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Abstract 

The mid-oceanic ridges running around the Earth are the theatre of intense 

submarine volcanic activity creating oases such as deep sea hydrothermal vents for a 

specialized fauna where different species are distributed worldwide. Deep-sea mussels 

of the genus Bathymodiolus azoricus are dominant communities at hydrothermal vent 

sites between 800 to 2400 m depth in the Azores Triple Junction of the Mid-Atlantic 

Ridge. They have developed survival strategies including dual endosymbiosis with both 

methanotrophic (MOX) and sulfide-oxidizing (SOX) bacteria housed inside their 

specialized gill cells while exhibiting also unusual immune system capabilities, 

reflecting thus, their ability to adapt remarkably to environment changes. Their 

extraordinary physiological plasticity has been evidenced throughout this thesis work 

during different experimental acclimatization to aquarium environments. B. azoricus 

has been revealed as a suitable model to investigate the metabolism of the host at a 

molecular level, such as the description of genes involved in the innate immune system 

and symbiosis establishment in relation with bacteria. 

The objectives of this work are to further characterize the adaptation of B. 

azoricus to long term acclimatization in aquaria conditions and its effects on host–

symbiotic associations, endosymbiotic prevalence and host immune responses, in view 

of understanding the functional immunological capabilities of B. azoricus gill tissues. In 

order to study a comprehensive biological response profile, both immune and bacteria 

gene expressions were quantified by real-time PCR and by Fluorescence In Situ 

Hybridization approaches, which provided a direct way to determine the relative 

location and quantification of endosymbionts. The RNA-seq methodology was 

considered in order to reveal the specific microbial and functional variabilities in the B. 

azoricus holobiome structure. 

The results herein presented, bring evidence supporting that vent mussels 

developed specific survival mechanisms, under different experimental conditions, which 

involved a repertoire of differentially expressed immune genes to endure different 

environmental parameters. The study of differential immune gene expressions brought 

evidence suggesting a physiological “alert point” translated into higher levels of 

transcriptional activity when vent mussels were acclimatized for more than one week in 

aquarium conditions at atmospheric pressure. 
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During the thesis work bacterial challenges were analyzed using V. diabolicus 

which presented a putative modulating role on B. azoricus host immune system-

endosymbionts interactions within gill tissues. This was reflected by the successful 

bacterial recognition that prompted immune genes to increase their levels of 

transcriptional activity, predominantly genes involved in the Toll and apoptosis-related 

signaling pathways. Endosymbionts predominance was observed, during the first week 

of acclimatization, eliciting the increase their transcriptional activity, suggesting of a 

possible protection role to the host against bacterial challenges and following gradual 

loss over the time course. 

To better understand these questions, a metatranscriptomic study was developed 

to analyze B. azoricus gill-microbe associations during an acclimatization experiment 

over a period of 5 weeks. This approach holds potential for the discovery of new host-

symbiont associations, evidencing new functional transcripts and a clearer picture of 

methane metabolism during the loss of endosymbionts. To the best of our knowledge, 

the B. azoricus endosymbiont-host metatranscriptomic analysis provided, for the first 

time, insight into a gill-specific microbial diversity and host-endosymbiont gene 

expression patterns. Moreover, this work identified vent-related bacterial sequences that 

affiliated with Gammaproteobacteria, including fauna symbionts Oceanospirillales, 

Methylococcales and Thiotrichales. 

Mussels from Menez Gwen and Lucky Strike hydrothermal vent fields were 

compared to address the hypothesis that physico-chemical characteristics and/or 

symbiont densities have an influence on B. azoricus transcriptional statuses. Genes 

encoding transcription factors, signaling pathways, effector and recognition molecules 

were investigated however, no clear immune gene expression signature was able to be 

depicted from this study given the variability of expression observed within and 

between the different functional immune genes from both Menez Gwen and Lucky 

Strike mussel gill samples. In sharp contrast, bacterial taxonomical structure clearly 

indicated a greater overall bacterial transcript distinction in Lucky Strike gill tissues 

when compared to Menez Gwen samples. The increased levels of bacterial transcripts in 

Lucky Strike gill samples could indicate a higher load of bacteria in gill tissues or/and 

an increased transcriptional activity from a relatively constant amount of bacteria 

associated to the gills.  

My thesis work highlighted tight associations, unseen thus far, suggesting that 

host immune and bacterial gene expression patterns reflect distinct physiological 
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responses over the course of acclimatization under aquarium conditions. Taking 

together, B. azoricus is a suitable model to study how the prevalence of symbiotic 

bacteria is driving the expression of host immune genes, physiological plasticity, 

molecular interactions involving host-mediated immune recognition events and 

adaptation mechanisms to divergent environmental conditions.  
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Resumo 

A dorsal média oceânica é caracterizada por apresentar intensa atividade 

vulcânica resultando na criação de ambientes invulgares, tais como as fontes 

hidrotermais, favoráveis ao estabelecimento de uma fauna especializada distribuída 

mundialmente. Os mexilhões de profundidade do género Bathymodiolus azoricus são as 

comunidades dominantes das fontes hidrotermais, encontradas entre os 800 e os 2400 

metros de profundidade, e localizadas na junção tripla dos Açores da Dorsal Média do 

Atlântico. Estes desenvolveram estratégias de sobrevivência, tais como a dupla relação 

endosimbiótica com bactérias metanotróficas (MOX) e sulfuroxidantes (SOX) 

localizadas dentro de células especializadas - as brânquias, bem como um sistema 

imunológico adaptativo, manifestado pela sua capacidade em adaptar-se a extremas 

mudanças ambientais. B. azoricus apresentou uma extraordinária plasticidade 

fisiológica, nos trabalhos experimentais desenvolvidos nesta tese, sujeito a diferentes 

condições experimentais, quando aclimatizado em aquário. B. azoricus tem revelado ser 

um excelente modelo de estudo para compreender o metabolismo do hospedeiro a nível 

molecular, nomeadamente na descrição dos genes envolvidos no sistema imune inato e 

na sua relação simbiótica com bactérias. 

Os objetivos desta tese incidiram na caracterização da adaptação do sistema 

imune do mexilhão B. azoricus, quando aclimatizado à pressão atmosférica durante um 

longo período de tempo, e os seus efeitos nas associações simbióticas bem como no 

estudo da prevalência das bactérias endosimbiontes, de forma a avaliar as capacidades 

imunológicas funcionais dos tecidos branquiais durante a adaptação fisiológica às 

alterações ambientais.  

Para uma completa abordagem do perfil das respostas biológicas do B. azoricus, 

os níveis de expressão dos genes imunes e bacterianos foram quantificados por PCR em 

tempo real e por microscopia de fluorescência (Fluorescence In Situ Hybridization) que 

possibilitou localizar e quantificar os endosimbiontes presentes no tecido brânquial. 

Com o objetivo de estudar as variabilidades microbianas e funcionais na estrutura do 

holobioma do B. azoricus, o RNA foi sequenciado.  

Os resultados aqui apresentados sugerem que os mexilhões das fontes 

hidrotermais desenvolveram mecanismos específicos de sobrevivência que envolvem a 

expresão diferencial de genes do sistema imune, evidenciado por um ponto fisiológico 
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de alerta, traduzido pelo aumento da atividade transcricional quando aclimatizado à 

pressão atmosférica mais do que uma semana. 

Durante o trabalho desenvolvido nesta tese, os estímulos bacterianos nas 

brânquias do B. azoricus foram avaliados, usando a bactéria V. diabolicus, que 

apresentou um possível papel modulador no sistema imune do hospedeiro e nas 

interações com os endosimbiontes presentes nas brânquias. Esta capacidade foi 

comprovada pelo reconhecimento do hospedeiro aquando da infeção bacteriana, 

aumentando assim os níveis de atividade transcricional dos genes imunológicos, 

nomeadamente genes envolvidos nas vias de sinalização do Toll e da apoptose (morte 

celular). O aumento da atividade transcricional confirmou a presença das bactérias 

endosimbiontes durante a primeira semana de aclimatização, indicando uma possível 

proteção do hospedeiro contra infeções bacterianas e subsequente perda gradual ao 

longo do tempo.  

Para um melhor entendimento das associações entre o hospedeiro e os 

endosimbiontes, durante a aclimatização experimental de 5 semanas, o 

metatranscritoma das brânquias do mexilhão B. azoricus foi sequenciado e analisado. 

Esta abordagem apresentou-se como uma informação potencial para novas descobertas 

nas associações hospedeiro-simbiontes, realçando novos transcritos funcionais e uma 

imagem mais definida do metabolismo do metano durante a perda dos simbiontes. A 

análise metatranscricional do hospedeiro e endosimbiontes do B. azoricus evidenciou, 

pela primeira vez, os padrões da diversidade microbiana bem como as relações entre o 

hospedeiros e os endosimbiontes. Adicionalmente, foram idenfificadas sequências 

bacterianas associadas ao género Gammaproteobacteria, nomeadamente à fauna 

simbiótica Oceanospirillales, Methylococcales e Thiotrichales. 

Os tecidos brânquiais de B. azoricus provenientes de duas fontes hidrotermais 

diferentes, Menez Gwen e Lucky Strike, foram comparados para perceber se as 

características fisico-químicas e/ou a carga simbiótica teriam uma influência no estado 

transcricional do B. azoricus. Para tal, os genes que codificam para fatores 

transcricionais, vias de sinalização, moléculas efetoras e de reconhecimento, foram 

analisados. No entanto, a expressão dos genes imunes testados não mostraram ter uma 

assinatura específica para cada fonte hidrotermal dada a variabilidade de expressão dos 

genes imunológicos, tanto para amostras de Menez Gwen como de Lucky Strike. 

Contrariamente, a estrutura taxonómica bacteriana indicou claramente uma 

maior distinção entre as brânquias de Lucky Strike e Menez Gwen pois o aumento dos 
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níveis de transcritos de bacterias provenientes da fonte hidrotermal Lucky Strike são 

indicativos de uma maior carga bacteriana e/ou de um aumento da atividade de 

transcrição dos genes bacterianos associados aos endosimbiontes. Os estudos 

desenvolvidos nesta tese dão especial destaque às associações entre o B. azoricus e 

respetivos endosimbiontes, apresentando padrões para a expressão dos genes imunes do 

hospedeiro e das bactérias que refletem respostas fisiológicas distintas, ao longo da 

aclimatização em condições de aquário.  

Desta forma, B. azoricus é um modelo adequado para entender de que forma a 

prevalência de bactérias simbióticas induzem a expressão de genes imunes do 

hospedeiro, bem como as adaptações fisiológicas e interações moleculares, que 

envolvem eventos de reconhecimento do sistema imune, mediadas por mecanismos de 

adaptação face às mudanças das condições ambientais. 
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General characteristics of deep-sea hydrothermal vents  

The discovery of deep-sea hydrothermal vents and associated animal 

communities in 1977 was one of the most exciting oceanographic discoveries of the 

20th century and has challenged our way of thinking about biological systems [1, 2]. 

Hydrothermal vents, also known as deep-water seeps, deep-sea springs, and deep-sea 

vents, are the result of a volcanic eruption due to shifting of the plates that form the 

Earth’s crust. The shifting causes cracks to form when the earth’s plates are pulled apart 

along the Mid-Ocean Ridges [3].  

Deep-sea hydrothermal vents are characterized by different physical and 

chemical factors, including, high pressure, high temperature gradients and high 

hydrostatic pressure, complete absence of light, low pH, elevated concentrations of 

methane, sulfur and heavy metals [4]. Hydrothermal vents are one of the most 

spectacular features on the seafloor. They form in places where there is volcanic 

activity, such as along the Mid-Ocean Ridge and occur in waters ranging from 30 to 

3600 meters depth. Superheated water rushing from the sea bottom can reach 

temperatures as high as 400°C [5]. Hydrothermal-vent ecosystems are localized areas of 

the seabed where heated and chemically modified seawater exits the seafloor as diffuse 

or focused flow and where microbial chemoautotrophs are at the base of the food web 

[6]. Most vent ecosystems tend to be linearly distributed on hard substrata (basalt) 

associated with new ocean crust along seafloor spreading centers, though there are sites 

where active vents on spreading centers are sediment-hosted [6] and associated with 

seamount volcanic systems. Environmental conditions at hydrothermal vents are 

extreme and variable, so abiotic factors are generally thought to be most important in 

structuring populations and communities.  

Azores Triple Junction 

Azores Triple Junction area is a geologic junction where the boundaries of three 

tectonic plates intersect: the North American Plate, the Eurasian Plate and the African 

Plate. The hydrothermal vent communities are currently distributed in three major vent 

fields located on three segments of the south eastern limb of the Azores Triple Junction: 

Rainbow, Lucky Strike and Menez Gwen (Figure I-1). 
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Figure I-1 Bathymetric map of the Mid-Atlantic Ridge axis south of Azores Triple Junction, showing the location of 
the hydrothermal vent fields adopted in ref [7]. 

For the present work the south-western arm of the triple junction is of particular 

interest because it is where Lucky Strike and Menez Gwen hydrothermal fields are 

located. 

Study areas 

The Lucky Strike and Menez Gwen hydrothermal fields are both located in the 

Mid-Atlantic Ridge (MAR), southwest of Azores islands, in two different ridge 

sections. These systems were discovered in the nineties, Lucky Strike in 1993 [8] and 

Menez Gwen in 1994 [9]. Lucky Strike and Menez Gwen are two active hydrothermal 

sites intensively explored since their discovery. The hydrothermal vents (active or 

inactive) at Lucky Strike hydrothermal field are distributed around the lava lake in the 

depression formed between the three volcanic tops. The site is at latitudes ranging from 

37º17’15’’N to 37º17’45’’N, and longitudes from 32º16’15’’W to 32º17’15’’W – an 

extension of nearly 1 km2. 

The Menez Gwen site was discovered after Lucky Strike and is located at 

latitudes ranging from 37º50’12’’N to 37º50’36’’N, and longitudes from 31º31’00’’W 

to 31º31’36’’W. For the discovery of Menez Gwen it was very important the use of a 

new strategy of exploration where both CH4 and H2S concentrations were measured in 

the seawater samples collected near the bottom. High concentrations of these 
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compounds were found in the fluids collected during the dives before the discovery of 

the site. This vent field is located near the top of a young volcano emerging from the rift 

valley and extending over an area of nearly 200 m2. Mounds and chimneys are of 

modest size and the maximum recorded fluid temperature was 281°C, although diffuse 

venting reaching 25°C was observed through-out the area [10]. 

Invertebrates at hydrothermal vents 

Marine invertebrates constitute the largest group of macroscopic species in the 

sea [11]. Marine bivalves are an important component of the ecosystem and biodiversity 

[12], which have abundant species distributed worldwide from the intertidal zones to 

hydrothermal vents and cold seeps [13–15]. Deep-sea hydrothermal vents constitute 

unique ecosystems supporting a variety of endemic invertebrates species adapted to 

extreme physico-chemical environments. Bathymodiolin mussels (family Mytilidae) are 

one of the most ecologically successful metazoans in the deep-sea; they are ubiquitous 

within these habitats, colonizing hydrothermal vents and cold seeps to wood falls, whale 

carcass, and oil impregnated muds from oil-drilling platform [16, 17]. The occurrence 

of bathymodiolin mussels in this broad range of environments may be attributed to their 

nutritional flexibility; they are capable of obtaining nutrition from filter feeding [18] in 

addition to receiving nutrition from chemosynthetic symbionts [19].  

Bathymodiolus azoricus  – The study model 

The deep-sea mussel Bathymodiolus azoricus (Bivalvia: Mytilidae) is generally 

found in dense populations at the Mid-Atlantic Ridge (MAR) hydrothermal vent fields 

due to successful adaptation strategies implicating a flexible feeding regime supported 

by dual symbiosis enabling vent mussels to colonize sulfide and methane rich 

environments [20, 21]. They owe their success and high biomass, at the Menez Gwen 

hydrothermal vent site, to their extraordinary capabilities to adapt and thrive in 

chemosynthesis-based environments [22, 23]. 
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Chemosynthesis at deep-sea hydrothermal vents - The primary 

production  

For a long time it was thought that the input of energy for the heterotrophic 

production of biomass in the absence of light was limited to the sedimentation of 

particulate organic matter from the photosynthetically productive surface waters to the 

bottom of the ocean. The decomposition and mineralization of this organic carbon 

occurs largely in the upper 200-300 m layer of the world oceans averaging at about 95% 

of their total primary productivity. With the discovery of metabolic activities in the 

permanently dark deep-sea, based on geothermal rather than solar energy, a new 

dimension was added to this general notion [24]. In geothermal systems, water rock 

interactions at high temperature generate hydrothermal fluids enriched in reduced 

inorganic chemical species that provide a source of energy, or “geofuels” for microbial 

oxidations. Microorganisms transform chemical energy into biochemical energy (ATP), 

which is then used to fix carbon dioxide [5,7]. This process, called chemosynthesis or 

chemolithoautotrophy, emphasizes that not only the carbon source but also the energy 

source is inorganic, providing a basis for primary production of organic carbon in the 

deep-sea hydrothermal vents [19]. These ecosystems often referred to as 

“chemosynthetic communities”, have proved to be unsurpassed when compared to any 

other biological system on Earth in terms of biomass production rate [25].  

Deep Sea hydrothermal vents ecosystem and host-symbiont 

interactions 

There are numerous environments in the biosphere where the biogeochemistry 

prompt the colonization and emergence of chemosynthetic metabolisms. These sites are 

unified by the simultaneous availability of reduced compounds and molecular oxygen. 

Deep-sea hydrothermal vents were the first habitats in which chemosynthesis-driven 

primary production was shown to fuel large animal communities [26]. At almost all 

hydrothermal vents explored to date, dense assemblages of host animals are found 

clustered around vent orifices in order to provide their symbionts access to chemicals in 

venting fluid [27, 28] .  

Vent ecosystems are typically dominated by benthic invertebrate taxa (e.g., 

vestimentiferan tubeworms, bathymodiolin mussels, vesicomyid clams, provannid 
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snails, rimicarid shrimp, yeti crabs) that host symbiotic, chemoautotrophic 

microorganisms [2]. Chemosymbiotic bivalves were found in a range of environments 

where sulfur and methane compounds, originate from decaying organic matter these 

environments, provides the biogeochemistry necessary for chemosynthetic metabolism. 

Differences in symbiotic communities are often observed among vent fields within the 

same region that have differing chemistry or geology [17, 29, 30], regarding to the 

concentrations of particular reduced compounds and sources of nutrients available to the 

symbioses (Table I-1).  

Table I-1 Typical pore water concentrations of reduced compounds in different habitats [31]. 

Habitat Sulfur Methane 

Hydrothermal vents 3–40 mmol/kg 0.1–3.4 mmol/kg 

Cold seeps 0.57–19.43 mmol/kg 0.06–0.8 mmol/kg 

Seagrass beds 5–35 μmol/kg 2–20 μmol/kg 

 

Mutualistic associations between bacteria and eukaryotes occur ubiquitously in 

nature, forming the basis for key ecological and evolutionary innovations. These so-

called ‘holobiont’ (host-symbiont) taxa often exhibit unusual morphological, 

physiological, and biochemical adaptations to characteristics of vent environments, 

including loss of the digestive system in vestimentiferan tubeworms, novel 

photoreceptors in swarming shrimp on black smoker chimneys, sulfide-binding proteins 

in vesicomyid clams and [32]. Holobiont taxa are also often foundation species, creating 

complex 3-dimensional habitat (e.g., worm aggregations, bivalve beds, snail 

aggregations) that serves as substratum for microbial growth and as refuge for juvenile 

invertebrates and habitat for associated organisms, including primary consumers (e.g., 

limpet grazers on microbial biofilms) and secondary and tertiary consumers (e.g., 

scavenging and predatory crustaceans and fishes) [6].  

The term “symbiosis” was created to describe associations in which different 

species live closely together, in relationships ranging from mutualisms to parasitism. 

Symbiosis has played a major role in shaping the evolution and diversity of eukaryotic 

organisms. Some of the most prominent examples of these symbioses are 

chemosynthetic bacteria and marine invertebrates living in the absence of sunlight at 

deep-sea hydrothermal vents and in sediments rich in reduced sulfur compounds. Here, 

chemosynthetic bacteria living in close association with their hosts. The host provides 
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access to reduced compounds (e.g., hydrogen sulfide) and oxygen that the bacterium 

uses to drive the formation of fixed carbon from single carbon molecules (either CO2 or 

CH4). These symbionts require a source of electron donors (e.g., sulfide in vent fluid), a 

source of electron acceptors (e.g., O2 in seawater), and a source of inorganic carbon 

(e.g., CO2 or CH4 in vent fluids, CO2 in seawater) [29, 30].  

Bivalves typically harbor their symbionts in large and conspicuous gills, often 

accounting for more than one third of the animal’s total soft tissue weight [35]. 

However, chemosynthetic symbioses within Bivalvia are excellent model systems for 

studying the evolution of bacteria–eukaryote interactions, as they display a range of 

intimacies with some symbionts being housed intracellularly within specialized gill 

cells called bacteriocytes [17]. 

Bathymodiolin mussels and dual symbiosis 

Bathymodiolins appear to be more versatile than vesicomyids and 

vestimentiferans, because the mussels are mixotrophic, retaining a functional digestive 

tract while hosting nutritional endosymbionts [18]. Some species, like Bathymodiolus 

thermophilus from east Pacific vents, harbor only thiotrophic bacteria, while others, like 

Bathymodiolus childressii from the Gulf of Mexico, have only methanotrophic 

symbionts [36]. A dual symbiosis, in which a single host harbors both thiotrophic and 

methanotrophic bacteria, has been described for four species, two from cold seeps in the 

Gulf of Mexico (Bathymodiolus brooksii and Bathymodiolus heckerae) [37, 38] and two 

from vents along the Mid-Atlantic Ridge (Bathymodiolus azoricus and Bathymodiolus 

puteoserpentis) [15, 35, 39]. 

Endosymbiosis by autotrophic sulfur-oxidizing bacteria (thiotrophs) or methane-

oxidizing bacteria (methanotrophs) occur in more than 200 marine invertebrate species 

that represent 5 or more phyla, depending on phylum classifications [23, 26]. It has been 

a common consensus that most host animals harbor a single thiotrophic or 

methanotrophic species.  

In nature, sulfide exposed to oxygen is inorganically oxidized however, 

specialized bacteria can also mediate this oxidation which leads to intermediate 

oxidation state compounds (S0, SO3
2- and SO4

2-), The amount of energy that results 

from this oxidation process is very important for the enzymatic CO2-fixation cycle and 

resulting synthesis of carbon compounds. 
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Thiotrophic symbionts carry out chemolithoautotrophic organic production via 

the Calvin-Benson cycle, using ATP and NADPH generated from sulfur oxidation [40], 

in which energy for CO2 fixation by the enzyme RuBisCO derives from sulfide 

oxidation [41]. Carbonic anhydrase is known to be involved in the transfer of CO2 from 

the environment to the cell in many animal symbioses. This enzyme catalyzes the 

reversible hydration of CO2 and was found to be regulated at the transcriptome level 

according to the state of symbiosis, in both plants and animals, but also in B. azoricus in 

response to temperature variations [13]. It had been proposed that hydrogen sulfide-

oxidizing and oxygen-reducing chemoautotrophs potentially sustain the primary 

production in these unique ecosystems [42]. However, anoxic hydrothermal fluids 

contain several reduced compounds such as H2, CH4, and reduced metal ions in addition 

to H2S [43]. Recent studies have demonstrated that these chemicals are all used as 

energy sources for chemoautotrophs, indicating the great diversity of chemoautotrophic 

energy metabolic processes in the ecosystems [44–46]. 

In contrast, methanotrophic symbionts assimilate carbon derived not from CO2 

but from methane, and oxidize part of methane to gain energy for metabolism [38]. Free 

living methane-oxidizing (MOX) bacteria start to oxidize methane to carbon dioxide 

through sequential reactions catalyzed by Methane Monooxygenase (MMO). MMO 

enzyme present two forms, the particular membrane bound form (pMMO) and a soluble 

cytoplasmic form (sMMO). MOX bacteria then use methanol dehydrogenase (MeDH) 

to oxide methanol to formaldehyde (HCNO), which can be assimilated to form 

intermediates of the central metabolic pathways.[40]. 

The distribution of symbiont types among various mussel hosts has been 

summarized elsewhere [34, 47, 48]. All work done to date suggests that the 

bathymodiolin symbionts are acquired from the environment [47] and other studies 

suggested that symbionts are reacquired from the surrounding seawater after induced 

loss [49]. 

Invertebrate Immune system  

The immune system, within all animals, is based on two fundamental systems: 

recognition, to distinguish between self and non-self, and effector systems. Through 

evolution, species have developed sophisticated solutions to manage invading threats 

like infectious microbes, i.e. pathogens, and other non-self-molecules. Nowadays the 
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comparative study of invertebrate and vertebrate immunity represents an important part 

of basic science and a promising field of research. The character of the immune system 

of the species reflects its surrounding environment. The immune reactions in different 

animals are dependent on their way of living and how they have evolved together with 

their threats. Thus, their susceptibility to environmental stressors may differ.  

The invertebrates are efficient against intruding microbes in spite of, in a number 

of cases, relying on immune systems that lack many of the components familiar from 

mammalian immunology. Understanding invertebrate immunity has been dominated by 

the idea that a relatively small number of germ-line derived pattern-recognition proteins 

(PRRs) bind to a few molecules, in particular the major constituents of cell walls or 

other surface structures of potential pathogens, and this initial recognition event in turn 

sets in motion a limited number of relatively fixed early responses such as: 

phagocytosis, encapsulation, coagulation, melanisation and the production of oxygen 

radicals and other short-lived toxic compounds, followed by more long-term effects 

such as the antimicrobial peptide (AMP) synthesis.  

Immune recognition proteins are essential constituents of innate immunity, 

which recognize structural motifs commonly referred to as microbe-associated 

molecular patterns (MAMPs) [50, 51] represented by a diversity of sugars, proteins, 

lipid bearing molecules and nucleic acid motives, that initiate a cascade of extracellular 

and intracellular events leading to the activation of immune genes. Thus, the cell surface 

composition is of primary importance during cellular responses to environmental 

stimuli and, in this context, glycoconjugates are important for specific recognition 

between microorganisms and host cells, mediating the interaction of carbohydrate-

binding proteins or lectin-like molecules [52]. Lectins are membrane-associated and 

soluble proteins with specific carbohydrate recognition domains which can promote 

opsonization, phagocytosis and the activation of the complement system through 

mutualistic interactions between host and microbiota [53, 54]. 

Invertebrate AMP defensins have been found in the hemolymph (plasma and 

hemocytes) and in certain epithelial cells of arthropods (e.g. insects) and mollusks [55] 

The immune system is mastered to distinguish beneficial microbes from pathogens and 

to coordinate appropriate immune responses [56]. As symbiotic microbes presumably 

share similar MAMP’s with pathogens, how they immunologically elude host immune 

recognition, remains an open question and a challenge to lifelong microbiota prevalence 

inside vent mussel gill epithelia. Emerging evidence, however, point at evidence 
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showing certain microbes directly engage the immune system, in some cases, into active 

shaping of beneficial host immune responses [56]. Symbiosis is often achieved through 

microbial molecules that are sensed by PRRs. As the first eukaryotes evolved in a world 

inhabited by bacteria, PRRs appear to have facilitated a wide range of microbial 

interactions [56] including chemolithoautotrophic bacteria living in extreme 

environments.  

The receptors (PRRs) are able to identify non-self by pathogen-associated 

molecular patterns (PAMPs). These molecules, for example lipopolysaccarides (LPS), 

peptidoglycans and β-1-3-glucans, stimulate the immune system unspecific ally since 

they are present on the surface of large groups of bacteria and other microorganisms 

[57, 58]. Especially peptidoglycans (PGNs) are excellent targets for recognition by the 

eukaryotic immune system, because PGN is an essential cell wall component of 

virtually all bacteria and it is not present in eukaryotic cells [59]. PGN is especially 

abundant in Gram-positive bacteria, in which it accounts for almost half the cell wall 

mass. In Gram-negative bacteria, a relatively thin PGN layer surrounds the cytoplasmic 

membrane under the LPS-containing outer membrane that is also a unique molecule to 

be recognized [60] .This general response to compounds such as peptidoglycans, 

lipopolysaccharides, β-1-3-glucans, which are present in many microorganisms, 

certainly constitutes the support of invertebrate immunity, but from recent research a 

more complex picture is starting to emerge. Separate bacterial strains or species, in the 

same host, may trigger an immune response that differs considerably, both 

quantitatively and in terms of which immune effectors are used [61, 62].  
The innate immunity uses a set of sensors to recognize foreign patterns as 

mentioned earlier, which are found either intracellular, on cell surfaces or excreted in 

the hemolymph of the host for an instant reaction [58]. In general invertebrates have an 

open or semi-open circulatory system and aquatic invertebrates live in continuous 

contact with potential pathogens [63]. This makes them dependent on minute reaction of 

defense mechanisms. In the semi open circulatory systems of e.g. bivalves, the blood is 

called hemolymph and the blood cells hemocytes. 

Invertebrates and molluscan immune responses are notorious for their ability to 

defend themselves against bacteria, fungi, and parasites [40, 64]. Their first lines of 

defense against infectious agents are physical and chemical barriers, such as the shell 

and exoskeleton, and deterrent chemical compounds. Once these barriers are breached, 

humoral and cellular reactions are set to function through hemolymph constituents and 
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hemocytes respectively [65]. Also, in bivalves, cellular and humoral components are 

required for defense responses allowing them to overcome pathogens that are naturally 

present in marine environments [66]. The main cellular immune response against 

pathogens in molluscan is phagocytosis [67]. 

Moreover, the generation of highly reactive oxygen intermediates (ROIs) and 

nitric oxide also plays an important defense role against pathogens. Besides their 

decisive role in protecting the host from microbial assaults, bivalve hemocytes have also 

been implicated in other important physiological functions, including nutrient transport, 

digestion, wound healing and shell regeneration and/or mineralization and excretion 

[68]. Also, the hemolymph serum contains humoral defense factors such as lectins that 

are directly and indirectly involved in the killing of pathogens. They are important 

mediators of cellular reactions and exhibit opsonin properties, which facilitate the 

phagocytosis. The hemolymph also contains antibacterial factors and lysosomal 

components that ensure, along with hemocyte phagocytic and cytotoxic processes, the 

clearance of pathogenic bacteria [66] 
Many invertebrates have the capacity to synthetize immune proteins with an 

enormous range of sequence variability. Together this seems to suggest that invertebrate 

immune reactions to pathogens may be as varied and complex as their vertebrate 

counterparts. The existence of the hypervariable proteins has led to speculation that they 

could constitute part of a system that would allow immune memory, or at least immune 

specificity, in invertebrates. Although there are some intriguing data suggesting the 

possibility of an immune memory or immune priming in invertebrates [69]. 

Notably, these mechanisms would require that the host be able to recognize its 

symbiont, differentiate the symbiont from other bacteria, and directly or indirectly 

influence the growth of the population. Despite possessing very similar PAMPS on their 

surfaces, different microbial strains are able to activate a variety of immune responses in 

invertebrates [64, 66, 70, 71]. The immune system has the ‘double-edged’ task of 

discriminating and eliminating pathogenic non-self while minimizing damage to self. 

Specific immune priming permits an induced response upon secondary exposure to the 

same threat [67]. While immunological memory was traditionally considered a hall-mark of 

the vertebrate adaptive immune system [72], there is growing evidence that invertebrate 

immune responses are also modulated upon repeated infections [73, 74]. 



Chapter I  Page 12  

Signaling pathways in invertebrate immune and stress response  

A wide variety of signaling pathways regulate immune and stress response in 

invertebrates. The invertebrate immune response recognizes pathogenic motifs through 

Toll-like receptors and pattern recognition proteins (PRPs). The dogma that 

invertebrates do not possess an adaptive immune response, activated by multivariate 

recombination events, may actually be oversimplifying the invertebrate immune system. 

For example, oysters have an experimentally determined anticipatory response to 

infection, not a trait expected from a static immune response [75]. Also, shrimp injected 

with Vibrio harveyi were shown to have heightened levels of circulating PRPs, retained 

some recognition of bacterium and showed evidence of immune “priming” [76]. The 

fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans are 

extensively utilized model organisms for studies of such signaling pathways in 

invertebrates. Intriguingly, major signaling pathways in immune response in Drosophila 

and C. elegans, as represented by the Toll and IMD pathways. On the other hand, the 

mitogen-activated protein kinase (MAPK) pathways play not only in immune response 

but also in response to various abiotic stressors such as heat shock, ultraviolet (UV) 

irradiation, oxidative stress and osmotic shock [77].  

Toll-like receptors (TLRs) are critical pattern recognition receptors (PRRs) that 

recognize MAMPs consisting of specific molecular “signatures” expressed by microbe 

cell membrane surfaces. Upon microbe sensing all TLR signaling pathways culminate 

in activation of the transcription factor nuclear factor-kappaB (NF- B), which controls 

the expression of an array of inflammatory cytokine genes [78]. The expression and 

activation of transcription factor NF- B are tightly regulated by the inhibitory protein 

I B whose phosphorylation and subsequent degradation leads to NF-kB translocation to 

the nucleus [78]. TLR activation leads to the recruitment of several intracellular factors, 

including the adaptor protein MyD88, resulting in signal transduction events which 

ultimately lead to the degradation of Iκ-B allowing NF-κB translocation to the nucleus 

and subsequent activation of NF-κB-driven transcription of target immune genes [79, 

80]. In-deed TLRs are membrane associated molecules which require conformational 

changes such as receptor heterodimerization upon ligand binding to promote signal 

transduction and subsequent MyD88 intracellular homodimerization [81]. Another 

possibility consists of the occurrence of a MyD88 independent TLR signaling pathway 

that could also be involved, for instance, in the induction of interferon or in the 
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mediation of NF-kB and MAPK activation and also contribute to inflammatory 

responses in deep-sea vent mussels [82, 83]. Generally, TLR do require limited 

transcription whereas intracellular adaptors are constantly being degraded and 

replenished hence their increased gene expression upon immune signal reactions. 

Additionally, the Toll signaling induces the production of pro-inflammatory cytokines 

such as interleukins, interferon, TNF, responsible for direct innate response and for 

triggering adaptive immune cells [84]. 

The TNF pathway presumably plays an important role in the first line of defense 

in marine bivalves along with the pathogen sensor Toll pathway, mediating 

inflammatory responses and the macrophage-like granulocytes reactions during 

cytokine-dependent host cellular defenses [85]. The role of TNF in invertebrates has 

been associated to pathogenic infections with Vibrio bacteria responsible for TNF 

inducible gene expression in Molluscs [86].  

The involvement of Janus kinase/STAT pathway also is correlated with 

microbial infection [87]. The STAT gene is involved in mediating intracellular 

functions often associated with innate immune reactions, proliferation and 

differentiation of epidermal cells [88]. The epidermal growth factor (EGF) is activated 

by the signal transducer STAT-SH2.  

SRCR immune recognition gene has been shown to function along in with the 

Toll-like receptor signaling pathway, an essential component in innate immunity [89]. 

Other extracellular signaling events upstream of Toll receptor may involve the 

participation of immune recognition molecules as the serine proteases [90] and serine 

protease inhibitors upon which Vibrio diabolicus may exert its modulating effect.  

Whether or not vent mussels may actively control their bacterial symbiont 

population through apoptotic processes is still an open question. It is possible that 

different symbiont contents in gill tissues may induce different patterns of apoptosis 

[91]. Regulation of apoptosis is conferred by families of pro- and anti-apoptotic 

molecules. Fas ligand is a member of the TNF superfamily that plays an important role 

by inducing apoptosis, and homeostasis of immune responses and control microbial 

infection by inducing O2-, H2O2 and other Reactive Oxygen Species (ROS) [92] that are 

generated during mitochondrial oxidative metabolism as well as in cellular response to 

bacterial invasion. Ferritin is an iron chelating protein which has been classified as a 

stress protein due to its similarity with proteins involved in detoxification processes 

triggered by various stresses and the iron is involved in respiratory burst activity, which 
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leads to the production of reactive oxygen species. Hence, ferritin can regulate iron 

concentration to destroy microbial agents and at the same time protect cells from 

oxidative stress [93].  

The BCL2 family proteins (anti-apoptotic molecules) are key regulators of 

molecular mechanisms of programmed cell death [94]. BCL2 gene has been 

characterized in non-model invertebrates but recently new information regarding marine 

mollusks was described [95]. p43, a mitochondrial apoptotic gene, is considered as a 

marker of cellular stress in mussels and it is also secreted as a cytokine controlling 

angiogenesis, immune responses, tissue regeneration [96]. Also tied to the apoptotic 

signaling pathway, PGRP gene act as a signal-transducing innate immune receptor in 

the IMD pathway [97]. Previous studies have shown PGRP gene expression is strictly 

correlated with endosymbionts release [98]. 

The BCL2 family proteins (anti-apoptotic molecules) are key regulators of 

molecular mechanisms of programmed cell death [94]. BCL2 gene has been 

characterized in non-model invertebrates but recently new information regarding marine 

mollusks was described [95]. p43, a mitochondrial apoptotic gene, is considered as a 

marker of cellular stress in mussels and it is also secreted as a cytokine controlling 

angiogenesis, immune responses, tissue regeneration [96].  

Involved in the cell cycle, apoptosis and in mitigating putative cell stress, HSP 

70 gene has been widely accepted as a biomarker for the assessment of unhealthy 

environmental factors. In previous studies, a positive correlation between the levels of 

DNA strand breakage and HSP 70 expression, in response to decompression stress, was 

found by Pruski and Dixon [99]. These authors showed that HSP 70 revealed protective 

functions following environmental stresses at atmospheric pressure rather than high 

stress temperature variations.  

Others immune transcription-factor genes including AP-1 and Jun has a pivotal 

role at the crossroad of the signaling network in invertebrates, including mussels [54] . 

Jun interacts with Fos to engage the transcription factor AP-1 heterodimer activity, 

regulated by a variety of extracellular stimuli, including growth factors, cytokines, cell–

matrix interactions, and genotoxic stress, among others [100]. Once activated, the AP-1 

signal transduction pathway regulates immune, inflammatory and stress responses. 

The study of innate immunity in B. azoricus has been largely focused on the 

demonstration of the conservation of the immune system and its constituents [68, 101], 
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apparently homologous to that of insects and other bivalves, involving the participation 

of NF-κB transcription factors and antibacterial genes [14, 50, 102].  

Based on the transcriptome and subsequent gene expression studies of 

B.azoricus, symbiont bacteria stimulate the expression of host-immune genes 

throughout acclimatization [14, 101] and transcriptional activity profiles revealed the 

possibility of using specific immune or stress-related genes in response of different 

environmental conditions and bacterial challenges [40].  

Objectives and thesis outline 

The thesis intends to contribute towards a better understand how deep-sea vent 

mussel B. azoricus can be used as a model organism to study the immune system during 

acclimatization in aquaria conditions and the symbiotic bacteria influence on expression 

of host immune genes. In an attempt to understand the deep-sea mussel B. azoricus 

adaptations to extreme environments and mechanisms through which it overcomes 

environmental microbial challenges, the present thesis aimed at investigate the innate 

defense reactions and the role of immune recognition molecules. Thus, advances in 

sequencing technologies provide the opportunity to study the entire genetic make-up of 

microbial communities in terms of their taxonomic and metabolic potential to analyze 

expressed genes under experimental conditions. 

 

The thesis is composed of four research based chapters: 

Chapter II The relevance of gene expression studies demonstrated that the swift 

changes affected the physiological homeostasis of B. azoricus. It has provided insights 

into the understanding of post-capture acclimatization and adaptation processes at 

atmospheric pressure. The results suggested that after 1 week acclimatization vent 

mussels are under the influence of what appears to be a concomitant host-immune and 

endosymbiont gene expression, possibly indicating a physiological alert point translated 

into higher levels of transcriptional activity. The objective of this chapter was 

recognized B. azoricus as a suitable model to study physiological plasticity and adaption 

processes to new environmental conditions at atmospheric pressure. 
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Chapter III A pulse challenge experiment using V. diabolicus as a bone fide 

immunostimulant agent was envisaged to demonstrate a general progressive incapacity 

of vent mussel B. azoricus to induce immune gene transcriptional activity over the 

course of acclimatization time. Expression analyses for both host and endosymbiont 

genes, after V. diabolicus challenges, showed a time-dependent mRNA transcriptional 

pattern evidenced during the first week acclimatization. The results herein presented 

support a putative modulating role of V. diabolicus on host immune system-

endosymbionts interactions and on their gene expression reliance to an extent which, 

host-immune and endosymbiont genes are mutually dependent during the first weeks of 

acclimatization. Successful bacterial recognition prompted immune genes to increase 

their levels of transcriptional activity particularly for genes involved in the Toll-like 

receptor signaling and apoptosis-related pathways during first days of acclimatization in 

aquarium environments. B. azoricus was presented as a suitable model to study 

molecular interactions involving host-mediated immune recognition events and 

adaptation mechanisms, to mitigate apoptosis harmful effects induced by Vibrio 

exposure. 

 

Chapter IV A metatranscriptomic study was developed to analyze B. azoricus gill-

microbe associations during an acclimatization experiment in sea-water aquarium 

environment and at atmospheric pressure. rRNA sequencing analyses from 11 

transcriptomic data sets, corresponding to distinct acclimatization time points, 

highlighted a variable distribution of taxonomical and functional assignments, 

consistent with changes in symbiont metabolic activity. The aim of this chapter was 

confirmed by Next-generation sequencing the results obtained in chapter II. The results 

confirmed the B. azoricus immunological response trend at 1 week of acclimatization 

concomitantly with the gradual loss of endosymbiont. 

 

Chapter V To address the hypothesis that geographically distinct B. azoricus 

individuals may be experimentally traced back to their original hydrothermal vent site, 

the specific gene expression levels for both bacterial genes and host-immune related 

genes were compared between animals from the shallower Menez Gwen and the deeper 

Lucky Strike vent sites. A taxonomical structure of the vent mussel gill's microbiome 

was also evaluated to determine the bacterial community composition of Menez Gwen 

and Lucky Strike gill tissue samples. The same specimens of B. azoricus presented 
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different transcriptional activities most likely at the level of the gill's microbiome, which 

is presumably under direct influence of the hydrothermal vent environment from which 

mussels were originated. 
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