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 I 

Resumo 

 

Com o objectivo de identificar marcadores morfológicos, fisiológicos e bioquímicos 

de mecanismos de resistência ao stress estudaram-se as respostas a défices hídricos e a 

baixas temperaturas em dois clones de Eucalyptus globulus Labill. com sensibilidades 

à secura putativamente contrastantes. O clone CN5 (resistente à secura) em resposta 

ao défice hídrico e às baixas temperaturas, mostrou maior desenvolvimento do 

sistema radicular e maior capacidade de aumentar a proporção de biomassa distribuída 

para as raízes do que o clone ST51 (sensível à secura). Também, em ambas as 

condições de stress, o clone CN5 manteve um estado hídrico foliar mais favorável e 

mostrou maiores reduções do potencial osmótico do que o clone ST51. A maior 

resistência à secura do clone CN5, baseou-se principalmente na optimização da 

relação entre a área de transpiração e a área de absorção e na manutenção da 

condutância hidráulica em condições de secura. Em resposta ao frio, o clone CN5 

mostrou ainda uma mais rápida capacidade de aclimatação do que o clone ST51. 

Prevê-se uma melhor adaptabilidade do clone CN5, do que do clone ST51, a 

condições naturais de limitação hídrica ou sujeitas à ocorrência de geadas ocasionais, 

alargando-se, assim, os seus limites de plantação. 

 

Palavras-chave: aclimatação, crescimento das raízes, frio, genótipos, propriedades 

hidráulicas, stress hídrico. 

 



 II  

Abstract 

 

We evaluated responses to water deficits and low temperatures in two Eucalyptus 

globulus Labill. clones with contrasting drought sensitivity. Our aim was to identify 

morphological, physiological and biochemical markers of stress resistance 

mechanisms. In response to water deficit and chilling, CN5 clone (drought-resistant) 

sustained a higher root growth and displayed greater carbon allocation to the root 

system than ST51 clone (drought-sensitive). In addition, under drought and low 

temperature conditions, CN5 ramets maintained higher leaf water potential (better 

water status) and decreased leaf osmotic potential significantly more than the 

drought-sensitive ST51 ramets. Differences in the response to drought in root 

biomass, coupled with changes in hydraulic properties, accounted for the clonal 

differences in drought tolerance, allowing CN5 ramets to balance transpiration and 

water absorption during drought and thereby prolong the period of active carbon 

assimilation. Moreover, in response to low temperatures, CN5 clone exhibited a 

higher capacity to acclimate in a shorter period than ST51. We conclude that Clone 

CN5 has greater plasticity in terms of adaptive traits than ST51, allowing its 

plantation range to increase to sites subject to seasonal droughts or sudden frosts. 

 

Keywords: acclimation, root growth, cold, genotypes, hydraulic properties, water 

stress. 
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Prefácio  

 

Ao longo do tempo, e mesmo antes de dar início aos trabalhos desta tese, fui-

me deparando com a oposição latente e generalizada à espécie que é objecto deste 

estudo – o eucalipto. Esta oposição, de que damos conta muitas vezes, desde as 

conversas à mesa de café até aos meios mais informados e científicos, parece ter-se 

enraizado como um preconceito na mentalidade geral e tudo indica que dificilmente 

será ultrapassada, independentemente do conhecimento efectivo que já existe sobre a 

espécie, fruto da larga investigação das últimas décadas (e.g., Alves et al. 2007). Mais 

cedo ou mais tarde, inevitavelmente, também a mim me surgiu a necessidade de tomar 

uma posição e de, portanto, saber o que escrevia a ciência e o que alvitravam os 

investigadores, formados à beira desses eucaliptais que cresciam tão bem como os 

seus opositores. Mergulhei então nas polémicas dos impactes ambientais do eucalipto 

sobre os diferentes recursos – água, solo, biodiversidade e paisagem – desde os 

autores que escrevem “cobras e lagartos” dessas plantações que acusam de não os ter 

(Caldas 1990), até aos outros mais apologistas do uso desta espécie (Soares et al. 

2007). 

Do ponto de vista científico, e em poucas palavras porque não cabe aqui 

alongar-me sobre o assunto, o que encontrei tranquilizou-me e vejo-me tentado a 

resumi-lo da seguinte forma: Utilizando as técnicas de silvicultura adequadas às 

específicas condições de cada meio é possível reduzir os impactes ambientais a níveis 

negligenciáveis. Por outro lado, não deixa de ser preciso reconhecer que ao nível da 

paisagem e numa escala regional, se encontram por vezes verdadeiros atentados, quer 

devido ao incumprimento das boas práticas, quer em consequência da ocupação 

desregrada de grandes extensões contínuas com plantações desta espécie (Silva et al. 

2007). 

No entanto, para além dos possíveis efeitos deletérios numa hipotética e 

indefinida qualidade ambiental, a expansão do eucalipto é significativa pelas 

importantes e concomitantes transformações do mundo rural que lhe estão na origem 

e que lhe estão associadas. E é por essa perspectiva que se compreende que a atribuída 

degradação estética da paisagem, se deve não tanto ao aumento das áreas de eucaliptal 

mas à “desordenação” do território, resultante, em grande parte, do abandono dos 

campos pela agricultura e à perda dessa malha estruturante. O tão apregoado drama da 
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eucaliptização do país foi, afinal, muito mais o drama do fim de uma ordem 

tradicional rural onde as gentes tinham o seu lugar definido, num equilíbrio com o 

meio e numa harmonia que atravessava os séculos. Aliás, como bem o viu e expressou 

Oliveira Baptista (2007) num ajustado trecho: “Esta resistência (ao eucalipto) 

correspondeu ao confronto com uma mudança profunda, à constatação inevitável e 

visual que o espaço deixara de ser os campos que se trabalhavam e que se percorriam. 

Os eucaliptais apareciam com o consagrar da ruptura das populações com o espaço 

que as rodeava, e que estas agora viam com distância e exterioridade. A recusa dos 

eucaliptos era, assim, a descoberta da paisagem e, simultaneamente, a recusa do 

símbolo que as populações associavam às transformações que viviam”. Esta 

exterioridade forçada, que correspondeu na prática ao fim de um modo de vida 

secular, imposta pelas altas leis das economias e do mercado comum, foi o verdadeiro 

drama de um mundo rural que agonizava, órfão das preocupações governamentais e 

abandonado à sua sorte. E com o fim desse mundo, o camponês, esse “homem eterno” 

que atravessava imutavelmente o tempo, deixou aí de ter lugar e de integrar o espaço, 

completando-o. Assim, a natural revolta dos camponeses contra o eucalipto 

transcende em muito a árvore que lhe invadiu os campos ainda antigos. 

Sem dúvida, que mesmo para quem não tem laços profundos com o mundo 

rural, há algo de chocante quando, passeando por esse país fora, a única ordem que se 

encontra em muitas paisagens nos é dada pelas fileiras alinhadas das plantações de 

eucaliptos. Decerto, essa floresta não satisfaz a nossa necessidade, muitas vezes 

subconsciente, do elemento natural. Todavia, não faz sentido exigir a esta silvicultura 

de produção intensiva que cumpra as funções que se esperam das florestas semi-

naturais. Não é, pois, o eucalipto que está a mais nesse território entregue a si próprio, 

mas um ordenamento e uma responsabilidade de intervenção sobre a paisagem que se 

encontram em falta. Como já muitas vezes se repetiu, o eucalipto é uma árvore 

“decente” e cumpre a sua função, isto é, a de criar um espaço muito humano algures a 

meio caminho entre uma seara e uma floresta. E como qualquer árvore, para além de 

ser um elemento vertical da paisagem, evoca também as colunas ascendentes dos 

templos sagrados, simbolizando pontes vivas entre a terra e o céu.  
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1. Introdução 

 

1.1. Enquadramento do estudo 

 

1.1.1. O eucalipto em Portugal 

 

O eucalipto (Eucalyptus globulus Labill.), depois de uma rápida expansão ao 

longo das últimas cinco décadas, ocupa hoje um dos lugares centrais na floresta 

portuguesa. A sua actual relevância advém, não apenas da importância da área ocupada 

– cerca de 21% da área florestal nacional – mas também da positiva contribuição para a 

actividade económica do país, de que é exemplo o peso significativo da indústria de 

pasta para papel na balança comercial externa com 40% do valor das exportações 

florestais  e 6% do valor total de exportações nacionais (Borges e Borges 2007). No 

entanto, apesar da sua expressão actual, a área de cultivo do eucalipto cresceu 

lentamente desde a sua introdução em meados do século XIX até aos anos 50 do século 

XX, ocupando então uma área de cerca de 50 000 ha. 

É a partir desta época que se conjugam as influências das políticas públicas 

industriais com os interesses dos proprietários privados e a pressão das indústrias em 

expansão, necessitadas de matérias-primas, resultando na grande expansão da área de 

eucaliptal até se chegar ao presente valor de 647 000 ha (Alves et al. 2007). Para o 

sucesso desta expansão concorreram as características da E. globulus, nomeadamente, 

uma elevada qualidade do material lenhoso como matéria-prima para pasta para papel e 

uma elevada produtividade da espécie associada às favoráveis condições climáticas e de 

solos em muitas regiões do país. Por outro lado, a aplicação de novas técnicas de 

silvicultura e o contínuo desenvolvimento dos programas de melhoramento genético 

possibilitaram a intensificação da cultura e o aumento da sua produtividade. 

Foi por iniciativa das empresas de celulose que se iniciaram e se têm 

desenvolvido em Portugal, há mais de 40 anos, as actividades de melhoramento 

genético da E. globulus. No entanto, a utilização extensiva de sementes melhoradas ou 

plantas clonais apenas teve início nos finais da década de 90. Actualmente, a 

florestação por parte das empresas de celulose assenta quase exclusivamente em 

material seleccionado ou testado no âmbito dos seus programas de melhoramento 

(Almeida 2004). O objectivo geral destes programas de melhoramento genético é 
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disponibilizar populações mais produtivas, quer por um acréscimo do crescimento, quer 

pelo desenvolvimento de genótipos qualitativamente superiores pelas suas 

características tecnológicas. A possibilidade de intensificação em plantações de alta 

produtividade permite também reduzir o esforço produtivo noutras regiões, 

contribuindo para resolver conflitos de competição (e.g., agricultura, expansão urbana, 

áreas de lazer) pelas áreas disponíveis. 

Para além de procurar seleccionar e propagar genótipos mais produtivos, o 

melhoramento genético pode trazer outras vantagens. Para conseguir produtividades 

elevadas as plantas têm que se manter saudáveis. As doenças e os insectos herbívoros 

que se alimentam de folhas são, com frequência, causas do decréscimo na Produção 

Primária Bruta. Até ao início dos anos 80 do século XX o eucalipto beneficiou, como 

espécie exótica, da quase total ausência dos seus inimigos naturais. Actualmente, no 

entanto, o número e dimensão dos focos de pragas e doenças aumentaram quase 

exponencialmente (e.g., Phoracantha sp., Gonipterus scutellatus, Mycosphaerella sp.), 

tornando-se num dos principais problemas do eucalipto em Portugal (Branco 2007). 

Também, neste contexto, é provável que o melhoramento genético possa contribuir para 

a produção de genótipos mais resistentes ou tolerantes a pragas e doenças. 

O impacto do melhoramento genético na cultura do eucalipto está dependente 

do valor genético das plantas utilizadas, da proporção destas no total das plantações 

realizadas e do seu comportamento nas condições de campo (Almeida et al. 2005). No 

contexto da Silvicultura e das actividades de melhoramento, é a floresta clonal de 

eucalipto que apresenta os maiores desafios tecnológicos, desde a produção de plantas 

até ao planeamento da floresta e condução dos povoamentos. Para uma silvicultura 

clonal se desenvolver plenamente, Libby e Ahuja (1993) consideraram três aspectos 

essenciais: (1) as operações culturais (e.g., fertilização, alocação) devem ser específicas 

para cada clone seleccionado, (2) a diversidade genética das plantações clonais deve ser 

rigorosamente controlada e mantida e (3) as estratégias de melhoramento devem ser 

desenvolvidas continuamente dando resposta aos desafios colocados pela silvicultura 

clonal. Escusado será dizer que, necessariamente, todas estas condições implicam e se 

baseiam na detenção de um conhecimento sólido e aprofundado dos clones da 

população de produção. 

Na última década a proporção de plantas melhoradas nas plantações de 

eucalipto têm crescido significativamente. Do total da área plantada anualmente com 
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eucalipto cerca de 36% correspondem a arborizações com plantas melhoradas sendo de 

realçar o peso da utilização de plantas clonais que representam 70% dessas áreas 

melhoradas (Almeida et al. 2005). De facto, e apesar de a técnica de clonagem 

apresentar dificuldades específicas de aplicação à E. globulus (e.g., Borralho e Wilson 

1994), a floresta clonal tem vindo a aumentar regularmente e a ganhar importância 

entre nós produzindo-se anualmente e em média 2,5 milhões de plantas clonais nos 

viveiros da Aliança Florestal. Deste modo, passados dez anos das primeiras plantações 

clonais em larga escala, a floresta clonal no país deve rondar presentemente os 25 000 

ha, com taxas anuais de florestação clonal da ordem dos 2000 ha. No entanto, se a área 

florestal com material melhorado – clonal e seminal – corresponde a cerca de 50 000 

ha, representa ainda menos de 10% da floresta de eucalipto em Portugal (Almeida et al. 

2005). Existe, portanto, uma clara oportunidade de alargar os benefícios para a 

economia do sector por um maior investimento na utilização de material melhorado que 

se estima poder levar a um aumento da produtividade entre 25 e 50% (Borralho et al. 

2007). 

 

 

1.1.2. Condicionantes da Produtividade: a água e a temperatura 

 

A produtividade, isto é, a produção de biomassa por unidade de área e por 

unidade de tempo, depende da capacidade das árvores em obterem recursos do 

ambiente (radiação, água e nutrientes minerais) e da eficiência de utilização desses 

recursos na fixação de CO2 atmosférico em biomassa. Deste modo, a maior produção 

de lenho de um determinado genótipo pode dever-se a uma maior capacidade de 

capturar os recursos disponíveis, a uma melhor eficiência no uso desses recursos ou a 

uma maior partição de biomassa para a formação de lenho (Binkley et al. 2004). Por 

outro lado, a produtividade encontra-se limitada pelas condições do meio que 

influenciam a quantidade de recursos disponíveis. Essencialmente, são as características 

do clima como a precipitação e a temperatura que limitam a produtividade, embora as 

características do solo (nutrientes e capacidade de armazenamento de água) possam 

também ser um factor limitante (Whitehead e Beadle 2004). Considerando as diversas 

condições edafo-climáticas das plantações de eucalipto em Portugal e os principais 

factores limitantes da sobrevivência e crescimento, interessam-nos em particular, no 
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âmbito do presente estudo, os stresses abióticos decorrentes de uma baixa 

disponibilidade hídrica e de baixas temperaturas. 

O desenvolvimento da E. globulus é muito sensível aos défices hídricos (Osório 

et al. 1998; Pereira et al. 1994), sendo a sua produtividade essencialmente afectada 

através da redução da área foliar e das taxas de fotossíntese. Por exemplo, comparando 

as produtividades de povoamentos de eucalipto em diferentes regiões do país de acordo 

com as suas disponibilidades hídricas, observou-se um aumento de 0.9 Mg ha-1 ano-1 na 

biomassa aérea para cada 100 mm de aumento na precipitação anual (Soares et al. 

2007). Igualmente, para uma região do Nordeste do Brasil e com clones de E. grandis x 

urophylla, esta dependência foi observada ao longo de um gradiente geográfico com 

um aumento de biomassa aérea de 2.3 Mg ha-1 ano-1 por cada aumento de 100 mm na 

precipitação anual (Stape et al. 2004). Nas últimas décadas fizeram-se largos progressos 

na compreensão das respostas das plantas ao défice hídrico cobrindo os seus mais 

variados aspectos – morfológicos, fisiológicos e bioquímicos – desde o nível molecular 

ao da planta inteira (ver, por exemplo, Chaves et al. 2003; Chaves e Oliveira 2004; 

Flexas et al. 2006). O facto de se terem já encontrado diferenças significativas entre 

genótipos de eucalipto ao nível, por exemplo, da eficiência do uso da água (Castro 

2004; Le Roux et al. 1996) e da partição de biomassa pelas componentes da planta 

(Osório et al. 1998), deixa pressupor a existência de uma variabilidade intra-específica 

nas estratégias de resposta ao défice hídrico. Assim, estes resultados apoiam o interesse 

de seguir esta linha de investigação e permitem prever a possibilidade de utilizar estes 

conhecimentos tanto ao nível da silvicultura clonal como do melhoramento genético. 

As plantações de eucalipto feitas no fim do Inverno e princípio da Primavera 

permitem fazer coincidir o crescimento inicial das plantas com o período de mais alta 

disponibilidade de água no solo. Desta forma o sistema radicular tem a possibilidade de 

se desenvolver e colonizar o solo antes de se iniciar o défice hídrico nos meses mais 

secos. No entanto, o crescimento das plantas, e portanto a sua produtividade, são 

influenciados negativamente pelas baixas temperaturas na estação fria. Por outro lado, a 

ocorrência ocasional de temperaturas negativas é importante, mesmo em regiões de 

clima Mediterrânico, limitando as áreas de plantação da E. globulus. Sendo as plantas 

jovens de eucalipto mais sensíveis do que as adultas ao frio, o grau de tolerância ao frio 

pode determinar o sucesso das plantações e, assim, limitar as distribuições da espécie e 

genótipos por certas áreas ou micro-estações. 
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 Em geral, uma diminuição da temperatura para valores inferiores à temperatura 

óptima tende a reduzir o crescimento (Gavito et al. 2001; Peng e Dang 2003) a 

eficiência fotossintética (Allan e Ort 2001; Close et al. 2000) e a capacidade de 

absorção e transporte de água pelas raízes (Fennell e Markhart 1998; Markhart et al. 

1979; Wan et al. 2001). Comparando as respostas de E. nitens com as de E. globulus 

em povoamentos sujeitos a baixas temperaturas (temperatura média anual de 8-10 ºC), 

Battaglia et al. (1998) reportaram uma menor redução do índice de área foliar (área 

foliar por unidade de área de terreno, L) para a E. nitens com uma intercepção da 

radiação 10 a 15% superior à da E. globulus. Assim, para além das diferenças entre 

espécies, estes autores mostraram que uma temperatura de crescimento abaixo do 

óptimo (13 a 14 ºC), resulta numa redução de L e num consequente e substancial 

decréscimo da produtividade. Também entre genótipos contrastantes de uma espécie 

são de esperar diferenças nas respostas às baixas temperaturas, ao longo do processo de 

aclimatação ao frio que decorre numa escala de tempo de dias a semanas em resultado 

de uma combinação de mudanças fisiológicas e metabólicas. Por exemplo, Leborgne et 

al. (1995) mostraram haver diferenças significativas na tolerância ao frio entre 

genótipos de E. gunnii relacionadas com diferentes metabolismos do carbono e 

atribuídas a uma acumulação de açúcares solúveis e ao seu efeito de crio-protecção.  

 A maior parte dos cenários para as alterações climáticas na Península Ibérica 

sugerem um agravamento da aridez e um aumento da frequência de eventos extremos 

num futuro próximo (IPCC 2001). Neste contexto, reforça-se o interesse do estudo das 

respostas morfológicas, fisiológicas e bioquímicas da E. globulus às baixas 

disponibilidades hídricas. 

 

 

1.1.3. O potencial genético 

 

Para além das condições do meio de crescimento outro factor limitante e 

responsável pela produtividade de um clone é o seu potencial genético. Porém, a maior 

ou menor expressão deste potencial genético em produtividade está dependente da 

existência de interacções genótipo x ambiente (GxA) que, quando importantes, 

implicam uma troca de posições no desempenho entre clones (e.g., crescimento em 

altura) em ambientes diferentes. Não só as condições edafo-climáticas das estações, 
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mas também diferentes anos ou operações culturais, podem representar diferenças 

ambientais passíveis de causar interacções GxA. O desconhecimento destas interacções 

em plantações clonais pode levar, em casos extremos, à morte das plantas ou a uma 

redução do crescimento e da qualidade, sendo muitas vezes difícil reconhecer as 

verdadeiras causas da perda de produtividade dessas plantações (Zobel e Talbert 1984). 

De qualquer modo, a oportunidade de explorar estas interacções é uma vantagem desde 

há muito tempo reconhecida da silvicultura clonal, ajustando os clones com os locais de 

plantação e com as operações culturais. Esta vantagem existe com os clones de 

eucalipto, que mostram geralmente uma significativa interacção GxA (Borralho et al. 

2007; Zobel 1993), quando as condições ambientais variam consideravelmente. Por 

exemplo, algumas empresas no Brasil, Colômbia e Venezuela, para além de uma 

distribuição específica dos clones de eucalipto pelos locais de plantação, aplicam 

esquemas de fertilização ajustados a cada clone (Zobel 1993).  

Por outro lado, a quantidade de testes clonais e os detalhes de caracterização das 

áreas de plantação necessários para uma elevada especificidade de distribuição podem 

ser tecnicamente e economicamente inviáveis (Kleinschmit et al. 1993). Geralmente, os 

testes clonais incluem somente um número limitado de ensaios, não permitindo, por 

isso, conhecer os limites das plasticidades fenotípicas dos clones (i.e. a amplitude de 

uma característica de um genótipo avaliada ao longo de um gradiente ambiental 

(Eriksson et al. 2006)). Assim, a dificuldade de distribuir clones muito específicos, isto 

é, com uma alta plasticidade fenotípica, pelas suas melhores estações, pode justificar 

uma estratégia de selecção por clones com maiores capacidades de adaptação. A 

plantação destes clones, mais estáveis nas suas respostas ao ambiente, é vantajosa em 

áreas de plantação espacialmente heterogéneas onde os clones mais específicos não 

poderão alcançar as suas maiores produtividades. De todas as formas, um correcto 

programa operacional de uma silvicultura clonal deve assegurar que o inerente 

potencial dos clones de produção não é comprometido por uma distribuição por locais 

de plantação desajustados. Em Portugal, o grau de adaptabilidade (e.g., resistência a 

agentes bióticos e abióticos) tem ainda uma importância secundária nos programas de 

melhoramento das empresas, sendo as variáveis-chave de selecção o rendimento em 

pasta, a densidade da madeira e o volume por hectare (Borralho et al. 2007). 

Os testes clonais de campo, devido à multiplicidade de factores ambientais que 

intervêm na formação do fenótipo observado, não permitem identificar nem quantificar 
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com rigor as variáveis que contribuem para a plasticidade fenotípica dos clones. De 

facto, o efeito das condições ambientais pode considerar-se aleatório, na medida em que 

não sendo controlado, representa uma amostra do total de áreas de plantação possíveis 

(Matheson e Cotterill 1990). No entanto, os experimentos em condições controladas, 

estudando efeitos fixos e separando os efeitos de cada factor (e.g., temperatura, luz, 

disponibilidade de água), são uma ferramenta que poderá permitir uma avaliação mais 

precisa do valor dos genótipos e complementar a informação de campo. Assim, e dadas 

as grandes variabilidades edafo-climáticas das áreas de plantação, a exploração das 

diferenças entre os potenciais genéticos dos clones de E. globulus é uma possibilidade 

de aumentar a produtividade da floresta clonal. 

 

 

1.2. Escolha dos dois clones em estudo 

 

O material vegetal utilizado no presente estudo consistiu em rametos de dois 

clones de E. globulus Labill., designados CN5 e ST51, pertencentes à população de 

produção do programa de melhoramento desenvolvido pelo RAIZ (Instituto de 

Investigação da Floresta e Papel). Os ortetos destes clones foram árvores de uma sub-

população de uma mata comercial, seleccionadas por apresentarem elevado 

crescimento, bom estado fitossanitário e fuste rectilíneo. O orteto do clone CN5 foi 

seleccionado em 1987 na Caniceira (Abrantes) e o orteto do clone ST51 em 1986 na 

zona de Santo Tirso. Estas árvores seleccionadas foram abatidas, os seus rebentos de 

touça recolhidos e postos a enraizar por macro-estacaria. Posteriormente, os rametos 

destes clones foram plantados em ensaios clonais distribuídos pela área de cultivo do 

eucalipto. 

A escolha destes clones para este estudo deveu-se aos seus desempenhos 

contrastantes nos ensaios clonais em distintas condições edafo-climáticas. Assim, 

observou-se que em ensaios de campo sujeitos a elevados défices hídricos estivais, o 

clone CN5 apresentava uma maior taxa de sobrevivência (17%) e de crescimento (14%) 

quando comparado com o clone ST51. Por outro lado, em ensaios instalados em zonas 

de elevada produtividade, onde a mortalidade é praticamente nula, o clone ST51 

apresentava maiores valores de produtividade (13%) do que o clone CN5. Com base 

nestas observações, assumiu-se que o clone CN5 teria características de resistência à 
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secura ao contrário do clone ST51 que seria sensível à deficiência hídrica. Desta forma, 

o fundamento desta escolha é também a possibilidade do estudo dos processos 

biológicos envolvidos na resposta a diferentes stresses, em clones que à partida 

apresentarão características morfológicas e fisiológicas contrastantes. 

 

 

1.3. Objectivo geral e interesse do estudo 

 

O objectivo deste estudo é avaliar os mecanismos de resistência a diferentes 

stresses em clones de Eucalyptus globulus e identificar marcadores morfológicos, 

fisiológicos e bioquímicos associados às principais diferenças nos processos biológicos 

envolvidos. Como hipótese geral considera-se que para sobreviver e crescer num 

ambiente com défices hídricos sazonais, como são as regiões de clima Mediterrânico, as 

plantas perenifólias ou reduzem a transpiração, a assimilação de carbono e o 

crescimento, economizando água durante o período de défice hídrico, ou utilizam maior 

percentagem da água disponível, com raízes profundas. Em ambos os casos as plantas 

têm a maior parte da sua assimilação de carbono e de crescimento no período chuvoso, 

i.e., no Inverno Mediterrânico e sujeitas ao efeito das baixas temperaturas. 

Clones com diferentes capacidades produtivas face às disponibilidades em água 

devem ter caracteres biológicos distintos. Assim, estudaram-se em particular as 

respostas morfológicas, fisiológicas e bioquímicas dos clones a défices hídricos, a 

baixas temperaturas e a temperaturas negativas. A compreensão dos processos 

biológicos e a identificação das principais diferenças entre clones nas respostas aos 

diferentes stresses têm interesse pela aplicação desse conhecimento na selecção da 

população de melhoramento, na distribuição dos genótipos da população de produção e 

na implementação da silvicultura clonal: 

 

a) Conhecimento biológico dos clones. Para além da compreensão dos processos 

biológicos os experimentos em condições controladas permitem identificar e 

caracterizar as plasticidades fenotípicas dos clones. Esta informação tem uma 

importância fulcral, sobretudo como complemento aos resultados dos ensaios 

clonais, permitindo uma melhor interpretação e consolidação desses resultados. 
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b) Programa de melhoramento genético. Este conhecimento permite fundamentar 

as decisões e apoiar os critérios de selecção, quer na população de 

melhoramento, quer na população de produção. Por outro lado, este 

conhecimento é imprescindível para a identificação dos genes responsáveis 

pelas diferenças genéticas e aplicação da genética molecular aos programas de 

melhoramento. 

c) Eficiência da silvicultura clonal. Uma identificação e quantificação dos efeitos 

ambientais no crescimento, em condições controladas, permite prever as 

respostas dos clones em condições naturais e apoiar as decisões de distribuição 

dos clones pelas diferentes áreas edafo-climáticas, aumentando a produtividade 

dos povoamentos. 

 

 

1.4 Estrutura da dissertação 

 

A presente dissertação baseia-se essencialmente nos artigos científicos que 

foram publicados ao longo do tempo e à medida que os trabalhos de investigação se 

desenvolveram. Naturalmente, os resultados que se foram obtendo, a sua análise e 

discussão, suscitaram novas questões e, por vezes, aconselharam novas metodologias 

ou apontaram novas abordagens de estudo. Assim, e para maior consistência da 

dissertação, procurou-se, através da presente introdução (Capítulo 1), fazer o 

enquadramento do estudo, expor o seu principal objectivo e interesse. Depois, do 

Capítulo 2 ao Capítulo 6, apresentam-se em sequência cronológica – e porventura 

desprovida de lógica funcional – os artigos publicados ou submetidos em revistas 

internacionais e que são os seguintes: 

 

Capítulo 2 – Costa e Silva, F.; Shvaleva, A.; Maroco. J.P.; Almeida, M. H.; Chaves, 

M.M.; Pereira, J.S. (2004). Responses to water stress in two Eucalyptus globulus clones 

differing in drought tolerance. Tree Physiology 24:1165-1172. 

 

Capítulo 3 – Shvaleva, A.; Costa e Silva, F.; Breia, E.; Jouve, L.; Hausman, J.F.; 

Almeida, M. H.; Maroco. J.P.; Rodrigues, M.L.; Pereira, J.S.; Chaves, M.M. (2006). 
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Metabolic responses to water deficit in two Eucalyptus globulus clones with contrasting 

drought sensitivity. Tree Physiology 26:239-248. 

 

Capítulo 4 – Costa e Silva, F.; Shvaleva, A.; Almeida, M. H.; Chaves, M.M.; Pereira, 

J.S. (2007). Responses to chilling of two Eucalyptus globulus clones with contrasting 

drought resistance. Functional Plant Biology 34:793-802. 

 

Capítulo 5 – Shvaleva, A.; Costa e Silva, F.; Scotti, P.; Oufir, M.; Hausman, J.F.; 

Guignard, C.; Ramos, P.; Almeida, M.H.; Rodrigues, M.L.; Pereira, J.S.; Chaves, M.M. 

(2008). Physiological and biochemical responses to low non-freezing temperature of 

two Eucalyptus globulus clones differing in drought resistance. Annals of Forest 

Science, 65, 204. DOI: 10.1051/forest:2007087. 

 

Capítulo 6 – Costa e Silva, F.; Shvaleva, A.; Broetto, F.; Ortuño, M. F.; Almeida, M. 

H.; Rodrigues M.L.; Chaves, M.M.; Pereira, J.S. (2008). Responses to chilling and 

freezing in two Eucalyptus globulus clones with contrasting drought resistance. Tree 

Physiology (Submetido). 

 

Assim, os artigos publicados, respeitantes aos capítulos 2 a 5, foram revistos por 

investigadores reconhecidos internacionalmente, especialistas nas matérias em questão, 

sendo uma medida da sua relevância o Factor de Impacto (IF) da respectiva revista. 

Deste modo, para o ano de 2006, o IF da revista “Tree Physiology” foi de 2.297, para a 

“Functional Plant Biology” foi de 2.272 e para a “Annals of Forest Science” foi de 

1.29. 

Finalmente, no Capítulo 7, faz-se um resumo dos resultados obtidos e das suas 

implicações, tecendo-se umas breves considerações finais. 
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2.  Responses to water stress in two Eucalyptus globulus clones 

differing in drought tolerance 

 

 

Summary 

 

We evaluated drought resistance mechanisms in a drought-tolerant clone (CN5) and a 

drought-sensitive clone (ST51) of Eucalyptus globulus Labill. based on the responses to 

drought of some physiological, biophysical and morphological characteristics of 

container-grown plants, with particular emphasis on root growth and hydraulic properties. 

Water loss in excess of that supplied to the containers led to a general decrease in growth 

and significant reductions in leaf area ratio, specific leaf area and leaf-to-root area ratio. 

Root hydraulic conductance and leaf-specific hydraulic conductance decreased as water 

stress became more severe. During the experiment, the drought-resistant CN5 clone 

maintained higher leaf water status (higher predawn and midday leaf water potentials), 

sustained a higher growth rate (new leaf area expansion and root growth) and displayed 

greater carbon allocation to the root system and lower leaf-to-root area ratio than the 

drought sensitive ST51 clone. Clone CN5 possessed higher stomatal conductances at 

moderate stress as well as higher hydraulic conductances than Clone ST51. Differences in 

the response to drought in root biomass, coupled with changes in hydraulic properties, 

accounted for the clonal differences in drought tolerance, allowing Clone CN5 to balance 

transpiration and water absorption during drought treatment and thereby prolong the 

period of active carbon assimilation. 

 

Keywords: acclimation, allocation, hydraulic properties, root growth, water stress. 
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Introduction 

 

Economically, Eucalyptus globulus Labill. is one of the most important members 

of its genus because of its high growth rate and superior pulp properties. More than 

700,000 ha have been planted with E. globulus in Portugal. As a result of a combination 

of breeding programs and improved techniques for the rooting of cuttings, Portuguese 

plantations have recently been established with clones selected for their high growth 

rates, high pulp yield and environmental adaptability. 

Portugal has a Mediterranean climate with a severe summer drought, even though 

winter rain may be abundant. To develop improved breeding programs, it is important to 

gain a better understanding of the physiological responses to drought of clones selected 

for drought tolerance. Plant responses to water stress involve morphological and 

biochemical changes that lead first to acclimation and later, as water stress becomes more 

severe, to functional damage and the loss of plant parts (Chaves et al. 2003). During the 

acclimation phase, water stress typically results in slower growth rates because of 

inhibition of cell expansion and reduced carbon assimilation (Osório et al. 1998a, 1998b). 

Aboveground plant growth can be further decreased by changes in carbon partitioning 

that favor root system development (Sharp and Davies 1979), mainly because root growth 

is less affected by drought than shoot growth (Sharp 1990, Hsiao and Xu 2000). A change 

in the balance between leaf surface (highly sensitive to drought) and root surface (less 

sensitive to drought) has obvious advantages for survival, because it permits water 

savings in relation to water uptake potential. Improved water balance also depends on the 

capacity to transport water through the plant from roots to leaves. As water stress 

increases in severity, plant survival depends on the maintenance of xylem integrity as a 

hydraulic conducting system (Sperry et al. 2002). Root and leaf-specific conductances are 

generally lower in drought-adapted species than in more water-demanding species 

(Nardini et al. 1999). There are also differences in xylem cavitation vulnerability to 

drought, which is lower (occurs at more negative water potentials) in drought-tolerant 

plants than in more mesophytic plants (Tyree and Ewers 1991, Tyree 1999). 
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Plant responses to drought depend heavily on the root-to-shoot balance; however, 

shoots and leaves have been studied in greater detail than roots. For the plant to acclimate 

to water stress and survive drought, roots have to maintain a viable water flow path along 

the xylem, and root cells have to withstand some water stress and grow into new 

unexploited soil to absorb water. Because the roles of root and leaf responses to drought 

in E. globulus have not been fully elucidated, we evaluated the relationship between 

water supply and demand and the hydraulic properties of two E. globulus clones differing 

in drought sensitivity. Specifically, we studied the drought responses of some 

physiological, biophysical and morphological plant variables, with particular emphasis on 

hydraulic properties and root growth. 

 

 

Materials and methods 

 

Plant materials and treatments 

 

We selected a drought-tolerant clone (CN5) and a drought sensitive clone (ST51) 

of E. globulus. Based on observations in field plantations subjected to summer drought, 

Clone CN5 has 29% higher survival and 41% higher growth rates (volume ha–1) than 

Clone ST51. Rooted cuttings of both clones were grown in plastic containers filled with 

peat (60%) and Styrofoam beads (40%), and transplanted after 11 months to 10-l pots 

filled with a fine sandy soil. One month after transplanting, 32 cuttings per clone were 

transferred from the nursery to a controlled-environment greenhouse that provided a day/ 

night temperature of 22/16 °C and relative humidity of about 60%. The mean reduction in 

solar irradiance in relation to outdoor conditions on sunny days was about 25% (Faria et 

al. 1996). Sixteen cuttings per clone were assigned to either a well-watered regime (WW; 

water supplied to equal transpirational losses) or a water-stress regime (WS; water 

supplied equal to 50% of transpirational losses). Each pot was enclosed in a dark plastic 

bag tied to the stem to prevent soil evaporation. The experiment lasted 7 weeks 

(September 9 to October 29, 2002). All plants were watered to runoff on the first day and 

then twice per week (Mondays and Fridays). To avoid effects caused by 
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microenvironmental differences (light gradient), the plants were sorted by treatment and 

moved to the neighboring position every watering day. 

 

Measurements 

 

Transpiration rate in every plant per clone and treatment (n = 16) was determined 

by measuring differences in pot weight between successive waterings. Stomatal 

conductance (gs) was measured in fully expanded leaves at midday (solar time) with a 

steady-state porometer (Li-1600, Li-Cor, Lincoln, NE). The leaf-to-air vapor pressure 

deficit during gs measurements varied between 1.61 and 2.84 kPa. Leaf xylem water 

potential (predawn, Ψpd, and midday, Ψmd) was measured with a Scholander-type 

pressure chamber (PMS Instruments, Corvallis, OR). Measurements of gs, Ψpd and Ψmd 

were made on six plants per treatment (n = 6) four times during the experiment (Weeks 1, 

3, 5 and 7). At Weeks 1, 5 and 7, stem xylem water potential (Ψx) was measured at 

midday in attached leaves (n = 6) that were sealed in aluminum bags at dawn (Jones 

1992). Hydraulic conductances of the plant–soil system (Ksp) and leaf (Kl) were 

calculated on a leaf area basis, assuming Ψpd is an estimate of the soil water potential 

(Jones 1992, Saito et al. 2003): 

 

 
mdpd

sp
ΨΨ

=
-
E

K   and 
mdx

l
ΨΨ

=
-
E

K   

  

where E is transpiration rate (m3 m–2 s–1) through the system measured between predawn 

and midday. 

Plant biomass was evaluated at Weeks 1, 5 and 7 by destructively sampling five 

plants per treatment (n = 5). These plants were used to determine morphological 

parameters (height, diameter, number of branches, biomass partition, leaf area and root 

length). Specific leaf area (SLA) was calculated as the ratio between leaf area and leaf 

dry mass (DM), and leaf area ratio (LAR) was calculated as the ratio between total leaf 

area and total plant DM. All dry mass values were obtained after 48 h at 80 °C. Leaves 

and roots were scanned and leaf area and root parameters (length, diameter, area) were 
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calculated with Delta T scan software (Delta-T Devices, Hoddeson, U.K.). Roots were 

assumed to be cylindrical and root surface area was calculated by multiplying the 

projected area by π. 

Nondestructive measurements of leaf expansion on selected leaf blades (from the 

second leaf pair) were recorded every 3 days on six plants per treatment (n = 6), from 

Day 12 to Day 47 (one stem leaf per plant). When the selected leaves reached full 

expansion (during Week 5), the measurements began again with the youngest expanding 

leaves. 

 

Root water flow 

 

Root water flow was evaluated at Weeks 1, 5 and 7 in the same root systems as 

the biomass study (n = 5). Steady-state water flow rates in whole root systems (Qv; mm3 

s–1 plant–1) were measured by the hydrostatic pressure method (Wan et al. 1999, Wan and 

Zwiazek 1999) with some modifications. A rigid plastic cylinder was inserted into a 

pressure chamber and filled with distilled water. The plant stem was cut 20 mm above the 

cutting end and the root system immediately immersed in distilled water in the pressure 

chamber. Samples were pressurized at 0.3, 0.4, 0.5, 0.6 and 0.7 MPa. Flow was measured 

by collecting the exudate for 5 min at each pressure in a pre-weighed capillary vial 

containing cotton wool that was placed over the cut stem protruding through the stopper 

in the pressure chamber. Volume flow density (Jv; m3 m–2 s–1) was determined as a 

steady-state flow rate per unit of root surface area. Root hydraulic conductance (K; mm3 

s–1 MPa–1) was calculated as the slope of pressure versus flow rate where the relationship 

was linear. Because this method measures hydraulic conductance on branched systems 

with distal components present in parallel, hydraulic conductivity cannot be accurately 

calculated (Kolb et al. 1996). Measurements were standardized for the size of the root 

system by dividing K by the total leaf area of the plant, thereby obtaining the leaf-specific 

hydraulic conductance (LSC; m s–1 MPa–1). 
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Data analysis 

 

Data were subjected to two-way analysis of variance (ANOVA) to test for the 

effects and interactions of watering treatment and clone, using the STATISTICA 

(Version 6, 2001, StatSoft, Tulsa, OK) data analysis software system. All variables were 

tested for normality and homogeneity of variances. Differences were considered 

statistically significant at P ≤ 0.05. 

 

 

Results 

 

Transpiration 

 

Under well-watered conditions, E per plant increased throughout the experiment 

(Figure 1A). Well-watered ST51 plants, with their larger leaf area, exhibited a higher E 
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Figure 1. Leaf transpiration rate (E) 
expressed on a per plant basis (A) 
and leaf area basis (B) in well-
watered (WW) and water-stressed 
(WS) plants belonging to a drought-
tolerant clone (CN5) and a drought-
sensitive clone (ST51) of 
Eucalyptus globulus. Data are 
means ± SE (n = 11–16). 
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per plant than the CN5 plants. However, on a leaf area basis, the clones had similar E 

values (Figure 1B). In water-stressed plants of both clones, E increased until Day 14, and 

then decreased until the end of the experiment (Figures 1A and 1B). 

 

Plant water status and stomatal conductance 

 

Plant water status was assessed by measuring Ψpd and Ψmd. Well-watered plants of 

both clones maintained Ψpd at about –0.30 MPa throughout the experiment, whereas Ψpd 

of water-stressed plants declined throughout the experiment and, in Week 7, it fell to –

1.71 ± 0.06 and –2.43 ± 0.27 MPa in CN5 and ST51, respectively. In both clones, the leaf 

water potential curves of the water-stressed plants can be divided into two phases 

(Figures 2A and 2B). In the first phase, moderate water stress developed slowly from the 

beginning of the experiment until Week 5. During the second phase, from Week 5 to 

Week 7, water stress became increasingly more severe. Midday leaf water potential did 

not vary significantly in well-watered plants, whereas by the end of the experiment, it 

declined to –2.46 ± 0.05 and –3.26 ± 0.26 MPa in water-stressed plants of CN5 and 

ST51, respectively (Figure 2B). Not only were the differences between watering regimes 

statistically significant (P < 0.001), but there were also significant differences between 

clones. Clone CN5 had higher Ψpd and Ψmd than ST51 during the experiment (P < 0.05). 

Water-stressed ST51 plants exhibited a greater difference between Ψpd and Ψmd than 

water-stressed CN5 plants until Week 5, indicating that they experienced more severe 

stress during the day. 

The fall in Ψpd and Ψmd in water-stressed plants of both clones was concomitant 

with a decline in gs from 167 mmol m–2 s–1 in Week 1 to about 12 mmol m–2 s–1 in Week 

7 (Figure 2C). Water-stressed ST51 plants displayed significantly lower gs than water-

stressed CN5 plants in Week 3 (P < 0.05). Well-watered plants of both clones had similar 

gs that increased to about 342 mmol m–2 s–1 at Week 7. The increase in the gs of well-

watered plants from Week 3 to Week 5 was probably associated with changing light 

conditions because it closely followed the PPF curve (Figure 2D). 
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Growth response 

 

Water stress led to a general decrease in growth that was reflected in reductions in 

total biomass, leaf area, number of branches and total root length (Table 1). 

Under well-watered conditions, Clone ST51 had a greater leaf area than Clone 

CN5 (Figure 3A), which explains its higher growth rate. Despite having similar leaf areas 
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Figure 2. Predawn leaf water 
potential (Ψpd; A), midday leaf 
water potential (Ψmd; B), 
midday stomatal conductance 
(gs; C) and photosynthetic 
photon flux (PPF; D) in well-
watered (WW) and water-
stressed (WS) plants belonging 
to a drought-tolerant clone 
(CN5) and a drought-sensitive 
clone (ST51) of Eucalyptus 
globulus. Data are means ± SE 
(n = 6). 
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Table 1. Total biomass, leaf area, number of branches, total root length, dry mass partitioning (percent of total biomass) and leaf 
growth analysis in well-watered (WW) and water-stressed (WS) plants belonging to a drought-tolerant clone (CN5) and a drought-
sensitive clone (ST51) of Eucalyptus globulus evaluated at the end of experiment (Week 7). Data are means ± SE (n = 5). Symbols: 
*, **, *** represent statistical significance at P = 0.05, 0.01 and 0.001, respectively; and ns = nonsignificant at P = 0.05. 
 

Significance of 2-way 

ANOVA Morphological 
characteristics 

WW CN5 WW ST51 WS CN5 WS ST51 

Clone (C) 
Watering 
regime (W) 

C x W 

Total biomass (g) 15.4±1.1 18.7±1.6 9.2±0.6 9.3±0.4 ns *** ns 
Leaf area (m2) 0.12±0.007 0.16±0.008 0.05±0.005 0.05±0.003 ** *** ** 

Number of branches 10.8±0.6 10.0±0.3 6.2±0.7 5.6±0.5 ns *** ns 

Total root length (m) 111±10 121±21 98±13 59±4 ns * ns 

Dry-mass partitioning        
Stem (%) 27.8±1.5 23.8±1.2 31.7±1.3 35.4±1.3 ns *** * 

Branches (%) 5.3±0.22 6.4±0.24 1.7±0.63 2.8±0.52 * *** ns 

Leaves (%) 51.4±1.6 56.0±1.1 46.8±2.3 48.4±1.3 ns ** ns 

Root (%) 15.5±0.8 13.7±1.2 19.8±1.7 13.5±0.8 ** ns ns 

Leaf growth analysis        
Leaf area ratio (m2 kg-1) 8.1±0.3 8.8±0.5 5.8±0.3 5.7±0.3 ns *** ns 

Specific leaf area (m2 kg-1) 15.6±0.3 15.7±0.6 12.4±0.3 11.8±0.4 ns *** ns 
Leaf area / root area 0.98±0.10 1.12±0.13 0.55±0.12 0.76±0.08 ns ** ns 
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at the beginning of the experiment (Figure 3A), Clone CN5 had a greater total root length 

than Clone ST51 (P < 0.05). At Week 5, both clones displayed greater increases in root 

length in the water-stress regime than in the well-watered regime (59 and 16% in CN5 

and ST51, respectively) (P < 0.05). Thereafter, water-stressed CN5 plants showed 

continual increases in root growth (32 and 66% at Weeks 5 and 7, respectively), whereas 

root growth ceased completely after Week 5 in water-stressed ST51 plants (Figure 3B). 

 

 

At the end of the 7-week experiment, water-stressed plants of both clones had 

significantly decreased the proportion of biomass allocated to branches and leaves (Table 

1). On the other hand, the water stress treatment caused an increase in the ratio of stem 

axis biomass to total biomass, particularly in ST51 (11.6%). In addition to differences in 

responses to water availability, the clones differed in biomass partitioning. The CN5 

plants invested a larger proportion of total dry mass in roots than the ST51 plants 

(particularly water-stressed plants), whereas ST51 plants invested a larger proportion of 

total dry mass in leaves and branches, especially under well-watered conditions. 
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At Week 7, decreases in leaf area ratio and specific leaf area were observed in 

water-stressed plants of both clones, with no statistically significant clonal differences 

(Table 1). As a result of restrained leaf area growth and sustained root growth in response 

to drought (Figure 3), the leaf area/root area ratio decreased to 0.55 in CN5 and to 0.76 

for ST51. 

Leaf growth was strongly correlated with water supply (Figure 4). The effect of 

water shortage on leaf area expansion was detectable in the first phase of the experiment 

(up to Week 4), with a decrease of 24 and 44% in clones CN5 and ST51, respectively (P 

< 0.001). In this phase of moderate stress, leaf area expansion was 25% greater for water-

stressed CN5 plants than for water-stressed ST51 plants. In the second phase (from Week 

5 to Week 7), when severe water stress developed, leaf growth decreased by 44 and 53% 

in water-stressed plants of CN5 and ST51, respectively (P < 0.001). 

 

Hydraulic properties 

 

Root water flux (Jv) decreased from the beginning of the experiment, particularly 

in plants in the water stress treatment (Figure 5A), and was strongly correlated with root 

growth. The watering regime had a significant effect on Jv, with higher values for well-

watered plants (P < 0.001). 
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Figure 4. Leaf area expansion measured in the first and second leaves that appeared after 
the beginning of the experiment in well-watered (WW) and water-stressed (WS) plants 
belonging to a drought-tolerant clone (CN5) and a drought-sensitive clone (ST51) of 
Eucalyptus globulus. Data are means ± SE (n = 6). 
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Root hydraulic conductance (K) was reduced by soil water deficits in Weeks 5 

and 7 (P < 0.01 and P < 0.001, respectively) (Figure 5B). Although there was no 

significant clone effect on K, there was a significant interaction between clone and 

treatment effects (P < 0.05), so that, by Week 7, ST51 plants exhibited the highest 

(+36%) and the lowest (–45%) K in well-watered and water-stressed conditions, 

respectively. At Week 7, both CN5 and ST51 water-stressed plants displayed a decrease 

in K (–27 and –35%, respectively) compared with values at Week 5. 

Throughout the experiment, LSC decreased in plants in all treatments (Figure 5C).  
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However, LSC declined in well-watered plants because of a large increase in leaf area, 

whereas it declined in water-stressed plants because of reduced K. During drought 

treatment, Clone CN5 maintained higher LSC than Clone ST51 (+43% at Week 5 and 

+79% at Week 7). 

In well-watered plants, hydraulic conductance of the soil–plant system (Ksp) 

remained stable throughout the experiment, although Clone ST51 clone had higher mean 

values than Clone CN5 (0.54 × 10–7 versus 0.69 × 10–7 m s–1 MPa–1 in CN5 and ST51, 

respectively) (Figure 6A). In both clones, Ksp decreased with increasing soil water stress 

at Weeks 5 and 7 (P < 0.001); however, water-stressed CN5 plants displayed a smaller 

decrease in Ksp in the first 5 weeks and maintained higher values until Week 7 than water-

stressed ST51 plants (on average, +26%). 

The development of drought stress led to comparable trends in leaf conductance 

(Kl) in both clones (Figure 6B). There were significant treatment differences in Kl at 

Weeks 5 and 7 (P < 0.001 and P < 0.01, respectively). Nevertheless, water-stress had a 

greater effect on Kl of ST51 plants compared with CN5 plants at both Weeks 5 and 7 (–

54 and –58%, respectively). 
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Discussion 

 

We observed a reduction of about 46% in mean total biomass growth in young 

container-grown Eucalyptus plants when water supplied to the pots was only 50% of 

plant water use. This treatment resulted in a 63% decrease in total leaf area and a 45% 

decrease in the ratio of leaf area to total biomass relative to values for well-watered 

control plants. In addition to the decrease in leaf area, stomata of water-stressed plants 

closed for longer each day, contributing to decreased growth as a result of reduced carbon 

assimilation (Figures 1 and 2C). 

Acclimation to slowly declining soil water availability occurs before the onset of 

tissue dehydration and results in physiological and morphological adjustments that 

improve plant water balance (Pereira and Chaves 1993). We distinguished an initial 

period of slowly developing water stress during the first 5 weeks of treatment when the 

tested clones responded differently. Stomatal conductance in ST51 plants fell steeply in 

response to 3 weeks of moderate water stress, following which the plants entered a period 

of severe water stress. As a consequence, the plants had only limited time for drought 

acclimation. A plant’s ability to prolong moderate stress or postpone severe stress and 

thereby maintain a more favorable leaf water status during the first phase of a drought 

may enable the plant to avoid damage by severe water stress later on. We observed that, 

in response to water stress, the drought-tolerant CN5 clone had a significantly smaller 

difference between Ψpd and Ψmd than the drought-sensitive ST51 clone, leading to a more 

favorable leaf water status as a result of a higher water supply for a given stomatal 

conductance (Figure 1). In addition, under drought conditions, CN5 plants had noticeably 

greater root length (Figure 3B) and rate of new leaf expansion (Figure 4) than ST51 

plants. The maintenance of a continued higher growth rate in young leaves of CN5 plants 

under drought conditions compared with ST51 plants may have contributed to recovery 

of carbon assimilation after rehydration (data not shown), because the photosynthetic 

capacity of E. globulus is robust during periods of drought (Quick et al. 1992) and 

younger leaves are generally less affected by drought than older leaves (Pereira and 

Chaves 1993).  



Capítulo 2 – E. globulus responses to water stress 

 35 

Until Week 5, increases in root length were greater in water-stressed plants than 

in well-watered plants of both clones (Figure 3B), indicating that water stress had less 

effect on root growth than on leaf growth (Sharp 1990, Hsiao and Xu 2000). Similar 

results were reported by Blum et al. (1983) and by Mc-Donald and Davies (1996). 

Enhanced biomass partitioning to roots may result from a drought-induced reduction in 

the sink strength of the aboveground plant tissues, making more assimilates available for 

root growth. 

Compared with the drought-sensitive ST51 clone, the drought-tolerant CN5 clone 

had a higher investment in root system development before drought was imposed 

(assessed on Day 1 of the experiment), suggesting that this characteristic partially 

accounts for the enhanced drought tolerance exhibited by this genotype. In addition, 

water-stressed CN5 plants showed continually greater root growth until Week 7, whereas 

root growth of water-stressed ST51 plants ceased completely after Week 5 (Figure 3B). 

Thus, we conclude that the initially larger root system of Clone CN5, coupled with its 

ability to rapidly increase the proportion of biomass allocated to the root, resulting in 

optimization of the relationship between transpiration area and absorption area under 

drought conditions, explains its superior drought resistance compared with plants of 

Clone ST51. Moreover, we predict that, in field conditions where soil volume is 

unrestricted, the benefits of a larger investment in root extension under drought 

conditions will be enhanced because Clone CN5 will be able to access as yet unexplored 

volumes of soil, resulting in increased water uptake. 

Water transport in trees is regulated by the hydraulic conductance of the soil–

root–shoot–leaf pathway. Because stomatal conductance and photosynthesis depend on 

the transport of water from soil to leaf to atmosphere, changes in whole-tree hydraulic 

conductance may affect gas exchange (Tyree and Ewers 1991, Hubbard et al. 1999). It is 

possible that, with the intensification of water stress after Week 5, a hydraulic limitation 

developed – mainly in Clone ST51 – that considerably reduced young leaf expansion and 

root growth. During drought, ST51 plants displayed a greater restriction in water supply 

to leaves, with both lower K and LSC values (Figures 5B and 5C) and lower Ksp and Kl 

values (Figure 6) than CN5 plants.  
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Several studies have shown that changes in whole-plant hydraulic conductance 

affect gs and photosynthesis (Bond and Kavanagh 1999, Wan et al. 1999, Brodribb and 

Field 2000, Hubbard et al. 2001). In our study, although midday gs was low after Week 5 

in water-stressed plants of both clones (Figure 2C), plants with a more limited water 

supply closed their stomata earlier in the day than plants with a greater water supply. 

When measured in the afternoon in Week 5, gs of water-stressed ST51 plants was 45% 

lower than in water-stressed CN5 plants (data not shown), indicating a difference 

between the clones in hydraulic systems. In well-watered conditions, despite similar total 

root system length, Clone ST51 exhibited higher K and Ksp in both Weeks 5 and 7 

compared with Clone CN5. This matches the general findings of lower root and shoot 

hydraulic conductances in drought-adapted species (Nardini et al. 1999). However, we 

cannot disregard the possibility that genotypic differences in root architecture influenced 

the hydraulic systems. We can assume that water-stressed plants were subjected to a 

certain loss in conductance as a result of embolism or cavitations, or both, given both the 

low Ψx values that were attained and the higher K values exhibited by well-watered plants 

throughout the experiment. At Week 5, for similar root system dimensions between 

clones (Figure 3B), water-stressed Clone ST51 displayed a significantly lower K 

(–52%), presumably as a result of cavitation. Compared with water-stressed CN5 plants, 

water-stressed ST51 plants displayed lower stem xylem pressures (–33% at Week 5) and 

lower K values. We speculate that, compared with Clone CN5, Clone ST51 suffered from 

a greater cavitation-induced loss in conductance, which took place before Week 5. 

Differences in vulnerability to cavitation have been associated with drought tolerance 

both between species (e.g., Tyree and Ewers 1991, Cochard 1992) and between 

genotypes of the same species (e.g., Tognetti et al. 1997, Vander Willigen and 

Pammenter 1998). 

In summary, our data show that successful drought acclimation in E. globulus 

clones may be the result of different processes, including changes in root biomass 

coupled with changes in hydraulic properties of the root systems. A greater allocation of 

biomass to roots and higher hydraulic conductances made it possible to prolong the 

water-stress-free period for active carbon assimilation in the clone that was least 

susceptible to drought. These developmental changes, which maintained the balance 
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between transpiration and absorption areas when soil water availability declined, seemed 

to be the key determinant of performance under drought conditions. 
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 3. Metabolic responses to water deficit in two Eucalyptus globulus 

clones with contrasting drought sensitivity 

 

 

Summary 

 

We compared the metabolic responses of leaves and roots of two Eucalyptus globulus 

Labill. clones differing in drought sensitivity to a slowly imposed water deficit. 

Responses measured included changes in concentrations of soluble and insoluble 

sugars, prolin, total protein and several antioxidant enzymes. In addition to the general 

decrease in growth caused by water deficit, we observed a decrease in osmotic 

potential when drought stress became severe. In both clones, the decrease was greater 

in roots than in leaves, consistent with the observed increases in concentrations of 

soluble sugars and proline in these organs. In roots of both clones, glutathione 

reductase activity increased significantly in response to water deficit, suggesting that 

this enzyme plays a protective role in roots during drought stress by catalyzing the 

catabolism of reactive oxygen species. Clone CN5 has stress avoidance mechanisms 

that account for its lower sensitivity to drought compared with Clone ST51.  

 

Keywords: antioxidant enzymes, osmotic potential, proline, sugars, water stress. 
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Introduction 

 

Soil and atmospheric water deficits are among the most important factors 

limiting plant growth and photosynthesis. Both kinds occur during the Mediterranean 

summers, together with high temperatures and high irradiances. Eucalyptus globulus 

Labill., an economically valuable species in Portugal, is an evergreen tree that can 

survive all but extreme Mediterranean summer conditions. It grows best along the 

Atlantic coast where the Mediterranean climate is tempered by oceanic influence 

(Pereira and Chaves 1993). 

To cope with periods of drought, plants rely on various drought-avoidance and 

drought-tolerance mechanisms that vary with genotype (Chaves et al. 2002). Adaptive 

mechanisms enabling plants to withstand abiotic environmental stress include changes 

in morphological, physiological and biochemical characteristics such as: (1) root 

system deph (Volaire et al. 1998); (2) control over leaf transpiration rates (Maroco et 

al. 1997) or transpirational surface, either through leaf abscission or growth inhibition 

(Chaves et al. 2003, Munné-Bosch and Alegre 2004); (3) osmoprotectant pool sizes 

(Delauney and Verma 1993); and (4) tissue dehydration tolerance (Volaire et al. 

1998). At the cellular level, drought can affect the production of reactive oxygen 

species (ROS) (Smirnoff 1998), that may play a role in intracellular signaling (Finkel 

1998) beside causing oxidative stress, which can be diagnosed by the accumulation of 

lipid peroxides, oxidized proteins and modified DNA bases (Rubio et al. 2002). 

Detoxification of ROS is dependent on a system of antioxidant enzymes and 

metabolites (Polle and Rennenberg 1992). Enzymes such as glutathione reductase 

(GR), ascorbate peroxidase (APX), superoxide dismutase (SOD) and catalase (CAT) 

play a key role in the scavenging of ROS such as superoxide (O2
-), hydrogen peroxide 

(H2O2), hydroxyl (OH.) and singlet oxygen (1O2), which are the initiators of a reaction 

chain leading to the degradation of cellular components (Sgherri et al. 2000). Under 

optimal growth conditions, antioxidant enzymes and metabolites from leaves detoxify 

ROS, thus minimizing oxidative damage (Smirnoff 1998). During periods of 

environmental stress, e.g., periods of drought or high irradiance, additional protective 

processes involving β-carotene, zeaxanthin, and anteraxanthin synthesis participate in 

the deactivation of ROS (Garcia-Plazaola et al. 1997, Medrano et al. 2002). 
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Although the antioxidant defenses of trees have been studied in relation to 

environmental stresses, such as high altitude (Polle and Rennenberg 1992), pollution 

(Wingsle and Hallgren 1993) and low temperature (Nakagara and Sagisaka 1984), 

few studies have focused on the activity of such systems in response to water deficits, 

and rarely in water-stressed eucalyptus plants (Osawa and Namiki 1985, Osawa et al. 

1992). Because some regions in which E. globulus is grown commercially, e.g., 

southern Portugal, experience hot, dry summers, knowledge of the role of antioxidants 

as a protective system may be useful in tree breeding programs. 

During dehydration, osmolytes (mainly proline, glycine betaine and sugars) 

can help preserve protein and membrane structure and function (Smirnoff 1998). 

Although changes in soluble and insoluble sugars concentrations in leaves of water-

stressed E. globulus have been studied (Quick et al. 1992), little is known about the 

changes in osmotically active compounds in roots of water-stressed E. globulus.  

Fast growing Eucalyptus species are likely to be severely affected by drought. 

Costa e Silva et al (2004) studied two E. globulus clones differing in drought 

sensitivity in the field (Clone ST51 is more drought sensitive than Clone CN5) and 

found clonal differences in the type and magnitude of response to water stress. The 

better performance of Clone CN5 under drought conditions was associated with faster 

root growth and higher stem hydraulic conductance compared with Clone ST51.  

In recent years, new E. globulus plantations have used clones selected for high 

pulp yield. In Portugal, it is desirable that selected clones are well adapted to the 

Mediterranean summer drought. The present study was undertaken to determine if the 

leaves and roots of E. globulus Clones ST51 and CN5 exhibit metabolic differences 

when subjected to a gradually imposed water deficit. Metabolic responses to water 

deficit were investigated by measuring leaf pigment composition as well as osmotic 

potential, osmotically active compounds (proline, sugars) and enzymes with 

antioxidant activity in leaves and roots. 
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Materials and Methods 

 

Plant material 

 

Rooted cuttings of E. globulus Clones ST51 and CN5, grown in plastic 

containers filled with a 3:2 (v/v) peat:styrofoam mix, were obtained from Aliança 

Florestal, Portugal, and transplanted after 11 months of growth in a nursery to 10-l 

plastic pots filled with a fine sandy soil. One month after transplanting, each pot was 

enclosed in a dark plastic bag tied to the stem to prevent soil evaporation. The potted 

cuttings were placed in a greenhouse in a day/night temperature of 22/16 ºC and a 

relative humidity of about 60%. The mean reduction in solar irradiance in relation to 

outdoor conditions on a sunny day was about 25% (Faria et al. 1996). On September 

9, 2002, 16 cuttings per clone were assigned to a well-watered regime with watering 

equal to transpiration loss. The remaining 16 cuttings per clone were assigned to a 

water-stressed regime with watering equal to 50% of transpiration loss. The amount of 

water supplied was calculated from the difference in pot weight between successive 

watering. All plants were watered to the point of runoff on the first day and then 

watered twice per week (Monday and Friday) according to treatment regime. The 

treatments continued for 7 weeks (September 9 to October 29, 2002). 

 

Plant water status 

 

Predawn (Ψpd ) and midday (Ψmd) leaf water potential were measured daily at 

0500 and 1300 h, respectively, with a Scholander-type pressure chamber (PMS 

Instruments, Corvallis, OR) in six plants per treatment (n = 6).  

Measurements of osmotic potential (Ψπ) were made on previously frozen 6-

mm diameter leaf discs and root segments by thermocouple psychrometry, using C-52 

sample chambers connected to a Wescor HR-33T dew-point microvoltmeter (Wescor, 

Logan, UT). The chambers were calibrated with standard NaCl solutions. After 

thawing, and following a 2-h equilibration period, osmotic potential of the samples 

were measured by the dew-point method. Room temperature during the measurements 

was 20 ± 1 °C.  
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Sampling 

 

At the end of the 7-week treatment, 6-mm diameter leaf discs were collected 

from fully expanded leaves (0.5 g fresh mass) at predawn and root segments were 

excised from the central part of the root system (0.5 g fresh mass and diameter < 2 

mm). Samples were collected from five plants per treatment, frozen immediately in 

liquid nitrogen and stored at −80 ºC until analyzed. 

 

Growth analysis 

 

At the end of the 7-week treatment, the plants were harvested and shoots were 

separated into stem, lateral branches and stem leaves. Roots were gently washed and 

carefully separated from soil and other debris. Plant components were dried for at 

least 48 h at 80 ºC in the oven and cooled in desiccators for dry mass determination. 

Leaves and roots were scanned before drying and leaf area and root parameters 

(length, diameter, area) of each seedling (five plants per treatment) were calculated 

with Delta-T scan software (Delta-T Devices, Cambridge, U.K.). Roots were assumed 

to be cylindrical and root surface area was calculated by multiplying the projected 

area by π. 

 

Soluble and insoluble sugars 

 

Soluble and insoluble sugars in leaves and roots were assayed by the anthrone 

method (Robyt and White 1987). Frozen leaf discs (0.02 g) and root segments (0.05 g) 

were ground with a cold mortar and pestle in liquid N2 with 1 ml of 70% (v/v) 

ethanol. The homogenate was thermomixed twice at 60 ºC for 30 min, centrifuged at 

14,000 g for 5 min and the supernatant used for determination of soluble sugars. To 

extract insoluble sugars from the pellet, 1 ml of acetone was added, the mixture 

centrifuged at 14,000 g for 5 min and the supernatant discarded. One ml of HCl 

(1.1%) was added to the dry pellet, which was thermomixed twice at 60 ºC for 30 min 

and centrifuged at 14,000 g for 5 min. Absorbance of the insoluble sugars in the 

supernatant was determined at 620 nm with a spectrophotometer (U-2001; Hitachi, 

Japan). A calibration curve was prepared with standard glucose solutions.  
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The contribution of sugars and proline to osmotic potential was calculated, 

according to the Van’t Hoff equation: 

 

Ψπ= −  cRT 

 

where c is molal concentration of soluble sugars or proline, R is the gas constant and T 

is absolute temperature. Estimates of the contribution of these solutes to osmotic 

potential were based on the water content of the samples. 

 

Proline and leaf pigments  

 

About 100 mg of fresh plant material was homogenized in 1.5 ml of 3% 

thiobarbituric acid, shaken vigorously for 1 min and centrifuged at 15,000 g for 10 

min at 4 °C. The supernatant was assayed for proline, as described by Bates et al. 

(1973), by incubating 0.5 ml of extract with 1 ml ninhydrin acid and 1 ml glacial 

acetic acid for 1 h at 100 °C. The reaction mixture was rapidly cooled in ice and 1 ml 

of toluene added and mixed vigorously. Absorbance of the toluene phase was 

measured at 520 nm. Proline concentration was determined against a standard curve 

(0 to 0.5 µmol ml-1) with L-proline (Sigma-Aldrich CHEMIE GmbH, Steinheim, 

Germany). 

Pigments were extracted from frozen leaf discs by adding 2 ml acetone:water 

(9:1, v:v) and grinding with a pestle and mortar. The extract was centrifuged at 10,000 

g for 10 min at 4 °C and the supernatant was filtered through a 0.2-µm filter. 

Pigments were analyzed by high performance liquid chromatography (HPLC) as 

described by Wright et al. (1991). 

 

Antioxidant enzymes  

 

For SOD, GR and CAT, frozen leaves (0.5 g fresh mass) and roots (0.5 g fresh 

mass and diameter < 2 mm) were ground with 2% polyvinylpolypyrrolidone (PVPP) 

(Sigma Chemical Co., St. Louis, USA) and sea sand and then homogenized with 5 ml 

of 100 mM phosphate buffer, pH 7.8, containing 2% Triton X-100 (Solon Ind. Pkwy. 

Solon, Ohio) (Gogorcena et al.1995). The same extraction medium supplemented with 
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2% ascorbic acid (10 mM) was used for APX (Nakano and Asada 1981). The 

homogenates were centrifuged at 15,000 g for 20 min and the supernatants assayed 

for enzyme activity. All steps were performed at 4 °C. 

Catalase (EC 1.11.1.6) activity was determined by H2O2 consumption 

measured as the decrease in absorbance at 240 nm, according to the method of Aebi 

(1983). The assay medium contained 50 mM KH2PO4/K2HPO4 (pH 7.0), 40 mM 

H2O2 and 100 µm extract. Catalase activity was calculated based on an extinction 

coefficient of 3.94 mM-1 cm-1. Controls lacking either extract or H2O2 showed no 

changes in absorbance.  

Glutathione reductase (EC 1.6.4.2) was measured by following the oxidation 

of NADPH at 340 nm by a modification of the method of Foyer and Halliwell (1976). 

The assay medium contained 500 mM HEPES (Sigma Chemical) (pH 8.0), 0.25 mM 

EDTA (Sigma Chemical), 2 mM NADPH (Sigma Chemical), 20 mM oxidized 

glutathion (GSSG) and 100 µl extract. Control rates were obtained in the absence of 

GSSG or NADPH. Glutathione reductase activity was calculated based on an 

extinction coefficient of 6.22 mM-1 cm-1. 

Ascorbate peroxidase (EC 1.11.1.11) was measured by a modification of the 

method of Nakano and Asada (1981). The assay medium contained 50 mM 

KH2PO4/K2HPO4 (pH 7.0), 20 mM H2O2, 8 mM ascorbate, and 100 µl extract. 

Control rates were obtained in the absence of extract, ascorbate, or H2O2. Ascorbate 

peroxidase activity was calculated base on an extinction coefficient of 2.8 mM-1 cm-1 

for ascorbate at 290 nm. 

Total superoxide dismutase (EC 1.15.1.1) activity was determined by the 

inhibition of the formation of epinephrine at pH 10.4 and 30 ºC (Kroniger et al. 1995). 

The assay medium contained 62.5 mM Na2CO3 (pH 10.4), 0.125 mM EDTA, 20 mM 

KH2PO4/K2HPO4 (pH 7.8), 20 mM epinephrine and 100 µl extract. Control rates were 

obtained in the absence of extract. One unit of superoxide dismutase activity was 

defined as the amount of enzyme that inhibited epinephrine formation by 50%.  

Standard enzymatic assays were performed in a total volume of 1 ml at 25 °C. 

A commercial Bio-Rad protein assay (Bio-Rad Laboratories GmbH, Munich, 

Germany) was used to measure soluble protein concentration by the Bradford method 

(Bradford 1976). 
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Statistical analysis 

 

Data were subjected to two-way analysis of variance (ANOVA) to assess the 

effects and interactions of treatment and clones, using the STATISTICA data analysis 

software (Version 6, StatSoft, Tulsa, OK). Values presented are means ± SE. All 

statistically significant differences were tested at the P ≤ 0.05 level. 

 

 

Results  

 

Leaf water potential and growth response 

 

The Ψpd of well-watered plants of both clones was maintained at about −0.30 

MPa throughout the experiment (Table 1), whereas Ψpd of water-stressed ST51 and 

CN5 plants declined to −2.43 ± 0.27 and −1.71 ± 0.06 MPa, respectively (cf. Costa e 

Silva et al. 2004). Midday leaf water potential did not vary significantly in well-

watered plants, whereas it declined to −3.26 ± 0.26 and −2.46 ± 0.05 MPa in water-

stressed ST51 and CN5, respectively by the end of the experiment. There were 

significant differences not only between watering regimes (P < 0.001), but also 

between clones (P < 0.05) (Table 2), with Clone CN5 maintaining a higher leaf water 

status than ST51 in the water-stress treatment. 

Table 1. Predawn and midday leaf water potential (MPa) in Eucalyptus globulus 
Clones ST51 and CN5 subjected to water deficit. Measurements were made throughout 
the 7-week experiment in well-watered (WW) and water-stressed (WS) plants. Values 
are means ± SE (n = 5).  

Leaf water 
potential 

Week ST51 WW ST51 WS CN5 WW CN5 WS 

Predawn 1 −0.35 ± 0.04 −0.35 ± 0.04 −0.28 ± 0.03 −0.28 ± 0.03 
 3 −0.34 ± 0.02 −0.89 ± 0.19 −0.33 ± 0.01 −0.53 ± 0.08 
 5 −0.29 ± 0.02 −1.28 ± 0.21 −0.28 ± 0.02 −0.83 ± 0.07 
 7 −0.27 ± 0.01 −2.43 ± 0.27 −0.25 ± 0.02 −1.71 ± 0.06 

Midday 1 −1.24 ± 0.06 −1.24 ± 0.06 −1.37 ± 0.04 −1.37 ± 0.04 
 3 −0.64 ± 0.05 −1.66 ± 0.26 −0.63 ± 0.04 −1.11 ± 0.05 
 5 −0.68 ± 0.04 −1.87 ± 0.22 −0.60 ± 0.04 −1.37 ± 0.05 
 7 −0.68 ± 0.06 −3.26 ± 0.26 −0.78 ± 0.04 −2.46 ± 0.05 
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The water-stress treatment significantly reduced growth in terms of total 

biomass (P < 0.001), leaf area (P < 0.001), root length (P < 0.05) and leaf to root area 

ratio (P < 0.01) (Figure 1 and Table 2). In addition to differences in responses to 

water availability, the clones differed in leaf area, with Clone ST51 having higher 

values under well-watered conditions than Clone CN5 (P < 0.01). Relative to control 

values, the water-stress treatment caused a greater decrease in growth (particularly 

root length) in ST51 plants than in CN5 plants (Figure 1).  

 

Osmotic potential  

 

Well-watered plants of ST51 and CN5 had leaf Ψπ of −1.14 ± 0.03 and −1.19 ± 

Table 2. Statistical significance of the effects of watering regime (W), clone (C) 
and their interaction as determined by 2-way analysis of variance of leaf 
variables: leaf water potential (predawn, Ψpd and midday, Ψmd), leaf area, leaf 
area/root area, soluble and insoluble sugar concentration, protein, proline, 
osmotic potential at full turgor, violaxanthin + antheraxanthin + zeaxanthin 
(VAZ), lutein, total chlorophyll, glutathione reductase, ascorbate peroxidase and 
catalase in two Eucalyptus globulus clones. Symbols: *, ** and *** represent 
statistical significance at P < 0.05, 0.01 and 0.001, respectively; and ns = not 
significant at P = 0.05. 

Leaf parameters Watering regime Clone W x C 

Ψpd *** * * 
Ψmd *** * ** 
Total biomass *** ns ns 
Leaf area *** ** ** 
Leaf area/root area ** ns ns 
Soluble sugars ns ns ns 
Insoluble sugars ns ns ns 
Protein ns ns ns 
Proline *** ns ** 
Osmotic potential *** ns ns 
VAZ * ns ns 
Lutein * ns ns 
β-carotene *** ** * 
Total chlorophyll ns ns ns 
Glutathione reductase *** ns * 
Ascorbate peroxidase ** ns *** 
Catalase ns ns ns 
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0.05 MPa, respectively (Table 3). By the end of the experiment, Ψπ had declined by 

43% in water-stressed ST51 leaves and 75% in water-stressed CN5 leaves with 

significant differences between watering treatments (P < 0.001). In roots, drought 

stress caused a significant (P < 0.001) and larger reduction in Ψπ than in leaves. By 

the end of the experiment, Ψπ had declined by 92% in water-stressed ST51 roots and 

87% in water-stressed CN5 roots with no significant differences between clones. 

 

Table 3. Osmotic potential (MPa) in leaves and roots of 
Eucalyptus globulus clones ST51 and CN5 subjected to water 
deficit. Measurements were made at the end of the 7-week 
experiment in well-watered (WW) and water-stressed (WS) 
plants. Values are means ± SE (n = 5). 

Osmotic potential 
Treatment 

Leaves Roots 

ST51 WW −1.14 ± 0.03 −0.36 ± 0.04 
ST51 WS −1.63 ± 0.41 −0.69 ± 0.10 
CN5 WW −1.19 ± 0.05 −0.37 ± 0.04 
CN5 WS −2.08 ± 0.12 −0.69 ± 0.11 
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Figure 1. Morphological characteristics of plants of Eucalyptus globulus clones 
ST51 and CN5 subjected to water deficit: total biomass (g), leaf area (cm 2), root 
length (m) and leaf-to-root area ratio (cm2 leaf area/cm2 root area). Measurements 
were made at the end of the 7-week experiment and are presented as a percentage of 
the value of well-watered plants. Abbreviation: WS = water-stressed 
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Carbohydrates and soluble protein concentration 

 

There were no statistically significant differences between clones or watering 

regimes in leaf soluble sugars concentration (Table 2 and 4). By contrast, there was a 

significant (P < 0.05) increase in soluble sugars concentration in roots of water-

stressed plants and the increase was higher in ST51 plants than in CN5 plants (55 

versus 21%).  

There were no significant differences in leaf insoluble sugars concentrations 

between watering regimes or between clones (Table 2 and 4). However, water stress 

led to a significant (P < 0.05) increase in insoluble sugars concentration in roots, with 

ST51 plants showing a slightly higher increase than CN5 plants (49 versus 39%) 

(Table 4 and 5).  

In leaves of well-watered plants, soluble sugars accounted for 40% of the 

osmotic potential value in ST51 and 37% in CN5, and the corresponding values in 

water-stressed plants were 51 and 28. In roots of well-watered plants, soluble sugars 

accounted for 25% of the osmotic potential in ST51 and 24% in CN5, whereas in 

roots of water-stressed plants the corresponding values were 41 and 33%. 

There were no significant differences in leaf or root soluble protein 

concentrations between treatments or clones (Table 2 and 5). 

 

Proline concentration 

 

The water-stress treatment caused a significant increase (P < 0.001) in leaf 

proline concentration in ST51 plants but not in CN5 (Figure 2A). In roots, water stress 

led to a significant increase (P < 0.001) in proline concentration in both clones 

(Figure 2B), and the increase was greater in CN5 roots than in ST51 roots (253 versus 

194%). 

In leaves of well-watered plants of both clones, the contribution of proline to 

the osmotic potential was 0.97% (on average) compared with 1.16% (on average) in 

leaves of water-stressed plants. In roots of both clones, the contribution of proline to 

osmotic potential was 0.12 and 0.43% (on average) in well-watered and water-

stressed plants, respectively.  
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Leaf pigments 

 

In both clones, violaxanthin + antheraxanthin + zeaxanthin (VAZ) and lutein 

concentrations were significantly higher (P < 0.05) in water-stressed plants than in 

well-watered plants (Figure 3). Water-stressed caused opposite effects on the β-

carotene concentrations of the clones (Figure 3C). The significant clone x treatment 

interaction (P < 0.05) resulted from a 226% increase in β-carotene concentration in 

ST51 plants and a 56% decrease in CN5 plants. There were no significant treatment or 

clonal differences in total chlorophyll concentration (Figure 3D). 

Table 4. Soluble and insoluble sugars concentrations in leaves and roots of Eucalyptus 
globulus clones ST51 and CN5 subjected to water deficits. Measurements were made 
at the end of the 7-week experiment in well-watered (WW) and water-stressed (WS) 
plants. Values are means ± SE (n = 5).  

Leaf sugars (µmol g-1 dry mass) Root Sugars (µmol g-1 dry mass) 
Treatment 

Soluble Insoluble Soluble Insoluble 

ST51 WW 460 ± 50 200 ± 30 310 ± 60 200 ± 30 
ST51 WS 520 ± 90 190 ± 30 480 ± 40 290 ± 20 
CN5 WW 400 ± 70 280 ± 70 270 ± 40 180 ± 30 
CN5 WS 450 ± 60 140 ± 40 320 ± 40 250 ± 40 

 
Table 5. Statistical significance of the effects of watering regime (W), clone (C) and 
their interaction as determined by 2-way analysis of variance of root variables: root 
length, soluble and insoluble sugar concentration, protein, proline,, osmotic potential 
and activities of glutathione reductase, ascorbate peroxidase, catalase and superoxide 
dismutase in two Eucalyptus globulus clones. Symbols: *, ** and *** represent 
statistical significance at P < 0.05, 0.01 and 0.001, respectively; and ns = not 
significant at P = 0.05. 

Root parameters Watering regime Clone W x C 

Total root lenght * ns ns 
Soluble sugars *   ns (0.07) ns 
Insoluble sugars * ns ns 
Protein ns ns ns 
Proline *** ns ns 
Osmotic potential *** ns ns 
Glutathione reductase *** *** ns 
Ascorbate peroxidase *** ns ns 
Catalase ns ns ns 
Superoxide dismutase * * * 
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Figure 2. Proline concentrations in 
leaves (A) and roots (B) of 
Eucalyptus globulus clones ST51 
and CN5 subjected to water deficit. 
Measurements were made at the 
end of the 7-week experiment in 
well-watered (WW) and water-
stressed (WS) plants. Values are 
means ± SE (n = 5). Abbreviation: 
DM = dry mass. 
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Figure 3. Pigment concentrations in leaves of Eucalyptus globulus clones ST51 and 
CN5 subjected to water deficit. Measurements were made at the end of the 7-week 
experiment in well-watered (WW) and water-stressed (WS) plants. (A) VAZ = 
violaxanthin + antheraxanthin + zeaxanthin, (B) lutein, (C) β-carotene and (D) total 
chlorophyll. Values are means ± SE (n = 5). Abbreviation: DM = dry mass. 
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Antioxidant enzymes 

 

The effects of water stress on antioxidant enzymatic activities in leaves of the 

clones were variable (Figure 4). Leaf GR activity in both clones was significantly (P 

< 0.001) decreased by water stress, but particularly in Clone CN5, resulting in a 

significant clone x treatment interaction. The water stress treatment also decreased 

APX activity, but only in CN5 plants (Figure 4A and 4B), again leading to a 

significant clone x treatment interaction (Table 2). There were no significant 

differences in leaf CAT activity between treatments or clones (Figure 4C).  
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Figure 4. Glutathione reductase 
(A), ascorbate peroxidase (B) and 
catalase (C) activities in leaves of 
Eucalyptus globulus clones ST51 
and CN5 subjected to water 
deficit. Measurements were made 
at the end of the 7-week 
experiment in well-watered (WW) 
and water-stressed (WS) plants. 
Values are means ± SE (n = 5). 
Abbreviation: DM = dry mass. 
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In roots, the effects of water stress on antioxidant enzymatic activities were 

more marked than in leaves (Figure 5). In both clones, GR activity was observed only 

in water-stressed plants and it was significantly (P < 0.001) higher in ST51 plants 

than in CN5 plants (Figure 5A). The activity of APX in roots increased significantly 

(P < 0.001) in both clones in response to water stress (332% and 613%, respectively), 

but there were no statistically significant differences between clones (Figure 5B). 

There was no significant effect of water stress (P = 0.09) or clone on root CAT 

activity (Figure 5C). The activity of SOD in roots remained stable in CN5 plants and 

declined in ST51 plants under water stress. There was a significant interaction (P < 

0.05) between treatment and clone. 
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Figure 5. Glutathione reductase (A), ascorbate peroxidase (B), catalase (C) and 
superoxide dismutase (D) activities in roots of Eucalyptus globulus clones ST51 
and CN5 subjected to water deficit. Measurements were made at the end of the 
7-week experiment in well-watered (WW) and water-stressed (WS) plants. 
Values are means ± SE (n = 5). Abbreviation: DM = dry mass. 
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Discussion 

 

We examined several biochemical and physiological responses to water 

deficits in leaves and roots of E. globulus clones, reported to differ in drought 

sensitivity (Costa e Silva et al. 2004). We confirmed that Clone CN5 maintained 

higher leaf water status (higher Ψpd and Ψmd) and sustained a higher growth rate than 

Clone ST51 as a result of drought avoidance mechanisms (Costa e Silva et al. 2004). 

A slowly imposed water deficit resulted in a reduction in total biomass in both E. 

globulus clones, and the general decline in growth was accompanied by a reduction in 

the leaf area/root area ratio. Although the drought-induced reductions in total biomass 

and leaf area did not differ between clones, total root length of Clone CN5 was 

significantly higher than that of Clone ST51 in the water stress treatment. A reduction 

in shoot/root ratio, attributable mainly to a reduction in shoot growth, has been 

associated with tolerance to limited water availability (Pereira and Chaves 1993).  

Both clones responded to water stress by altering osmotic potential, 

osmoprotectants (sugars and proline), antioxidant activity and pigment composition. 

In general, osmolyte accumulation in plant cells results in a decrease in cell osmotic 

potential and thus improves water absorption and cell turgor pressure, which might 

help sustain physiological processes, such as stomatal opening, photosynthesis and 

expansion growth under drought conditions (Blum 1996). Furthermore, the 

accumulation of sugars and proline, mostly in the cytoplasm, can protect cell 

membranes and proteins and enhance dehydration tolerance (Rathinasabapathi 2000). 

In response to the water stress treatment, there was a small accumulation of 

soluble sugars in leaves of both clones and a significantly higher accumulation in 

roots, especially in ST51 plants. The increased accumulation of soluble sugars may 

reflect osmolyte accumulation as a consequence of water deficits causing a decrease 

in growth and hence reduced consumption of organic solutes, rather than a 

physiological mechanism involved in an adaptive plant response (Munns 1988).  The 

difference in growth rates between clones supports this hypothesis: roots of ST51 had 

lower growth rates and higher soluble sugar concentrations than roots of CN5, 

whereas leaves of both clones ceased growth and showed similar increases in soluble 

sugar concentrations in response to water stress. 



Capítulo 3 – E. globulus metabolic responses to water deficits 

 59 

Water stress led to a decline in Ψπ in both clones. The contribution of proline 

to the change in osmotic potential was only about 1%, however, indicating that the 

drought-induced increase in proline concentration did not significantly contribute to 

osmotic adjustment in the water-stressed plants. As indicated in other studies, the role 

of proline in drought-stressed plants may be associated with preservation of enzyme 

structure and activity (Delauney and Verma 1993, Hare et al. 1999), and with the 

protection of membranes from damage by ROS produced in response to drought 

(Hamilton and Heckathorn 2001). However, the greater increase in leaf proline 

concentration in the drought-sensitive ST51 clone than in the less sensitive CN5 clone 

in response to the water-stress treatment cannot be explained on the basis of either a 

protective or osmotic role. In both treatments, soluble sugars in leaves and roots 

contributed less to the Ψπ in Clone CN5 than in the drought-sensitive Clone ST51 (30 

versus 50%), indicating that there is no link between the better performance of CN5 

plants and an osmotic role of soluble sugars.  

The absence of significant differences in protein concentrations both in leaves 

and in roots indicates that short-term water stress had little or no effect on the 

synthesis and hydrolysis of soluble proteins, contrary to previous reports of inhibition 

of protein synthesis in response to drought (Chaves 1991). On the other hand, the 

increase in insoluble sugar concentrations in roots of both clones under severe water 

stress suggests a storage function of these organs in drying soil. In summary, the 

absence of clonal differences in leaf and root Ψπ and osmolytes in the water-stress 

treatment indicates that differences in drought sensitivity between the clones are not 

associated with osmotic adjustment in leaves and roots. 

Under well-watered growth conditions, the production and destruction of ROS 

is well regulated in plant cells. However, under environmental stress, the balance 

between the production of ROS and the quenching activity of the antioxidant system 

may be upset (Polle 2001). The capacity of the antioxidative defense system 

determines whether a cell under stress continues to function or suffers oxidative 

stress. 

Activity of GR in leaves of both clones decreased in response to water stress, 

particularly in CN5 plants (Figure 4A). Thus, under our experimental conditions, we 

found no evidence that GR plays a protective role in leaves of water-stressed plants. 

In contrast, the induction of a high GR activity in roots of water-stressed ST51 and 
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CN5 plants (Figure 5A) suggests that GR has a protection function against drought in 

roots of both clones, perhaps by preventing oxidative stress or slowing the progression 

of root senescence, or both (Munné-Bosch and Alegre 2004). The large increase in 

root GR activity in response to drought closely resembled the results obtained by 

Porcel et al. (2003) for soybean (Glycine max (L) Merr.) plants.  

The significant treatment x clone interaction on leaf APX activity suggests that 

APX has no protective effect against oxidative stress in leaves of the ST51 and CN5 

clones. In contrast, water stress resulted in an increase in root APX activity in both 

clones, particularly in CN5 plants. Because both GR and APX are key enzymes of the 

ascorbate-glutathione cycle, we speculate that this cycle provides a mechanism for 

drought adaptation in Eucalyptus roots. Increases in GR and APX activity have also 

been observed in roots of salt-stressed barley (Hordeum vulgare L.) (Liang et al. 

2003), conforming to a commonly observed response to water and salt stress (Munns 

2002). Thus, although leaves are highly prone to ROS generation, oxidative stress 

protection also appears to be critical in plant roots during soil drying. 

The lack of statistically significant effects of treatments or clones on CAT 

activity suggests that this enzyme does not provide protection against drought-induced 

ROS in leaves or roots of E. globulus plants. The only alteration in SOD activity 

occurred in ST51 roots, where drought led to a decrease in activity. Similarly, 

decreasing SOD activity has been reported in sunflower in response to salt stress, in 

cucumber in response to chilling stress and in wheat seedlings in response to water 

deficit (Lee and Lee 2000, Sgherri et al. 2000, Santos et al. 2001). According to Lee 

and Lee (2000), the metabolism of ROS is dependent on several functionally 

interrelated antioxidant enzymes. Chilling stress induced a significant increase in 

SOD activity in leaves of cucumber only during the first hours of stress imposition 

and thereafter, SOD activity decreased to control values. A similar transient increase 

in SOD activity may have occurred in roots of water-stressed CN5 plants. 

Alternatively, it is possible that the higher basal root SOD activity in CN5 plants than 

in ST51 plants was sufficient to cope with the drought-induced increase in superoxide 

production and thereby contribute to the higher root growth rate of CN5 plants. 

Overall, our results reflect the importance of GR, APX and SOD as a system 

for scavenging ROS in E. globulus roots. These enzymes appear to be more important 

than CAT in ROS detoxification in E. globulus. 
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Leaf concentrations of VAZ and lutein increased in both clones in response to 

severe water stress, suggesting that carotenoids may be involved in stress protection 

of leaves, even in plants subjected to moderate irradiance, as was the case in our 

study. Based on the finding that water stresss caused a 226% increase in β-carotene in 

ST51 plants and a 56% decrease in CN5 plants, we hypothesize that leaf β-carotene 

was more rapidly metabolized in CN5 plants than in ST51 plants, indicating that it 

served as a protective mechanism in deactivation of ROS (cf. Peñuelas and Munné-

Bosch 2005). The concentration of carotenoids did not differ significantly between the 

clones under severe water stress, suggesting that clonal differences in drought 

sensitivity are related more to drought avoidance mechanisms than to tolerance of 

water deficits. In previous work, a comparison of the leaf-level mechanisms for 

coping with summer stress in central Portugal in four evergreen tree species indicated 

that E. globulus was able to utilize more light in PSII photochemistry and therefore 

down-regulation of photosynthesis was less severe, than in the evergreen oaks and 

olive trees (Faria et al. 1998).  

In studies of plant responses to drought, it has often been found that one 

specific mechanism does not confer resistance on its own, but that the interplay of 

several mechanisms simultaneously is essential (Chaves et al. 2003). We found that 

both E.  globulus clones had the ability to respond to water deficits at the cellular level 

by altering both osmotic components and the activity of the antioxidant protection 

system. Differences in metabolic responses between clones may reflect different 

degrees of stress experienced during the drought treatment, because the drought 

avoiding CN5 plants never reached the same degree of dehydration as the ST51 

plants. An important finding of this study was the metabolic response of roots to 

drought. Although GR activity was not detected in roots of well-watered plants, it 

increased dramatically in response to water stress, suggesting that GR plays an 

important role in root responses to drought in E. globulus, possibly preventing fine-

root death caused by dehydration.  
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4. Responses to chilling of two Eucalyptus globulus clones with 

contrasting drought resistance 

 

 

Abstract 

 

The effect of chilling on growth and plant hydraulic properties in a drought-resistant 

clone (CN5) and a drought-sensitive clone (ST51) of Eucalyptus globulus Labill. was 

evaluated. Chilling (10/5 ºC, day/night) led to a general decrease in growth of both clones 

and significant reductions in root hydraulic conductivity, rate of photosynthesis and 

stomatal conductance in comparison to plants grown at control temperature (24/16 ºC). 

The drought-resistant CN5 clone maintained higher root growth and lower leaf-to-root-

area ratio than the drought-sensitive ST51 clone, in both temperature treatments. 

Conversely, ST51 exhibited greater carbon allocation to the foliage and higher hydraulic 

conductance than clone CN5 at both temperatures. Plants of both clones, when 

acclimated to chilling, maintained a higher hydraulic conductivity than control plants 

exposed to chilling temperatures without acclimation. Under chilling, the main 

differences between clones were a higher water status and anthocyanin concentration in 

CN5 plants, and a stronger inhibition of root growth in ST51 plants. Except for roots, the 

hypothesis of a lower depression of growth rate in the drought-resistant clone under 

chilling was not verified. However, higher root growth under low temperatures, as 

observed in CN5, can be an advantageous trait in Mediterranean-type environments, 

protecting trees against summer water-stress. 

 

Additional keywords: acclimation, allocation, hydraulic properties, root growth. 
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Introduction 

 

Due to its fast growth and fibre properties, in particular high pulp quality, 

Eucalyptus globulus Labill. is one of the most commonly planted hardwood trees in the 

world. Although widely distributed, its expansion is mostly restricted by its drought and 

cold sensitivity. To overcome these limitations, development of breeding programs 

require detailed physiological information of the stress-response of the clones selected for 

nursery production. In addition, such information is necessary for further selection and to 

support decisions to allocate clones to different climatic regions. 

In Mediterranean-type climates, water is available during the cool winter, whereas 

hot and dry conditions prevail in the summer. Therefore, a successful evergreen tree must 

be capable of acquiring carbon under lower rather than higher temperatures. Plants 

exposed to chilling tend to decrease their growth rate (Wan et al. 1999; Gavito et al. 

2001; Peng and Dang 2003), photosynthetic efficiency (Close et al. 2000; Allen and Ort 

2001) and their water uptake capacity (Markhart et al. 1979; Fennell and Markhart 1998; 

Wan et al. 2001). However, it is expected that contrasting genotypes respond differently 

to low temperatures in the process of cold acclimation that takes place on the time scale 

of days or weeks as a result of a combination of physiological and metabolic changes. 

Moreover, several studies confirmed that plant responses to low temperatures show many 

similarities with responses to water deficits, suggesting that cold resistance and drought 

resistance mechanisms often share the same pathways (Sung et al. 2003; Atkin et al. 

2005; Blödner et al. 2005; Suzuki and Mittler 2006).  

For these reasons we hypothesised that, under a Mediterranean-type climate, E. 

globulus genotypes more resistant to dry environments might exhibit lower depression of 

growth rates under chilling than drought-sensitive plants. If this is true, it will allow a 

clone less susceptible to drought to prolong carbon assimilation and active growth 

throughout the water-stress-free period, thus allowing those plants to enter spring with a 

larger leaf surface area or more reserves than more drought sensitive plants. Likewise, 

root growth might also benefit from more carbon available (Reich et al. 1998). In stands 

with a mixture of clones, plants with larger surface leaf areas and root growth at the start 

of spring may become dominant because they acquire a larger share of resources. In 
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previous work (Costa e Silva et al. 2004; Shvaleva et al. 2006), the two clones under 

study were shown to differ in their sensitivity to water deficits (CN5 was drought 

resistant and ST51 was drought sensitive). Under drought conditions, the better 

performance of clone CN5 was associated with faster root growth, maintenance of 

hydraulic conductance and lower values in the leaf-to-root-area ratio compared with 

clone ST51. The aims of the present work were to: (1) evaluate the effect of chilling in 

growth and plant hydraulic properties of two clones of E. globulus with contrasting 

responses to drought, and (2) test whether the drought-resistant clone is less affected by 

chilling than the drought-sensitive clone. 

 

 

Materials and methods 

 

Plant material and treatments 

 

Ramets produced by rooted cuttings of two Eucalyptus globulus Labill. clones 

(drought-resistant CN5 and drought-sensitive ST51) were grown in plastic containers 

containing peat (60%) and styrofoam (40%), and were transplanted at 4 months to pots 

(5.3 L) filled with a fine sandy soil. Two months after transplanting, 32 cuttings per clone 

were transferred from the nursery to a growth chamber with controlled conditions (24/16 

ºC, day/night). Another 32 cuttings per clone were placed in a growth chamber subjected 

to an acclimation period of 10 days with a gradual temperature decrease (1ºC per day) 

from 24/16 ºC to 10/5 ºC (day/night). Both growth chambers had similar lighting systems 

(c.a. 220 µmol m-2 s-1 at the canopy level), a photoperiod of 12/12 h (day/night) and 

relative humidity of ~60%. To avoid effects caused by microenvironmental differences 

(light and temperature gradients), the plants were sorted by treatment and moved to the 

neighbouring position every watering day. The experiment lasted for 42 days (counted 

after the 10 days of acclimation period) from 18 January to 1 March 2005. All plants 

were watered to the point of runoff on day 1 and then watered twice per week (Mondays 

and Fridays) according to evapotranspiration values. 
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Gas exchange, hydraulics and plant biomass 

 

Transpiration rates were determined in five plants by measuring differences in pot 

weight between successive watering operations. In addition, three pots without plants 

were used to monitor evaporative water loss from the soil. Gas exchange was measured 

with an LI-6400 portable photosynthesis system (Li-Cor, Lincoln, NE) in full-expanded 

leaves at midday (solar time) and under the light and temperature conditions of the 

controlled environment chambers. Leaf xylem water potential (predawn Ψpd and midday 

Ψmd) was measured with a Scholander-type pressure chamber (PMS Instruments, 

Corvallis, OR). These measurements were carried out on a sample of five plants per 

treatment three times during the experiment (days 1, 8 and 42). 

Hydraulic properties analysed through the relation between E and ∆Ψ gave a 

relative but integrated measure of the hydraulic conductance of the soil-plant system. 

Thus, hydraulic conductance was calculated on a plant basis (Ksp) and on a leaf area basis 

(leaf specific conductance (LSC)), assuming Ψpd is an estimate of the soil water potential 

in the rooting zone (Jones 1992): 

 

  
mdpd

sp
ΨΨ

=
-
E

K     and   
mdpd

l
LSC

ΨΨ
=

-
E  

 

where E is the transpiration rate on a plant basis (kg s-1) and El is the transpiration rate on 

a leaf area basis (kg m-2 s-1) through the system measured between predawn and midday. 

Plant biomass was evaluated three times during the experiment (days 1, 8 and 42) 

through the destructive sampling of five plants per treatment. These plants were used to 

determine morphological parameters (height, diameter, number of branches, biomass 

partition, leaf area and root length). Specific leaf area (SLA) was calculated as the ratio 

between leaf area and leaf dry mass (DM), and leaf area ratio (LAR) was calculated as 

the ratio between total leaf area and total plant DM. All dry mass values were obtained 

after 48 h at 80 ºC. Leaves and roots were scanned and leaf area and root parameters 

(length, diameter, area, forks and tips) were calculated using the WinRhizo software 

(Regent Instruments Inc., Quebec, Canada). Specific root length (m g-1) was calculated as 
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the ratio between root length and root DM, and specific root surface area (cm2 g-1) was 

calculated as the ratio between root surface area and root DM. We estimated specific root 

volume (cm3 g-1) as the ratio between root volume and root DM. 

Height, diameter and the number of new leaves were determined every week on 

five plants per treatment. These same plants were used for non-destructive measurements 

every 3 days of leaf expansion on selected leaf blades (from the second leaf pair), from 

day 1 to 42 (one stem leaf per plant). When the selected leaves reached full expansion 

(day 21) the measurements began again with the youngest expanding leaves. 

 

Anthocyanins 

 

Total anthocyanins were analysed by bisulfite bleaching method (Jordão et al. 

1998) on day 42 in the same five plants used for biomass determination. Samples were 

collected from the third leaf pair, frozen immediately in liquid nitrogen and kept at –80 

ºC until further assay. The anthocyanin concentration was expressed in mg m-2. 

 

Root water flow 

 

Root water flow was evaluated three times during the experiment (days 1, 8 and 

42) in the root systems harvested for biomass estimates. Steady-state water flow rates in 

whole root systems (Qv) were measured using the hydrostatic pressure method (Nardini et 

al. 1998; Wan and Zwiazek 1999), with some modifications. A rigid plastic cylinder was 

inserted in a pressure chamber and filled with distilled water. The plant stem was cut 20 

mm above the root collar and the root system immediately immersed in distilled water in 

the pressure chamber.  

The pressure in the chamber was increased continually at a rate of ~0.07 MPa 

min-1 up to 0.7 MPa min-1 and then was maintained constant during 30 min. Flow was 

measured every 5 min by collecting the exudate for 1 min, using a pre-weighed capillary 

vial containing cotton wool, placed over the cut stem protruding through the stopper in 

the pressure chamber. At constant pressure the flow was approximately stable (s.d. of the 

measured flows ranged between 1 and 10%) so that measurements were quasi steady-
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state. The pressure was then decreased in steps of 0.15 MPa each with a rate of 0.07 MPa 

min-1 and the same procedure was used to measure the flow at each pressure level tested 

(0.7, 0.55, 0.4 and 0.25 MPa). Plants from treatment under 10/5 ºC (day/night) were 

measured in a temperature-controlled pressure chamber at a temperature of 10 ± 1 ºC and 

control plants grown under 24/16 ºC (day/night) were measured at 24 ± 1 ºC. 

Linear root flow rates were obtained and Qv values were expressed on a per plant 

basis (kg s-1). The volume flow density (Jv) was determined as a steady-state flow rate per 

unit of root surface area (kg m-2 s-1). Root hydraulic conductance (K) was calculated as 

the slope of pressure v. flow rate where the relationship was linear (R2 ≥ 0.98), and is 

expressed in kg s-1 MPa-1. In order to normalise data from plants having different root 

system dimensions K was referred to the unit root surface area, thus obtaining root 

hydraulic conductivity (Lp) expressed in kg m-2 s-1 MPa-1. 

 

Acclimation versus non-acclimation: hydraulic responses 

 

At the end of the experiment, the response and recovery of non-acclimated plants 

after a change in growth temperature were examined. Plants grown under 24/16 ºC 

(day/night) were transferred to 10/5 ºC (day/night) for 24 h and then transferred again for 

control conditions for 5 days. Root water flow was measured at 10 ± 1 ºC, before 

transference, after 24 h under chilling and after 5 days of recovery in control conditions. 

 

Data analysis 

 

Data were subjected to two-way ANOVA to test for the effects and interactions of 

temperature treatment and clone, using the STATISTICA (Version 6, StatSoft, Tulsa, 

OK) data analysis software system. All variables were tested for normality and 

homogeneity of variances. Differences were considered statistically significant at P ≤ 

0.05. 
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Results 

 

Transpiration 

 

E values per plant in controls increased in both clones throughout the experiment 

(Figure 1A) due to leaf area development. However, on a per unit leaf area basis, 

transpiration rates slightly decreased with time in both clones (Figure 1B). Under 

chilling, the plants maintained lower transpiration rates, with statistically significant (P < 

0.01) higher E per plant in clone ST51 than CN5 due to a larger leaf area (Figure 1A). 

However, differences in E on a per unit leaf area basis between clones under chilling 

were only marginally higher in ST51 than CN5 on day 0 (P < 0.05) and days 14, 21 and 

42 (P < 0.1). 
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Figure 1. Leaf transpiration 
rate (E) expressed on a (A) 
per plant basis and (B) leaf 
area basis of control (CT) and 
chilled (chi) plants of a 
drought-resistant clone (CN5) 
and a drought-sensitive clone 
(ST51) of Eucalyptus 
globulus. Data are means ± 
s.e. (n=5). 



Capítulo 4 – E. globulus responses to chilling 

 76 

Plant water status and gas exchange 

 

Plants of the two treatments maintained stable Ψpd throughout the experiment, 

varying between -0.36 and -0.53 MPa. Clone ST51 had lower Ψpd than CN5 (P < 0.05) 

during the experiment in particular under chilling, which coincides with the higher E of 

this treatment (Figure 2A). Midday leaf water potential also did not change significantly 

throughout the experiment, although there were statistically significant differences 

between the temperature regimes until day 8, with chilling inducing lower Ψmd (P < 0.05) 

in ST51 plants but not in CN5 plants (Figure 2B). 

At day 1, gs decreased by 28% in chilling treated plants of both clones as 

compared to controls (P < 0.05), as a result of acclimation to low temperatures (Figure 

2C). After days 8 and 42, gs difference to control plants increased (P < 0.001) to 59 and 

51%, respectively. 

Similar to gs, there was a significant effect (P < 0.001) of low temperature in A of 

both clones starting on day 1 after acclimation, and although there were only significant 

differences between the clones on day 42 (P < 0.05), clone ST51 showed slightly higher 

A throughout the experiment in both regime temperatures (Figure 2D). 

 

Growth response 

 

Growth of new leaf was strongly dependent on temperature (Figure 3). The strong 

effect (P < 0.01) of temperature in the number of new leaves formed was detectable from 

day 1 to 42 after acclimation with a final reduction of 65 and 76% in clones CN5 and 

ST51, respectively, as compared to control plants. Under control conditions, ST51 plants 

showed a noticeable 171% higher new leaf growth than CN5 plants. Expansion of new 

leaves was also highly influenced by temperature (Figure 4). At day 21, leaf growth had 

significantly decreased (P < 0.001) by 73 and 44% in plants of CN5 and ST51, 

respectively. After day 21, although the temperature effect was maintained (P < 0.001), 

there was a decrease in leaf area expansion in both control and treated leaves. In the first 

21 days of the experiment, there was also a significant interaction between clone and 

treatment effects (P < 0.05), so that by day 21, CN5 plants exhibited the highest and the 
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lowest leaf areas, in control and low temperature conditions, respectively. Therefore, the 

effect of chilling was more marked in CN5.  
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Figure 2. (A) Predawn leaf 
water potential (Ψpd), (B) 
midday leaf water potential 
(Ψmd), (C) midday stomatal 
conductance (gs) and (D) net 
photosynthesis (A) of control 
(CT) and chilled (chi) plants of 
a drought-resistant clone (CN5) 
and a drought-sensitive clone 
(ST51) of Eucalyptus globulus. 
Data are means ± s.e. (n=5). 
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After 42 days, chilling led to a general decrease in growth in both clones with reductions 

in total biomass, leaf area, number of branches and total root length (Table 1). Plants of 

CN5 had lower number of branches (P < 0.05) and invested a significantly larger 

proportion of total dry mass in roots than the ST51 plants (P < 0.01) in both temperature 

regimes. In contrast, ST51 plants invested a significantly larger proportion of total dry 

mass in leaves (P < 0.05). When grown at chilling temperatures, the proportion of 

biomass allocated to branches and leaves decreased significantly in the two clones, and 

the ratio of stem axis to total biomass and of root to total biomass increased. Chilling 

affected more the root growth of ST51 than CN5 (P < 0.01) with decreases in root 

biomass of 21 and 9%, respectively, in chilled compared to control plants. 

At the end of the experiment, significant decreases in LAR and SLA were 

observed in plants under low temperature (P < 0.001); ST51 plants showed significantly 

higher LAR values (P<0.01) than CN5 plants (Table 1). As a result of the alteration in 

biomass partitioning from leaves to roots under low temperatures, the leaf area to root 

area ratio decreased on average 50% in both clones (P < 0.01). Moreover, CN5 plants 

exhibited significant lower values of this ratio (P < 0.05) and greater total root length 

than clone ST51 (P < 0.05). 
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Figure 3. Total number of new leaves of control (CT) and chilled (chi) plants of a 
drought-resistant clone (CN5) and a drought-sensitive clone (ST51) of Eucalyptus 
globulus. Data are means ± s.e. (n=5). 
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Table 1. Total biomass, leaf area, number of branches, total root length, dry mass partitioning (percent of total biomass) and leaf 
growth analysis in control (CT) and chilled (chi) plants of a drought-resistant clone (CN5) and a drought-sensitive clone (ST51) 
of Eucalyptus globulus (day 42). Data are means ± s.e. (n=5). *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant at P > 
0.05. 

Significance of 2–way ANOVA 
Morphological 
characteristics CT CN5 CT ST51 chi CN5 chi ST51 

Clone (C) Temperature 
regime (T) 

C x T 

Total biomass (g) 9.4±0.2 8.7±0.9 6.1±0.9 5.5±0.2 ns *** ns 
Leaf area (cm2) 621±67 734±105 238±48 289±26 ns *** ns 

Number of branches  8.8±0.7 12.8±2.7 5.6±1.7 8.8±1.0 * * ns 

Total root length (m) 102±9 75±0.8 71±12 50±9 * ** ns 

Dry mass partitioning         
Stem (%) 29±1.7 26±1.6 35±3.3 35±2.4 ns ** ns 

Branches (%) 2.3±0.5 4.1±1.3 0.8±0.2 1.7±0.3 ns * ns 

Leaves (%) 52±2.7 57±1.2 40±4.2 49±1.7 * ** ns 

Root (%) 17±1.7 12±1.6 24±3.5 15±1.0 ** * ns 

Leaf growth analysis        
Leaf area ratio (cm2 g-1) 65.8±6.3 82.8±4.1 38.2±3.0 52.1±3.6 ** *** ns 

Specific leaf area (cm2 g-1) 139±4 158±3 120±3 121±7 * *** ns 

Leaf area / root area 0.59±0.08 0.95±0.17 0.28±0.03 0.48±0.05 * ** ns 
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New root growth 

 

When a sample of new roots formed during the course of the experiment was 

analysed on day 42, there were significant differences between plants due to the 

temperature regime (Table 2). Plants of both clones under chilling developed new roots 

with lower specific length and area, as well as lower number of tips and forks (P < 

0.001). New roots formed under low temperatures showed a significant higher average 

diameter (P < 0.001) than new roots formed under control conditions. In addition, there 

were also differences in new root morphology between the two clones. New roots in 

ST51 plants exhibited a marginally significant higher specific length (P < 0.09) and area 

(P < 0.06) than CN5 plants. Furthermore, roots of ST51 showed a marginally significant 

higher number of tips (P < 0.06) and a higher specific volume (P < 0.05) than the roots of 

CN5.
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Figure 4. Leaf area expansion measured of emerged first and second leaves of control 
(CT) and chilled (chi) plants of a drought-resistant clone (CN5) and a drought-
sensitive clone (ST51) of Eucalyptus globulus. Data are means ± s.e. (n=5). 
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Table 2. Specific root length, specific root surface area, average diameter, number of tips, number of forks and specific root 
volume of a new root sample of control (CT) and chilled (chi) plants of a drought-resistant clone (CN5) and a drought-
sensitive clone (ST51) of Eucalyptus globulus (day 42). Data are means ± s.e. (n=5). *P < 0.05; ***P < 0.001; ns, not 
significant at P > 0.05 
 

A in total root system 

Significance of two-way ANOVA 

New root analysis CT CN5 CT ST51 chi CN5 chi ST51 
Clone (C) Temperature 

regime (T) 
C x T 

Specific length (m g DM-1) 105±8 125±15 32±4 51±11 0.09 *** ns 
Specific surface area (cm2 g DM-1) 1086±37 1216±119 538±22 753±95 0.06 *** ns 

Average diameter (mm) 0.33±0.01 0.31±0.01 0.55±0.07 0.50±0.05 ns *** ns 

Number of tips (mg DM-1) 35±4 50±8 7±1 12±3 0.06 *** ns 

Number of forks (mg DM-1) 48±8 63±12 10±2 21±6 ns *** ns 
Specific volume (cm3 g DM-1)A 5.7±0.4 6.9±0.6 6.2±0.5 8.1±0.6 * ns ns 
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Anthocyanins 

 

At the end of the experiment, the leaves of the plants subjected to low temperature 

displayed a distinctive reddish colour. There was a significant increase in anthocyanin 

concentrations (P < 0.05) in the leaves under the chilling treatment (Figure 5), with CN5 

showing a significantly larger accumulation of anthocyanins than ST51 plants (P < 0.05). 

 

Hydraulic properties 

 

Root hydraulic conductance (K) was strongly related with root growth and 

increased throughout the experiment in both chill and control treatments (Figure 6A). The 

temperature regime had a significant effect on K, with lower values in chill-treated plants 

(P < 0.001). Similar to K, root hydraulic conductivity (Lp) was also related to root growth, 

and decreased under low temperatures (P < 0.001). However, there were significant 

differences in Lp between the clones on day 42 (P < 0.01), with higher values in ST51 

plants (Figure 6B). 

Hydraulic conductance of the soil-plant system (Ksp) by the end of the experiment 

(day 42) showed a significant difference both between temperature regimes and clones 
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Figure 5. Anthocyanins content 
measured on day 42 of control and 
chilled plants of a drought-resistant 
clone (CN5) and a drought-sensitive 
clone (ST51) of Eucalyptus globulus. 
Data are means ± s.e. (n=5). 
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(Figure 7A). Thus, low temperatures led to a decrease in Ksp, and clone ST51 had higher 

Ksp values than clone CN5 (P < 0.001) in both temperature regimes. There were 

significant differences between the temperature regimes (P < 0.001) on LSC on days 1 

and 8. However, there were no differences in LSC values between temperature regimes at 

the end of the experiment (Figure 7B). The decrease in LSC in control plants, especially 

from day 1 to 8 was related to a reduction of E on a leaf area basis, and with the initial 

great development in foliage. In contrast, plants in the low temperature treatment 

increased their LSC due to limited leaf growth and to increased E values on a leaf area 

basis. Furthermore, at day 42, there were significant differences in LSC between the two 

clones (P < 0.05), with ST51 plants showing higher capacity (1.9-times, on average) to 

supply foliage with water than CN5 plants. 
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Figure 6. (A) Root hydraulic 
conductance (K) and (B) root 
hydraulic conductivity (Lp) of 
control (CT) and chilled (chi) plants 
of a drought-resistant clone (CN5) 
and a drought-sensitive clone 
(ST51) of Eucalyptus globulus. 
Data are means ± s.e. (n=5). 
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Acclimation versus non-acclimation: hydraulic responses 

 

When Lp was measured in control plants at 10 ºC, there was a significant average 

decrease of 65% (P < 0.001) compared to Lp measured at 24 ºC, corresponding with a Q10 

of 1.9 and 2.4 in CN5 and ST51 plants, respectively (Figure 8). Moreover, after 24 h, 

under low temperatures, there was an additional decrease in Lp by 45% (P < 0.01). The 

consequences of long-term acclimation to chilling temperatures in Lp can be observed 

comparing control plants growing 24 h at 10 ºC with plants grown for 42 days at 10 ºC. 

Acclimation led to a significant increase in Lp in both clones (P < 0.001) of ~2-times and 

4-times in CN5 (Q10 =1.74) and ST51 (Q10 =1.49), respectively. Finally, after 5 days in 

control conditions, there was a marginally significant recovery in Lp (P < 0.09) of ~1.3-

times. 
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Figure 7. (A) Hydraulic 
conductance of the soil-plant 
system (Ksp) and (B) leaf specific 
conductance (LSC) of control 
(CT) and chilled (chi) plants of a 
drought-resistant clone (CN5) and 
a drought-sensitive clone (ST51) 
of Eucalyptus globulus. Data are 
means ± s.e. (n=5). 
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Discussion 

 

When ramets of the two E. globulus clones were grown at chilling temperatures of 

10/5 ºC (day/night), a reduction of ~34% in mean total biomass as compared to growth at 

24/16 ºC was observed. This cold treatment also resulted in a 61% decrease in total leaf 

area and a 39% decrease in the ratio of leaf area to total biomass relative to control plants. 

In addition to the decrease in leaf area under low temperatures, there was a decrease in 

stomatal conductance, which contributed to reduced carbon assimilation (Figure 2C, D). 

This reduction in growth due to chilling was similar to an imposition of water stress with 

the same clones in a previous study (Costa e Silva et al. 2004). Furthermore, reductions 

in the number of branches and alterations in biomass partitioning, resulting in a higher 

investment in the root system, were also coincident under chilling and drought stress. 

Temperatures below the plant’s optimum for growth usually result in increased relative 

investment of biomass in roots (Clarkson et al. 1988). This may be a consequence of a 

L
p

 x
 1

0
-6

 (
kg

 m
-2

 s
-1

 M
P

a-1
)

0

10

20

30

40
CN5 
ST51 

42 days CT
24 ºC

42 days chi

10 ºC

42 days CT

10 ºC
42 days CT
+ 24h chi

10 ºC

42 days CT
+ 24h chi

+ 5 days CT
10 ºC

Figure 8. Root hydraulic conductivity (Lp) of control (CT; measured at 24 ± 1 ºC) and 
chilled (chi; measured at 10 ± 1 ºC) plants at 42 days. Control plants grown at 24/16 
ºC (day/night) were also measured at 10 ± 1 ºC, before and after 24 h at 10/5 ºC 
(day/night), and after 5 days of recovery in control conditions. Plants belonged to a 
drought-resistant clone (CN5) and a drought-sensitive clone (ST51) of Eucalyptus 
globulus. Data are means ± s.e. (n=4). 
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reduction in the sink strength of the aboveground plant tissues, making more assimilates 

available for root growth. In addition, low soil temperatures are known to reduce overall 

growth and tend to increase carbon allocation to roots (Stoneman and Dell 1993; Gavito 

et al. 2001) due to reductions in nutrient and water uptake (e.g. Markhart et al. 1979; 

Running and Reid 1980; Grossnickle 1988; Wan et al. 1999). Moreover, since both 

shoots and roots were subjected to chilling, the hypothesis of possible feedback 

mechanisms affecting hydraulic properties has to be accepted (Matzner and Comstock 

2001). 

The two clones tested responded differently to chilling. Under low temperatures, 

ST51 clone maintained higher transpiration rates than CN5 clone throughout the 

experiment and this was accompanied by more negative leaf water potentials. Although 

there were no differences in gs or A between the two clones until day 8, ST51 showed a 

higher rate of carbon assimilation at both temperature regimes on day 42 (Figure 2D). 

Furthermore, it is interesting to confirm the previous results under drought conditions of 

different growth characteristics between the two clones. Compared with the drought-

sensitive ST51 clone, the drought-resistant CN5 clone had a higher percentage of biomass 

investment in root system, in control and low temperature conditions (Table 1). In 

contrast, with CN5 clone, ST51 showed a greater investment in leaf area and higher ratios 

of leaf area to total biomass, in control or chilling temperatures. Although the effect of 

chilling in shoot growth was similar in both clones, root growth was more affected in 

ST51 than in CN5 with higher decreases in root biomass in comparison to control plants. 

In many E. globulus clones, chilling under high light induces the accumulation of 

anthocyanins in the leaves, which become reddish. The observed accumulation of 

anthocyanins induced by low temperatures (Figure 5) followed an accumulation of 

soluble sugars, occurred under low values of chlorophyll content (Shvaleva et al. 2007) 

and was more intense in CN5, the drought-resistant clone. As proposed by Steyn et al. 

(2002), anthocyanins may prevent possible photoinhibition damages, when low 

temperatures limit carbon assimilation. 

Although the initial hypothesis of a lower depression in growth rate in the 

drought-resistant clone under chilling cannot be supported, greater allocation of carbon to 

root growth in clone CN5 under low temperatures is an advantageous trait in the 
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Mediterranean environment. In fact, it can be predicted that reduction in the transpiration 

area and increase in root absorption area under low temperatures can also favour drought 

resistance in the summer. Drought-resistant genotypes will explore more soil volume 

during the water-stress-free period, enabling increased water uptake during the drought 

season. 

By studying xylem hydraulic properties of the two clones, responses to chilling 

temperatures may be related with their growth characteristics. It was hypothesised that a 

higher susceptibility to cavitation/embolism in the drought-sensitive clone result from a 

steeper decline in hydraulic conductance under drought conditions (Costa e Silva et al. 

2004). Clonal differences in hydraulic architecture have also been reported by previous 

studies (Vander Willigen and Pammenter 1998; Sangsing et al. 2004). 

In this experiment, a decline in Lp was observed, with ST51 clone showing 

significantly higher water transport efficiency, either in control or chilling treatments. 

After 42 days, ST51 clone showed a higher capacity to deliver water through the roots 

(Lp) to leaves (LSC) or the whole plant (Ksp) compared with CN5. Limited water 

transport due to reductions in hydraulic conductance may enhance a conservative water 

use (Hubbard et al. 2001) and is a trait presented by drought-adapted species (Nardini et 

al. 1999) and slow growing species (Tyree et al. 1998). Thus, the higher water transport 

efficiency in clone ST51 matches its higher transpiration rates and is in accordance with 

its higher growth rate; these characteristics are consistent with its sensitivity to drought 

conditions. 

Root water flow measured in control plants at 10 ºC yielded an average decrease 

of 65% in Lp compared to control plants measured at 24 ºC. A further decrease of 45% 

occurred after 24 h under chilling. This decrease in Lp was greater than what should be 

expected from changes due to water viscosity and density (Q10 =1.25; Matzner and 

Comstock 2001). Likewise, decreases in Lp unrelated to changes in viscosity were 

reported in several studies (Fennell and Markhart 1998; Vernieri et al. 2001; Wan et al. 

2001; Melkonian et al. 2004) and have been attributed to low-temperature-induced 

alteration of membrane properties that lowers the hydraulic conductance of radial root 

water flux (Markhart et al. 1979). In this experiment, clone ST51 showed higher decrease 

of Lp than CN5 (Q10 of 2.4 and 1.9, respectively), denoting a stronger effect of low 
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temperatures on one or more components of the pathway for water movement within the 

root system. These components may either involve different clone alterations in 

apoplastic barriers, such as exo- and endodermal Casparian bands (Steudle and Peterson 

1998), or differences in water channel activities (Javot and Maurel 2002; Aroca et al. 

2005). Recently, Lee et al. (2005) found a strong channel closure and gating of 

aquaporins activity as result of low temperature in a chilling-sensitive species showing a 

high Q10 value. 

With time under low temperature, some plants can exhibit partial recovery of Lp 

(Fennell and Markhart 1998; Vernieri et al. 2001; Melkonian et al. 2004). When control 

plants growing 24 h and plants growing 42 days under chilling were compared, a long-

term acclimation was observed, which led to a significant increase in Lp in both clones 

(Figure 8). One factor that may be responsible for Lp recovery with time is root growth 

under low temperatures (Sanders and Markhart 2001). Root growth analysis on day 42 

showed that plants of both clones under low temperature developed new roots with lower 

specific length and area, as well as lower number of tips and forks. In contrast, these new 

roots exhibited higher average diameters. A decrease in specific root length and increase 

in diameter with decreasing temperature was also found by Stoneman and Dell (1993) 

and Gavito et al. (2001), respectively. These alterations in root morphology can be driven 

by higher water availability in the soil under low temperatures and be related with a lower 

requirement of soil exploration for water acquisition. Thus, the plant under low 

temperatures develops a root system that can favour hydraulic conductivity through less 

surface area and higher root conduit diameters (Linton et al. 1998). However, a higher 

root diameter with a larger cortex section can also have a negative effect in Lp (Rieger 

and Litvin 1999). The possible influence of the root system size in partly explaining the 

difference in Lp between control and acclimated plants cannot be disregarded. An 

increase in size of the root system was often associated with a decrease in Lp (Rüdinger et 

al. 1994; Steudle and Meshcheryakov 1996). 

Differences in new root morphology between the two clones can also be related to 

their different hydraulic capacities. The higher specific root length, number of tips and 

specific root volume in ST51 plants under both treatments can be associated with better 

soil exploitation capacities favouring uptake and hydraulic conductance, particularly 
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under optimal conditions for growth. Thus, in comparison to CN5 clone, higher specific 

root length of ST51 means that for the same root length, it has a lower biomass partition 

cost. A greater specific root length was suggested to support higher hydraulic 

conductances (Eissenstat 1991), a plant growth characteristic of fast-growing species 

(Comas et al. 2002).  

In summary, this data indicate that chilling (10/5 ºC, day/night) led to a general 

decrease in growth of both clones and significant reductions in root hydraulic 

conductivity, rate of photosynthesis and stomatal conductance in comparison to plants 

grown at control temperature (24/16 ºC). The main differences in the responses to chilling 

in E. globulus clones include a lower depression of root growth in the drought-resistant 

clone, as well as a better water status and a higher anthocyanin concentration as 

compared to ST51 plants. Except for roots, the results did not support the initial 

hypothesis of a lower inhibition of growth rate in the drought-resistant clone under 

chilling. However, the higher root growth under low temperatures, as observed in CN5 in 

comparison to ST51 clone, can be an advantageous trait of drought-resistant genotypes in 

a Mediterranean-type environment. A growth pattern leading to a reduction of the 

transpiration area and the increase of root absorption area under low temperatures will 

permit these genotypes to explore more soil volume during the water-stress-free period, 

which will enable an increased water uptake under the drought season. 
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5. Physiological and biochemical responses to low non-freezing 

temperature of two Eucalyptus globulus clones differing in drought 

resistance 

 

 

Abstract  

 

We have compared the metabolic responses of leaves and roots of two Eucalyptus 

globulus L. clones CN5 and ST51 that differ in their sensitivity to water deficits (ST51 is 

more drought sensitive), with regard to the effect of chilling (10/5 ºC, day/night). We 

studied changes in growth, osmotic potential and osmotically active compounds, soluble 

proteins, leaf pigments, and membrane lipid composition. Our data showed that both 

clones have the ability to acclimatize to chilling temperatures. As a result of 10 days of 

acclimation, an increase of soluble sugars in leaves of treated plants of both clones was 

observed that disappeared later on. Differences between clones were observed in the 

photosynthetic pigments and soluble protein content which were more stable in CN5 

under chilling. It also was apparent that CN5 presented a less negative predawn water 

potential (Ψpd) and a higher leaf turgor than ST51 throughout the chilling treatment. In 

the case of the CN5, increased total lipids (TFA) and concomitant increase of linolenic 

acid (C18:3) in leaves after acclimatization may be related to a better clone performance 

under chilling temperatures. Moreover, a higher constitutive investment in roots in the 

case of CN5 as compared to ST51 may benefit new root regeneration under low 

temperatures favoring growth after cold Mediterranean winter. 

 

Keywords: carbohydrates / chilling / Eucalyptus globulus L. / lipids / membranes 
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Introduction 

 

Eucalyptus globulus Labill. is an evergreen tree that grows in many regions of 

winter-rain climates of the Mediterranean-type with a dry and hot summer. In such 

conditions, a more efficient clone should not only use more water (through deep rooting) 

but also take advantage of the water availability of the cold season through greater 

chilling tolerance. Previous studies of two highly productive E. globulus clones, CN5 and 

ST51, with different sensitivity to drought, indicated that these clones exhibited different 

strategies to cope with water deficit [6]. The investment in root system development 

before drought, a continuous greater root growth and higher xylem hydraulic conductance 

under water stress explained superior drought resistance of CN5 clone compared with 

ST51 clone. Under gradual subjection to water stress both clones CN5 and ST51 had the 

ability to respond to water deficit at the cellular level by altering their osmotic 

components and the activity of the antioxidant protection system [24]. 

Eucalyptus globulus is susceptible to cold and does not tolerate below-freezing 

temperatures [2]. Moreover, growth is limited by chilling temperatures, e.g., from (0 ºC) 

4 ºC to 15 ºC, which may be too low for normal growth. The plants exposed to chilling 

temperatures undergo a process of acclimation associated with several physiological and 

biochemical alterations in the plants [2, 12, 25]. The best-characterized changes under 

chilling, as well as under different types of stresses, include alterations in gene 

expression, changes in hormone level, accumulation of osmolytes (compatible solutes) 

and protective proteins as well as modification of cell membranes [4]. 

According to previous studies [13, 16], the thermotropic phase transition of 

membrane lipids might play an initiative role in the chilling sensitivity of plants. In chill-

sensitive plants, the lipid bilayer has a high percentage of saturated fatty acids chains, and 

this type of membrane tends to solidify into a semicrystalline state at a temperature well 

above 0 ºC [27]. As the membranes become less fluid, permeability is affected. During 

acclimation of plants to low temperature the fatty acids in their membrane lipids become 

more unsaturated, resulting in enhanced membrane stability [22, 26]. 

In Mediterranean ecosystems, plant performance during winter is poorly studied, 

maybe because summer-drought constrains are much more conspicuous. However, “cold” 
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is a relative term and even the “mild” temperatures of Mediterranean winters may be too 

low for plant species which have to cope with wide thermal amplitude over the year. 

However, climate change scenarios for the western Mediterranean (including Portugal) 

suggest lengthening of the dry season [15], which may turn plants even more dependent 

from a relatively cool but shorter rainy season. There is also the possibility that global 

warming will enhance the frequency of extreme weather events including cold spells [7]. 

The comparison of the dynamics of physiological and biochemical changes between non-

acclimated and acclimated plants, is of the utmost importance to understand stress coping 

mechanism in trees. Considering that resistance of plants to drought and low temperatures 

share common mechanisms [25], the aim of the present work was to investigate whether 

the two clones with contrasting response to drought (CN5 and ST51) also exhibit 

differences (growth and metabolic) in response to low nonfreezing temperature. We 

analysed the effect of gradual temperature decrease and the effect of chilling on 

morphological parameters, membrane lipid composition and compatible solutes in leaves 

and roots of both clones, as well as osmotic potential, soluble proteins and pigments in 

leaves. 

 

 

Material and methods 

 

Plant material 

 

Rooted cuttings of the two clones ST51 and CN5 were grown in plastic containers 

filled with 60% peat and 40% styrofoam beads. ST51 is considered more drought 

sensitive than CN5. After four months the rooted cuttings of both clones were 

transplanted to 5.3 L plastic pots. At six months old, 32 plants per clone were transferred 

from nursery and placed in a growth chamber subjected to a gradual temperature decrease 

(1.4 ºC per day) from 24/16 ºC to 10/5 ºC (day/night), which took 10 days (acclimation). 

Measurements were started at Day 1 after plants had reached 10/5 ºC, the beginning of 

the chilling treatment. Another 32 plants per clone remained in control conditions (24/16 

ºC). Air and pot soil temperatures in the growth chamber were monitored through a data 
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logger (DL2e, delta-t Device, UK) to follow temperature changes during the day. It must 

be taken into account that under natural conditions soil temperature does not vary as 

rapidly as air temperature. Other growth conditions were: photoperiod: 12/12 h 

(day/night), relative humidity of approximately 60%, photosynthetic photon flux density: 

220 µmol m-2 s-1. The experiment lasted for 52 days (7th January 2005 to 1st March 

2005). All plants were watered to runoff on the first day and then twice per week. 

 

Growth analysis and sampling dates 

 

Plants were harvested 42 days after the beginning of the chilling treatment. Shoots 

were separated into stem, lateral branches and stem leaves. Roots were gently washed and 

carefully separated from soil and other debris. Plant components were then dried for at 

least 48 h at 80 ºC in the oven and cooled in desiccators for dry mass determination. 

Leaves and roots were scanned before drying and then leaf and root area of each seedling 

(five plants per treatment) were calculated with WinRhizo software (Regent Instrument 

Inc., Canada). Samples for carbohydrates, lipids, proline, soluble protein analyses and 

osmotic potential were collected on Days 1, 8 and 42 after the beginning of chilling at 

predawn on full-expanded leaves (0.5 g fresh mass) and at midday on root segments (0.5 

g fresh mass and diameter < 2 mm) excised from the central part of the root system, using 

five plants per treatment. Samples were removed, frozen immediately in liquid nitrogen 

and kept at –80 ºC until further analysis. 

 

Plant water relations 

 

Predawn water potential (Ψpd) was measured with a Scholander-type pressure 

chamber (PMS Instruments, Corvallis, OR) on five plants per treatment. From the same 

plants, leaf discs (6 mm diameter) were taken at predawn for osmotic potential (Ψπ) 

determination, frozen in liquid nitrogen and stored at –80 ºC until analysis. The 

measurements of Ψπ were made after thawing the samples at room temperature, using C-

52 sample chambers connected to a Wescor HR-33T dew-point microvoltmeter (Wescor, 



Capítulo 5 – E. globulus responses to low non-freezing temperature 

 99 

INC Logan, UTAH, USA). Leaf turgor (Ψp) was calculated according to the equation: Ψp 

= Ψpd – Ψπ. Osmotic potential at full turgor (Ψπ
100) was calculated from Ψπ corrected by 

relative water content values (RWC), measured in samples of 10 leaf discs of 0.7 cm 

diameter. RWC was calculated as RWC (%) = (FW-DW)/(TW-DW) × 100, where FW, 

TW and DW are the fresh, turgid (after floating the samples for 3 h on distilled water at 

room temperature) and dry mass (after oven-drying at 80 ºC), respectively. 

 

Leaf pigments 

 

Pigments were extracted from frozen leaf discs as described in Shvaleva et al. 

[24] and then analysed by HPLC according to Wright et al. [32] and quantified by 

custom-made external standard solutions (DHI Water and Environment; Denmark and 

Carotenature, Switzerland). Twenty-five microliter samples were injected in Zorbax 

(Agilent Tech., USA) Bonus-RP C18 column and eluted with a quaternary gradient 

composed of water, acetonitrile, ethyl acetate and 0.5 M ammonium acetate in methanol 

(20:80, v/v) at flow-rate of 1.0 mL min-1.  Pigments content were measured after 42 days 

of chilling. 

 

Lipid analysis 

 

For lipid analysis, the general procedure of Pham Thi et al. [20] was used with 

modification according to Scotti Campos et al. [22]. Lipids were extracted in 

chloroform/methanol/water (1/1/1, v/v/v) according to Allen et al. [1]. After 

saponification, fatty acids were methylated with BF3 (Merck) according to Mercalfe et al. 

[14] using heptadecanoic acid (C17:0) as an internal standard. Subsequently they were 

analysed by gas-liquid chromatography as described in Mercalfe et al. [22]. 

 

Soluble proteins 

 

Soluble proteins were extracted and measured as detailed in Bradford [3]. 
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Carbohydrates and polyols extraction and analysis 

 

Carbohydrates and polyols were extracted from leaves and roots (100 mg FW), 

according to Van Huylenbroeck and Debergh [30] and then analysed using High 

Performance Anion Exchange Chromatography coupled with Pulsed Amperometric 

Detection HPAEC-PAD (Dionex ED 40, Dionex Corp., USA) according to Wilson et al. 

[31]. The analytical column for carbohydrates was a Dionex Carbopac PA-20 (3 mm × 

150 mm) kept at 30 ºC and eluted by on on-line generated KOH at 0.5 ml min-1, whereas 

polyols were analysed on Dionex Carbopac MA-1 (4 mm × 250 mm) stored at 48 ºC and 

eluted by a gradient of NaOH (500 mM) at 0.3 ml min-1. Carbohydrates and polyols were 

quantified using calibration curves with standard solutions [10]. 

 

Proline and proline analogues extraction and analysis 

 

Approximately 100 mg of fresh plant material was extracted according to Naidu 

[17] and then analysed using High Performance Ligand-Exchange Chromatography 

coupled with Mass Spectrometry HPLEC-MS. N-acetyl DL-proline (Sigma-Aldrich 

Chemical Company) was used as internal standard [18]. 

 

Data analysis 

 

Data were subjected to two-way analysis of variance (ANOVA) to test for the 

effects and interactions of temperature treatment and between clones, using the 

STATISTICA (Version 6, 2001, StatSoft, Tulsa, OK) data analysis software system. Data 

are shown as the mean ± SE in tables and figures. All statistically significant differences 

between treatments were tested at the P ≤ 0.05 level. 
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Results 

 

Growth response 

 

Forty-two days of chilling had a negative effect on growth of both clones with 

reductions of total biomass, leaf area ratio and total root length (ca. 35%, 40% and 30%, 

respectively), in relation to control values (Figure 1). At the end of the experiment, ST51 

plants showed significantly higher (P < 0.01) values of leaf area ratio than CN5 plants, 

whereas the CN5 clone exhibited greater total root length in both treated and control 

plants. 
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Plant water relation 

  

Predawn water potentials (Ψpd) were maintained stable throughout the experiment, 

varying between –0.36 and –0.53 MPa (Figure 2A). Under low temperatures clone ST51 

Figure 1. Some morphological 
characteristics of two Eucalyptus 
globulus Clones CN5 and ST51 
subjected to low temperature 
treatment: total biomass (A), leaf 
area ratio (B) and total root lenght 
(C) evaluated at the end of the 
experiment (42 d after acclimation). 
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had more negative Ψpd than clone CN5 (P < 0.05). Control plants maintained leaf osmotic 

potentials around –0.58 MPa, whereas under low temperature Ψπ declined significantly 

(P < 0.01) in both clones to –0.85 and –0.77 MPa in CN5 and ST51 plants, respectively. 

So, leaf turgor (Ψp) in both clones increased significantly (P < 0.01) during chilling 

(Figure 2B). The decrease of Ψπ was a consequence of leaf osmotic adjustment, which 

mean degree (∆Ψπ
100 = Ψπ

100 control – Ψπ
100 low temperature) throughout the experiment 

was of 0.18 and 0.13 MPa for CN5 and ST51 clones, respectively (Figure 2C). 
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Carbohydrates in leaves 

 

Acclimation led to a clear increase in the content of glucose (Glu), sucrose (Suc) 

and fructose (Fru) in leaves of both clones (Table I). There were significant differences 

between the clones (P < 0.01) with higher values of these carbohydrates in CN5 plants.  

Figure 2. Predawn water potential 
(Ψpd, A), leaf turgor (Ψp, B) and 
osmotic potential at full turgor 
(Ψπ

100, C) in leaves of Eucalyptus 
globulus Clones CN5 and ST51 at 
Day 1, 8 and 42 after suboptimal 
temperature. CT – control (24/16 
ºC), SOT – suboptimal temperature 
(10/5 ºC). Values are mean ± SE (n 
= 5). 
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Table I. Galactose, glucose, sucrose, fructose, arabinose and inositol content (µmol g-1 dry mass) in leaves of E. globulus 
Clones CN5 and ST51 after cold acclimation (Day 1), after 8 and 42 days of suboptimal temperature. CT – control (24/16 
ºC), SOT – suboptimal temperature (10/5 ºC). *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant at P > 0.05. 

Significance of 2–way ANOVA Days 
after acclimation CT CN5 CT ST51 SOT CN5 SOT ST51 

Clone (C) Temp. (T) C x T 

Day 1        
Galactose 1.5±0.2 1.0±0.1 1.6±0.2 1.5±0.2 ns ns ns 
Glucose 6.3±0.6 4.2±0.4 11±1.5 6.8±0.9 ** ** ns 
Sucrose 1.9±0.4 0.7±0.2 6.1±1.2 3.0±0.5 ** *** ns 
Fructose 6.8±0.6 5.9±1,2 12±0.7 7.6±1.0 ** ** ns 
Arabinose 0.1±0.02 0.09±0.02 0.15±0.02 0.15±0.03 ns ns ns 
Inositol 16±3.1 21±2.1 16±2.9 10.5±1.9 ns 0.06 0.06 
Day 8        
Galactose 1.2±0.05 1.2±0.1 1.6±0.2 1.5±0.1 ns * ns 
Glucose 7.8±0.5 7.3±1.6 16.8±4.3 14.9±2.4 ns ** ns 
Sucrose 2.2±0.5 1.9±0.7 9.1±2.6 7.1±0.6 ns ** ns 
Fructose 6.3±0.4 5.3±0.9 12.7±0.8 10.5±0.9 0.06 *** ns 
Arabinose 0.07±0.01 0.11±0.03 0.14±0.01 0.11±0.01 ns ns ns 
Inositol 20.0±1.1 20.7±1.8 14.2±1.0 12.2±0.5 ns *** ns 
Day 42        
Galactose 1.4±0.1 2.3±0.3 1.6±0.1 1.5±0.2 ns ns * 
Glucose 5.5±0.5 8.1±0.8 12.5±4.0 9.6±1.9 ns ns ns 
Sucrose 1.8±0.4 2.5±0.5 9.2±3.6 6.0±1.2 ns * ns 
Fructose 5.2±0.8 6.7±0.9 11.9±0.9 10.2±0.7 ns *** ns 
Arabinose 0.11±0.05 0.15±0.02 0.16±0.02 0.15±0.02 ns ns ns 
Inositol 10.6±1.3 22.8±0.5 18.8±1.6 19.7±2.9 ** ns ** 
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Table II. Galactose, glucose, sucrose, fructose and inositol content (µmol g-1 fresh mass) in roots of E. globulus Clones CN5 
and ST51 after cold acclimation (Day 1), after 8 and 42 days of sub-optimal temperature. CT – Control (24/16 ºC), SOT – 
suboptimal temperature (10/5 ºC). *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant at P > 0.05. 

Significance of 2–way ANOVA Days 
after acclimation CT CN5 CT ST51 SOT CN5 SOT ST51 

Clone (C) Temp. (T) C x T 

Day 1        
Galactose 0.8±0.3 0.41±0.2 0.49±0.11 0.91±0.16 ns ns ns 
Glucose 2.0±0.7 0.26±0.12 1.17±0.45 2.82±0.46 ns * ** 
Sucrose 1.1±0.4 0.69±0.38 1.55±0.49 2.29±0.4 ns * ns 
Fructose 0.5±0.1 0.21±0.13 0.44±0.06 0.71±0.18 ns ns * 
Inositol 0.2±0.04 0.12±0.06 0.13±0.02 0.23±0.05 ns ns * 
Day 8        
Galactose 0.19±0.03 0.33±0.1 1.45±0.5 0.38±0.08 ns * * 
Glucose 0.27±0.05 0.43±0.13 2.67±1.31 1.42±0.67 ns * ns 
Sucrose 0.19±0.05 0.28±0.08 2.17±1.18 1.46±0.57 ns * ns 
Fructose 0.18±0.03 0.33±0.05 0.83±0.42 0.65±0.15 ns * ns 
Inositol 0.09±0.02 0.05±0.01 0.36±0.13 0.24±0.06 ns ** ns 
Day 42        
Galactose 0.23±0.08 0.21±0.05 1.3±0.4 0.85±0.24 ns ** ns 
Glucose 0.63±0.2 0.5±0.16 2.94±0.72 2.98±0.98 ns *** ns 
Sucrose 0.27±0.05 0.41±0.17 3.26±0.48 2.82±0.64 ns *** ns 
Fructose 0.51±0.08 0.74±0.05 1.29±0.24 1.02±0.15 ns *** ns 
Inositol 0.21±0.03 0.19±0.04 0.92±0.28 0.7±0.28 ns ** ns 
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After 8 days of chilling, in addition to the accumulation of Glu, Suc and Fru, galactose 

was also significantly higher in both clones as compared to controls. On the contrary, the 

content of inositol significantly decreased (P < 0.001). After 42 days of chilling, the 

accumulation of Suc and Fru persisted in both clones, although with no significant 

differences between clones. Among the accumulated carbohydrates Suc showed the 

highest increases throughout the experiment, whereas arabinose displayed very low 

contents and without significant changes with the chilling treatment. 

 

Carbohydrates in roots 

 

Acclimation led to a significant (P < 0.05) increase of root Glu (10-fold) and Suc 

(3-fold) content in ST51 plants (Table II). After 8 days, chilling led to a significant (P < 

0.05) increase of all carbohydrates in both clones but more evident in CN5. After 42 days 

of chilling the increase of carbohydrates (P < 0.01) was also observed in both clones. 

Among the accumulated carbohydrates Suc showed the highest increases at Day 42: 13-

fold and 7-fold in CN5 and ST51, respectively as compared to controls. 
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Soluble proteins in leaves 

 

There were no significant changes in soluble proteins in leaves until Day 42 

(Figure 3). After 42 days of chilling, soluble protein content decreased (P < 0.001) in 

both ST51 and CN5 clones (ca. 84% and 27%, respectively) as compared to controls. 

Figure 3. Soluble proteins content in 
leaves of Eucalyptus globulus Clones 
CN5 and ST51 at Day 1, 8 and 42 
after suboptimal temperature. CT – 
control (24/16 ºC), SOT – suboptimal 
temperature (10/5 ºC). Values are 
mean ± SE (n = 5). 
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Leaf pigments 

 

Pigment content showed a statistically significant (P < 0.001) temperature effect 

after 42 days, which led to a reduction on chlorophyll contents. Clone ST51 showed 

higher reductions of total chlorophyll content than CN5 under low temperatures, ca. 48% 

and 22% in relation to control plants, respectively (Figure 4A). Fucoxanthine (Figure 

4B), lutein (Figure 4C) and β-carotene (Figure 4D) content in control ST51 plants were 

significantly higher when compared with control CN5 plants (110%, 138% and 127%, 

respectively). Forty-two days of chilling led to significant reductions of fucoxanthine, 

lutein and β-carotene in ST51 plants (57%, 49% and 57%, respectively), whereas in CN5 

plants no significant changes were observed. 

 

Proline and proline analogues in leaves 

 

Proline content was higher than betaine and trigonelline in leaves of both clones 

for control and treated plants throughout the experiment (Table III). After 8 days under 

10/5 ºC there was a significant (P < 0.01) proline reduction, more evident in ST51 leaves 

than in CN5 leaves. At Day 42 of chilling trigonelline content showed a significant (P < 

0.05) reduction in leaves of CN5 and ST51 clones (63% and 43%, respectively). There 

were significant differences between clones (P < 0.05) in trigonelline content at Day 1 

(CN5 had higher content than ST51) and in proline content at Day 42 (ST51 had higher 

content then CN5). 

 

Proline and proline analogues in roots 

 

Acclimation led to a significant decrease (P < 0.01) in betaine root content in 

CN5 plants but not in ST51 (Table IV). After 8 days, proline was higher (P < 0.06) in 

plants under low temperature of both clones and trigonelline was significantly higher (P 

< 0.01) in ST51 clone as compared to CN5 plants. Forty-two days of chilling led to 

decrease (ca. 50%) in trigonelline in ST51 (P < 0.05) without changes in CN5.
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Figure 4. Chlorophyll a, b, total chlorophyll (A), fucoxanthine (B), lutein (C) and β-
carotene (D) content in leaves of Eucalyptus globulus Clones CN5 and ST51 
evaluated after 42 days of chilling. CT – control (24/16 ºC), SOT – suboptimal 
temperature (10/5 ºC). Values are mean ± SE (n = 5). 
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Table III. Proline (nmol g-1 dry mass) and proline analogues concentration in leaves of E. globulus Clones CN5 and ST51 
after cold acclimation (Day 1), after 8 and 42 days of suboptimal temperature. CT – control (24/16°C), SOT – suboptimal 
temperature (10/5°C). *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant at P > 0.05. 

Significance of 2–way ANOVA Days 
after acclimation CT CN5 CT ST51 SOT CN5 SOT ST51 

Clone (C) Temp. (T) C x T 

Day 1        
Proline 213±45 145±40 145±5 78±12 ns ns ns 
Betaine 28±1 27±2 34±4 27±3 ns ns ns 
Trigonelline 94±15 65±8 77±6 50±7 * ns ns 
Day 8        
Proline 186±21 155±27 122±36 54±2 ns ** ns 
Betaine 4.6±1.1 5.0±1.1 6.4±1.3 3.4±0.7 ns ns ns 
Trigonelline 74±5 62±9 65±5 62±9 ns ns ns 
Day 42        
Proline 110±6 157±17 90±9 141±28 * ns ns 
Betaine 6.7±0.9 8.9±1.8 6.0±1.9 3.2±1.2 ns ns ns 
Trigonelline 70±11 105±21 26±2 60±17 ns * ns 
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Table IV. Proline (nmol g-1 fresh mass) and proline analogues concentration in roots of E. globulus Clones CN5 and ST51 
after cold acclimation (Day 1), after 8 and 42 days of sub-optimal temperature. CT – control (24/16 ºC), SOT – suboptimal 
temperature (10/5 ºC). *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant at P > 0.05. 

Significance of 2–way ANOVA Days 
after acclimation CT CN5 CT ST51 SOT CN5 SOT ST51 

Clone (C) Temp. (T) C x T 

Day 1        
Proline 25.1±9 8.5±1.5 5.6±3,0 9.4±0.7 ns 0.07 0.054 
Betaine 12.9±2 5.5±1.4 5.6±0.6 5.5±0.7 ** ** ** 
Trigonelline 5.9±2. 6.4±1.1 6.1±0.7 5.5±0.6 ns ns ns 
Day 8        
Proline 16.8±2 15.2±3.5 23.7±7 49.3±18.5 ns 0.06 ns 
Betaine 17.1±2 11.7±1.6 11.1±2.1 11.4±0.09 ns ns ns 
Trigonelline 19.8±3 10.8±1.3 20.7±2.1 15±0.4 ** ns ns 
Day 42        
Proline 13.1±1.6 23.9±7.0 10.8±2.6 24.8±8.2 0.055 ns ns 
Betaine 15.3±1.8 19.3±4.9 13.4±2.3 9.6±0.8 ns ns ns 
Trigonelline 10.2±1.6 10.3±1.1 7.7±2.2 5.2±0.8 ns * ns 
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Lipids in leaves 

 

Total fatty acid (TFA) content in leaves of control plants of both clones was 

similar (Table V). As a result of acclimation, TFA increased significantly in CN5 (40%), 

but not in ST51. After 8 days and 42 days of chilling, TFA content remained stable in 

both clones. As for the individual fatty acids, at Day 1 clone ST51 presented an increase 

of 14% in C18:2 and clone CN5 an increase of 14% in C18:3 as compared to their 

respective controls (Table V). 

After 8 days, chilling led to a significant increase (P < 0.05) in C16:0 (20%) in 

ST51 leaves and in C18:2 in ST51 and CN5 leaves (36% and 45%, respectively). 

However, C18:3 was reduced (P < 0.001) in both clones (ca. 14%). 

Such a tendency was also observed after forty-two days of chilling. In leaves of 

ST51, C16:0 significantly increased (P < 0.01) 32% in comparison with control plants. 

C18:2 increased by 31% in leaves of both clones. As for C18:3, it was reduced 15% in 

chilling treated ST51 plants and only 6% in CN5 plants (P < 0.01). 

Throughout the duration of the experiment no significant changes were observed 

in C16:1t in leaves of both clones. 

 

Lipids in roots 

 

No changes of TFA content were observed at Day 1 in roots of both clones (Table 

VI). However, after 8 days and 42 days under low temperatures TFA increased (P < 0.01) 

in CN5 plants (95% and 69%, respectively). 

In what concerns fatty acids, at Day 1 there was a significant increase (P < 0.01) 

of C18:3 in both clones (29% and 23% in ST51 and CN5, respectively). After forty-two 

days of chilling, C18:2 content increased 12% in CN5 in roots in relation to control 

values, while no significant changes occurred in ST51. As for C18:3, a larger increase 

was observed in roots of ST51 than in roots of CN5 plants (22% and 8%, respectively).
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Table V. TFA (mg g-1 dry mass) and main fatty acids (mol %) content in leaves of E. globulus Clones CN5 and ST51 after 
cold acclimation (Day 1), after 8 and 42 days of suboptimal temperature. CT – control (24/16 ºC), SOT – suboptimal 
temperature (10/5 ºC). *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant at P > 0.05. 

Significance of 2–way ANOVA Days 
after acclimation CT CN5 CT ST51 SOT CN5 SOT ST51 

Clone (C) Temp. (T) C x T 

Day 1        
TFA 18.1±1.8 22.3±2.5 25.3±1.7 20.8±1.7 ns ns * 
C16:0 28.2±0.9 22.8±1.2 25.4±1.0 24.2±1.9 * ns ns 
C16:1t 3.5±0.2 3.0±0.4 3.1±0.2 2.7±0.4 ns ns ns 
C18:2 14.6±0.5 14.9±0.5 13.9±0.6 16.9±0.6 * ns * 
C18:3 44.8±1.5 54.0±1.3 51.1±1.4 50.7±2.4 * ns * 
Day 8        
TFA 22.7±1.8 20.6±2.1 18.8±0.9 24.5±2.4 ns ns ns 
C16:0 23.0±0.2 20.9±0.8 23.9±0.9 25.0±1.5 ns * ns 
C16:1t 3.4±0.3 3.5±0.1 4.0±0.2 3.1±0.4 ns ns ns 
C18:2 10.7±0.4 12.9±0.2 15.5±1.2 17.6±1.3 * *** ns 
C18:3 56.3±0.6 57.3±0.8 49.1±1.5 49.1±2.0 ns *** ns 
Day 42        
TFA 14.7±0.6 18.9±1.6 17.3±0.4 17.3±2.0 ns ns ns 
C16:0 21.3±0.6 19.2±0.8 22.4±0.5 25.4±1.4 ns ** * 
C16:1t 3.01±0.2 2.8±0.3 3.0±0.1 2.5±0.3 ns ns ns 
C18:2 12.2±0.2 11.8±0.9 16.0±0.7 15.4±0.4 ns *** ns 
C18:3 57.1±0.8 61.8±1.9 53.9±0.8 52.7±2.2 ns ** ns 
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Table VI. TFA (mg g-1 fresh mass) and main fatty acids (mol %) content in roots of E. globulus Clones CN5 and ST51 
after cold acclimation (Day 1), after 8 and 42 days of sub-optimal temperature. CT – control (24/16 ºC), SOT – suboptimal 
temperature (10/5 ºC). *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant at P > 0.05. 

 

Significance of 2–way ANOVA Days 
after acclimation CT CN5 CT ST51 SOT CN5 SOT ST51 

Clone (C) Temp. (T) C x T 

Day 1        
TFA 1.40±0.13 1.10±0.11 1.20±0.08 1.32±0.14 ns ns ns 
C16:0 32.1±1.1 29.5±2.0 28.1±0.7 27.8±0.4 ns * ns 
C18:2 51.3±2.3 54.5±1.6 55.8±0.9 55.4±0.3 ns ns ns 
C18:3 7.3±0.6 7.8±0.3 9.0±0.5 10.0±0.6 ns ** ns 
Day 8        
TFA 0.75±0.08 1.09±0.11 1.47±0.05 1.20±0.17 ns ** * 
C16:0 30.2±1.6 28.3±0.7 29.6±0.7 31.3±0.6 ns ns ns 
C18:2 49.3±2.1 52.4±1.4 51.9±0.7 50.2±1 ns ns ns 
C18:3 11.5±2.1 11.0±1.9 12.6±0.9 12.5±1.0 ns ns ns 
Day 42        
TFA 1.08±0.10 1.42±0.08 1.82±0.11 1.51±0.05 ns *** ** 
C16:0 33.6±1.4 31.4±0.5 30.8±0.8 30.7±0.9 ns ns ns 
C18:2 46.4±2.2 49.9±0.4 52.0±0.9 50.4±1.1 ns * ns 
C18:3 10.9±0.8 10.6±0.3 11.8±0.4 13.0±0.7 ns * ns 
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Discussion 

 

Our results showed that although both clones reduced growth in response to 

chilling, total root length of CN5 was significantly higher in comparison with ST51 in 

both control and treated plants. This was accompanied by a less negative predawn water 

potential and a higher leaf turgor in CN5 clone throughout the chilling treatment. This 

characteristic of CN5 plants will offer an advantage over the drought sensitive ST51 

clone, not only under water-stress conditions, due to the possibility to explore more 

volume of soil [6], but also under cold temperatures through the benefits of higher new 

root regeneration. 

The slowdown of growth during chilling was concomitant with an increase of 

carbohydrates in leaves and roots of both clones. Interestingly, it was observed at Day 1, 

as a result of acclimation, an increase of content of glucose, sucrose and fructose in 

leaves of treated plants of both clones that disappeared later on. The increase in 

carbohydrates in leaves may reflect the reduction in the sink strength of the aboveground 

plant tissues. On the other hand, this will lead to more assimilates available for root 

growth. 

Plant water status was not affected in chilled plants, as also observed in other 

species [8, 33]. In fact, predawn water potentials were unaltered by chilling. Moreover, 

leaf turgor remained high in chilled plants of both clones, due to the decrease of osmotic 

potential as also observed in other Eucalytus species [29]. The degree of leaf osmotic 

adjustment given by ∆Ψπ
100, was initially higher in CN5 comparatively to ST51 plants, in 

parallel with the higher sugars accumulation observed, but similar afterwards. In fact, a 

higher content of carbohydrates in leaves of CN5 chilled plants compared to ST51 was 

only observed at Day 1. 

Acclimation of the photosynthetic apparatus to chilling and to high light is well 

documented but the mechanisms are not completely understood. Karpinska et al. [11] 

showed in Scots pine that chlorophyll synthesis is temperature sensitive, and under low 

non-freezing temperature it decreases, due to arrest of chloroplast biogenesis. According 

to our pigment analysis the same phenomena happened in both clones of E. globulus with 
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higher reduction in ST51 plants; the same occurred as far as fucoxanthine, lutein and β-

carotene is concerned. We can hypothesize that ST51 plants suffered more under 

suboptimal temperatures.  

Our data also showed that the amount of proteins in clone ST51 after 42 days of 

chilling was reduced drastically, which may have a negative impact in the long term 

response of this clone to suboptimal temperatures. This was not the case for clone CN5. 

The role of osmoprotectants along with carbohydrates has also been frequently 

assigned to proline [9], although, some authors have considered proline accumulation as a 

symptom of damage rather than an adaptive response [19]. On the other hand, proline 

contribution to osmoregulation is small in most cultivated species under stress conditions 

[28]. This was also the case with the E. globulus clones under water stress, in which the 

contribution of this amino acid to the osmotic potential was around 1% [24]. In the 

present study the lower values of Ψπ in leaves under chilling temperatures observed in 

both clones were not accompanied by proline accumulation either in leaves and roots. 

This suggests that proline did not act as a relevant active osmolite in Eucalyptus tissues 

under suboptimal temperatures. However proline and its analogues may be associated 

with other roles under stress conditions: protection of cytosolic enzymes and membrane 

structure, stabilisation of proteins, antioxidant and storage functions [23, 25] and these 

roles are not ruled out. In this respect the higher values of proline observed in CN5 leaves 

may play a positive role in growth under low temperatures. The unsaturation of 

membrane lipids is considered a critical parameter for the functioning of plant 

membranes. Membrane lipids may suffer changes with growth temperature, particularly 

in what concerns linolenic acid (C18:3) [5]. An increase of unsaturation may compensate 

the decrease in the fluidity of membrane that is brought about by the downward shift in 

temperature [21], and therefore sustained activity of membrane-bound enzymes at lower 

temperature. 

At the beginning of chilling treatment (Day 1), an increased lipid amount (TFA) 

and a concomitant increase of C18:3 percentage were observed in CN5 leaves, probably 

due to an activation of lipid synthesis resulting in more unsaturated lipid molecular 

species. A higher degree of unsaturation could increase membrane fluidity and constitute 
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an advantage for leaves of CN5 clone under cold conditions. The fact that TFA amounts 

were not reduced by cold stress suggests that molecular adaptation of lipids occurs 

apparently without lipid loss, resulting in a decrease of membrane unsaturation. 

In roots a higher degree of unsaturation (as inferred from the increase in C18:3 

percentage) was observed in treated plants of both clones, which may depend on 

compositional changes resulting from lipid turnover [22]. An enhanced lipid synthesis in 

CN5 roots was observed but not in ST51, suggesting a better preservation of root 

metabolism in CN5 under low temperature. 

In summary, our data showed that both CN5 and ST51 E. globulus clones have 

the ability to acclimate to chilling temperatures. Changes, observed in carbohydrates and 

membrane lipid content following acclimation may play a role in the resistance of E. 

globulus to chilling. Differences between clones were observed in soluble protein and 

pigment content which were more stable in CN5 than ST51 under chilling temperatures. 

It also was apparent that CN5 presented a less negative predawn water potential (Ψpd) and 

a higher leaf turgor than ST51 throughout the chilling treatment. As a result of 

acclimation, an increase of total lipids (TFA) and concomitant increase of C18:3 in leaves 

of CN5 clone may confer to this clone a better performance under chilling temperatures. 

Although clone CN5 did not present a higher growth under chilling relative to ST51, it 

showed a lower inhibition of root growth and a greater carbon allocation to roots. 
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6. Responses to chilling and freezing in two Eucalyptus globulus 

clones with contrasting drought resistance 

 

 

Summary 

 

We tested the hypothesis that E. globulus genotypes more resistant to dry environments 

might also exhibit higher cold tolerances than drought-sensitive plants. The effect of 

chilling and freezing was evaluated in acclimated and unacclimated ramets of a drought-

resistant clone (CN5) and a drought-sensitive clone (ST51) of Eucalyptus globulus Labill. 

Responses measured included changes in concentrations of soluble sugars, several 

antioxidant enzymes, anthocyanins, leaf water and osmotic potentials, stomatal 

conductance, rate of photosynthesis and leaf electrolyte leakage. Progressively lowering 

air temperatures (from 24/16° C to 10/-2 ºC, day/night) led to acclimation of both E. 

globulus clones. Acclimated ramets exhibited higher photosynthetic rates and stomatal 

conductances and lower membrane relative injuries when compared to unacclimated 

ramets. Moreover, low temperatures led to significant increases of soluble sugars and 

antioxidant enzymes activity (GR, APX and SOD) of both clones in comparison to plants 

grown at control temperature (24/16 ºC). On the other hand, none of the clones, either 

acclimated or not exhibited signs of photoinhibition under low temperatures and 

moderate light. The main differences in the responses to low temperatures between the 

two clones resulted mainly from differences in carbon metabolism, including a higher 

accumulation of soluble sugars in the drought-resistant CN5 as well as a higher capacity 

for osmotic regulation, as compared to the drought-sensitive clone ST51. Although 

membrane injury suggested that both clones had the same inherent freezing tolerance 

before and after cold acclimation, the results support the hypothesis that the drought-

resistant clone had a greater cold tolerance at intermediate levels of acclimation than the 

drought-sensitive clone. A higher capacity to acclimate in a shorter period can allow a 

clone to maintain an undamaged leaf surface area along sudden frost events increasing 
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growth capacity. Moreover it can enhance survival chances in frost-prone sites expanding 

the plantations range of more adaptive clones. 

 
Keywords: acclimation, cold tolerance, low temperatures 

 

 

Introduction 

 

Eucalyptus globulus plantations continue to increase annually and worldwide due 

to high growth rate and pulping properties (Carbonnier 2004). However, this has resulted 

in a tendency to include sites for planting with more demanding climatic conditions, such 

as those with more frequent frost conditions. Even in Mediterranean areas episodic 

occurrences of below-zero temperatures are important, limiting the expansion of E. 

globulus plantations. Moreover, because young Eucalyptus plants are less tolerant to 

extreme environmental conditions than adults, the degree of frost stress tolerance can 

determine successful establishment and thereby limit species/genotypes distributions to 

certain regions or microsites. In addition, with the predicted increase in weather 

variability induced by global climate change (IPCC 2001), it is expectable that plants will 

be subjected to sudden frost events with variable hardening possibilities. 

Plants face three major problems when exposed to low temperature: an alteration 

in the spatial organization of the cell membranes, a slowing down of their chemical and 

biochemical reactions and, under freezing conditions, changes in water status and 

availability (Sakai and Larcher 1987). Alterations induced by low temperatures comprise 

changes in the concentrations of a wide range of metabolites, including sugars, protective 

proteins, as well as modification of cell membranes, changes in hormone levels and 

alterations in gene expression (Zhu et al. 2007). Moreover, exposure to low temperatures 

may cause mild oxidative stress, which generates and accumulates reactive oxygen 

species (ROS) capable of causing oxidative damage to proteins, DNA, and lipids (Apel 

and Hirt 2004). Generally, cold acclimation ensures protection to plants through 

enzymatic ROS-scavenging mechanisms (Wise 1995). However, when plants are rapidly 

subjected to low temperature without acclimation, damages to the enzymatic ROS-
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scavengers might be too high and excess ROS can initiate cell death. Furthermore, 

because relatively mild below-zero temperatures can be lethal even for the more hardy 

species in the unacclimated state, timing of acclimation is crucial for plant survival in a 

given area, sometimes independent of the tolerance level to be acquired. 

A large amount of research on cold stress and tolerance mechanisms accumulated 

in the last decades (Levitt 1980; Sakai and Larcher 1987) although there are not many 

published data on the frost tolerance of E. globulus (Almeida et al. 1994; Tibbits et al. 

2006; Volker et al. 1994). Recently, it was shown that winter-frost tolerance is a trait with 

considerable variation within E. globulus with most tolerant families tolerating late-

winter temperatures 1.4 ºC colder than the overall families average (Tibbits et al. 2006). 

Thus, it is expected that contrasting genotypes respond differently to low temperatures in 

the process of cold acclimation that takes place on the time scale of days or weeks as a 

result of a combination of physiological and metabolic changes under decreasing 

temperatures. Moreover, plant responses to low temperatures show many similarities with 

responses to water deficits, suggesting that cold resistance and drought resistance 

mechanisms often share the same pathways (Atkin et al. 2005; Beck et al. 2007; Sung et 

al. 2003). 

For these reasons we hypothesised that, under a Mediterranean-type climate, E. 

globulus genotypes more resistant to dry environments might also exhibit higher frost 

tolerances than drought-sensitive plants. If this is true, it will allow a clone less 

susceptible to drought to maintain an undamaged leaf surface area along the frost periods, 

thus allowing those plants to enter spring with a higher capacity for growth than more 

drought sensitive plants. In addition, detailed physiological information of the stress-

response of clones is necessary for development of breeding programs and is essential to 

support decisions to allocate clones to different climatic regions. In previous work (Costa 

e Silva et al. 2004; Shvaleva et al. 2006), the two clones under study were shown to differ 

in their sensitivity to water deficits (CN5 was drought resistant and ST51 was drought 

sensitive) and in their capacity of long-term acclimation to chilling (Costa e Silva et al. 

2007; Shvaleva et al. 2008). Under chilling conditions, the better performance of clone 

CN5 was associated with maintenance of root growth, higher water status and 

anthocyanin concentration compared with clone ST51. The aims of the present work were 
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to: (1) evaluate the effect of rapid acclimation to chilling and freezing in physiological 

and biochemical properties of two clones of E. globulus with contrasting responses to 

drought, (2) compare the responses to chilling and freezing in clones without acclimation 

and (3) test whether the drought-resistant clone is less affected by freezing than the 

drought-sensitive clone. 

 

 

Material and Methods 

 

Plant material and treatments 

 

We studied two Eucalyptus globulus Labill. clones (CN5-drought resistant and 

ST51-drought sensitive). Ramets produced by rooted cuttings of both clones were grown 

in plastic containers containing peat (60%) and styrofoam (40%), and were transplanted 

at four months to pots (1.5 l) filled with peat and vermiculite (2/1 v/v). One month after 

transplanting, 30 cuttings per clone were transferred from the nursery to a growth 

chamber with controlled conditions (24/16 °C, day/night) (control plants). Another 18 

cuttings per clone were placed in a growth chamber subjected to an acclimation period of 

14 days with a gradual temperature decrease (1° C per day) from 24/16° C to 10/6 °C 

(day/night) (acclimation treatment). After acclimation, plants were subjected to a further 

decline in night temperature during 9 days and measurements were done at days 1, 5 and 

9 with temperatures of 10/6, 10/2 and 10/-2 ºC (day/night), respectively. In addition, 

another group of plants (unnaclimated) were measured in the same days, after transfer 24 

h earlier from the control to the low temperature chamber (direct chilling/freezing 

treatment). Both growth chambers had similar lighting systems (c.a. 220 µmol m-2 s-1 at 

the canopy level), a photoperiod of 12/12 hours (day/night) and relative humidity of 

approximately 60%. To avoid effects caused by microenvironmental differences (light 

and temperature gradients), the plants were sorted by treatment and moved to the 

neighbouring position every other day. The experiment was carried during January 2007. 

All plants were watered to the point of runoff in the first day and then watered twice per 

week (Mondays and Fridays) according to evapotranspiration values. 
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Water relations 

 

Leaf xylem water potential was measured at predawn (Ψpd) with a Scholander-

type pressure chamber (PMS Instruments, Corvallis, OR) on one leaf from four plants per 

treatment. Soon after measuring ψpd, leaf discs (7 mm diameter) were taken of each leaf, 

frozen in liquid nitrogen and stored at – 80ºC for later determination of osmotic potential 

(Ψπ). After thawing the samples at room temperature, Ψπ  was measured using C-52 

chambers (2 h for equilibration) connected to a Wescor HR-33T dew-point 

microvoltmeter (Wescor, INC Logan, UTAH, USA) operating in the dew-point mode. 

The chambers were calibrated with standard NaCl solutions. The prevailing room 

temperature during the measurements was 20 ± 1 °C. 

 

Gas exchange and chlorophyll fluorescence 

 

Gas exchanges were measured with a LI-6400 portable photosynthesis system 

(Li-Cor, Lincoln, NE) in one full-expanded leaf from four plants per treatment at midday 

(solar time). Measurements took place under the light conditions of the controlled 

environment chambers and temperature fixed in 15 ºC in the low temperature treatments. 

Pre-dawn maximal photochemical efficiency, Fv/Fm, was assessed using a Mini-PAM 

fluorometer (Walz GmbH, Effeltrich, Germany) under chamber conditions. The same 

leaves used in gas exchange were measured, taking care to avoid the midrib. 

 

Artificial freezing and membrane injury 

 

Three leaf discs per plant (10 mm in diameter) were punched from full-expanded 

leaves of six plants per treatment (control and acclimated) and placed in test tubes. Racks 

of test tubes were placed inside a controlled freezer (Aralab, Lisbon, Portugal) in baths 

containing an aqueous ethylene glycol solution at 2 ºC. A controlled freezing program 

followed a constant cooling and thawing rate of 4 ºC h-1 and a 2 h exposure to five 

different target freezing temperatures (-2.6, -3.4, -4.6, -6.2 and -8 ºC). When the 
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temperature of the bath was at –2 ºC, approximately 0.5 g of finely crushed ice (from 

deionised water) was added to each tube to make contact with the leaf disk. Membrane 

injury was determined by measuring cell conductivity after artificial freezing. Electrolyte 

conductivity of 15 ml deionised water containing leaf discs was measured after 24 h at 25 

ºC (T1) with a K220 conductivity meter (Consort, Turnhout, Belgium). The samples were 

then boiled in an autoclave at 120 °C for 10 min, held at 25 °C for 2 h and total 

electrolyte conductivity was measured (T2). Relative injury (RI) was expressed as a ratio 

of electrolyte conductivity measured after freezing treatment relative to maximum 

electrolyte conductivity, RI = (T1/T2) × 100. 

 

Pigments analysis 

 

For chlorophyll extraction two leaf discs (10 mm diameter) were incubated in 1.0 

mL of dimethyl sulfoxid (DMSO) at 25 ºC during 24 h. After incubation the extracts were 

transferred to glass cuvettes and measured in a spectrophotometer (DU-79, Beckman, 

Germany) on DMSO solutions. Total chlorophyll concentration was determined 

according to (Richardson et al. 2002). Anthocyanins were extracted in 1 mL of methanol-

HCl (0.1% HCl, v/v) at -16 ºC and kept at 4 ºC in the dark during 24 h. After 24 h the 

extracts were transferred to glass cuvettes and the absorbance was read on a methanol-

HCl solution. Anthocyanins concentration was calculated according to (Murray and 

Hackett 1991) with correction of the effect of chlorophylls. 

 

Soluble sugars 

 

Soluble sugars in leaves were assayed by the anthrone method (Robyt and White 

1987) as described in (Shvaleva et al. 2006). Frozen leaf discs (0.02 g) were ground with 

a cold mortar and pestle in liquid N2 with 1 mM of 70% (v/v) ethanol. The homogenate 

was thermomixed twice at 60° C for 30 min, centrifuged at 14,000 g for 5 min and the 

supernatant used for determination with a spectrophotometer (U-2001; Hitachi, Japan). 
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Antioxidant enzymes  

 

Sample leaves were excised and immediately immersed in liquid nitrogen and 

stored at -80 °C. The extract for enzymatic analyses was obtained by the suspension of 

the plant material (300 mg) in 5.0 mL of potassium phosphate buffer (0.1 M, pH 6.8). 

After centrifugation for 10 minutes at 20,000 g, the supernatant was collected and stored 

at -80° C. The concentration of soluble protein in the extracts was determined according 

to Bradford (1976) with bovine serum albumin (BSA) as protein standard. For 

determination of glutathione reductase (EC 1.6.4.2) and ascorbate peroxidase (EC 

1.11.1.11) activity in leaves (0.5 g fresh mass) the general procedure of Foyer and 

Halliwell (1976) and Nakano and Asada (1981), respectively, were used with some 

modifications (Shvaleva et al. 2006). For GR the assay medium contained 500 mM 

HEPES (Sigma Chemical) (pH 8.0), 0.25 mM EDTA (Sigma Chemical), 2 mM NADPH 

(Sigma Chemical), 20 mM oxidized glutathione (GSSG) and 100 µl extract. Control rates 

were obtained in the absence of GSSG or NADPH. For APX the assay medium contained 

50mM KH2 PO4 /K2 HPO4 (pH 7.0), 20 mM H2O2, 8 mM ascorbate and 100 µl extract. 

Control rates were obtained in the absence of extract, ascorbate, or H2O2. 

The determination of the activity of superoxide dismutases (SOD, EC1.15.1.1) 

considered the capacity of the enzyme to inhibit the photoreduction of nitroblue 

tetrazolium chloride (NBT). The enzyme activity was determined according to 

Giannopolitis and Ries (1977) and Del Longo et al. (1993) by mixing 50 µL of crude 

extract to a solution containing 13 mM metionine, 75 µM p-nitro blue tetrazolium 

chloride, 100 nM EDTA and 2 µM riboflavin in a 50 mM sodium phosphate buffer (pH 

7.8). It was expressed as U mg-1 protein, considering that one SOD unit (U) was defined 

as the amount of enzyme required to inhibit 50% of the NBT photoreduction. 

 

Statistical analysis 

 

Data were subjected to two-way analysis of variance (ANOVA) to test for the 

effects and interactions of temperature treatment and clone, using the STATISTICA 

(version 6, StatSoft, Inc. 2001) data analysis software system. Whenever means 
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difference was significant Student-Newman-Keuls test was used to identify differences 

between treatments. All variables were tested for normality and homogeneity of 

variances. Differences were considered statistically significant at P ≤ 0.05. 

 

 

Results 

 

Water relations 

 

Low temperatures led to a significant (P < 0.001) decrease in Ψpd in all the 

treatments as compared to control plants (Figure 1A). Acclimated plants maintained 

stable Ψpd values throughout the experiment (ranging from -0.75 to -0.99 MPa) but much 

lower than those of control plants (varying between -0.24 and -0.41 MPa). However, a 

decrease in Ψpd was associated with the decrease in temperature along the experiment in 

the direct chilling/freezing treatment. From 10/6 ºC (day 1) to 10/2 ºC (day 5) Ψpd 
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Figure 1. Predawn leaf water 
potential (ψpd; A) and leaf osmotic 

potential (ψπ; B) in Control (CT), 
Acclimated (Acclim) and Direct 
chilled/freezed (Dir c/f) plants 
belonging to a drought-sensitive 
clone (ST51) and a drought-resistant 
clone (CN5) of Eucalyptus globulus. 
Data are means ± SE (n=4). 
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declined on average from -0.47 to -0.71 MPa in both clones subjected to low 

temperatures without acclimation. With lower temperatures, i.e. at 10/-2 ºC (day 9), a 

further decline to -1.16 MPa was observed in ST51 clone, whereas in CN5 clone there 

was only a slight decline to – 0.83 MPa, a value similar to that presented by the 

acclimated plants. 

Control plants of both clones presented similar and constant Ψπ values throughout the 

experiment. Conversely, acclimated plants of both clones showed a decrease in Ψπ at 

10/2 and 10/-2 ºC in comparison to control (P < 0.001), although more marked (P < 0.05) 

in CN5 than in ST51 plants (Figure 1B). In addition, CN5 subjected to direct 

chilling/freezing also exhibited a decrease in Ψπ from 10/6 to 10/-2 ºC, whereas ST51 

only decreased Ψπ at 10/-2 ºC. 

 

Gas exchange and chlorophyll fluorescence 

 

Stomatal conductance declined significantly (P < 0.05) in both clones and all the 

treatments when temperatures attained 10/2 ºC (day 5). At 10/-2 ºC (day 9) there was a 

further decrease (P < 0.001), with acclimated and unaclimated plants presenting gs values 

corresponding to 18% and 7% from those of control plants, respectively (Figure 2A).  In 

day 1 and 5, clone ST51 exhibited higher values of gs (P < 0.001) than CN5 clone in all 

treatments. 

Similarly to gs, there was a significant effect (P < 0.001) of low temperature in A 

of both clones at 10/2 ºC (day 5) causing an average decrease of 23% in comparison to 

control either in acclimated or unacclimated plants (Figure 2B). Moreover, at 10/-2 ºC 

(day 9) there was a further decline in A, although with a clear effect of acclimation (P < 

0.001). Acclimated plants showed a 47% decrease in A as compared to control plants, 

whereas a higher reduction (79%) was observed in unnaclimated plants. Throughout the 

experiment, Clone ST51 showed higher A than CN5 clone (P < 0.01) either in control or 

acclimation treatments. In response to direct chilling/freezing, CN5 plants showed higher 

A than ST51 plants at 10/6 ºC (P < 0.05), whereas at 10/2 ºC it was Clone ST51 that 

showed higher A (P < 0.01). 
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Low temperatures led to a decrease of Fv/Fm (P < 0.001) in both acclimated and 

unacclimated plants although within relatively constant and high values (Fv/Fm > 0.75) 

throughout the experiment indicating that no photoinhibition occurred (Figure 3). There 

were not significant differences between clones although ST51 showed a stronger 

decrease in Fv/Fm than CN5 in the direct chilling/freezing treatment. 
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Figure 2. Midday stomatal conductance (gs; A) and net photosynthesis (A; B) in 
Control, Acclimated and Direct chilled/freezed plants belonging to a drought-sensitive 
clone (ST51) and a drought-resistant clone (CN5) of Eucalyptus globulus. Control 
treatment was measured at 24/16 ºC and Acclimation and Direct chilling/freezing 
treatments were measured at 10/6, 10/2 and 10/-2 ºC in Day 1, 5 and 9, respectively. 
Data are means ± SE (n=4). 
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Membrane injury 

 

Both clones showed similar membrane relative injury when subjected to negative 

temperatures ranging from –2.6 to –8 ºC (Figure 4). Leaf discs of control plants grown at 

24/16 ºC and successively subjected to lower negative temperatures showed a gradual 

increase in membrane damages attaining in both clones an average relative injury of 50% 

at the temperature –3.8 ± 0.1 ºC. On the other hand, acclimation led to a significant (P < 

0.001) decrease in membrane damage in relation to control plants, with acclimated plants 

maintaining low relative injury up to –8 ºC (<25%). 

 

Leaf pigments 

 

Progressively lower temperatures of 10/6, 10/2 and 10/-2 ºC led to an average 

decrease in anthocyanin concentration of 29% in acclimated plants of ST51 in 

comparison to control plants. On the contrary, anthocyanin concentration significantly 

increased (P < 0.05) in acclimated CN5 plants at 10/6 and 10/2 ºC (18% and 40%, 

respectively) and remained stable at 10/-2 ºC (Table 1). Direct chilling/freezing treatment 
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Figure 3. Pre-dawn maximal photochemical efficiency (Fv/Fm) in Control (CT), 
Acclimated (Acclim) and Direct chilled/freezed (Dir c/f) plants belonging to a 
drought-sensitive clone (ST51) and a drought-resistant clone (CN5) of Eucalyptus 
globulus. Data are means ± SE (n=4). 
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of 10/6 and 10/2 ºC led to significant (P < 0.01 and P < 0.05, respectively) reductions of 

anthocyanin concentration that were similar in both clones. However, when directly 

subjected to 10/-2 ºC, only ST51 plants showed a decrease in anthocyanins of 28% in 

comparison to control plants. In addition, control plants of Clone ST51 showed higher 

anthocyanin concentration than CN5 plants, leading to a clone x treatment interaction 

effect at day 1 and 5 (P < 0.05 and P < 0.01, respectively). 

Increasingly lower temperatures from 10/6, to 10/2 and to 10/-2 ºC led to a 

decrease in total chlorophyll concentration of 28%, 28% and 44%, respectively, in 

acclimated plants of ST51 in comparison to control plants. Moreover, a significant 

interaction occurred between clone and treatment effects all along the experiment (P < 

0.05), so that, total chlorophyll increased in acclimated CN5 plants at 10/6 and 10/2 ºC 

(17% and 44%, respectively) and remained stable at 10/-2 ºC (Table 2), indicating a 

protective role of acclimation in this clone. Direct chilling/freezing treatment of 10/6 and 

10/2 ºC led to small reductions in total chlorophyll (P < 0.05) in both clones. However, at 

10/-2 ºC only ST51 plants showed a decrease in total chlorophyll of 30% in comparison 

to control plants. 
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Figure 4. Membrane relative 
injury in Control (CT) and 
Acclimated (Acclim) plants 
belonging to a drought-sensitive 
clone (ST51) and a drought-
resistant clone (CN5) of 
Eucalyptus globulus. Data are 
means ± SE (n=6). 
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Soluble sugars 

 

Acclimated plants showed an increase in soluble sugars concentration at 10/2 and 

10/-2 ºC (P < 0.001) in both clones (Table 3). However, contrary to ST51, CN5 showed 

an earlier increase in soluble sugars at 10/6 ºC (P < 0.05) and, moreover, significant 

higher concentrations at 10/2 (P < 0.001) and 10/-2 ºC (P < 0.05). In response to direct 

chilling/freezing, differences between clones were clearer, with CN5 showing increases 

in soluble sugars of 45%, 69% and 34% at 10/6, 10/2 and 10/-2 ºC, respectively, whereas 

ST51 clone only slightly increased sugars (23%) at 10/-2 ºC in comparison to control 

plants. 

Table 1. Anthocyanin concentration in Control, Acclimation and Direct 
chilling/freezing treatments with plants belonging to a drought-sensitive clone (ST51) 
and a drought-resistant clone (CN5) of Eucalyptus globulus evaluated throughout the 
experiment (Day 1, 5 and 9). Data are means ± SE (n=4). Symbols: *, **, *** 
represent statistical significance at P = 0.05, 0.01 and 0.001, respectively; ns = 
nonsignificant at P = 0.05. 
 

Anthocyanin concentration (µg m-2) Temperature 

treatment day 1 (10/6 ºC) day 5 (10/2 ºC) day 9 (10/-2 ºC) 

Clone ST51    
Control (24/16 ºC) 173 ± 6 183 ± 5 173 ± 7 

Acclimation 130 ± 3 143 ± 5 105 ± 19 

Direct freezing/chilling 123 ± 18 150 ± 11 125 ± 12 

Clone CN5    
Control (24/16 ºC) 130 ± 12 118 ± 15 115 ± 13 

Acclimation 153 ± 9 165 ± 6 120 ± 17 

Direct freezing/chilling 97 ± 8 103 ± 19 128 ± 22 

Significance of 2-way ANOVA 
Clone (C) ns ** ns 

Temperature regime (T) ** ns (0.06) ns 

C x T * ** ns 
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Antioxidant enzymes 

 

Acclimation treatment to progressively lower temperatures of 10/6, 10/2 and 10/-2 

ºC led to similar responses of both clones with significant increases (at least P < 0.01) in 

all antioxidant enzymes activity in comparison to control plants (Figure 5). From all 

enzymes, ascorbate peroxidase activity showed the larger increases in relation to control 

values, particularly at 10/6 and 10/2 ºC (100%, on average). The only significant 

difference between clones occurred in GR with ST51 plants showing higher activity than 

CN5 plants all along the experiment (P < 0.001 at 10/2 and 10/-2 ºC) (Figure 5A). 

Clone responses to direct chilling/freezing were not clear, with only slight 

increases of antioxidant enzymes activity. Thus, both clones subjected to low 

temperatures without acclimation only increased GR activity at 10/2 ºC by 26%, on 

Table 2. Total chlorophyll concentration in Control, Acclimation and Direct 
chilling/freezing treatments with plants belonging to a drought-sensitive clone (ST51) 
and a drought-resistant clone (CN5) of Eucalyptus globulus evaluated throughout the 
experiment (Day 1, 5 and 9). Data are means ± SE (n=4). Symbols: *, **, *** 
represent statistical significance at P = 0.05, 0.01 and 0.001, respectively; ns = 
nonsignificant at P = 0.05. 
 

Total chlorophyll concentration (mg m-2) Temperature 

treatment day 1 (10/6 ºC) day 5 (10/2 ºC) day 9 (10/-2 ºC) 

Clone ST51    
Control (24/16 ºC) 310 ± 16 351 ± 16 321 ± 19 

Acclimation 225 ± 5 253 ± 11 180 ± 31 

Direct freezing/chilling 254 ± 39 268 ± 18 224 ± 22 

Clone CN5    
Control (24/16 ºC) 228 ± 22 205 ± 25 205 ± 23 

Acclimation 267 ± 18 294 ± 15 213 ± 33 

Direct freezing/chilling 159 ± 18 188 ± 32 237 ± 47 

Significance of 2-way ANOVA 
Clone (C) ns * ns 

Temperature regime (T) ns ns * 

C x T ** *** * 
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average, in comparison to control plants (P < 0.001). As well, SOD activity in both 

clones only significantly increased (P < 0.01) at 10/-2 ºC by 35%, on average, as 

compared to control plants (Figure 5C). There were no significant differences between 

clones under direct chilling/freezing treatment although CN5 showed a clear increase in 

APX activity of 77% and 69% at 10/6 and 10/2 ºC, respectively, in opposition to ST51 

(Figure 5B). 

 

 

 

Table 3. Soluble sugars concentration in Control, Acclimation and Direct 
chilling/freezing treatments with plants belonging to a drought-sensitive clone (ST51) 
and a drought-resistant clone (CN5) of Eucalyptus globulus evaluated throughout the 
experiment (Day 1, 5 and 9). Data are means ± SE (n=4). Symbols: *, **, *** 
represent statistical significance at P = 0.05, 0.01 and 0.001, respectively; ns = 
nonsignificant at P = 0.05. 
 

Soluble sugars concentration (mmol m-2) Temperature 

treatment day 1 (10/6 ºC) day 5 (10/2 ºC) day 9 (10/-2 ºC) 

Clone ST51    
Control (24/16 ºC) 31 ± 3.2 21 ± 1.9 30 ± 2.8 

Acclimation 26 ± 2.1 38 ± 2.9 46 ± 4.2 

Direct freezing/chilling 23 ± 2.0 25 ± 4.8 36 ± 2.5 

Clone CN5    
Control (24/16 ºC) 23 ± 2.5 26 ± 3.8 32 ± 3.7 

Acclimation 33 ± 0.4 50 ± 4.7 55 ± 2.7 

Direct freezing/chilling 33 ± 5.5 44 ± 3.5 43 ± 2.3 

Significance of 2-way ANOVA 
Clone (C) ns *** * 

Temperature regime (T) ns *** *** 

C x T * ns ns 

 



Capítulo 6 – E. globulus responses to chilling and freezing 

 136 

day 1
day 5
day 9

G
R

 (
m

m
ol

 N
A

D
P

H
 m

in
-1

 g
D

M
-1

)

0

5

10

15

20

chilling / freezing

ST51 CN5
A

P
X

 (
m

m
ol

 H
2O

 m
in

-1
 g

D
M

-1
)

0

2

4

6

8

ST51 CN5

Control Acclimation Direct

S
O

D
 (

un
its

 m
g

 p
ro

te
in

-1
)

0

20

40

60

80

100

120

140

Control Acclimation Direct
chilling / freezing

ST51 CN5

A

B

C

Figure 5. Glutathione reductase (GR; A), ascorbate peroxidase (APX; B) and 
superoxide dismutase (SOD; C) in Control, Acclimated and Direct 
chilled/freezed plants belonging to a drought-sensitive clone (ST51) and a 
drought-resistant clone (CN5) of Eucalyptus globulus. Control treatment was 
measured at 24/16 ºC and Acclimation and Direct chilling/freezing treatments 
were measured at 10/6, 10/2 and 10/-2 ºC in Day 1, 5 and 9, respectively.  Data 
are means ± SE (n=4). 
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Discussion 

 

In this experiment, given that both shoots and roots were subjected to low 

temperatures, we can expect some low root temperature influence on leaf metabolism as 

generally observed – e.g., on stomatal conductance (Almeida et al. 1994). However, an 

unrealistic drought stress during the day can be dismissed since our low day temperatures 

prevented high evaporative demands. On the other hand a 10 ºC gradient between soil 

and air temperatures is a likely event in clear winter days of the Mediterranean climate 

due to slow soil warming. 

The water status of a plant influences its frost resistance via the cell sap 

concentrations and the degree of hydration of the protoplasm (Sakai and Larcher 1987). 

In our experiment, relative water content was not altered by any treatment (data not 

shown). However, predawn leaf water potential exhibited significant changes. Clone CN5 

when subjected to freezing temperatures (10/-2 ºC, day 9) without acclimation was able 

to maintain Ψpd whereas ST51 did not (Figure 1A). In addition, clone CN5 had a higher 

capability for osmotic regulation either in acclimation or direct chilling/freezing 

treatments along the progressively lower temperatures (Figure 1B). A decrease in Ψπ, 

lowering the freezing point of tissues, can decrease the amount of ice formed, and 

therefore improve the avoidance of freeze-induced dehydration (Sakai and Larcher 1987). 

Good correlations between Ψπ and frost resistances were found for Eucalyptus sp. 

(Valentini et al. 1990) although not always associated to a significant decrease in the 

temperature of ice formation but to an increased ability to endure extracelular ice 

formation (Almeida et al. 1994). In parallel with the decrease in Ψπ there was a 

significant increase in leaf soluble sugars concentration more noticeable in CN5 plants. 

Particularly, CN5 showed a rapid (24 h) increase of soluble sugars in unacclimated plants 

as compared to ST51 (Table 3).  

A strong relationship between leaf soluble carbohydrate accumulation and cold 

tolerance have been reported for conifers (Greer et al. 2000; Ögren 1997; Repo et al. 

2004; Tinus et al. 2000) and for Eucalyptus sp. (Almeida et al. 1994; Leborgne et al. 

1995b; Leborgne et al. 1995a). Furthermore differences in cold tolerance between 
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genotypes attributed to different carbohydrate metabolisms and related to the effects of 

soluble sugars accumulation in cryoprotection have also been reported (Bourion et al. 

2003; Leborgne et al. 1995b). The amount of soluble sugars present corresponds to a 

balance between the rate of photosynthesis, consumption by respiration and export to 

parts of the plant that are growing. A higher accumulation of soluble sugars in the 

drought-resistant CN5 clone in spite of its lower photosynthetic rates suggests a more 

efficient reprogramming of carbon metabolism under low temperatures in CN5 than in 

ST51. In addition, the significantly lower rates of respiration of CN5 clone under chilling 

temperatures (data not shown) can as well have contributed to his higher acclimation 

capacity as it was proposed by Ögren (1997) for several conifers, where sugar 

consumption led to significant decreases in freezing tolerance. 

Both clones showed similar membrane relative injury when subjected to freezing 

temperatures ranging from –2.6 to –8 ºC (Figure 4). These results indicate that 

acclimation resulted in fully acclimated plants since both clones maintained very low 

values of electrolyte leakage until –8 ºC. In addition we can conclude that both clones 

have the same inherent freezing tolerance before cold acclimation. The observed values 

of membrane injury of acclimated and unacclimated plants are in accordance with the 

reported in the literature for E. globulus (Almeida et al. 1994; Tibbits et al. 2006). 

Furthermore, given the observed differences in the time course of sugar accumulation 

between the two clones and its well correlation with the development of freezing 

tolerance, we can speculate that CN5 clone can acclimate more rapidly and has higher 

tolerances for intermediate levels of acclimation than ST51 clone. 

Low temperatures are known to inhibit rates of photosynthesis through limiting 

enzymatic rates of the Calvin Cycle. In addition, a light-dependent decrease and slowly 

reversible retardation in photosynthetic efficiency or rate may occur following low 

temperature events, a process termed cold-induced photoinhibition. It has been shown 

that cold-induced photoinhibition and photodamage under high levels of irradiance 

affects E. globulus development after transplanting (Close et al. 2000). Moreover, when 

the environmental conditions do not promote carbon fixation, even moderate light may 

lead to high levels of photoinhibition (Close and Beadle 2005; Govindachary et al. 2004).  
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In our experiment, there was a significant acclimation effect with acclimated 

plants maintaining higher net photosynthesis at 10/-2 ºC than unacclimated plants. The  

reduction in photosynthetic rates caused by low temperatures is strongly influenced by 

the degree of acclimation of plant material (Greer et al. 2000; Weger et al. 1993). Results 

similar to ours were found in E. globulus by Davidson et al. (2004). However, in spite of 

the great decrease in photosynthesis (Figure 2B) throughout the experiment none of the 

clones, either acclimated or unacclimated, exhibited signs of photoinhibition assessed by 

photochemical efficiency evolution (Figure 3). Thus, E. globulus seem to not suffer from 

cold-induced photoinhibition under moderate levels of light as it has been observed in 

other species (Govindachary et al. 2004) or in Eucalyptus sp. under high irradiances 

(Close et al. 2000; Close et al. 2001; Egerton et al. 2000). Furthermore, mild frost 

temperatures alone seem not to be sufficient to cause photoinhibition in E. globulus and 

we can assume that the observed decrease of photosynthetic rates were solely due to the 

effects of low temperature either by stomatal or non-stomatal limitations. In addition, 

considering that a lower light utilisation capacity due to cold-induced decrease in 

photosynthesis requires the dissipation of greater levels of excess light energy, we can 

conclude that in our conditions, nonphotochemical, heat-dissipation mechanisms were 

sufficient to deal with excess excitation. Nevertheless, it has been suggested that E. 

globulus can have a lower inherent capacity for the dissipation of excess energy than 

more cold tolerant Eucalyptus sp. (Close et al. 2000). 

 Many plants accumulate anthocyanin under chilling temperatures. Several 

functions for anthocyanin have been proposed, including as an anti-oxidant, a UV 

protectant and as providing protection from visible light through light attenuation (Close 

and Beadle 2003; Steyn et al. 2002). In opposition to our previous results under long-term 

(42 days) chilling (Costa e Silva et al. 2007) there was no significant accumulation of 

anthocyanins in this short-term experiment (9 days) exposure to low temperatures. 

Nevertheless, under chilling temperatures (day 1 and 5), acclimated CN5 plants showed a 

trend for anthocyanin accumulation in opposition to ST51 plants. This trend of 

anthocyanin accumulation as well as the maintenance of total chlorophyll in CN5 and 

chlorophyll degradation in ST51 plants is in accordance with a lower predisposition for 

photoinhibition in CN5 as was observed in E. nitens and E. globulus (Close et al. 2000). 
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Under optimal environmental conditions, light reaction and electron transport in 

photosynthesis leads to minimal production of ROS, which otherwise, can cause some 

photooxidative damage to chloroplasts, carotenoids, and proteins. To cope with stress, 

plants developed an enzymatic antioxidant defence system which enhancement is often 

correlated with the acquiring of cold tolerance (Tao et al. 1998; Verhoeven et al. 2005; 

Wise 1995). In the present study we examined whether antioxidant enzymes capacity are 

involved in cold tolerance and differ between drought resistant and drought sensitive 

clones of Eucalyptus globulus.  

Acclimation to low temperatures led to similar responses of both clones with 

significant increases in GR, APX and SOD activity in comparison to control plants. Thus, 

the combined action of these three enzymes seems to have a protective role against 

chilling induced active oxygen species. In contrast, this clear enhancement in antioxidant 

capacity of both clones under low temperatures was not observed under drought stress 

(Shvaleva et al. 2006) where leaf enzymes activity was not significantly altered. 

Nevertheless, the absence of clone differences in leaf antioxidant enzymes activity after 

full acclimation suggests that differences in cold tolerance between the clones are not 

associated with antioxidant capacity. On the other hand, we cannot disregard possible 

differences between the two clones in antioxidant capacities at intermediate levels of 

acclimation. In fact, the results of direct chilling/freezing treatment after 24 h of cold 

exposure showed a significant increase in APX activity only in CN5 clone which can 

consequently result in different antioxidant capacities between the two clones, or at least, 

suggest different resistance pathways in each clone when unacclimated.  

When we compare the responses of both clones to low temperatures with responses 

to drought stress from a previous experiment (Costa e Silva et al. 2004; Shvaleva et al. 

2006) some common trends arise. In response to low temperatures and to water deficit, 

the drought-resistant CN5 clone maintained higher leaf water status (higher predawn and 

midday leaf water potentials) and decreased Ψπ significantly more than the drought-

sensitive ST51 clone (Costa e Silva et al. 2004; Shvaleva et al. 2006). In addition, under 

drought and chilling conditions, CN5 ramets exhibited a lesser inhibition of root growth 

than ST51 (Costa e Silva et al. 2007; Costa e Silva et al. 2004). The higher capacity to 
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deliver water to the leaves given by a more extensive root system is an advantageous trait 

under water deficits conditions. It is worth mentioning that the higher growth rate of 

ST51 ramets in optimal conditions (Costa e Silva et al. 2004) can also be related to his 

higher cold sensitivity. In fact, strong tradeoffs often exist between growth and cold 

hardiness, even if these negative genetic correlations are weaker and more variable within 

than among populations (Howe et al. 2003). 

In summary, our data indicate that progressively lowering air temperatures (to 10/-2 

ºC, day/night) led to acclimation of both E. globulus clones. Acclimated ramets exhibited 

higher photosynthetic rates and stomatal conductances and lower membrane relative 

injuries when compared to unacclimated ramets. Moreover, low temperatures led to 

significant increases of soluble sugars and antioxidant enzymes activity (GR, APX and 

SOD) of both clones in comparison to plants grown at control temperature (24/16 ºC). On 

the other hand, none of the clones, either acclimated or not exhibited signs of 

photoinhibition under low temperatures and moderate light. The main differences in the 

responses to low temperatures between the two clones resulted mainly from differences 

in carbon metabolism, including a higher accumulation of soluble sugars in the drought-

resistant CN5 as well as a higher capacity for osmotic regulation, as compared to the 

drought-sensitive clone ST51. Although membrane injury suggested that both clones had 

the same inherent freezing tolerance before and after cold acclimation, the results support 

the hypothesis that the drought-resistant clone had a greater cold tolerance at intermediate 

levels of acclimation than the drought-sensitive clone. A higher capacity to acclimate in a 

shorter period can allow a clone to maintain an undamaged leaf surface area along sudden 

frost events increasing growth capacity. Moreover it can enhance survival chances in 

frost-prone sites expanding the plantations range of more adaptive clones. 
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7.  Conclusões gerais 

 

7.1. Principais diferenças entre os clones 

 

Os vários estudos realizados e expostos nos capítulos anteriores permitem-nos 

distinguir os dois clones, de contrastante sensibilidade à seca, com base nas suas 

características morfológicas e fisiológicas responsáveis pelos diferentes mecanismos 

de resposta aos stresses impostos. Claramente, a diferença mais importante entre os 

dois clones encontra-se ao nível do metabolismo do carbono e na partição de 

biomassa pelas componentes da planta. O clone CN5, quer em resposta ao défice 

hídrico (Capítulo 2), quer em resposta às baixas temperaturas (Capítulo 4), mostrou 

um maior desenvolvimento do sistema radicular e uma maior capacidade de 

rapidamente aumentar a proporção de biomassa distribuída para as raízes do que o 

clone ST51. Ao contrário, o clone ST51 mostrou distribuir mais biomassa para as 

folhas, em detrimento das raízes, em condições de secura ou de baixas temperaturas. 

Em resultado desta diferente distribuição de biomassa, o clone CN5 exibiu sempre 

menores valores da razão entre a área foliar e a área radicular do que o clone ST51. 

Para além de um diferente investimento de biomassa nas raízes, os clones 

distinguiram-se também pelas características dos seus sistemas radiculares. O clone 

ST51, em condições bem regadas, apresentou uma maior condutância e condutividade 

hidráulica das raízes (K, Lp) e uma maior condutância foliar específica (LSC) do que o 

clone CN5. No entanto, o clone CN5 durante a imposição do stress hídrico mostrou 

uma menor limitação no fornecimento de água às folhas, com valores mais altos de K 

e LSC, do que o clone ST51 (Capítulo 2). As maiores perdas de condutância 

hidráulica das plantas ST51 em stress hídrico, em comparação com as plantas CN5, 

sugerem ainda uma maior susceptibilidade deste clone a embolismos e cavitações. Por 

outro lado, diferenças entre os dois clones na morfologia das raízes finas podem 

também contribuir para as suas diferentes capacidades hidráulicas. Em particular, é de 

referir que o clone ST51 mostrou ter raízes finas com maior comprimento especifico – 

i.e. com maior comprimento por unidade de biomassa – do que o clone CN5 (Capítulo 

4), sendo esta uma característica de espécies com crescimento rápido e estando 

associada a maiores valores de condutância hidráulica. 
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Também ao nível das relações hídricas da folha se encontraram diferenças 

entre os clones. Quer em condições de défice hídrico ou de baixas temperaturas, o 

clone CN5 manteve um estado hídrico foliar mais favorável (maiores valores de Ψpd e 

de Ψmd) e mostrou maiores reduções do potencial osmótico do que o clone ST51 o 

que lhe permitirá uma maior capacidade de osmoregulação. Por outro lado, ao nível 

celular e das respostas metabólicas ao défice hídrico e no processo de aclimatação a 

baixas temperaturas, as diferenças entre os clones não foram tão evidentes. Por 

exemplo, em resposta ao stress hídrico, os clones mostraram semelhantes alterações 

nos componentes osmóticos e na actividade do sistema de protecção antioxidante e, 

em resposta a baixas temperaturas, uma semelhante capacidade de aclimatação 

(Capítulo 3 e 5). No entanto, apesar de os resultados sugerirem uma igual 

sensibilidade dos dois clones às temperaturas negativas, antes e depois de 

aclimatados, os resultados suportam também a hipótese de o clone CN5 ter uma maior 

tolerância ao frio do que o ST51 para graus intermédios de aclimatação (Capítulo 6). 

As plantas respondem fortemente às mudanças do meio de crescimento, no 

entanto, quando testadas em semelhantes condições, diferentes genótipos mostram 

distintas capacidades de crescimento. Os genótipos que crescem mais perante uma 

eventual escassez de recursos fazem-no porque obtêm mais recursos ou porque são 

mais eficientes. Aparentemente, a maior parte dos processos metabólicos (e.g., 

fotossíntese, respiração) apesar de explicarem bem as diferenças de crescimento para 

contrastantes condições ambientais, são conservativos entre genótipos. No presente 

estudo, por exemplo, os valores de eficiência do uso da água (EUA, também 

designada eficiência da transpiração, i.e. biomassa produzida por unidade de massa de 

água transpirada num dado intervalo), apesar de aumentarem em resposta ao défice 

hídrico e às baixas temperaturas, mantiveram-se sem diferenças entre os dois clones 

(dados não apresentados). Por outro lado, os nossos resultados apoiam fortemente a 

hipótese de que as diferenças genéticas entre clones nos mecanismos de resistência à 

secura estão principalmente relacionadas com uma maior capacidade de captação dos 

recursos do solo e não tanto com um aumento da eficiência no uso desses recursos. 
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7.2. Adaptabilidade dos clones 

 

Os diferentes mecanismos de resposta aos stresses e as diferentes 

características morfológicas e fisiológicas dos dois clones, implicam também 

diferentes adaptabilidades dos clones aos meios naturais de crescimento. A maior 

resistência à secura do clone CN5, quando comparado com o clone ST51, baseou-se 

principalmente na optimização da relação entre a área de transpiração e a área de 

absorção e na manutenção da condutância hidráulica em condições de secura, 

permitindo assim a este clone prolongar o período de assimilação activa de carbono. 

Podemos prever também que em condições de campo, onde o volume de solo é 

praticamente ilimitado, o maior investimento do clone CN5 na extensão do sistema 

radicular, em condições de secura, levará ainda a maiores benefícios uma vez que 

permitirá aceder a inexplorados volumes de solo, aumentando a absorção de água. Por 

outro lado, uma menor capacidade de transporte de água devido a uma menor 

condutância hidráulica, do clone CN5 em relação ao clone ST51, pode favorecer um 

uso conservativo da água, sendo uma característica de espécies bem adaptadas à 

secura. Ao contrário, a maior eficiência de transporte de água do clone ST51 é uma 

característica favorável em condições de elevada disponibilidade de água, permitindo 

suportar uma maior área de transpiração e mais elevadas taxas de crescimento. 

Em resposta às baixas temperaturas o clone CN5 mostrou uma menor inibição 

do crescimento das raízes do que o clone ST51, característica que pode ser vantajosa 

em ambiente de clima Mediterrânico. Um aumento da razão entre a biomassa das 

raízes e a da parte aérea em condições de baixas temperaturas, levará a uma maior 

exploração do solo durante o período de maior disponibilidade de água, i.e., no 

Inverno, permitindo uma maior capacidade de obtenção de água durante a 

subsequente estação seca. A capacidade de aclimatação a baixas temperaturas, ou 

seja, o ajustamento do metabolismo das plantas de maneira a melhorar o seu 

desempenho nas novas temperaturas de crescimento, é também importante para a 

maior adaptabilidade de um genótipo. O clone CN5 mostrou uma maior capacidade de 

aclimatação – num período de tempo mais curto – do que o clone ST51. Esta maior 

tolerância ao frio para graus intermédios de aclimatação pode permitir a um genótipo 

manter uma área foliar sem danos durante a ocorrência de geadas ocasionais, 

aumentando assim o seu potencial de crescimento após o período de frio. Desta forma, 
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o clone CN5 terá maior probabilidade de sobrevivência e/ou crescimento do que o 

clone ST51 em locais sujeitos a geadas súbitas, sendo maiores os seus limites de 

plantação. 

As implicações na produtividade de uma maior distribuição de biomassa para 

as raízes dependem dos ganhos marginais em termos de assimilação de carbono das 

folhas. Se um maior crescimento das raízes se fizer em detrimento da área foliar, os 

benefícios desse crescimento dependerão do grau de limitação na produtividade que 

exercem os diferentes recursos do meio: água, nutrientes e luz. Deste modo, é 

relevante também analisar as diferentes capacidades de captação de recursos dos dois 

clones. Enquanto, o clone CN5 tem uma maior capacidade de obtenção de água 

(maior investimento nas raízes), o clone ST51 tem uma maior capacidade de 

intercepção de luz (maior investimento nas folhas). Assim, é de prever uma melhor 

adaptabilidade do clone CN5, do que do clone ST51, a condições de limitação hídrica 

e de nutrientes ou de competição por esses recursos. Inversamente, o clone ST51 

apresentará maiores produtividades sempre que os recursos do solo não sejam 

limitantes. 

 

 

7.3. Considerações finais 

 

Em última análise, o valor da silvicultura clonal depende do valor intrínseco 

dos clones e do seu ajustamento ao ambiente em que são plantados. Por sua vez, o 

valor dos clones e a previsão do seu comportamento dependem em grande parte dos 

critérios de selecção usados e da eficácia dos testes clonais. Portanto, o valor da 

silvicultura clonal está essencialmente assente sobre a qualidade e o nível de 

conhecimento que se dispõe sobre o material vegetal empregue. E é precisamente 

neste ponto que os estudos fisiológicos em condições controladas e a compreensão 

dos mecanismos biológicos em geral podem contribuir, completando o conhecimento 

quase sempre empírico dos testes clonais. Assim, é importante uma interacção 

concertada entre fisiólogos e melhoradores genéticos para que o conhecimento 

científico possa ser útil, por exemplo, aplicado no aumento de eficiência dos 

processos de selecção das populações de melhoramento e de produção e na 

distribuição dos clones nas plantações.  
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Por outro lado, o valor do conhecimento adquirido sobre os clones depende 

também da sua manutenção e aproveitamento ao longo do tempo. O sucesso da 

introdução de novos clones na população de produção pressupõe que estes novos 

clones não só são superiores aos já existentes, como é viável a sua propagação em 

larga escala. De facto, um novo clone deve ser suficientemente superior de maneira a 

compensar o valor do conhecimento empírico e científico que já se detém com os 

clones actuais (e.g., técnicas de propagação, produção, mecanismos biológicos). Deste 

modo, uma demasiado rápida substituição dos clones seleccionados, devido a uma 

agressiva estratégia de melhoramento genético, pode impedir que se adquira um 

completo e específico conhecimento técnico dos clones e, assim, obstar ao pleno 

desenvolvimento de uma silvicultura clonal. 

O presente conjunto de estudos mostram que os experimentos em condições 

controladas permitem identificar e caracterizar as plasticidades fenotípicas dos clones. 

Este conhecimento permite-nos prever as respostas dos clones em condições naturais 

e apoiar as decisões da sua distribuição pelas diferentes áreas edafo-climáticas. 

Concluímos, assim, que esta linha de investigação, possibilitando a compreensão e a 

exploração das diferenças entre os potenciais genéticos dos clones de E. globulus, é 

uma importante ferramenta de suporte do melhoramento genético e pode contribuir 

para aumentar a produtividade da floresta clonal. 

Outros estudos, mais específicos e com objectivos práticos mais imediatos, 

podem também ser propostos. Nomeadamente, experimentos de caracterização dos 

clones da população de produção para determinação rigorosa dos limites de tolerância 

aos stresses mais relevantes. Em particular, estudos de respostas dos clones a vários 

graus de secura e vários graus de aclimatação ao frio, com vista a uma hierarquização 

dos clones em função das suas tolerâncias. 

 


