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Lymphatic filariasis is a neglected tropical disease which poses public health concern and socio-

economic challenges in developing and low-income countries. In this paper, we formulate a 
deterministic mathematical model for transmission dynamics of lymphatic filariasis to generate 
data by white noise and use least square method to estimate parameter values. The validity of 
estimated parameter values is tested by Gaussian distribution method. The residuals of model 
outputs are normally distributed and hence can be used to study the dynamics of Lymphatic 
filariasis. After deriving the basic reproduction number, 0 by the next generation matrix 
approach, the Partial Rank Correlation Coefficient is employed to explore which parameters 
significantly affect and most influential to the model outputs. The analysis for equilibrium states 
shows that the Lymphatic free equilibrium is globally asymptotically stable when the basic 
reproduction number is less a unity and endemic equilibrium is globally asymptotically stable 
when 0 ≥ 1. The findings reveal that rate of human infection, recruitment rate of mosquitoes 
increase the average new infections for Lymphatic filariasis. Moreover, asymptomatic individuals 
contribute significantly in the transmission of Lymphatic filariasis.

1. Introduction

Lymphatic filariasis is a chronic parasitic mosquito-borne disease. It is considered as the most prevalent neglected tropical disease 
[1,2]. The disease is endemic and causes major public health and socio-economic challenges in tropical and sub-tropical regions 
especially in developing countries [3–5]. The World Health Organization (WHO) estimated that 863 million people from 73 countries 
are threatened by lymphatic filariasis and require Mass Drug Administration (MDA) intervention [6]. Lymphatic filariasis is caused 
by roundworms of the nematode family namely; Brugia malayi, Brugia timori and Wuchereria bancrofti, where Wuchereria bancrofti is 
responsible for at least 90% of total infections [7]. The disease cause impairments to human lymphatic system leading to enlargement 
and disfigurement of body parts. Consequently, this results into lymphoedema, elephantiasis and hydrocele. The impairments are 
accompanied by severe pain, permanent disability, defect in reproductive system, adenolymphangitis, damage of the kidney, social 
stigma and rarely death in chronic-infected individuals [8–10].
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Fig. 1. The life cycle of microfilarie parasites, physical manifestations and consequences associated.

In humans, lymphatic filariasis is characterized by three phases namely asymptomatic, acute, and chronic. The stages can be 
manifested based on the body’s distinctive immune attributes. In an asymptomatic condition, for instance, there is no noticeable 
symptoms while microfilariae parasites cause damage to the body’s immune and lymphatic systems [9]. The Acute stage is asso-

ciated with adenolymphangitis, local inflammation of lymph nodes and vessels, skins that leads to secondary bacterial infections 
due to partial loss of normal defense of lymphatic system [9,6]. When the disease develops into chronic stage, it results into hy-

drocele, lymphoedema, sub-optimal mental health, elephantiasis and social stigma due to body’s part disfigurements. Therefore, 
lymphatic filariasis contribute considerably to loss income-earning opportunities, permanent disabilities, socio-economical burdens 
2

which include medical expenses and individual dependence as described in Fig. 1. Human being is a primary and definitive host of 
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microfilarie parasites while mosquito is an intermediate host [11]. The life time of parasites in the human body is approximated to 
be between 5 − 8 years [12].

Mosquitoes as intermediate host transmit microfilariae parasites from an infected human to a susceptible human through blood-

feeding [13]. In the intermediate host, microfilariae develop into infective larvae which can be transmitted to susceptible human 
[6]. Lymphatic filariasis is globally distributed with mosquitoes that are responsible for the transmission of the parasites differing 
geographically. For instance, in Africa, America, Asia and Pacific, lymphatic filariasis is transmitted by anopheles, culex, mansonia 
and aedes respectively [9].

To intervene the transmission, WHO recommends implementation of Mass Drug Administration (MDA) in countries at risks, to 
reduce lymphatic filariasis transmission and prevalence [6]. However, regardless of MDA treatment, the damage caused by lymphatic 
filariasis infection to lymphatic system is irreversible. While WHO ranks lymphatic filariasis as a second causative of long-term 
disability after leprosy, Centers for Disease Control and prevention (CDC) identifies it as the leading cause of permanent disability 
worldwide. It is estimated that one billion people are at risk of lymphatic filariasis infection and 120 million have been affected, 65% 
of those who are at risk of contracting lymphatic filariasis reside in the Southeast Asia, 30% in Africa, and the rest live in other parts 
of the tropical world [6]. In Tanzania specifically, Lymphatic Filariasis is endemic countrywide with high prevalence in the coastal 
regions such as Tanga, Pwani, Lindi, Mtwara and Dar es Salaam. In 2017, [14], conducted a survey which identified patients with 
lymphatic filariasis in Dar es salaam. The study reported a total of 6889 infected cases of which 60%, 32% and 8% had hydrocele, 
lymphoedema and lymphoedema-hydrocele co-infection respectively. The global response to lymphatic filariasis transmission and its 
associated burdens, include a Global Programme to Eliminate Lymphatic Filariasis GPELF which was launched by WHO in 2000 and 
new neglected tropical diseases road map from 2020 to 2030. Despite WHO 2000 & 2020 preventive chemotherapy measures to halt 
the spread of lymphatic filariasis infection, the disease is still endemic.

Mathematical modeling is an important and scientific tool for investigating and analyzing epidemiological dynamics of infectious 
diseases for designing appropriate control intervention programmes [15]. Regarding mathematical modeling for lymphatic filariasis, 
a number of deterministic and statistical models have been formulated and analyzed. These include [8,16–28] and [29]. Although 
asymptomatic individuals play a significant role in disease transmission, none of the aforementioned studies have considered the si-
multaneous inclusion of asymptomatic, acute, and chronically infected populations in their modeling approaches. This paper presents 
a deterministic model that generates data through random simulation with white noise, estimates parameter values, and investigates 
the dynamics of lymphatic filariasis in both humans and mosquitoes, taking into account all three categories of infected individuals. 
The objective of this study is to provide insights at the community level, enhancing awareness and improving the general understand-

ing of transmission dynamics involving carriers and asymptomatic individuals. Furthermore, this research aims to make a substantial 
contribution to the existing literature and establish a new platform for future studies. The findings of this study will also be valuable 
for government officials and policymakers, aiding in the development of effective control strategies.

The paper is organized as follows: In Section 2, a deterministic mathematical model for the dynamics of lymphatic filariasis is 
formulated. Section 3 is devoted to model fitting and analysis. The implementation of numerical simulation is done in section 4. The 
discussion and conclusion is presented in Section 5.

2. Model development

The model for Lymphatic filariasis divides human populations into five classes namely susceptible 𝑆(𝑡), exposed 𝐸(𝑡), Asymp-

tomatic 𝐴(𝑡), acute 𝐼1(𝑡) and chronic 𝐼2(𝑡) and the mosquitoes population into susceptible 𝑆𝑀 (𝑡), exposed 𝐸𝑀 (𝑡) and infected 𝐼𝑀 (𝑡)
classes. The susceptible humans, 𝑆(𝑡) are recruited at rate Π𝐻 , and become exposed when they contract lymphatic filariasis through 
infectious mosquito bites 𝐼𝑀 (𝑡) at rate 𝛽 [1]. Exposed humans, 𝐸(𝑡) progress to asymptomatic class, 𝐴(𝑡) at a rate 𝛼. The asymp-

tomatic stage causes damage of lymphatic system, kidneys and changes in the body immune system leading to progression to either 
acute stage at rate 𝜉 or chronic stage at a rate 𝜙. A proportion of exposed individual progresses to acute stage 𝐼1(𝑡) and chronic stage 
𝐼2(𝑡) at rates 𝜌 and 𝜓 , respectively [6]. Moreover, individual in acute class progress to chronic class at a pace 𝜎. Lymphatic filariasis 
induces mortality in chronic class at a rate 𝛿. Human classes suffer natural death at a rate 𝜇ℎ.

The susceptible mosquitoes 𝑆𝑀 (𝑡) are recruited at a rate Π𝑀 , and decline as they contract lymphatic filariasis through biting 
infected individuals in asymptomatic 𝐴(𝑡), acute 𝐼1(𝑡) and chronic 𝐼2(𝑡) classes and become exposed at a rate:

𝜆 = 𝛽2𝐴+ 𝛽3𝐼1 + 𝛽1𝐼2, (1)

from Eq. (1), 𝛽1, 𝛽2 and 𝛽3 are rates at which susceptible mosquitoes acquire infection from individuals in chronic, asymptomatic 
and acute classes respectively.

The Lymphatic filariasis model development follows the following assumptions: there is no vertical transmission for lymphatic 
filariasis in humans; migration is not considered; the rate of infection is assumed to be density dependent [30,19], also known as 
principle of mass action; the parasites that cause lymphatic filariasis are transmitted only by a mosquito vector; infected humans can 
3

not recover from infection; chronic infected individuals suffer disease induced mortality. Fig. 2 illustrates the model flowchart.
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Fig. 2. Compartmental model for the transmission of lymphatic filariasis in humans and mosquito vectors.

The transmission dynamics of lymphatic filariasis is described by non-linear system of ordinary differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑆(𝑡)
𝑑𝑡

=Π𝐻 − 𝛽𝐼𝑀𝑆 − 𝜇ℎ𝑆,

𝑑𝐸(𝑡)
𝑑𝑡

= 𝛽𝐼𝑀𝑆 − (𝛼 + 𝜌+𝜓 + 𝜇ℎ)𝐸,

𝑑𝐴(𝑡)
𝑑𝑡

= 𝛼𝐸 − (𝜉 +𝜙+ 𝜇ℎ)𝐴,

𝑑𝐼1(𝑡)
𝑑𝑡

= 𝜓𝐸 + 𝜉𝐴− (𝜎 + 𝜇ℎ)𝐼1,

𝑑𝐼2(𝑡)
𝑑𝑡

= 𝜌𝐸 + 𝜙𝐴+ 𝜎𝐼1 − (𝛿 + 𝜇ℎ)𝐼2,

𝑑𝑆𝑀 (𝑡)
𝑑𝑡

=Π𝑀 − 𝜆𝑆𝑀 − 𝜇𝑚𝑆𝑀

𝑑𝐸𝑀 (𝑡)
𝑑𝑡

= 𝜆𝑆𝑀 − (𝜔+ 𝜇𝑚)𝐸𝑀

𝑑𝐼𝑀 (𝑡)
𝑑𝑡

= 𝜔𝐸𝑀 − 𝜇𝑚𝐼𝑀

(2)

with the following initial conditions:
4

𝑆(0) > 0;𝐸(0) ≥ 0;𝐴(0) ≥ 0;𝐼1(0) ≥ 0;𝐼2(0) ≥ 0;𝑆𝑀 (0) > 0;𝐸𝑀 (0) ≥ 0; and 𝐼𝑀 (0) ≥ 0.
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3. Model analysis

3.1. Positivity and boundedness of solutions

The model system (2) is tested to determine whether it is mathematically well-posed and biologically feasible in region Γ =
{(𝑆, 𝐸, 𝐴, 𝐼1, 𝐼2, 𝑆𝑀, 𝐸𝑀, 𝐼𝑀 ) ∈ℝ8

+}. If the model solutions are bounded and non-negative, then such a model is said to be well posed 
and biologically meaningful.

Theorem 1. Let 𝑆(0) > 0; 𝐸(0) ≥ 0; 𝐴(0) ≥ 0; 𝐼1(0) ≥ 0; 𝐼2(0) ≥ 0; 𝑆𝑀 (0) > 0; 𝐸𝑀 (0) ≥ 0; and 𝐼𝑀 (0) ≥ 0 be non-negative initial conditions, 
then the solutions (𝑆, 𝐸, 𝐴, 𝐼1, 𝐼2, 𝑆𝑀, 𝐸𝑀, 𝐼𝑀 ) of model (2) will remain positive for all time 𝑡 ≥ 0.

To show that the model solutions are positive for all 𝑡 ≥ 0, let 𝑡1 = 𝑠𝑢𝑝{𝑡 > 0 ∶ 𝑆 > 0, 𝐸 > 0, 𝐴 > 0, 𝐼1 > 0, 𝐼2 > 0, 𝑆𝑀 > 0, 𝐸𝑀 >

0, 𝐼𝑀 > 0}. The first equation for susceptible humans in model system (2) can be written as;

𝑑𝑆

𝑑𝑡
=Π𝐻 − (𝛽𝐼𝑀 + 𝜇ℎ)𝑆 ≥ −(𝛽𝐼𝑀 + 𝜇ℎ)𝑆.

Separation of variables yields;

𝑑𝑆

𝑆
≥ −(𝛽𝐼𝑀 + 𝜇ℎ)𝑑𝑡.

Integration and application of initial condition gives

𝑆(𝑡) ≥ 𝑆(0)𝑒

−

𝑡1

∫
0

(𝛽𝐼𝑀 (𝜏) + 𝜇ℎ)𝑑𝜏

≥ 0. (3)

Using similar approach used to obtain Eq. (3) for the rest of equations it can be shown that all solutions of the model system (2) are 
positive for all 𝑡 ≥ 0.

To establish boundedness of the model solutions, we consider the total human and mosquitoes populations respectively to obtain:

𝑑𝑁𝐻

𝑑𝑡
≤Π𝐻 − 𝜇𝐻𝑁𝐻,

𝑑𝑁𝑀

𝑑𝑡
≤Π𝑀 − 𝜇𝑚𝑁𝑀.

(4)

The solution of human equation in Eq. (4) is:

𝑁𝐻 (𝑡) ≤ Π𝐻

𝜇ℎ
+
(
𝑁𝐻 (0) −

Π𝐻

𝜇ℎ

)
𝑒−𝜇ℎ𝑡 (5)

Applying standard comparison theorem on Eq. (5) as used in [31], when 𝑁𝐻 (0) >
Π𝐻

𝜇ℎ
and 𝑁𝐻 (0) <

Π𝐻

𝜇ℎ
we obtain;

Π𝐻

𝜇ℎ
≤𝑁𝐻 (𝑡) ≤ Π𝐻

𝜇ℎ
+
(
𝑁𝐻 (0) −

𝜋𝐻

𝜇ℎ

)
𝑒−𝜇ℎ𝑡,and

Π𝐻

𝜇ℎ
+
(
𝑁𝐻 (0) −

Π𝐻

𝜇ℎ

)
𝑒−𝜇ℎ𝑡 ≤𝑁𝐻 (𝑡) ≤ Π𝐻

𝜇ℎ
,

(6)

respectively. As 𝑡 →∞, Eq. (4) becomes;

0 ≤𝑁𝐻 (𝑡) ≤ Π𝐻

𝜇ℎ
. (7)

Applying the same procedure for the mosquito equation in Eq. (7), we have:

0 ≤𝑁𝑀 (𝑡) ≤ Π𝑀

𝜇𝑚
. (8)

Eq. (7) and Eq. (8) shows that all solutions of the model (2) are positively invariant in the region Γ. Therefore, lymphatic filariasis 
model is mathematically and epidemiologically well-posed in the region Γ.

3.2. Disease free equilibrium (DFE) and basic reproduction number 0

When lymphatic filariasis does not exist in human and mosquito vector populations, we obtain the lymphatic filariasis free 
equilibrium 0 as follows:(

Π𝐻 Π𝑀

)

5

0 =
𝜇ℎ

,0,0,0,0,
𝜇𝑚

,0,0 .
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The basic reproduction number, 0 is the average number of secondary infections produced by a single infected individual in 
a completely susceptible population during one’s infectious period [32,33]. Using the next generation matrix method, the basic 
reproduction number, 0 is given by:

0 =
1
𝜇𝑚

√
𝜔𝛽Π𝐻Π𝑀

𝜇ℎ

(
𝛽1(𝛼(𝜉𝜎 + 𝜙𝜂3) + 𝜂2(𝜎𝜓 + 𝜌𝜂3)) + 𝜂4(𝛽3(𝛼𝜉 + 𝜙𝜂2) + 𝛼𝛽2𝜂3)

𝜂1𝜂2𝜂3𝜂4𝜂5

)
(9)

where

𝜂1 = (𝛼 + 𝜌+𝜓 + 𝜇ℎ), 𝜂2 = (𝜉 + 𝜙+ 𝜇ℎ), 𝜂3 = (𝜎 + 𝜇ℎ), 𝜂4 = (𝛿 + 𝜇ℎ), 𝜂5 = (𝜔+ 𝜇𝑚).

3.3. Global stability of DFE

The model behaviour at the disease free equilibrium point, 0 is investigated using Metzler matrix as applied by Castillo-Chavez 
et al. [34]. Let 𝑋𝑚 denote non-transmitting class, 𝑋𝑛 be transmitting class and 𝑋𝐷𝐹𝐸 be Disease Free equilibrium. Whereby:

𝑋𝑚 =
⎛⎜⎜⎝
𝑆

𝑆𝑀

⎞⎟⎟⎠ , 𝑋𝑛 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐸

𝐴

𝐼1
𝐼2
𝐸𝑀

𝐼𝑀

⎞⎟⎟⎟⎟⎟⎟⎠
, and 𝑋𝑚 −𝑋𝐷𝐹𝐸 =

⎛⎜⎜⎜⎜⎝
𝑆 −

Π𝐻

𝜇ℎ

𝑆𝑀 −
Π𝑀

𝜇𝑚

⎞⎟⎟⎟⎟⎠
The system that describes the present model can be written as:

⎧⎪⎪⎨⎪⎪⎩

𝑑𝑋𝑚

𝑑𝑡
=𝐴(𝑋𝑚 −𝑋𝐷𝐹𝐸 ) +𝐵𝑋𝑛,

𝑑𝑋𝑛

𝑑𝑡
= 𝐶𝑋𝑛.

(10)

Matrices 𝐴, 𝐵 and 𝐶 are to be computed from Eq. (10). The lymphatic filariasis disease free equilibrium 0 is globally asymptotically 
stable if matrix 𝐴 has negative eigenvalues and 𝐶 is Metzler matrix [35]. Matrices 𝐴, 𝐵 and 𝐶 are given by:

𝐴 =
(
−𝜇ℎ 0
0 −𝜇𝑚

)
, 𝐵 =

⎛⎜⎜⎜⎝
0 0 0 0 0 −

𝛽Π𝐻

𝜇ℎ

0 −
𝛽2Π𝑀

𝜇𝑚
−
𝛽3Π𝑀

𝜇𝑚
−
𝛽1Π𝑀

𝜇𝑚
0 0

⎞⎟⎟⎟⎠ , and

𝐶 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(𝛼 + 𝜌+𝜓 + 𝜇ℎ) 0 0 0 0
𝛽Π𝐻

𝜇ℎ
𝛼 −(𝜉 + 𝜙+ 𝜇ℎ) 0 0 0 0
𝜓 𝜉 −(𝜎 + 𝜇ℎ) 0 0 0
𝜌 𝜙 𝜎 −(𝛿 + 𝜇𝑚) 0 0

0
𝛽2Π𝑀

𝜇𝑚

𝛽3Π𝑀

𝜇𝑚

𝛽1Π𝑀

𝜇𝑚
−(𝜔+ 𝜇𝑚) 0

0 0 0 0 𝜔 −𝜇𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Since the eigenvalues of the matrix 𝐴 are negative and the off-diagonal elements of the matrix 𝐶 are non-negative then the lymphatic 
filariasis free equilibrium 0 is globally asymptotically stable.

Theorem 2. The disease free equilibrium 0 is globally asymptotically stable when 0 < 1 and unstable otherwise.

3.4. Existence of disease endemic equilibrium

In the presence of lymphatic filariasis, there exists non-trivial solutions which is commonly known as endemic equilibrium point. 
6

By setting all equations to zero in Eq. (2) as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = Π𝐻 − 𝛽𝐼∗
𝑀
𝑆∗ − 𝜇ℎ𝑆

∗,

0 = 𝛽𝐼∗
𝑀
𝑆∗ − (𝛼 + 𝜌+𝜓 + 𝜇ℎ)𝐸∗,

0 = 𝛼𝐸∗ − (𝜉 + 𝜙+ 𝜇ℎ)𝐴∗,

0 = 𝜓𝐸∗ + 𝜉𝐴∗ − (𝜎 + 𝜇ℎ)𝐼∗1 ,

0 = 𝜌𝐸∗ + 𝜙𝐴∗ + 𝜎𝐼∗1 − (𝛿 + 𝜇ℎ)𝐼∗2 ,

0 = Π𝑀 − 𝜆𝑆∗
𝑀

− 𝜇𝑚𝑆
∗
𝑀

0 = 𝜆𝑆∗
𝑀

− (𝜔+ 𝜇𝑚)𝐸∗
𝑀

0 = 𝜔𝐸∗
𝑀

− 𝜇𝑚𝐼
∗
𝑀

(11)

By writing all equations in Eq. (11) in terms of 𝐼∗
𝑀

and computing its value gives:

𝐼∗
𝑀

=

𝜔Π𝑀𝜇ℎ

(
𝜔𝛽Π𝐻Π𝑀

𝜇2
𝑚
𝜇ℎ

(
𝛽1(𝛼(𝜉𝜎 + 𝜙𝜂3) + 𝜂2(𝜎𝜓 + 𝜌𝜂3)) + 𝜂4(𝛽3(𝛼𝜉 + 𝜙𝜂2) + 𝛼𝛽2𝜂3)

𝜂1𝜂2𝜂3𝜂4𝜂5

)
− 1

)
𝜂5𝜇ℎ𝜔𝛽Π𝐻Π𝑀

𝜇2
𝑚
𝜇ℎ

(
𝛽1(𝛼(𝜉𝜎 +𝜙𝜂3) + 𝜂2(𝜎𝜓 + 𝜌𝜂3)) + 𝜂4(𝛽3(𝛼𝜉 +𝜙𝜂2) + 𝛼𝛽2𝜂3)

𝜂1𝜂2𝜂3𝜂4𝜂5

)
+ 𝛽𝜔Π𝑀

(12)

Simplifying Eq. (12) and use Eq. (9), we have

2
0 =

𝜔𝛽Π𝐻Π𝑀

𝜇2
𝑚
𝜇ℎ

(
𝛽1(𝛼(𝜉𝜎 + 𝜙𝜂3) + 𝜂2(𝜎𝜓 + 𝜌𝜂3)) + 𝜂4(𝛽3(𝛼𝜉 + 𝜙𝜂2) + 𝛼𝛽2𝜂3)

𝜂1𝜂2𝜂3𝜂4𝜂5

)

Substituting into equation (12), we have 𝐼∗
𝑀

=
𝜔Π𝑀𝜇ℎ(2

0 − 1)

𝜂5𝜇ℎ2
0 + 𝛽𝜔Π𝑀

.

Direct back substitution yields endemic equilibrium point ∗ = (𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗1 , 𝐼
∗
2 , 𝑆

∗
𝑀
, 𝐸∗

𝑀
, 𝐼∗

𝑀
) ∈ℝ8

+, where:

𝑆∗ =
𝜂5𝜇ℎ𝜇𝑚Π𝐻2

0 + 𝛽𝜔Π𝐻Π𝑀

𝜇ℎ(𝛽𝜔Π𝑀 + 𝜂5𝜇𝑚𝜇ℎ)2
0

, 𝐸∗ =
𝛽𝜔𝜇ℎΠ𝐻Π𝑀 (2

0 − 1)

𝜂1𝜇ℎ(𝛽𝜔Π𝑀 + 𝜂5𝜇𝑚𝜇ℎ)2
0

,

𝐴∗ =
𝛼𝜔𝜇ℎ𝛽Π𝑀Π𝐻 (2

0 − 1)

𝜂1𝜂2𝜇ℎ(𝛽𝜔Π𝑀 + 𝜂5𝜇𝑚𝜇ℎ)2
0

, 𝐼∗1 =
(𝜓𝜂2 + 𝜉𝛼)𝛽𝜔𝜇ℎΠ𝑀Π𝐻 (2

0 − 1)

𝜂1𝜂2𝜂3𝜇ℎ(𝛽𝜔Π𝑀 + 𝜂5𝜇𝑚𝜇ℎ)2
0

,

𝐼∗2 =
(𝜂3(𝜌𝜂2 + 𝛼𝜙) + 𝜎(𝜓𝜂2 + 𝜉𝛼))𝛽𝜔𝜇ℎΠ𝐻Π𝑀 (2

0 − 1)

𝜂1𝜂2𝜂3𝜂4𝜇ℎ(𝛽𝜔Π𝑀 + 𝜂5𝜇𝑚𝜇ℎ)2
0

, 𝑆∗
𝑀

=
Π𝑀

Ω+ 𝜇𝑚
,

𝐸∗
𝑀

=
ΩΠ𝑀

𝜂5(Ω + 𝜇𝑚)
, 𝐼∗

𝑀
=

𝜔Π𝑀𝜇ℎ(2
0 − 1)

𝜂5𝜇ℎ2
0 + 𝛽𝜔Π𝑀

,

whereby;

Ω=

(
𝛽2𝛼𝜂3𝜂4 + 𝛽1(𝜂3(𝜌𝜂2 + 𝛼𝜙) + 𝜎(𝜓𝜂2 + 𝜉𝛼)) + 𝛽3(𝜓𝜂2 + 𝜉𝛼)

)
𝛽𝜔𝜇ℎΠ𝐻Π𝑀 (2

0 − 1)

𝜂1𝜂2𝜂3𝜂4𝜇ℎ(𝛽𝜔Π𝑀 + 𝜂5𝜇𝑚𝜇ℎ)2
0

Since each variable of ∗ depends on the basic reproduction number 0, therefore lymphatic filariasis persists when the basic 
reproduction number 0 ≥ 1 as summarized in Theorem 3

Theorem 3. The model system (2) has a unique endemic equilibrium ∗ whenever 0 ≥ 1.

3.5. Global sensitivity analysis

It is overtly true that obtaining accuracy results in mathematical models is difficult due to uncertainties in input or experimental 
data used to approximate parameter values. In this section, A Latin Hypercube Sampling (LHS) and Partial Rank Correlation Coeffi-

cient (PRCC) are used in uncertainty analysis to explore all parameters in a model space. The PRCC is a robust sensitivity measure for 
non-linear systems which are monotonic in relationship between input and output by using scatter plots. The scatter plots enhance 
graphic detection of non-monotonicities, correlations and non-linearities between the inputs and outputs of the model [36]. We 
implement LHS algorithm for uniform and normal probability density functions which is efficient and reliable for nonlinear ordinary

differential equations [37,38]. The PRCC is used to measure the strength of linear association between model inputs and outputs and 
provide PRCC-indices as used in Manno et al. [39]. If 𝜃𝑖 represents input parameters and 𝑌𝑖 represents model outputs, then the PRCC 
7

index 𝑟𝜃𝑖,𝑌𝑖 is given by:
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Fig. 3. Plots of regression coefficient for outputs measure against regression coefficients for input parameters: Sampling-based correlation indexes computed on LHS 
algorithm.

Fig. 4. PRCCs over time of the eight-compartmental model uncertainty and sensitivity analysis. The PRCC values ranging between −0.02 to 0.02 are statistically 
insignificant regardless the sensitivity of parameter changes as the dynamic system progress.

𝑟𝜃𝑖,𝑌𝑖
=

Cov(𝜃𝑖, 𝑌𝑖)√
Var(𝜃𝑖)Var(𝑌𝑖)

=
∑𝑛

𝑖=1(𝜃𝑖 − �̄�)(𝑌𝑖 − 𝑌 )√∑𝑛

𝑖=1(𝜃𝑖 − �̄�)2
∑𝑛

𝑖=1(𝑌𝑖 − 𝑌 )2
(13)

The PRCC results reveal the contribution of each parameter and corresponding uncertainty to the model. The parameters whose 
PRCC values are closer or equal to zero are statistically insignificant. Fig. 3 indicates that 𝛽1, 𝛼 𝜔, 𝜎 and 𝜓 have strong correlation 
to model outputs 𝑌𝑖 based on their PRCC values which are computed using Eq. (13). However, Π𝑀 , 𝛽, 𝜌 and 𝛿 have inversely 
proportional relationship to model outputs. Fig. 4 shows the sensitivity of PRCC values over entire time interval of model simulation 
which access the significance and indicate how the sensitivity of each parameter vary the dynamics of the model system. This suggests 
that, to control lymphatic filariasis in humans, more efforts should be directed to reduce the rate of infections by intervening the 
8

transmission and control the mosquito-vectors.
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Table 1

Parameter Values Month−1 .

Parameter Baseline Reference Range Estimates Normal(Mean(𝜇), std(𝜎))

Π𝐻 20.0000 Assumed [10.0000 30.0000] 22  (20.0000, 2.2048)
𝛽 0.0005 [26] [0.00010 0.0050] 0.00054  (0.0005, 6.2 × 10−4)
𝛽1 0.0015 Assumed [0.0010 0.0030] 0.00183  (0.0015, 6.6 × 10−4)
𝛽2 0.0035 Assumed [0.0015 0.0045] 0.00386  (0.0035, 7.9 × 10−4)
𝛽3 0.00025 [29] [0.00015 0.00035] 0.000246  (0.00025, 5.0 × 10−4)
𝜌 0.00032 [20] [0.00025 0.0075] 0.00033  (0.00032, 1.0 × 10−3)
𝜓 0.0015 Assumed [0.0025 0.0085] 0.001521  (0.0015, 3.3 × 10−4)
𝛿 0.000015 [29] [0.00001 0.00003] 0.000021  (0.000015, 3.7 × 10−4)
𝜔 0.0055 [16] [0.0035 0.0065] 0.00537  (0.0055, 3.32 × 10−4

𝜙 0.00045 Assumed [0.0003 0.0009] 0.000395  (0.00045, 5.0 × 10−4)
Π𝑀 100000 [22] [50000 150000] 116300  (100000, 598.96)
𝜇ℎ 0.0142 [41,22] [0.0100 0.0200] 0.01391  (0.0142, 1.0 × 10−4)
𝛼 0.0200 [29] [0.0100 0.0500] 0.03526  (0.02, 5 × 10−3)
𝜇𝑚 0.050000 [18] [0.0100 1.5000] 0.08521  (0.05000, 0.0062)
𝜉 0.00030 Assumed [0.0025 0.0055] 0.00043  (0.00030, 7.905 × 10−4)
𝜎 0.0012 Assumed [0.0010 0.0030] 0.001209  (0.0012, 1.87 × 10−4)

3.6. Model fitting and parameters estimation

After formulating the model and checking whether its solutions are positive invariant, another important aspect is to determine 
how the model is a good representation of the real data. Lymphatic filariasis is one among neglected diseases, there is no sufficient 
data in records about it. In this section, we use a standard method non-linear least square method to generate data and use them 
to estimate the parameters. Let our model with true choice of parameter vector 𝜃0 in 𝑛 observations be 𝑌 𝑛

𝑖=1. However, this can be 
affected by random error of measurement, the model output is given by

𝑌𝑖 =𝑍(𝑡𝑖, 𝜃0) + 𝑓 (𝑡𝑖, 𝜃0), (14)

where 𝑍(𝑡𝑖, 𝜃0) is the solution of the model when actual parameters are used and 𝑓 (𝑡𝑖, 𝜃0) is error due to measurement. To minimize 
the error, we use Eq. (14) to obtain sum of squares as 𝑆𝑆𝐸(𝜃) such that

𝑆𝑆𝐸(𝜃) =
𝑛∑

𝑖=1

(
𝑌𝑖 − 𝑓 (𝑡, 𝜃)

)2
. (15)

SSE(𝜃) in Eq. (15) defines the model simulation outputs and artificial generated data to mimic the real situation in absence of 
longtime dynamical data as implemented by [40]. The model is numerically simulated by employing the Euler’s formula and the 
fminsearch function independently with initial guess of parameters in MATLAB R2018a. Moreover, the generated data are used to 
estimate parameters which are listed in Table 1. The validity of the estimated parameter values are tested by the nature of distribution 
of their residuals in all model outputs. Results show that they are reliable since they have normal distribution as depicted in Fig. 6. 
The model simulation is implemented subject to the following initial conditions: 𝐸(0) = 1, 𝐴(0) = 1, 𝐼1(0) = 1, 𝐼2(0) = 1, 𝑆(0) =
Π𝐻∕𝜇ℎ − (𝐸(0) +𝐴(0) + 𝐼1(0) + 𝐼2(0)), 𝐸𝑀 (0) = 1, 𝐼𝑀 (0) = 1, 𝑆𝑀 (0) = Π𝑀∕𝜇𝑚 − (𝐸𝑀 (0) + 𝐼𝑀 (0)).

4. Numerical simulations

After estimating the parameter values, we now simulate the model to observe the long term behaviour of the dynamics of 
lymphatic filariasis. We begin with all classes and later concentrate on infected classes by considering sensitive parameters. The 
mathematical model (2) is simulated using parameter values in Table 1 to study the dynamics of lymphatic filariasis.

5. Discussion and conclusion

5.1. Discussion

Fig. 8(a) indicates that the number of susceptible humans decrease with time following infection by lymphatic filariasis whereby 
the whole population stabilize after 100 months. On the other hand, susceptible mosquito population follow the similar trend, 
whereas only large number become infected after 100 months. Susceptible classes have inverse relationship with acute-infected, 
chronic-infected and asymptomatic classes as illustrated in Fig. 8 (b). Initially, exposed class for humans increase to maximum in the 
first 100 months, thereafter decrease to attain the steady state after 150 months. Asymptomatic, infected-acute and infected-chronic 
increases to their maximum, then attain their equilibrium states. Consequently, exposed and infected classes for mosquito population 
follow similar trend. Simulation indicates that asymptomatic class contribute significantly in transmission and has large number of 
human population compared to infected-acute and chronic. Numerical data and scatter plots for generated data follow the similar 
trend when are plotted concurrently as shown in Fig. 5 and 6. The result reveals residual in all outputs are normally distributed 
9

showing that the proposed model fitting and parameter values are stable, effective and reliable for future applications as depicted in 
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Fig. 5. Scatter estimated with standard deviation of 0.05 and numerical simulation (sold) with confidence interval of 95%.
10
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Fig. 6. Scatter estimated with standard deviation of 0.05 and numerical simulation (sold) with confidence interval of 95%.

Fig. 7. The residuals of the model outputs.

Fig. 7. The changes in most sensitive parameters have significant variation in both population within the confidence interval of 95% 
as demonstrated in the Fig. 8

5.2. Conclusion

In this paper, we formulated and analyzed a mathematical model to study the dynamics of lymphatic filariasis in the presence 
of asymptomatic individuals. We generate data using white noise and parameter values were estimate by least square method. The 
basic reproduction number 0 is derived by the next generation matrix approach and sensitivity indices for parameters in 0 are 
computed by the normalized forward sensitivity index. Model equilibria were derived and found that, lymphatic free equilibrium is 
11

globally asymptotically stable when 0 < 1 and lymphatic filariasis endemic equilibrium is globally stable when 0 ≥ 1. To gain the 



Heliyon 9 (2023) e20066M.A. Stephano, M.M. Mayengo, J.I. Irunde et al.

Fig. 8. Simulation of lymphatic filariasis model on dynamics of human populations in (a) and (b) and mosquito populations in (c) and (d), with confidence interval 
of 95%.

insight into the dynamics of lymphatic filariasis, Latin Hypercube and Partial Rank Correlation Coefficient were used to determine 
which parameters affect positively or negatively model outputs. Sensitivity analysis shows that, the rate of human infection, and 
the recruitment rate mosquitoes increase Lymphatic filariasis average new infections. Analysis further shows that asymptomatic 
individuals contribute significantly in the transmission of lymphatic filariasis.
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