic conditions leads to the up-regulation of genes encoding 

products that are involved in amino acid catabolism, which generates amines (decarboxylases) 

or ammonia (dehydratases) that can buffer the cellular environment and prevent and/or 

reverse the acidification of the cytoplasm (Reid et al., 2008b). 
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It is therefore surprising that C. jejuni down-regulates a gene for the catabolism of serine, 

which generates ammonia, when grown on medium at pH 5.5 (Reid et al., 2008b). On the 

other hand, methionine biosynthesis appears to play a role in C. jejuni acid stress response, as 

negative mutants for a gene encoding a key enzyme to this process were acid sensitive (Reid 

et al., 2008b). The activity of this enzyme is known to generate homocysteine, pyruvate, and 

ammonia.  

 

Respiring bacteria (e.g., E. coli) extrude protons via the respiratory chain. A proton motive 

force (PMF) generated by this chain is used for ATP synthesis, membrane transport, and cell 

motility (Harold, 1982). Many data support that the translocation of protons across the 

cytoplasmic membrane during electron transfer contributes significantly to the ability of C. 

jejuni to survive in mildly acidic conditions environments (Reid et al., 2008b). 

 

Exposure of C. jejuni at low pH led to the differential expression of genes that encode 

products that are involved in various electron transport pathways such as the NADH 

dehydrogenase (Reid et al., 2008b). This complex can pump four H+/electron pairs into the 

periplasm, which may help prevent and/or reverse cytoplasmic acidification. A negative 

mutant for the gene encoding succinate dehydrogenase was also shown to be impaired for 

growth at pH 5.5, which demonstrates that survival at mild pH relies on feeding electrons into 

the ETC by this dehydrogenase (Reid et al., 2008b). 

 

Acid shock has been shown to induce the expression of C. jejuni genes encoding products that 

are involved in a C4-dicarboxylate antiporter, which is involved in fumarate (anaerobic) 

respiration (Reid et al., 2008a). The reactions catalyzed by these transporters are electrogenic, 

resulting in the symport of succinate or fumarate and H+ (Janausch, Zientz, Tran, Kroger & 

Unden, 2002). Thus, this enzymatic system might help C. jejuni resist cytoplasm acidification 

(Reid et al., 2008a).  

 

Genes that originate products that could serve to increase acid consumption by the TCA cycle 

have also been shown to be highly up-regulated in C. jejuni’s response to acid shock (Reid et 

al., 2008a).  

 
In response to acid shock, C. jejuni up-regulates the expression of hydrogenase (Reid et al., 

2008a) which may be important at low pH due to the ability of hydrogenases to extrude H+ 

from the cytoplasm (Hayes et al., 2006). 
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Exposure to acid stress has been found to induce the expression of genes encoding gluconate 

dehydrogenase (GADH), which likely plays an important role in the survival and adaptation 

to acid conditions (Reid et al., 2008b). The ability of C. jejuni to use gluconate as an electron 

donor via GADH activity has also been shown to be an important metabolic characteristic that 

is required for full colonization of avian hosts (42 ºC) (Pajaniappan et al., 2008).  

 

4.2.4 Alkalinisation of the periplasm 

The most striking example of alkalinisation of the periplasm as a mechanism of low pH 

survival is that of Helicobacter pylori (Rektorschek et al., 2000). H. pylori colonises the 

stomach and can grow in this extreme acidic environment. The possession of urease (Andrutis 

et al., 1995) and the urea transporter/channel, UreI (Rektorschek et al., 2000) is a key 

determinant of acid tolerance in these bacteria. Urease splits urea to CO2 and ammonia, which 

then diffuse into the periplasm causing a rise in the periplasmic pH to approximately 6 

(Athmann et al., 2000). 

 
Despite being phylogenetically related, this mechanism has not been found in C. jejuni 

(Parkhil et al., 2000). Results from a BLAST3 (Birk, unpublished) showed that C. jejuni did 

not contain a system equivalent to the H. pylori UreI. 

 

4.2.5 Passive regulation of pHi 

The passive regulation of pHi is by large determined by the low permeability of the plasma 

membrane to protons (Booth, 1985). In prevention of large changes in pHi as the pH of the 

environment varies, it is thought that the permeability of the cell membrane to protons plays 

an important role, with protons that are present in the environment being prevented from 

crossing the membrane and reducing the internal pH (Beales, 2004). 

 
The modulation of membrane composition also might be expected to alter cell wall 

permeability to H+. A negative C. jejuni mutant for the enzyme phospholipase A, which 

cleaves membrane phospholipids to yield lysophospholipids was impaired for growth at pH 

5.5 (Reid et al., 2008b). In H. pylori, the expression of active phospholipase A also leads to 

improved acid stress survival of the strain (Tannaes, Dekker, Bukholm, Bijlsma & 

                                                 
3 The Basic Local Alignment Search Tool (BLAST) finds regions of local similarity between sequences. The program compares nucleotide 
or protein sequences to sequence databases and calculates the statistical significance of matches. BLAST can be used to infer functional and 
evolutionary relationships between sequences as well as help identify members of gene families. 
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Appelmelk, 2001). Thus this enzyme plays a role in the acid stress response of both bacteria 

(Reid et al., 2008b). Fatty acid biosynthesis was also found to be important for C. jejuni’s 

adaptation to growth at mild pH (Reid et al., 2008b).  

 
At very acidic pH values, it has been proposed that alterations in the structure of the outer 

membrane may be a mechanism for enhancing microbial survival (Brown & Booth, 1991). 

From recent data (Reid et al., 2008a) it does not appear that C. jejuni drastically remodels its 

outer membrane proteins (OMPs) composition in response to acid shock. However the 

authors do not discount a role of one or more OMPs in the acid shock response of this 

bacterium.  

 
A cell exposed to low pH environments can also increase the cytoplasmic levels of proteins 

and glutamates and increase buffering capacity, which may prevent internal pH disruption 

(Booth & Kroll, 1989).  

 

4.2.6 Phosphate acquisition  

Phosphate uptake and polyphosphate (polyP) accumulation appear to play a role in the acid 

stress response of some bacteria (Mullan, Quinn & McGrath, 2002; Leaphart et al., 2006). 

Genes encoding products that are involved in this process were demonstrated to be up 

regulated at pH 5.5, supporting an intracellular buffering role for phosphate uptake and polyP 

accumulation in the acid stress response of C. jejuni. The formation of polyP during growth at 

pH 5.5 might alternatively provide a mechanism of pH homeostasis for C. jejuni by acting as 

an intracellular cation trap, sequestering H+ ions. 

 

4.2.7 Regulation by Fur 

An important regulator of acid tolerance response is the ferric uptake regulator (Fur) that has 

been implicated in acid survival of both S. enterica Typhimurium and E. coli (Hall & Foster, 

1996). Fur is a cytoplasmatic regulatory protein that can sense changes in iron concentration, 

which is its main function since it strongly regulates the expression of gene products required 

for iron scavenging. This protein appears to have acquired a second function namely the 

sensing of pH and control over expression of gene products that can assist cell survival at 

extremely acidic pH (Hall & Foster, 1996). It also governs the expression of several acid 

shock proteins (ASPs) as an activator in an iron-independent manner. Reid et al. (2008b) 

reported that a fur mutant was impaired in its ability to grow at pH 5.5, indicating that Fur 

plays a role in C. jejuni’s adaptation to mildly acidic conditions. 
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4.2.8 DNA repair systems and chaperones 

Diminished protein stability is a likely consequence of cytoplasmic acidification and this may 

indirectly affect the integrity of DNA through failure of repair processes. DNA repair systems 

and chaperones appear to be important for the reparation of cellular material damaged by 

exposure to acid. There have been a number of reports of increased expression of both heat 

shock proteins DnaK and GroEL/ES classes of chaperones in response to growth at acid pH 

(Jan, Leverrier, Pichereuau & Boyaval, 2001). When exposed to acid, heat shock proteins 

were highly up regulated (Reid et al., 2008a). Surprisingly these proteins were not found in C. 

jejuni’s ATR (Reid et al., 2008b) as no heat shock genes were up-regulated under steady state 

acidic growth conditions (pH 5.5).  

 

4.2.9 Adaptation to acid – acid resistance systems 

The RpoS sigma factor sets the baseline for acid tolerance in the enteric bacteria as was 

already mentioned in chapter 3 (Audia et al., 2001; Booth et al., 2002). Low pH will increase 

the accumulation of rpoS (σS), through the modulation of σS proteolysis. It regulates one 

aspect of acid tolerance governing the expression of acid shock proteins (ASPs). The function 

of ASPs is presumed to include the prevention and/or repair of acid-induced damage to 

macromolecules (Bearson et al., 1997).  

 
Three acid resistance (AR) systems have been identified in the stationary phase of all E. coli 

(Audia et al., 2001; Richard & Foster, 2003) that are under the regulation of σS (RpoS). The 

system induced depends on the type of medium and the growth conditions (Audia et al., 

2001). The three complex medium dependent acid resistance systems include an oxidative 

system (AR1) and two fermentative acid resistance systems involving a glutamate 

decarboxylase (AR2) and an arginine decarboxylase (AR3) (Lin et al., 1995, 1996). The 

glutamate decarboxylase is the most extensively studied mechanism in E. coli (Figure 4.1). 

The hypothesis suggests that the consumption of intracellular protons during decarboxylation 

maintains the internal pH in a range conductive to cell survival. At an acidic pH (2.5) protons 

move into the cell and acidify the cytoplasm. Simultaneously glutamate is transported by 

GadC and decarboxylated by GadA/B into γ-aminobutyric acid (GABA) with consumption of 

one H+ and release of CO2. GABA is then transported out of the cell with the concomitant 

uptake of glutamate. It is predicted that H+ remaining on the ionisable group of glutamate will 

be released in the periplasm prior to the passage through GadC (Richard & Foster, 2003). 
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Figure 4.1 Proposed model for the acid resistance system (AR) 2 in E. coli (adapted from Richard & 
Foster, 2003) 

 

Although no acid resistance systems have been identified so far in C. jejuni, an induction of 

an adaptive tolerance response has been described, as was already mentioned. The inducible 

acid tolerance response induces a number of proteins when a mild acidification occurs, and 

this prevents or reduces the detrimental effects of an extreme acid challenge (Audia et al, 

2001). Some of the proteins that are induced by ATR in C. jejuni have already been described. 

For instance, H+-ATPase was not induced by ATR (Reid et al., 2008b). The mechanisms that 

seem to be involved include: proton extrusion that appears to rely on respiratory pathways of 

which the ETC plays a substantial role; phosphate acquisition as a buffering mechanism; and 

the shutdown of energy generation systems and intermediary metabolism which allows 

redirecting energy for acid survival (Reid et al., 2008b).  

 

This stress response in C. jejuni induces many pHi regulation mechanisms and provides a first 

insight into mechanisms that lead to tolerance to acid conditions. 
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4.3 Technique for measuring intracellular pH 

4.3.1 Fluorescent probe 

The principle for determining pHi utilises the pH dependency of several fluorescent 

compounds. Fluorescein and a number of fluorescein-derivatives have pH dependent emission 

intensities when excited at 488 nm. Carboxyfluorescein (Figure 4.2A) is a probe that 

covalently bounds to primary amines in the cytosol (Breeuwer, Drocourt, Rombouts & Abee, 

1996). The fluorescence intensity is dependent on probe concentration as well as pH, and it 

would be ideal to have a pH-value independent of probe concentration in order to avoid 

artefacts. This can be accomplished by exciting fluorescein-derivatives at two different 

wavelengths, the isosbestic point and the excitation maximum (Figure 4.2B). At the isosbestic 

point, the fluorescence emission is independent of pH, and the emission merely reflects the 

concentration of probe. By dividing the emission from the excitation at the pH dependent 

wavelength (488 nm) with the emission from the isosbestic point (435 nm), a ratio value is 

obtained, which only reflects pHi and not probe concentration (Siegumfeldt, 2000). 

 

Figure 4.2 (A) The non-fluorescent precursor carboxyfluorescein diacetate is hydrolysed by 
intracellular esterases, and the resulting carboxyfluorescein is highly fluorescent (R = OH). By adding 
a succinimidyl group at (R), the compound can bind to intracellular amines. (B) A schematic 
excitation spectrum of a fluorescein derivative, showing the isosbestic point, which enables the 
acquisition of a concentration independent ratio R490nm/435nm (Siegumfeldt, 2000). 
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A problem that is associated with this technique is that the pH range, which can be validly 

determined using any one fluorescent probe, is limited. As shown in Figure 4.3, the range of 

pH that can be determined by carboxyfluorescein is at best from 5 to 9 (Siegumfeldt, 2000). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3 The correlation between pH and the ratio (490 nm to 440 nm) of carboxyfluorescein 
succinimidyl ester in stained, pH equilibrated cells of Bacillus subtilis (■), and Lactococcus lactis (▲) 
(modified from Breeuwer et al., 1996).  
 

Fluorescence ratio imaging microscopy (FRIM) is a technique where ratio determination of 

pHi is used in conjunction with a microscope and an image analysis system (Figure 4.4A). This 

technique obtains information on a single cell level, and therefore this method can solve the 

problem of measuring pHi in subpopulations simultaneously. This was the technique applied 

in the experiments of this work.  

 

The images obtained give a very good overview about approximate pHi values and 

heterogeneity of mixed populations, but in order to perform quantitative comparisons, it is 

preferable to calculate the pHi of a number of cells and calculate average and standard 

deviations. This can be done by defining regions around representative cells and allowing the 

software to calculate the exact ratio value of individual cells (Siegumfeldt, 2000). The 

R488nm/435nm was calculated by dividing the intensity of individual pixels on the 488 nm image 

by the intensity of corresponding pixels at 435 nm image according to Equation 4.1.  

 

nmnm

nmnm

BI
BI

Ratio
435435

488488

−

−
=  Equation 4.1 
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The background fluorescence (B435nm and B488nm) are subtracted from the fluorescence 

intensity for each cell (I435nm and I488nm). The background fluorescence was measured 

individually for each cell as the fluorescence in an area next to the cell. This was done to 

correct for autofluorescence from the defined media used in the experiments. 

 

 
Figure 4.4 (A) schematic presentation of the microscopical set-up used in this work. The 
monochromator provides the two excitation wavelengths, and the CCD-camera acquires two images 
that are subsequently converted to a ratio image (Guldfeldt & Arneborg, 1998). (B) The chambers, 
where the cells were immobilised.  
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5 SURVIVAL OF CAMPYLOBACTER JEJUNI UNDER ACID STRESS 

CONDITIONS: ASSESSMENT OF STRAIN VARIATION AND TEMPERATURE 

EFFECT 

5.1 Objective 

Temperature and pH are two factors commonly employed by food processors to control or 

inactivate pathogens and undesirable microorganisms in foods. Furthermore, one of the 

reasons for susceptibility to C. jejuni may be suboptimal inactivation of bacteria in the 

stomach, which is the first in a series of barriers that protect the host from infection. It was 

already shown that C. jejuni sensivity to acid (HCl) varies with temperature (Doyle & Roman, 

1981). However, these experiments were performed on one strain only. Few data are available 

on the survival of C. jejuni under acid stress conditions. If C. jejuni survival is actually 

affected by acid stress, a selection might occur during exposure to mildly acidic environments 

or inside the host. Therefore, only the most resistant strains would be able to survive and 

induce virulence. In addition, temperature has an effect on metabolism and the permeability of 

cellular membranes. Temperature has been demonstrated to be an important regulatory signal 

for C. jejuni, and temperature-regulated proteins have been shown to be necessary for the 

optimal colonization of chickens (Konkel, Garvis, Tipton, Anderson & Cieplak, 1997; Brás, 

Chatterjee, Wren, Newell & Ketley, 1999; Pajaniappan et al., 2008). Thus, there might be a 

link between temperature, level of acid stress, and regulation of acid stress response. From 

these observations, this study was conducted to investigate: 

 

1. How sensitive is C. jejuni to acid stress? 

2. Do different strains have different levels of resistance? 

3. What is the influence of temperature on C. jejuni’s acid stress resistance? 

 

To investigate the temperature effect coupled with acid stress, two different temperatures 

were selected: 4 ºC, a temperature used for refrigeration and at which C. jejuni is known to 

survive well; and 37 ºC, which is in C. jejuni’s optimal growth range temperatures and is the 

body temperature of humans (37 ºC). 

 

There has been growing evidence that microbial survival curves may not always be log linear 

(Peleg & Cole, 2000). Different kinds of deviations from linearity have been observed such as 

sigmoid curves and curves with pronounced shoulders or tails. In consequence various models 

have been proposed to describe the nonlinear curves (Buzrul & Alpas, 2004). The Weibull 
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model has been used successfully in describing the nonlinear inactivation of different 

microorganisms under various experimental conditions, as stress resistance of a microbial 

population often follows a Weibull distribution (Mafart, Couvert, Gaillard & Leguerinel, 

2002; van Boekel, 2002; Buzrul, Alpas & Bozoglu, 2005; Buzrul & Alpas, 2007). 

 
This study also aimed to fit and compare models for acid inactivation kinetics of C. jejuni 

strains. Specifically, the “traditional” first-order model was compared with the Weibull 

model. 

 

5.2 Materials and Methods 

Bacterial strains  

On the basis of previous studies performed by this laboratory (Department of Food Science, 

Faculty of Life Sciences, Copenhagen University, Denmark), a total of 3 different strains of 

Campylobacter jejuni were used in this study: one susceptible strain (327) and two less 

susceptible strains (305 and NCTC 11168) to other general stresses (e.g. oxidative) (Boysen 

et al., 2006). The sequenced clinical human isolate C. jejuni NCTC 11168 was obtained from 

the National Collection of Type Cultures (Central Public Health Laboratory, London, UK). 

The turkey isolates (327 and 305) were received from the Department of Food Science, 

Faculty of Life Sciences, Copenhagen University, Denmark.  

 

Preparation of the inocula and growth conditions 

The experimental protocol was adapted from Birk et al. (2006). Strains were maintained at – 

80 ºC in brain heart infusion broth (BHIB) (Oxoid CM225, England) containing 15 % 

glycerol. A loopful of each strain was streaked onto blood agar base no. 2 plates (Oxoid 

CM271, England) with added 5 % horse blood. Cultures were prepared by growing the strains 

for 2 to 3 days. One loopful of each culture was subsequently streaked onto new blood agar 

base no. 2 plates, which were incubated for 24 h. During propagation and growth all plates 

were incubated at 42 ºC under a microaerophilic gas mixture (5 % O2, 10 % CO2, and 85 % 

N2; Praxair, Inc., Danbury, Conn.) in sealed gas jars (Oxoid anaerobic jars). Cells were 

harvested with 2 ml of peptone physiological salt solution (8.5 g/l NaCl, Oxoid LP0005; 1 g/l 

Peptone, Oxoid LP0072) (PPSS) with a loop, and the inocula were adjusted in PPSS to an 

optical density at 600 nm = 0.1 (approximately 8 log10 CFU/ml). This was confirmed by 

plating serial dilutions and counting colonies. The average values were 8.44, 8.37 and 8.66 

log10 units for strains NCTC 11168, 305 and 327, respectively. 

 



 44

Inoculation and survival studies 

Ten μl of each previous bacterial suspension were suspended into flasks containing 20 ml of 

defined media4 (Birk, 2008; unpublished) at pH 7.0 (approximately 105 CFU/ml; average 

values were 5.8, 5.74 and 5.44 log10 units for strains NCTC 11168, 305 and 327, respectively) 

and incubated at 37 ºC for 24 h at microaerophilic conditions. After incubation, the cells 

obtained were in late exponential phase of growth (Birk et al., 2006) and were used as inocula 

for survival inactivation studies. Twenty μl of each inocula (approximately 108 CFU/ml; 

average values were 8.61, 8.80 and 9.01 log10 units for strains NCTC 11168, 305 and 327, 

respectively) were subsequently inoculated onto 20 ml of defined media set at pH 5.0 and 7.0 

(control) and incubated at 4 ºC and 37 ºC. The pH of the media was adjusted with 1M HCl or 

1M NaOH.  

 

Microbiological analyses 

Counts of each C. jejuni strain were determined by the classic viable count method based on 

cell viability, defined as the ability to reproduce and grow, measured as CFU by plating serial 

dilutions and counting colonies. Determinations were done immediately after inoculation 

(Time 0) and at selected times during the survival experiments (4h, 8h, 20h, 44h, 68h, 92h). 

The average initial level (Time 0) was 5.08, 6.44 and 5.17 log10 units for strains NCTC 11168, 

305 and 327, respectively. The number of C. jejuni cells in inoculated flasks was determined 

by making serial dilutions and spotting three times 10 μl of each dilution onto blood agar base 

nº.2 plates that were subsequently incubated at 42 ºC for 2-3 days under microaerophilic 

conditions. Triplicate determinations were done for each treatment studied. C. jejuni counts 

(CFU/ml) were log transformed (log10 CFU/ml), and the mean and standard error of the mean 

(SEM) calculated by Microsoft Excel 2003.  

 

Statistical analysis  

Statistical Package for Social Sciences (SPSS) 16.0 software was used for statistical analysis. 

A multifactorial analysis of variance allowed examination of the effect of the following three 

parameters on survival: (1) temperature, (2) strain and (3) pH. The confidence interval chosen 

to consider the effect of a parameter as significant was 5%.  

 

 

                                                 
4 It is not possible to write the detailed list of components since it has not been published. Defined medium contained amino acids, vitamins, 
salts and buffers. Some components that are involved in TCA cycle were also included. No carbohydrates were added since C jejuni does not 
ferment sugars, obtaining energy from amino acids instead.  
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Modeling Inactivation kinetics 

GInafit, a freeware tool to assess non-log-linear microbial survivor curves (Geeraerd, 

Valdramidis & Van Impe, 2005), was used for nonlinear regression analysis and to determine 

the parameters of the Weibull model. The goodness of the fit of the models was assessed by 

visual inspection and using regression coefficient (R2) and root mean square error (RMSE). R2 

measures how well a model fit to the data and higher the R2 value, the better is the adequacy 

of the model to describe the data. RMSE measures the average deviation between the 

observed and fitted values. Small RMSE value of a model indicates a better fit of data for that 

model.  

 
In GInaFiT, it is the version as proposed by Mafart et al. (2002) which is used, based on a 

logarithm decimal form of Weibull defined as follows: 

( ) ( )( )
ptNN ⎟
⎠
⎞

⎜
⎝
⎛−=
δ

0loglog 1010     Equation 5.1  

Herein, N represents the microbial cell density, expressed in for example, [cfu/mL], N(0) the 

initial microbial cell density [cfu/mL], δ [time unit] corresponds to the first reduction time 

that leads to a 10-fold reduction of the surviving population. Parameter p  characterises the 

shape of the curves: concave curves 1<p , convex curves 1>p  and linear curves 1=p . 

 

5.3 Results  

Influence of acid stress factor on C. jejuni survival 

Survival curves obtained from three strains are presented in Figure 5.1. Two poultry-derived 

(305 and 327) and the sequenced clinical isolate NCTC 11168 were chosen for investigation 

of their acid tolerance coupled with temperature effect. Plate-count monitoring of the viability 

profile of different isolates over 92 hours at 4 ºC revealed inactivation of C. jejuni strains, 

albeit at different rates, at pH 5.0. Viability of certain strains (e.g. 305 and NCTC 11168) 

showed no appreciable decrease following 68 hours of incubation at 4 ºC (Figure 5.1), 

whereas viable counts of strain 327, which was more sensitive, had a 2.39 log10  decrease in 

population after the same period. Despite the slight decrease within the first 68 hours, strain 

305 showed a 1.70 log10 decrease in population following the next 24 hours of exposure, 

compared to a 0.27 log10 decrease for strain NCTC 11168. At 4 ºC, strain 327 was clearly the 

most sensitive to acid followed by strain 305, the latest being only slightly more sensitive than 

NCTC 11168, which seemed to survive better at this temperature. 
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Figure 5.1 Survival of three C. jejuni strains exposed to pH 5.0 or pH 7.0 under microaerophilic 
conditions on defined media at different temperatures (NCTC 11168 reference strain, 305 and 327 
poultry strains). Data are means ± SEM (standard errors of the mean) (n = 3). The horizontal dashed 
line represents the limit of detection.  
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At 4 ºC survival seemed to be slightly affected by acid. For strains 327 and 305, a slight acid 

effect was directly observed after 44 hours of exposure, whereas no acid effect was observed 

for strain NCTC 11168 during the time of experiment (Figure 5.1). 

 

At 37 ºC considerable differences regarding acid tolerance were found among the three strains 

used (Figure 5.1). No important changes in cell counts were observed during the first hours 

(approximately 8 hours) for all strains. A slight decline in viable count was observed for strain 

305, during the first 4 hours. The viability then increased in the next 4 hours before 

inactivation started to take place. The same was observed during the first 20 hours of 

exposure to acid at 4 ºC (Figure 5.1). The rise in viable count may reflect an increase in the 

number of culturable C. jejuni cells, possibly resulting from the adaptation to acid conditions. 

This response also occurred at 4 ºC at pH 7.0 which indicates a similar adaptation response of 

this strain to low temperature. 

 

After the first hours, a rapid decrease of viable cells was observed at 37 ºC under acid stress 

but the viability of cells varied considerably among strains. For strain NCTC 11168, the major 

decrease occurred after 20 hours showing a 3.43 log10 CFU/ml reduction in cell counts 

comparing to a decline of 0.37 and 1.03 Log10 units for strains 305 and 327, respectively. 

Strain 305 was significantly more acid tolerant than other strains (P < 0.0001). Strain NCTC 

11168 showed a higher decrease in population when compared with strain 327 but the 

difference in survival between these two strains was not significant (P = 0.312). These 

differences in viability among strains were reproducibly observed in independent 

experiments, suggesting that the phenotypes were a strain-specific property with a genetic 

basis. 

 

At 37 ºC, there was a strong acid effect. A decrease of more than 4 log10 in population was 

observed for all strains within the first 44 hours of exposure, whereas no decrease in 

population was observed under control conditions (pH 7.0).  

 

Survival after 20 hours was considered for statistical analysis (Table 5.1). The strain and acid 

effects observed at 37 ºC were statistically significant (P < 0.0001). No significant strain and 

acid effect were detected at 4 ºC (P = 0.539 and P = 0.776, respectively).  
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Table 5.1 Strain and acid effects on survivala The confidence interval chosen to 
consider the effect of a parameter as significant was 5%. 

Temperature Parameter P 

Strain 0.539 
4 ºC 

pH 0.776 

Strain < 0.0001 
37 ºC 

pH < 0.0001 
a Results of the multifactorial analysis of variance (ANOVA) (variable = survival 
after 20 hours; parameters = pH and strain). The values obtained from the three 
replicates were taken into account 

 

After 44 hours at 4 ºC (Figure 5.1), the decline in population observed for strain 327 was 

significantly higher (P < 0.05) than that observed for other strains. Differences in survival 

between 305 and NCTC 11168 were not significant during the whole time of experiment (92 

hours). Strain 327 was significantly more sensitive at 4 ºC at both pH levels (Figure 5.1) 

whilst other strains showed no appreciable differences in survival at this temperature. 

 

After 92 hours at 4 ºC, still no acid effect was observed (P = 0.639). The mean decrease from 

the beginning to the end of the incubation period at 4 ºC, for each C. jejuni strain and pH 

value on defined media, can be more easily interpreted in Figure 5.2.  
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Figure 5.2 Mean decrease in numbers of three Campylobacter jejuni strains at pH 5.0 and pH 7.0 after 
incubation on defined media for 92 hours at 4 ºC. Data are mean values ± SEM (standard error of 
mean) (n = 3). Acid conditions did not significantly affect the decrease in population at 4 ºC (P > 
0.05). 
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Influence of temperature on C. jejuni’s survival  

Survival at pH 5.0 and pH 7.0 after 20 and 44 hours was also considered for statistical 

analysis. An Independent-Samples T-Test was performed to compare mean bacterial counts of 

each strain for two groups of temperatures: 4ºC and 37ºC. 

 

Table 5.2 Statistical significance of temperature conditions 4ºC and 37ºC on C. jejuni survival in 
acid conditions (pH 5.0) at t=20 h and t=44 h. The confidence interval chosen to consider the effect 
of a parameter as significant was 5%. 

Strain Time P 

20 h 0.004 
11168 

44 h 0.002 

20 h 0.614 
305 

44 h 0.018 

20 h 0.180 
327 

44 h 0.050 

 

Table 5.3 Statistical significance of temperature conditions 4ºC and 37ºC on C. jejuni survival in 
acid conditions (pH 7.0) at t=20 h and t=44 h. The confidence interval chosen to consider the effect 
of a parameter as significant was 5%. 

Strain Time P 

20 h 0.076 
11168 

44 h 0.060 

20 h 0.692 
305 

44 h 0.767 

20 h 0.128 
327 

44 h 0.061 

 

At pH 7.0 there was no temperature effect, i.e, different temperature treatments did not affect 

significantly survival of three strains at both times considered (P>0.05). However, at pH 5.0, 

mean bacterial counts were significantly affected (P<0.005) for strain NCTC 11168 when 

temperature is changed from 4 ºC to 37 ºC. For strain 327 and 305 temperature effect was 

noticed at t=44 h. These differences can be more easily seen in Figure 5.3 that shows C. jejuni 

plate count numbers at pH 5.0 considering different times (t=20 and t=44 hours) and different 

temperature treatments. 
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Figure 5.3 Average bacterial counts (log10 cfu/ml) at t= 20 h and t= 44 h at pH 5.0. Error bars 
represent standard error of the mean. 
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Modeling Inactivation kinetics at constant pH 

 
Fit of the models 

The numbers of viable bacteria in the culture medium adjusted to pH 5.0 at 4 ºC and 37 ºC 

were modelled to provide objective estimation of the parameters of the inactivation curves. 

 
Figure 5.4A shows the fit of the Weibull model for C. jejuni strains at 37 ºC. Inspection 

indicates a good fit obtained by the Weibull model. It appears that the first-order kinetics is 

not appropriate in describing the data (Table 5.4). At 4 ºC all strains fitted better the Weibull 

model (Figure 5.4B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 5.4 Survival curves of C. jejuni NCTC 11168 (dark blue line), 305 (pink line) and 327 (green 
line) during inactivation (pH 5.0) at a temperature of 37ºC (A) and 4ºC (B). Data were fitted with the 
Weibull                ; Log-linear                 ; and Log-linear+shoulder                  models to better 
illustrate the difference. 
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The goodness of fit of the Weibull and first-order models was compared by computing the R2 

and RMSE values (Table 5.4). Models Log-linear+shoulder and Weibull lead to similar RMSE 

values and the models seemed to describe more accurately the data when compared to first-

order kinetics.  

 

Table 5.4 Comparison of the first-order, Weibull and log-linear+shoulder 
models for the survival curves of C. jejuni at an inactivation temperature of 
4ºC and 37ºC. 

First-order kinetics  Weibull distribution Log-linear+shoulder 
Bacterial strain 

R2 RMSE R2 RMSE R2 RMSE 

11168     37 ºC 0,92 0,83 0,93 0,87 0,97 0,46 

               4 ºC 0,92 0,07 0,98 0,04 0,93 0,08 

305         37 ºC 0,78 0,61 0,98 0,19 0,97 0,26 

              4 ºC 0,71 0,56 0,94 0,31 0,94 0,31 

327         37 ºC 0,95 0,45 0,97 0,46 0,96 0,41 

              4 ºC 0,97 0,32 0,995 0,15 0,99 0,25 

 

Parameters of the models 

Parameters of the Weibull model (δ  and p ) plus maxk (log-linear decline) and 1S  (magnitude 

of shoulder time) are given in Table 5.5. The shape factors ( p ) of Weibull model indicate 

that survival curves fitted with this model were concave downward (convex) ( 1>p ) at 4ºC 

(Figure 5.4B). Although the Weibull model is of an empirical nature, a link can be made with 

microbial inactivation as follows. Downward concavity ( 1>p ) indicates that remaining 

members became increasingly damaged; whereas upward concavity ( 1<p ) indicates that 

remaining members have the ability to adapt to applied stress (van Boekel, 2002). Therefore, 

concave downward ( 1>p ) survival curve of C. jejuni strains at 4 ºC fitted with this model 

can be interpreted as an evidence of weak or sensitive members of the population that are 

destroyed at a relatively slow rate leaving behind survivors of increasingly lower resistance. 

Survival of strain NCTC 11168 at 37ºC under acid stress showed upward concavity ( 1<p ) 

which can be interpreted as members of the population being destroyed at a relatively fast rate 

leaving behind survivors increasingly more resistant (Buzrul et al., 2005).  
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Table 5.5 Parameters of the Weibull, Log-linear+shoulder and first-order 
models at an inactivation temperature of 37ºC and 4ºC.  

First-order kinetics  Weibull distribution Log-linear+shoulder 
Bacterial strain 

maxk  D δ  p  maxk  1S  

11168     37 ºC 0,33 7.08 4,51 0,81 0,53 6,57 

               4 ºC 0,01 189.84 134,26 1,94 0,01 28,12 

305         37 ºC 0,15 15.06 29,41 2,96 0,34 22,37 

               4 ºC 0,05 47.99 81,38 5,80 0,19 67,38 

327         37 ºC 0,25 9.30 12,50 1,23 0,29 7,82 

               4 ºC 0,10 23.66 37,87 1,52 0,12 19,54 

 

In the Weibull model, δ [time unit] corresponds to the time needed to reduce the number of 

microorganisms by a factor 10 (analogous to the D-value5 of firs-order kinetics). δ  can play 

the same role as the parameter D, even though it has a different meaning. δ  is not equivalent 

to the D-value, which is the same at any time during the process. For instance, calculation of 

time needed for six log reduction for first-order model is 6D. However, the time needed for a 

six log reduction for the Weibull model is not 6δ  but it is δ 6, as a consequence of nonlinear 

behaviour (van Boeckel, 2002). 

 

When δ and D values in Table 5.5 were compared, it can be seen that δ values are smaller 

than the D values for strain NCTC 11168. This indicates over-processing (if target is one log 

reduction) if first order model is used instead of Weibull model. For poultry strains δ values 

are greater than the D values indicating under-processing. In such case the calculated acid 

inactivation death time based on first order kinetics, at least theoretically, is shorter than that 

truly needed. Thus, using a non-optimal model may result in non safe predictions of 

inactivation. On the other hand, log linearity is easy from a data handling view point. These 

under and over-processing phenomena could explain the impressive safety record of the first-

order model for many years (Corrandi, Normand & Peleg, 2005).  

 

The strain variation observed in acid resistance, is evidenced by different values of δ with the 

time needed for one log reduction ranging from 4.51 to 29.41 at 37 ºC and from 37.87 to 

134.26 at 4 ºC (Table 5.5). Strain variation in acid resistance was also evidenced by different 

                                                 
5 The traditional log-linear approach can be described as follows: ( ) ( )( ) ( )( )

)10ln(
0log0loglog max

101010
tkN

D
tNN −=−=  
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acid death rates which ranged from 0.29 to 0.53 (Table 5.5) at 37ºC and from 0.01 to 0.19 at 

4ºC for the Log-linear+shoulder model. 

 

Temperature effect on survival at low pH is also evidenced by differences in δ  values (Table 

5.5). In the Weibull model, δ  is considerably larger at 4 ºC when compared to 37 ºC meaning 

that it takes longer to have a 10-fold reduction of the surviving population at 4 ºC. In other 

words, the time needed to induce one log reduction in population with a constant acid 

treatment of pH 5.0 is greater at 4 ºC when compared to 37 ºC. As expected, the values of 

maxk were larger at 37ºC than at 4ºC, indicating that the numbers of viable cells were reduced 

more rapidly upon exposure to pH 5.0 at 37ºC.  

 

Stationary phase behaviour of C. jejuni 327 

Viable counts of C. jejuni 327 were monitored on defined media (pH 7.0) during growth (37 

ºC) and as cells entered the stationary phase. After maximum cell count had been achieved at 

about 44 hours, viable numbers estimated on defined medium remained roughly constant for 

about 6 hours and then began to decline (Figure 5.5A). After 68 hours the viable counts 

increased to leave a residual population at 92 hours. The observations made were unexpected; 

however, they were very consistent over the three trials. The typical behavior of C. jejuni 327 

during stationary phase is shown in Figure 5.5A. 

 

The data are means of three independent experiments in which the cultures behaved almost 

identically. It is important to note however that significant variations on this basic pattern 

were seen. In some cases, the decline in bacterial counts was lower at 68 hours (Figure 5.5B), 

while in other experiments the decline in numbers was higher than depicted in Figure 5.5A 

and Figure 5.5B (data not shown) underlining the inherent problems of reproducibly of this 

species.  
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Figure 5.5 Stationary phase behavior of C. jejnui 327. The typical behavior is shown in panel (A), in 
which the data represented are the means of three independent experiments ± SEM (standard error of 
the mean). Some variations on this basic pattern were seen. In the experiment shown in panel (B), the 
decline in cell number at 68h was considerably lower.  
 

5.4 Discussion 

Although data obtained from in vitro survival studies cannot directly be extrapolated to foods 

or to host conditions, such information is useful in defining how C. jejuni will respond to 

different environments. Few data are available on survival of C. jejuni under acid stress 

conditions; thus, it is hard to comment on its legitimacy as an acid stress-sensitive pathogen. 

 

The results of the present study clearly demonstrate that temperature influences the ability of 

three C. jejuni strains to survive under the acid conditions used (HCl, pH 5.0). From this 

study, it appears that C. jejuni acid stress sensivity depends on temperature. All strains 

survived better at 4 ºC and were found to be more sensitive to acid conditions at 37 ºC, in 

agreement with previous findings. Doyle and Roman (1981) reported that in a medium having 

the same pH, C. jejuni was inactivated more rapidly at 42 ºC than at 25 ºC and similarly, more 

rapidly at 25 ºC than at 4 ºC. C. jejuni has also been reported to survive better at 4 ºC than at 
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22 ºC or 30 ºC as a function of temperature, pH and sodium chloride (Kelana & Griffiths, 

2003). At comparable pHs, C. jejuni cells died most rapidly at 30 ºC and most slowly at 4 ºC, 

which is in agreement with the results presented here. This is of particular importance because 

low temperatures used to limit bacterial growth on meat during storage also allow bacterial 

survival at higher rates. At 37 ºC, which is in its optimal range of growth temperatures, C. 

jejuni is severely affected by acid and survives less than 44 hours, whereas total population 

shows a reduction as low as 0.17 log10 at 4 ºC, for some strains. In Tryptic Soy Broth (TSB) 

acidified at pH 5.0 with HCl, the decrease in surviving cells between 4 and 8 hours at 42 ºC 

was reported to be approximately 2 log10 cfu/mL for C. jejuni ATCC 33560 (Shaheen et al., 

2006). In the present study, viable cell counts remained more or less constant between 4 and 8 

hours of acid exposure at 37 ºC, for all strains used. Apart from strain variation, the different 

results obtained can be partly explained by different temperatures used. Since the present 

findings suggest that temperature is an important factor contributing to different survival 

patterns at pH 5.0, it is not surprising that at a higher temperature (42ºC) a higher decrease in 

numbers is observed compared to 37ºC. 

 

Several studies have demonstrated that C. jejuni survival is considerably enhanced at low 

temperatures. In surface waters and microcosms, survival was shown to be limited to a few 

days at ambient temperatures of 20 ºC but was noticeably enhanced (up to several weeks) at 4 

ºC (Terzieva & McFeters, 1991; Buswell et al., 1998). A recent study performed with turkey 

meat has also demonstrated that after incubation at 25 ºC, population was severely decreased 

compared to the surviving population after incubation at 4 ºC (Hänel & Atanassova, 2007).  

 

Concerning survival at 4 ºC, two hypotheses can be considered: 

1. Acid might be less toxic at 4 ºC because of less active metabolism and lower 

permeability of the plasma membrane to protons. 

2. It has already been shown that vital cellular processes like oxygen consumption, 

catalase activity, ATP generation and protein synthesis, were decreased at this 

temperature (Hazeleger et al., 1998; Lázaro et al., 1999). 

 

Although Campylobacter spp. lack the major cold-shock response protein, CspA (Parkhill et 

al., 2000), it has been suggested that this organism does elicit a cold shock response that 

regulates gene expression at low temperatures (Hazeleger et al., 1998; Stintzi & Whitworth, 

2003). Potential mechanisms for tolerance of and adaptation to cold temperatures include 

acquisition or biosynthesis of cryoprotectant molecules, maintenance of translation initiation 
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and efficiency, and alteration of the membrane lipid composition (Stintzi & Whitworth, 

2003). This leads to the down regulation of as many genes as possible to save energy and the 

up regulation of genes involved in energy metabolism and modification of the cell wall 

components (Moen et al., 2005). C. jejuni has a greater need for energy at lower temperatures. 

Temperature regulation can be critical for pathogenesis, and may prevent the bacteria from 

inappropriate expression of energetically costly proteins until they are in the environment in 

which the proteins are required (Pajaniappan et al., 2008).  

 

It appears from this study that the ability of C. jejuni to alter its metabolism in response to low 

temperatures can also significantly affect its ability to survive under acid conditions. The fact 

that no significant differences in decrease of population were observed at pH 5.0 and pH 7.0 

suggests that pH values were probably not the most significant factor contributing to the 

survival pattern of C. jejuni organisms following incubation at 4 ºC.  

 

Structural and metabolic changes involved in cold shock response may have a protective 

effect against acid stress. In fact, many of the changes verified in cold shock response are also 

present in acid shock response, such as regulation of energy systems and modification of 

membrane composition. It has also been shown that C. jejuni has considerable electron 

transport chain (ETC) activity even at temperatures below the minimal growth temperature 

(Hazeleger et al., 1998). As it was previously discussed, the ETC plays a considerable role in 

the ability of C. jejuni to survive in acidic conditions (Reid et al., 2008b). Thus, one of the 

major proton extrusion mechanisms employed by C. jejuni in acid stress response is able to 

function at low temperatures and this is of obvious importance to acid resistance at 4 ºC.  

 
Conditions other than low metabolic activity and membrane changes in composition, may 

account for the prolonged survival in acid conditions at 4 ºC when compared to 37 ºC. Cross 

protection between the cold shock response and acid-stress responses might explain this 

increased resistance at low temperatures. A global response could be induced at low 

temperatures that could overlap the acid stress response, thus conferring cross-protection.  

 
Another part of this study concerned the strain effect. It appears that some poultry strains 

(305) can be significantly more acid stress resistant than reference strains (NCTC 11168) and 

strains isolated from the same origin (327). If poultry is contaminated by diverse strains 

which vary in acid tolerance, applying acid agents may constitute a powerful selection for 

acid tolerance in poultry-derived strains that enter the pool of human clinical isolates. Strain 

327 was significantly more sensitive at 4 ºC at both pH levels. Chan et al. (2001) also 



 58

demonstrated that the rate of CFU decline at 4 ºC varied markedly among different strains of 

C. jejuni. Refrigeration of carcasses and poultry products (which is often prolonged) may also 

select cold tolerant strains. Further studies conducted on a larger number of wild strains are 

needed to identify resistant strains.  

  
The order of sensivity to acid treatment was not found to be the same at the different 

temperatures used. Although strain 327 was shown to be the most acid sensitive at 4 ºC, at 37 

ºC viable counts decreased faster for strain NCTC 11168. Although the difference in survival 

was not found to be significant (P>0.05), this might be explained by the duration of the 

incubation period (2-3 days). Longer incubation periods may be needed to confirm these 

results. Viability estimates which were obtained here should be regarded as minimal 

estimates, since cells may remain viable substantially longer than can be cultured. Strain 305, 

which was the most acid tolerant strain at 37 ºC, did not show significant differences in 

survival when compared to strain NCTC 11168 at 4º C. Further investigation with a longer 

period of acid exposure at 4 ºC may be needed to detect more significant differences in 

survival in these two strains. 

 
The Weibull model proved to fit well inactivation data of C. jejuni at a constant pH of 5.0. 

For further investigation of the Weibull and loglinear+shoulder models (temperature and pH 

dependence of the parameters) more temperatures and pH should be studied. However, this 

was not possible in this study since only two temperatures (4ºC and 37ºC) and one pH 5.0 

were used. Another effect that would be signalled using the Weibull or loglinear+shoulder 

models is that microorganisms may change acid resistance depending on conditions. For 

instance, their acid inactivation behaviour may be quite different when they have been 

adapted to certain stress conditions in foods or when they have grown in laboratory conditions 

(van Boeckel, 2002).  

 
In conclusion, at 37 ºC, the body temperature of humans, C. jejuni is sensitive to acid stress. 

However, temperature should be taken into account while applying acid agents to eliminate C. 

jejuni because it is more resistant to low temperatures. Exposure to acid conditions at 37 ºC 

has a stronger effect on C. jejuni survival than acid stress at low temperatures (4 ºC). This 

resistance might be related to overlapping mechanisms of survival induced after cold shock 

response that could confer acid stress protection. It would be interesting to perform 

transcriptomic and proteomic analyses to further characterize the defence mechanisms 

induced by C. jejuni under acid stress conditions at 37 ºC and 4 ºC. 



 59

The lack of stationary-phase response in C. jejuni was demonstrated here in a single strain, 

327. Although the results are consistent with the absence of an rpoS homologue in this strain 

(Parkhill et al., 2000), it is possible that other strains may behave differently given the genetic 

diversity of this species. The unusual pattern of fluctuating viable counts that occurs during 

the stationary phase of C. jejuni 327 was also reported by Kelly et al. (2001) in C. jejuni 

NCTC 11351. These authors suggested that the secondary increase in viable count following 

the initial decline could be due to the emergence of a new strain better able to survive in 

stationary phase. Martínez-Rodriguez et al. (2004) further demonstrated that this emergent 

strain showed permanent phenotypic changes that may play a role in the survival of C. jejuni 

in stationary phase. Interestingly, strain 327 was shown to be the most sensitive strain in the 

acid challenges. However inactivation studies were performed directly in late exponential 

phase cells. It is possible that this strain has evolved an alternative strategy to promote 

survival in stationary phase, which involves genetic variation (Park, 2002). These findings 

could also suggest that growth phase affects cellular stress responses (Audia et al., 2001). 

Strain specific differences suggest a genetic basis. Genetic plasticity appears to be a 

characteristic feature of campylobacters that seems to explain the wide variation in stress 

responses encountered in this species.  
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6 RESPONSES OF CAMPYLOBACTER JEJUNI TO ACID STRESS MONITORED 

BY MEASUREMENTS OF INTRACELLULAR pH DETERMINED BY 

FLUORESCENCE RATIO-IMAGING MICROSCOPY 

6.1 Objective 

Acid shock, involves exposing bacteria to a sudden drop in pH (generally below the threshold 

for growth). This reflects the situation naturally encountered by the bacterium as it goes from 

a food or water source into the host gastrointestinal (GI) tract. Acid shock studies have been 

undertaken with various enteric bacteria, but they often involve the exposure of the cells to a 

moderate acid stress prior to acid shock, which induces the expression of acid tolerance 

proteins that may not otherwise be expressed (Foster, 1999). C. jejuni’s acid shock response 

has been shown to be distinct from adaptation to mildly acidic conditions (Reid et al., 2008b).  

 

As discussed earlier in the chapter 4, pHi or ΔpH plays a central role in cell functions, and a 

correlation between a sudden drop in ΔpH, and loss of viability has been demonstrated 

(Nannen & Hutkins, 1991; Breeuwer et al., 1996; Siegumfeldt, Rechinger & Jakobsen, 1999, 

2000; Shabala, Budde, Ross, Siegumfeldt & McMeekin, 2002). 

 

It was the aim of this study to investigate the lethal effect of inorganic acidulant (HCl, pH 4.0) 

on the pHi regulation of C. jejuni at the single cell level by means of Fluorescence Ratio-

Imaging Microscopy (FRIM) according to the methods of Smigic et al. (2008) (submitted for 

publication). Moreover, a relationship between pHi and the viability studies previously 

investigated for strain NCTC 11168 at mildly acidic conditions (pH 5.0) was examined and 

discussed. 

 

6.2 Materials and Methods 

Bacterial Strains and growth conditions 

A total of 3 different strains of Campylobacter jejuni were used in this study. The sequenced 

clinical human isolate C. jejuni NCTC 11168 was obtained from the National Collection of 

Type Cultures (Central Public Health Laboratory, London, UK). The turkey isolates (327 and 

305) were received from the Department of Food Science, Faculty of Life Sciences, 

Copenhagen University, Denmark. A stock culture of C. jejuni strains was kept at – 80 ºC in 

brain heart infusion broth (BHIB) (Oxoid CM225, England) containing 15% glycerol. A 

loopful of each strain was streaked onto blood agar base no. 2 plates (Oxoid CM271, 
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England) with added 5% horse blood. Cultures were prepared by growing the strains for 2-3 

days. Subsequently, one loopful of each culture was streaked onto new blood agar base no. 2 

plates, which were again incubated for 24h. These cells were assumed to be in stationary 

phase of growth (Shaheen et al., 2006). During propagation and growth all plates were 

incubated at 42 ºC under a microaerophilic gas mixture (5% O2, 10% CO2, and 85% N2; 

Praxair, Inc., Danbury, Conn.) in sealed gas jars (Oxoid, anaerobic jars). Cells were harvested 

with 2 ml of PPSS with a loop, and the inocula were adjusted in PPSS to an optical density at 

600 nm = 0.1 which corresponds to approximately 8 log10 CFU/ml. 

 

Solutions, fluorescent probe and liquid medium 

For experiments in liquid medium, defined media6 (Birk, 2008; unpublished) was prepared, 

and pH was adjusted to pH 4.0, pH 5.0 and pH 6.5 using 1M NaOH and 1M HCl.  

 

For construction of calibration curves, defined media with adjusted pH values in the range 

from 5.5 to 8.0 were prepared adding appropriate volumes of 1M NaOH and 1M HCl.  

 

The fluorescent probe 5(6)-carboxyfluorescein diacetate succinimidil ester (CFDA-SE, 

Molecular Probe Inc., Eugene, OR, USA) was dissolved in water-free dimethyl sulfoxide 

(DMSO, Merck) to a final concentration of 4.48 mM.  

 

Microscopic slides 

Microscopic slides were prepared according to Smigic et al. (2008) (submitted for 

publication) procedure. To aid the immobilization of C. jejuni cells from liquid medium, 

microscopic glass slides were soaked in ethanol/HCl solution (100 ml ethanol (70% v/v) 

mixed with 2.2 ml HCl (1M)) overnight. Afterwards, the slides were rinsed with milliQ 

water7, and dried on air. Ten µl of bind silane (PlusOne, Amercham Biosciences, Piscataway, 

NJ, USA) was applied on the surface of the glass slide for 5 min. Glass slides were rinsed 

with milliQ water, and dried on air. Chambers were subsequently assembled with the prepared 

glass slides. The perfusion chamber thus formed (approximately 70 µl volume) is ready to be 

filled with the bacterial suspension in defined media of the desired pH value.  

 

 

                                                 
6 It is not possible to write the detailed list of components since it has not been published. Defined medium contained amino acids, vitamins, 
salts and buffers. Some components that are involved in TCA cycle were also included. No carbohydrates were added since C jejuni does not 
ferment sugars, obtaining energy from amino acids instead.  
7 Water that has been distilled and fed through a special ion exchange cartridge, which increases its purity. 
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Fluorescence labelling of C. jejuni cells 

The CFDA-SE labelling procedure used in this study was modified from Smigic et al. (2008) 

(submitted for publication). C. jejuni colonies grown on blood agar base no. 2 plates 

supplemented with horse blood were harvested with 2 ml of peptone physiological salt 

solution (PPSS) with a loop, and the inocula were adjusted to an optical density at 600 nm = 

0.1 (approximately 8 log10 CFU/ml). One ml of this cell suspension was transferred to a 

sterile eppendorf tube and centrifuged at 12000 x g for 5 min. The supernatant was removed 

and the later step was repeated. The cell pellet was subsequently dissolved in 990µl of citrate 

phosphate buffer (pH 7.0), and 10 µl of 4.48 mM CFDA-SE were added. The cell suspension 

was incubated at 37 ºC for 30 minutes, under microaerophilic conditions. Stained cells were 

harvested by centrifugation at 12000 x g for 5 min and resuspended in 500 µl of defined 

media with set pH values (4.0, 5.0 and 6.5). The suspension of the stained cells was diluted in 

defined media at a 1:50 ratio. The perfusion chambers were immediately filled with the 

prepared bacterial suspensions and kept in the dark. The set glass slides were subsequently 

centrifuged at 3000 x g for 4 min to induce cell attachment. Due to the experimental set up, 

the cell suspension was ready for microscopy only after 15 min.  

 

Fluorescence microscopy and data analysis 

The set-up for fluorescence microscopy was the same as described by Guldfelt & Arneborg 

(1998), and consisted of a fibre-connected monochromator with a 75 W xenon lamp to 

provide excitation wavelengths of 488 nm (pH sensitive) and 435 nm (pH insensitive). The 

inverted epifluorescence microscope (Zeiss Axiovert 135 TV) was equipped with a Zeiss 

Fluar 100 x objective (numerical aperture 1.3), a band-pass emission filter and a dichromic 

mirror. The fluorescence emission was recorded using a cooled charge-coupled device 

camera. To minimize photobleaching of the stained cells, a 10% neutral-density filter was 

used in the excitation path. 

 

Images were collected using the Methamorph 7 software program (Universal Imaging Corp., 

West Chester, Pa.) at specific wavelengths. Data analysis was performed using the Meta Vue 

v. 7.1 (Universal Imaging) software program. 

 

Calibration Curves 

The procedure used for construction of calibration curves was modified from Smigic et al. 

(2008) (submitted for publication). CFDA-SE stained C. jejuni cells were incubated with 1 ml 

of ethanol (70% v/v) at 37 ºC for 30 minutes assuming cell death and full loss of membrane 
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integrity. Subsequently, the cells were harvested by centrifugation at 12000 x g for 5 min, and 

resuspended in defined media with pH ranging from 5.5 till 8.0, with 0.5 intervals. The pHi of 

a dead cell will be the same as the pHex. The ratios R488/435 were determined as described 

above. With this probe, the three strains revealed different calibration responses, and therefore 

a calibration curve for each strain was made (Figure 6.1). Calibration curves for each C. jejuni 

strain were generated by plotting the ratio R488/435 versus pH of equilibrated cells in the pH 

range from 5.5 to 8.0. A third degree polynomial model (Microsoft Excel, 2003) was fitted to 

the experimental data of each strain and used for pHi calculations. Between 21 and 70 

randomly selected individual bacterial cells were analysed in each experiment. CFDA-SE is a 

reliable probe within a relatively narrow pH range, between approx. 6 and 8 (Breeuwer et al., 

1996; Siegumfeldt et al., 1999, 2000; Shabala et al., 2002). At low pH values the pH 

sensitivity of the fluorochrome decreased, as demonstrated by the calibration curves. A value 

of pHi 5.5 appeared to be the lower limit of the sensitivity for CFDA-SE. 

 
Experimental set up - pHi 

To determine the pHi of healthy cells, defined media with pH value adjusted to pH 6.5 was 

used during a period of 15 minutes. For acid challenges, two different and independent set of 

studies were performed and the experimental work was divided in two parts (Part I and II).  

 

In the first set of studies (Part I – section 6.3), the cells were stressed with defined media set at 

a lethal pH value of 4.0. The same cells were followed over a period of approximately 3.5 h 

and pHi measurements were taken in 50 min intervals. For the three strains, between 30 and 

98 cells were analysed. The study was carried out at aerobic conditions at room temperature 

(25 ºC). The stress response under these conditions was investigated for the three strains used 

and potential strain variation in acid stress response was evaluated based on pHi 

measurements. Control experiments were performed in defined medium using HCl at a pH 

value of 6.5. For the three strains, between 61 and 105 cells were analysed. 

 

In the second set of studies (Part II – section 6.4), cells were harvested as described above and 

stressed under pH 5.0 in defined medium. The media used were previously set at two different 

temperatures (4 ºC and 37 ºC) and pHi was measured at regular intervals of 4h during a period 

of 24h. Chambers were incubated at 4 ºC and 37 ºC in a microaerophilic atmosphere and kept 

in the dark between each pHi measurement. This experiment was performed with the 

reference strain NCTC 11168.  
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Figure 6.1 Calibration curves for pHi determination of three C. jejuni strains. The pHi was equilibrated 
to pHex by permeabilising the cells with ethanol and resuspending in defined media of known pH (5.5-
8.0). The values are averages of 21-70 single cells with error bars (standard deviation). A third degree 
polynomial was fitted to the calibration points. 
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6.3 Part I - pHi measurements in C. jejuni strains NCTC 11168, 305 and 

327 under acid stress conditions (pH 4.0) at 25 ºC and aerobic 

conditions.  

6.3.1 Results 

 
pHi of healthy cells 

Because of the experimental set up, the first pH values could only be measured approximately 

15 min after applying the cells into the perfusion chambers (see material and methods). The 

pHi values for the time 0 (Figure 6.2) were established from the average pHi obtained during 

15 min of exposure to defined medium (pH 6.5). All three C. jejuni strains showed pHi of 

healthy cells to be above 7.0.  

 

Inactivation at pH 4.0 

Change in the pHi of three different C. jejuni strains during 215 min of liquid inorganic acid 

inactivation (defined media, pH 4.0 adjusted with 1M HCl) determined at the single cell level 

by FRIM is presented in Figure 6.2. 

 

For strain NCTC 11168, a drop in pHi values to the level of 5.5 (detection limit) was observed 

in most of the cells (75%) within the first 15 min of HCl treatment (pH 4.0). During the 

following 200 min, the subpopulation with pHi≤5.5 remained the greatest one. At the same 

time an increase in subpopulation with pHi>5.5 was noticed. Among cells with pHi>5.5, two 

different subpopulations were recognized, one with 5.5<pHi<6.0 and the other with 

6.0<pHi<6.5 (Figure 6.2). 

 

The results obtained for the two poultry strains (305 and 327) indicated a drop in pHi values 

to the level of 5.5<pHi<6.0 in most of the cells (90 %) within the first 15 min of exposure to 

acid. During the following 200 min, only two subpopulations were observed for both strains, 

one with pHi≤5.5 and other with 5.5<pHi<6.0. For strain 327, the subpopulation with 

5.5<pHi<6.0 remained the greatest one although a limited, but constant increase in 

subpopulation with pHi≤5.5 was noticed. For strain 305, a considerable increase in 

subpopulation pHi≤5.5 was observed together with a marked decrease in subpopulation 

5.5<pHi<6.0 during the time of experiment. By the end of pHi measurements, all cells (100 

%) had pHi≤5.5 for strain 305 while strain 327 approximately 20 % of the cells had pHi≤5.5.  
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Figure 6.2 Percentage of cells on each pHi subpopulation during 215 min of exposure to pHex 4.0 for 
Campylobacter jejuni NCTC 11168, Campylobacter jejuni 305 and Campylobacter jejuni 327. 
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Control experiment at pH 6.5 

A control experiment with pH 6.5 was performed under the same conditions (Figure 6.3). All 

three strains were submitted to pH 6.5, which is in the optimal range of pH values for C. 

jejuni growth, at 25 ºC under a non-microaerophilic atmosphere.  

 

For all strains three subpopulations were noticed after 15 min of exposure to these conditions, 

one with 6.5<pHi<7.0, the other with 7.0<pHi<7.5 and the third with pHi>7.5. The greatest 

subpopulation for all strains at 15 min was the one with 7.0<pHi<7.5 (70-90%). For strain 

NCTC 11168 (Figure 6.3) this subpopulation remained approximately constant during the 

following 200 min. At the same time, subpopulation with 6.5<pHi<7.0 became extinct after 

approximately 115 min and a constant increase of subpopulation pHi>7.5 was observed.  

 

For both poultry isolates (Figure 6.3), the subpopulation with pHi>7.5 became extinct after 

approximately 115 min of exposure, while subpopulation 6.5<pHi<7.0 showed an increase 

that was accompanied by a decrease in subpopulation 7.0<pHi<7.5. For strain 327 (Figure 

6.3) the observed alterations were more gradual than for strain 305, with approximately 57 

%/43 % of each subpopulation, respectively (time 215 min). Strain 305 (Figure 6.3) showed a 

striking decrease in subpopulation 7.0<pHi<7.5 that became extinct at time 215 min, together 

with a marked increase in subpopulation 6.5<pHi<7.0. At approximately 165 min the 

emergence of a subpopulation with pHi≤6.5 was noticed for strain 305 and at time 215 min it 

was already the greatest subpopulation present (60%).  
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Figure 6.3 Percentage of cells on each pHi subpopulation during 215 min of exposure to pHex 6.5 for 
Campylobacter jejuni NCTC 11168, Campylobacter jejuni 305 and Campylobacter jejuni 327. 
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For comparison, average pHi values in C. jejuni strains are shown in Figure 6.4. After initial 

drop, average pHi values obtained in this study indicated no considerable pHi change during 

following 200 min and values were in the range from 5.05 to 5.64. When strain NCTC 11168 

was exposed to pHex 4.0, the resulting average pHi values decreased below pHi 5.5 within 15 

min and therefore were beyond the detection limit.  

 

 

 
 
 
 
 
 
 
 

 

 

 

Figure 6.4 Average pHi values for different Campylobacter jejuni strains during 215 min of inorganic 
acid inactivation in liquid defined medium (pH 4.0, adjusted with HCl 1M). The pHi values are the 
mean based on 30-98 individual cells. Error bars represent the standard error of the mean. 
 

The average pHi values in C. jejuni in response to an external medium of pHex 6.5 are shown 

in Figure 6.5. After 200 min pHi values ranged from 6.34 to 7.38. Strains NCTC 11168 and 

327 maintained a relatively constant pHi level at external pHex 6.5 for a long time, with pH 

gradient (ΔpH, the difference between pHi and pHex) after 200 min being 0.88 and 0.47, 

respectively. pHi response in strain 305 was different from those of other strains. pHex 6.5 

caused a constant decline in pHi of strain 305 and virtually no ΔpH was detectable after 200 

min of exposure.  
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Figure 6.5 Average pHi values for different Campylobacter jejuni strains during 215 min of exposure 
to liquid defined medium (pH 6.5, adjusted with HCl 1M). The pHi values are the mean based on 61-
105 individual cells. Error bars represent the standard error of the mean. 
 

6.3.2 Discussion 

 
The average pHi values obtained during 15 min of exposure to defined medium (pH 6.5) 

provide information about pHi values of healthy C. jejuni cells. For all three tested strains pHi 

of healthy cells was found to be above 7.0. This is in agreement with the results of Smigic et 

al. (2008) (submitted for publication) that found that seven of eight C. jejuni strains had pHi 

above 7.0 and that for only one strain this value was established at 6.8. The pHi of stationary-

phase cells of L. inoccua and E. coli was also reported to be close to neutral (Riondet, 

Cachon, Wache, Alcaraz & Divies, 1997; Shabala et al., 2006). The pHi of healthy C. jejuni 

cells obtained in the study of Tholozan, Cappelier, Tissier, Delattre and Federighi (1999) was 

between 6.63 and 6.73. The reason why the pHi values for C. jejuni reported by Tholozan et 

al. (1999) differ from those obtained by Smigic et al. (2008) (submitted for publication), and 

by the present study might be found in the medium in which the cells were suspended. Smigic 

et al. (2008) (submitted for publication) used a nutritionally rich Bolton broth (pH 6.5) and in 

the present study a defined medium (pH 6.5) was used, while Tholozan et al. (1999) 

determined pHi of C. jejuni cells suspended in less favourable microcosm water (filtrated 

surface water (pH 6.0)). 

 

When cells of different C. jejuni strains were exposed to inorganic acid inactivation (defined 
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& Jakobsen, 2000)) and 5.5<pHi<6.0 was observed in the majority of cells within 15 min 

(Figure 6.2). Smigic et al. (2008) (submitted for publication) determined the effect of HCl 

(pH 4.0) during 12 min in liquid medium and demonstrated that C. jejuni cells maintained 

their pHi values close to pHi of healthy cells, indicating that C. jejuni is a homeostatic 

bacterium which maintains pHi close to neutrality and generates large proton gradients when 

exposed to low pH environment of inorganic acidulant. The present results indicated that C. 

jejuni cells did not maintain their pHi values close to pHi of healthy cells with 15 min of 

exposure. Apart from strain specificity, the main reason for the disparity between this and the 

latter results could be due to a greater level of stress imposed by the conditions used in present 

study, which was carried out under room temperature (25 ºC) and in the presence of an 

oxygen atmosphere. It might also be explained by different growth conditions. Smigic et al. 

(2008) serially passaged the bacteria in a rich Bolton broth before plating and harvesting the 

cultures. Serial passage can result in genomic diversity and enhanced likelihood of selection 

of resistant cells. In addition, after the staining procedure, they resuspended the cells in Bolton 

Broth (pH 6.5) adjusted with HCl 5M and kept on ice in the dark prior to acid challenges and 

microscopic analysis. This might have conferred some level of protection and the pHex 6.5 

used before acidification may have increased bacterial resistance to later acid treatment. C. 

jejuni has been shown to exhibit an adaptive acid tolerance response following exposure to 

mild acid, which is capable of protecting cells from normally lethal acid stress (Murphy et al., 

2003b; Shaheen et al., 2006). Additionally, the present study used cells isolated from colonies 

grown on an agar plate at optimal conditions. It is likely that the heterogeneity in a colony 

with respect to pH and nutrient availability (Walker, Brocklehurst & Wimpenny, 1997) 

imposes various stresses on the cells, which may change their acid sensitivities (for example, 

by altering the membrane composition) (Correa, Rivas & Barneix, 1999). For instance, 

Listeria monocytogenes cells originating from broth cultures have been shown to be 

homogeneous in their sensitivities to nisin while cells grown on agar plates have a much more 

heterogeneous response towards the same treatment (Budde & Jakobsen, 2000).  

 

Important differences among strains were observed during the acid challenge conditions. For 

strain NCTC 11168, the subpopulation with pHi≤5.5 remained the greatest one (65-75%) 

during the whole time of experiment but subpopulations with pHi>5.5 increased, specifically 

subpopulations with 5.5<pHi<6.0 and 6.0<pHi<6.5. Thus, apparently some of the cells in the 

subpopulation with pHi≤5.5 (detected after 15 min) were able to increase the activity of 

proton extruding systems in order to return the cytoplasmic pH closer to healthy physiological 

values (Smigic et al., 2008; submitted for publication). There are several possible 

http://www.sciencedirect.com.proxy.library.uu.nl/science?_ob=ArticleURL&_udi=B6T7K-3YWX0KJ-V&_user=457046&_coverDate=04%2F10%2F2000&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=457046&md5=2674264ebbc2c152f2c77f5e19d13438#bbib5�
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mechanisms by which a bacterium can regulate pHi. The literature does not suggest which of 

these mechanisms is predominant in C. jejuni. It has been reported that Enterococci extrude 

protons via F-type proton-translocating ATPase and potassium ion accumulation (Kobayashi 

et al., 2000), while respiring bacteria (e.g. E. coli) regulate the cytoplasmic proton 

concentration through the respiratory chain, but also via a potassium accumulation mediated 

through specific transport systems (Booth, 1985). The ECT is believed to play an important 

role in C. jejuni’s acid stress (Reid et al., 2008a,b). In addition to proton extruding systems, 

decarboxylation of amino acids may also contribute to acid tolerance leading to biochemical 

consumption of protons (Cotter et al., 2001; Rollan, Lorca & Font de Valdez, 2003). The 

defined media used in this study contained amino acids, and therefore consumption of amino 

acids might have been involved in pHi regulation to some extent.  

 

The increase in pHi that was observed for approximately 10% of the cell population of strain 

NCTC 11168 might indicate that this strain has the ability to slowly recover and change cell 

viability. Whether this change reflects entry into the physiological state known as viable but 

nonculturable (VBNC) is not clear and therefore further investigation is required. Chitarra, 

Breeuwer, van den Bulk and Abee (2000) showed for Clavibacter sp. that when the pHi drops 

to 5.5 or below, growth of this bacterium is inhibited. Smigic et al. (2008) (submitted for 

publication) reported that the decrease in pHi to or below the FRIM detection limit (pHi≤5.5) 

does not necessarily designate a subpopulation of dead cells. The dead/life staining employed 

enabled these authors to conclude that some of the cells from this subpopulation still had an 

intact cell membrane (Nebe-von Caron, Stephens & Badley, 1998) and that pHi of dead cells 

in the environment with pHex≤5.5 will be equal or below 5.5, but the reciprocal conclusion 

that all cells with pHi 5.5 are dead is not plausible (Smigic et al., 2008; submitted for 

publication).  

 

Poultry strains showed an increase of the subpopulation with pHi≤5.5 in contrast with the 

apparent decrease in this subpopulation for strain NCTC 11168. However, the subpopulation 

with pHi≤5.5 showed a limited increase during time for C. jejuni 327 and a marked increase 

for C. jejuni 305. Strain 327 was able to maintain the highest average pHi values, but only 

strain NCTC 11168 appeared to be increasing pHi. Considering average pHi results one would 

not be able to recognise the repair of the cells, observed as the increase in the subpopulations 

with pHi>5.5 as occurred for strain NCTC 11168 (Figure 6.2). When a population of cells is 

exposed to acid shock, the average pHi is therefore a weighted average of various populations 

of cells with high and low pHi. This could mean that individual cells have varying degrees of 
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acid resistance or that acid molecules do not target all cells in a population. Therefore 

obtained results emphasize the importance of determination of physiological parameters at the 

single cell level (Smigic et al., 2008; submitted for publication). Moreover, average pHi is 

biased by the detection limit of the method (FRIM), which masks the proportion of cells with 

pH≤5.5 that contribute to the average pHi (Smigic et al., 2008; submitted for publication). 

 

Strain NCTC 11168 might therefore have an advantage over other strains since it seems to 

have a more heterogeneous population regarding stress response. In fact, the standard 

deviations in the pHi values ranged from 0.45-0.65 pH units for strain NCTC 11168, which 

indicates that the population was heterogeneous. For strain 327 and 305 these values ranged 

from 0.14-0.22 and 0.10-0.14 pH unit, respectively. This indicates the presence of more 

homogeneous populations. Among poultry isolates, pHi decreases faster for strain 305 than it 

decreases for strain 327. Strain 305 was therefore the most sensitive. 

 

Interestingly, strain 305 was shown to be the most acid resistant strain at 37 ºC (pH 5.0) in the 

previous survival studies (see chapter 5). Studies involving C. jejuni are however, of 

notoriously difficult reproducibility. Aditionally, it is difficult to compare these results due to 

variations in the assay conditions used (that is, log vs. stationary phase cells, different 

challenge pH conditions, different atmosphere and temperatures used etc.).  

 

In order to investigate pHi regulation under control conditions, the same study was performed 

at pH 6.5 at 25 ºC, under aerobic atmosphere (Figure 6.3). Once again, the sequenced strain 

seemed to cope better with the imposed conditions. Strain NCTC 11168 kept pHi within 

neutral values showing a slight but constant increase in pHi over time. Conversely, poultry 

strains showed a decrease in pHi. For strain 305 pHi decreased faster and a new subpopulation 

with pHi≤6.5 emerged at 165 min of exposure. For strain 305, pH dissipation occurred at a 

pHex of 6.5 to a value of 0 at approximately 215 min of exposure. By the end of the 

experiment this was the largest subpopulation with a total of 60 % of cells. It is not clear why 

a subpopulation of cells with pHi<pHex has emerged for this strain but the influence of 

methodological artefacts needs to be investigated to confirm this observation. Further 

experiments where pHex could be monitored during pHi measurements are required. C. jejuni 

305 did not seem to employ the same defending mechanisms to cope with the stress factors 

imposed. This demonstrates a greater sensitivity of this strain to experimental conditions. 
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These results prove that poultry strains, in particular 305, were under additional stress 

imposed by this experimental set up and that the observed initial response under pH 4.0 could 

not be attributed exclusively to acid stress. It is demonstrated by the control that acid stress 

conditions per se are not responsible for the observed inability of poultry strains to maintain 

pHi homeostasis. One possible explanation is that the reference strain could have increased 

tolerance to oxidative stress. It would make sense that this strain has employed a strategy to 

cope with oxidative stress since it has been extensively passaged in laboratory for many years. 

Therefore, the improved ability of C. jejuni strain NCTC 11168 to tolerate oxygen could be 

an important physiological event governing its ability to maintain pHi homeostasis. Murphy et 

al., (2003b) have also demonstrated that the induction of an adaptive tolerance response under 

aerobic+acid conditions resulted in cross protection to acid stress. A recent study by Reid et 

al. (2008a) has demonstrated that the peroxide stress regulator gene (perR) is involved in the 

acid shock response in C. jejuni NCTC 11168.  

 

The temperature used in the study (25 ºC) was also a stress factor imposed. C. jejuni is known 

to poorly survive at 25 ºC (Hänel & Atanassova, 2007; Garénaux et al., 2008). Thus, the 

relative contribution of each stress factor used could only be assessed with further 

investigation, where a larger number of controls would be included.  

 

In conclusion, a pHex of 4.0 was found to induce a collapse in pHi homeostasis of C. jejuni 

strains under the conditions tested in this study within 15 min of exposure. Despite the lethal 

effect of pHex 4.0 used, some cells were able to increase their pHi and therefore we can predict 

that under more favourable conditions eventually encountered by this microorganism, these 

cells may recover and pose a risk to human health. This is of great concern, especially for 

foodborne pathogens with low infective dose. The present work also demonstrates that the 

ability of C. jejuni to maintain a ∆pH under acid stress is strain specific and also depends on 

other stress conditions imposed. Oxygen and temperature are important factors to take into 

account that influence C. jejuni survival in the host, in the environment and during food 

processing. Further studies are required to investigate the weight of their contribution to pHi 

regulation during acid stress conditions.  
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6.4 Part II - pHi measurements in C. jejuni strain NCTC 11168 under pH 5.0 at 4 ºC 

and 37 ºC.  

6.4.1 Results and Discussion 

In a second experiment, ratio images were recorded for C. jejuni strain NCTC 11168 during 

24 h of acid treatment (defined media pH 5.0 adjusted with 1 M HCl) determined at the single 

cell level by FRIM at both temperatures 4 ºC and 37 ºC. The study was conducted under the 

same conditions used in chapter 5. 

 

The ratios in Figure 6.6 cannot be converted to pHi values by using the equation described 

above (Figure 6.1) because of technical problems occurred with the microscope during the 

experiment. The ratios are undervalued and consequently pHi will also be underrated. 

However, the relative response of the bacterial population can still be evaluated. An increase 

in ratios corresponds to an increase in pHi values. Again, ratio images were taken at time 0, 15 

min after the bacterial suspension was applied onto the chambers.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.6 Ratio488/435 plotted over a period of 24h of individual C. jejuni cells in defined media pH 
5.0 (a, b) and pH 6.5 (c, d). Studies were performed at 4 ºC (b, d) and 37 ºC (a, c). Though it was not 
possible to follow the same cells over time, each symbol indicates a single cell. 
 

Time (hours)

(a) (b) 

(c) (d) 
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Ratio488/435 values decreased in C. jejuni NCTC 11168 during exposure to all four 

combinations of pH and temperature used, within the first 4 hours. After initial 4 hours the 

general response was an increase in ratio values (and therefore an increase in pHi values). The 

increasing trend might reflect adaptation of bacterial cells to pHex 5.0. Shaheen et al. (2006) 

have demonstrated that the acid shock induced under pH 5.0 for 4h was not lethal for C. jejuni 

based on survivals on agar plates. They have also proved that exposure of late stationary 

phase cells of C. jejuni to this time/pH combination induced a significant acid tolerance 

response when compared to nonexposed cells (Shaheen et al., 2006). The cells used in the 

present study were most probably in the stationary phase of growth. Adaptation to low pH 

might be expected to involve the down-regulation of genes encoding products that take up H+ 

and the up-regulation of genes encoding proteins capable of H+ extrusion (Reid et al., 2008b) 

which would explain the adaptation response and the ability to raise the pHi.  

 

Presenting findings did not reveal apparent differences in pHi response of C. jejuni to acid 

treatment regarding different temperatures. However, at pH 5.0 overall ratios (and pHi) 

presented as average ratios (Table 6.1) were higher at temperature of 4 ºC (except for t=24 h). 

The same was noticed at pH 6.5. This might be explained by lower permeability of membrane 

to protons. Temperature has been shown to influence membrane composition (Stintzi, 2003).  

 

Table 6.1 The average Ratio488/435 values obtained on defined medium for Campylobacter jejuni strain 
NCTC 11168 during 24 hours of exposure to HCl at different pH values and different temperatures. 
  Time 

C. 
jejuni 
strain 

Conditions 0 hours 4 hours 8 hours 12 hours 16 hours 20 hours 24 hours 

pH 5.0 4 ºC 0.89±0.40a 0.69±0.21 n.d.b n.d. n.d. n.d. 0.83±0.47 

pH 5.0 37 ºC 0.76±0.22 0.61±0.10 0.64±0.08 0.85±0.07 0.95±0.05 1.19±0.15 1.35±0.19 

pH 6.5 4 ºC 1.66±0.30 1.42±0.15 n.d. n.d. n.d. n.d. 1.96±0.33 

N
C

TC
 1

11
68

 

pH 6.5 37 ºC 1.56±0.26 1.07±0.23 1.20±0.19 1.24±0.16 1.09±0.23 1.45±0.18 1.72±0.20 
a value represents mean ± standard deviation 
b n.d. – not determined 
 

At 4 ºC after 24 h of exposure, the ratio (and pHi) of some cells had raised slightly, while it 

was unchanged for other cells i.e., a larger variation in ratios (and pHi) at t=24 hours, which 

can be seen in Figure 6.6 (b,d) as more disperse distribution of cells, and in Table 6.1 as an 

increased standard deviation. A more heterogeneous population is present at 4 ºC after 24 h. 

At refrigeration temperature the population appeared to increase heterogeneity in respect to 
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their pHi regulation under acid stress. However, further studies are needed to confirm these 

data.  

 

Survival of late exponential phase cells of strain NCTC 11168 at 37 ºC under pH 5.0 (see 

Chapter 5) was considered for comparison with the results obtained in the present study that 

was carried out with a stationary phase culture (Figure 6.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Survival (log CFU/ml) in late exponential phase cells (see chapter 5) (A) and Ratio488/435 
values of late stationary phase cells (B) for Campylobacter jejuni strain NCTC 11168 during 20 h of 
inorganic acid treatment (defined medium, pH 5.0 adjusted with 1 M HCl) at 37 ºC under 
microaerophilic incubation. In (A) error bars represent the standard error of the mean.  
 

The increasing trend obtained in ratio (pHi) measurements/viability in stationary phase cells 

(Figure 6.7B) was not observed in the culturability/viability study (Figure 6.7A). Figure 6.7A 

shows that 20h of HCl treatment (pH 5.0) at 37 ºC induced approximately a 3.5 log CFU/ml 

reduction in the number of culturable cells as determined on non-selective agar plates. Cells 

analysed in this study seemed to increase their intracellular pH showing that under HCl 
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treatment of pH 5.0 at 37 ºC cells are able to recover viability by maintaining a ∆pH (Figure 

6.7B).  

 

The most plausible explanation for such differences in viability is the fact that different 

physiological phase cells were used in these two independent experiments. In this context, 

data in Figure 6.7AB suggest that cells challenged in exponential phase could show increased 

susceptibility to acid stress at pH 5.0 while stationary phase cells seem to exhibit an 

adaptation response raising pHi after the initial 4 hours. This is in agreement with a study by 

Murphy et al. (2003b) which demonstrated that mid-exponential phase C. jejuni cells adapted 

to pH 5.75 for 5 h became sensitized showing an increased death rate at acid challenge of pH 

4.5. Conversely, an acid tolerance response was observed in C. jejuni cells in late stationary 

phase cells at pH 5.0 for 4 h (Shaheen et al., 2006). The growth phase of the culture appears 

to define the kind of stress response expected at low pH (Audia et al., 2001). This could have 

important implications since in the natural environment, optimal growth conditions are rarely 

encountered and Campylobacter will most likely be in stationary phase. Consequently, the 

ability to induce an ATR to acid in stationary phase may play a significant factor in the 

survival of this organism in the environment (Murphy et al., 2003b).  

 

To establish a comparison between culturability and pHi values, studies would have to be 

conducted simultaneously, using the same challenged cultures (the same culture with cells in 

the same physiological state). For instance, if ratios had been measured in cells in Figure 

6.7A, a subpopulation at t=20 hours would most probably be observed, represented by low 

ratios which would be in accordance with the decrease in the number of culturable cells. Due 

to the observed ability of some C. jejuni NCTC 11168 cells to raise their pHi (see section 6.3) 

a second subpopulation of cells raising their pHi could also be observed. Rechinger & 

Siegumfeldt (2001) have reported the analysis of pHi of individual Lactobacillus delbrueckii 

subsp. bulgaricus cells by FRIM at an extracellular pH of 6.0. Their results revealed two 

populations of cells in which one was observed to correlate well with CFU. This two 

subpopulations behaviour has also been observed for L. monocytogenes at subinhibitory 

concentrations of bacteriocins (Hornbæk, Brockhoff, Siegumfeldt & Budde, 2005). 

 

Several studies have found a high correlation between cell viability determined by CFU and 

cells maintaining their ∆pH (Siegumfeldt et al., 1999; Budde & Jakobsen, 2000; Rechinger & 

Siegumfeldt, 2001; Shabala et al., 2002; Hornbæk et al., 2005). Smigic et al. (2008) 

(submitted for publication) found this relationship in C. jejuni only for the first 2 min of lactic 
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acid treatment (3 % v/v lactic acid, pH 4.0). These authors have concluded that pHi and 

colony count may not be directly correlated in all phases of resuscitation and growth, but that 

they complement each other. Although this study has highlighted the ability of C. jejuni 

stationary phase cells to raise pHi under pH 5.0, further research is still needed to examine 

how physiological state affects intracellular parameters, such as pHi.  
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7 CONCLUSIONS  

The purpose of this work has been to contribute to the understanding of acid stress response in 

C. jejuni. The main conclusions can be summarised as follows: 

 

• There is a marked interaction between temperature and sensivity to acid stress. At 37ºC, 

the body temperature of humans, C. jejuni is far more sensitive to acid stress than at low 

temperatures (4ºC). In practical terms this means that bactericidal treatments with acids on 

skin or during food marination are more efficient at high temperatures. Additional 

observations of the kinetics at a pH level of 5.0 at additional temperatures between 4ºC and 

37ºC would be necessary to describe the variation in inactivation as temperature increases 

above 4ºC.  

 

• Despite being an acid sensitive organism, the results of this study indicated important 

variation in acid resistance, among strains of C. jejuni. Furthermore, significant differences in 

acid resistance were observed among strains originating from the same food source (poultry). 

The high level of acid tolerance of some C. jejuni strains raises doubts about the efficacy of 

the acid wash procedures proposed for poultry carcasses as a means of reducing 

Campylobacter contamination. Adding to this, one of the strains used was characterized by 

almost no stationary phase since die-off commenced shortly after the maximum numbers were 

reached, a behaviour which was distinctly different from the rest of the isolates. It is important 

to note that where C. jejuni is involved, having knowledge of one strain’s behaviour is not the 

same as knowing the behaviour of all, given the high variability in stress response observed in 

this species. Such results highlight the importance of careful selection of strains in food safety 

research, and particularly when low temperatures or acid treatments are evaluated as anti-

bacterial hurdles. The findings of this study should be useful in strain selection for the 

evaluation of antimicrobial alternatives, and for the completion of risk assessments. 

 

• This study indicated that the Weibull and loglinear+shoulder models fit the inactivation 

data better during relatively slow acid inactivation than the first order models commonly used. 

In some cases use of simple log linear may produce imprecise or even unsafe predictions of 

inactivation behaviour at acid pH. However, it is known that models developed for one 

bacterium in a model system or in a food matrix should not be used to predict the inactivation 

kinetics in other conditions. The complexity of food and in vivo conditions potentially gives 

rise to interactions of several factors related to host, food and pathogen, and the interactions 
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can appreciably influence microbial behaviour. The identification and quantification of these 

interactive effects will be an extensive process. Nevertheless, experiences already indicate 

that models developed in model system could offer a rapid, convenient and reasonable first 

estimate of how an organism will behave in other conditions.  

 

• Based on FRIM these studies have confirmed that rather than dying after exposure to a 

lethal pH of inorganic acid in a subpopulation, C. jejuni cells do have the ability to increase 

its pHi. Sublethal injury induced by mild bactericidal treatments, might therefore result in 

subpopulations of cells of C. jejuni where only one subpopulation is affected by the treatment 

rather than weakening each individual cell of the population. FRIM provided rapid bacterial 

viability assessment by testing the ability to regain pHi, after an apparently lethal treatment 

applied. 

 

8 FUTURE PERSPECTIVES 

The adaptive nature of C. jejuni must also be considered in the development of future 

experiments, as the response to environmental stresses can affect the survival of this 

pathogen. Future predictions of C. jejuni response to acid stress should take into account all 

microecological factors involved in the processing of a specific food or in vivo conditions.  

Further investigation of genotypic and phenotypic heterogeneity of C. jejuni isolates will 

improve the understanding of the significance and role of stress responses for the survival of 

these organisms in the food chain. 

 

Novel concepts for detection of viable cells in complex samples (e.g. foods) have been 

developed. Future application of rapid PCR methods for detection of viable stressed cells in 

food related environments (Takashi et al., 2008) can be used in analysis of C. jejuni stress 

responses. A PCR method that employs ethidium monoazide (EMA) can potentially be used 

as EMA can only enter cells with compromised membranes (dead cells) binding to DNA and 

preventing PCR amplification. This is particularly relevant for pathogens subjected to killing 

treatments such as disinfections or antibiotics that have specific growth requirements and may 

enter a VBNC state.  
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