
Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works

Faculty Publications and Other Works by
Department

10-2024

What Do We Know About Hugging Face? A Systematic Literature What Do We Know About Hugging Face? A Systematic Literature

Review and Quantitative Validation of Qualitative Claims Review and Quantitative Validation of Qualitative Claims

Jason Jones
Purdue University

Wenxin Jiang
Purdue University

Nicholas Synovic
nsynovic@luc.edu

George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

James C. Davis
Purdue University, davisjam@purdue.edu
Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Artificial Intelligence and Robotics Commons, and the Software Engineering Commons

Author Manuscript
This is a pre-publication author manuscript of the final, published article.

Recommended Citation Recommended Citation
Jones, Jiang, Synovic, Thiruvathukal, and Davis. What do we know about Hugging Face? A systematic
literature review and quantitative validation of qualitative claims. Proceedings of the 18th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement (ESEM) 2024.

This Conference Proceeding is brought to you for free and open access by the Faculty Publications and Other
Works by Department at Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty
Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please
contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© The Authors, 2024.

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F379&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

What do we know about Hugging Face? A systematic literature
review and quantitative validation of qualitative claims

Jason Jones
jone2078@purdue.edu
Purdue University

West Lafayette, Indiana, USA

Wenxin Jiang
jiang784@purdue.edu
Purdue University

West Lafayette, Indiana, USA

Nicholas Synovic
nsynovic@luc.edu

Loyola University Chicago
Chicago, Illinois, USA

George K. Thiruvathukal
gthiruv@luc.edu

Loyola University Chicago
Chicago, Illinois, USA

James C. Davis
davisjam@purdue.edu
Purdue University

West Lafayette, Indiana, USA

Abstract
Background: Software Package Registries (SPRs) are an integral
part of the software supply chain. These collaborative platforms
unite contributors, users, and packages, and they streamline pack-
age management. Much engineering work focuses on synthesizing
packages from SPRs into a downstream project. Prior work has
thoroughly characterized the SPRs associated with traditional soft-
ware, such as NPM (JavaScript) and PyPI (Python). Pre-Trained
Model (PTM) Registries are an emerging class of SPR of increasing
importance, because they support the deep learning supply chain.
Aims: A growing body of empirical research has examined PTM reg-
istries from various angles, such as vulnerabilities, reuse processes,
and evolution. However, no existing research synthesizes them
to provide a systematic understanding of the current knowledge.
Furthermore, much of the existing research includes unsupported
qualitative claims and lacks sufficient quantitative analysis. Our
research aims to fill these gaps by providing a thorough knowledge
synthesis and use it to inform further quantitative analysis.

Methods: To consolidate existing knowledge on PTM reuse, we
first conduct a systematic literature review (SLR). We then observe
that some of the claims are qualitative and lack quantitative evi-
dence. We identify quantifiable metrics assoiated with those claims,
and measure in order to substantiate these claims. Results: From our
SLR, we identify 12 claims about PTM reuse on the HuggingFace
platform, 4 of which lack quantitative validation. We successfully
test 3 of these claims through a quantitative analysis, and directly
compare one with traditional software. Our findings corroborate
qualitative claims with quantitative measurements. Our two most
notable findings are: (1) PTMs have a significantly higher turnover
rate than traditional software, indicating a dynamic and rapidly
evolving reuse environment within the PTM ecosystem; and (2)
There is a strong correlation between documentation quality and
PTM popularity. Conclusions: Our findings validate several qual-
itative research claims with concrete metrics, confirming prior
qualitative and case study research. Our measures show further
dynamics of PTM reuse, motivating further research infrastructure
and new kinds of measurements.

1 Introduction
As the size and cost of developing deep learning (DL) models from
scratch continue to rise, engineers are increasingly turning to adapt

open-source Pre-trained Models (PTMs) as a cost-effective alterna-
tive [31]. PTM registries facilitate the reuse of open-source models
by providing packages that include pre-trained weights, configura-
tion, and documentation [29]. Hugging Face has become a promi-
nent PTM registry, comparable in popularity to traditional software
registries like NPM and PyPI [29].

Prior research has empirically compared PTM registries to tra-
ditional software package registries such as NPM and PyPI, tack-
ling diverse issues such as carbon emissions, model selection, and
vulnerabilities [14, 29, 33]. Despite these efforts, no work has yet
synthesized the existing knowledge of PTM registries. Furthermore,
not all topics about PTM registries such as Hugging Face have been
studied from both qualitative and quantitative perspectives. This
lack of a comprehensive approach has led to a lack of quantita-
tive validation, leaving numerous qualitative insights about PTM
registries under-verified.

Our work aims to bridge the knowledge gap concerning the syn-
thesis of extensive research on PTM reuse facilitated by Hugging
Face, and provide furthermeasurements to validate the prior qualita-
tive and quantitative claims. An overview is shown in Figure 1. Our
work consists of two parts: First, we conduct a systematic literature
review to transform qualitative insights about PTM package reuse
on Hugging Face into quantitative metrics. Second, we evaluate the
robustness of these insights through quantitative validation. This
approach enhances our understanding of package reuse dynamics
on Hugging Face compared to traditional SPRs.

Our findings indicate that most of the claims from prior quali-
tative results are correct. Of the 3 prior claims we quantitatively
evaluated, 2 were supported by our results, and 1 was supported by
1 measurement and not supported by the other. Our measurement
of library usage indicated a preference for using the Transformers

library when creating descendents of models, with 80% of descen-
dents of models choosing to utilize Transformers. Our measurement
of package turnover indicates that HuggingFace has a significantly
higher turnover rate than traditional package registries. Our mea-
surement of model popularity and descendent count found a corre-
lation between the two, further supporting claims that popularity
is a driver of model selection. Finally, we found a strong correlation
between documentation quality and PTM popularity, with the top
1000 models outperforming the bottom 1000 in documentation.

Our contributions are:

ar
X

iv
:2

40
6.

08
20

5v
1

 [
cs

.S
E

]
 1

2
Ju

n
20

24

https://orcid.org/0009-0005-7088-0597
https://orcid.org/0000-0003-2608-8576
https://orcid.org/0000-0003-0413-4594
https://orcid.org/0000-0002-0452-5571
https://orcid.org/0000-0003-2495-686X

Jason Jones, Wenxin Jiang, Nicholas Synovic, George K. Thiruvathukal, and James C. Davis

Figure 1: Overview of this work’s context and approach. Much is known, both qualitatively and quantitatively, about package reuse processes in
traditional software package registries such as NPM and PyPI. Meanwhile, empirical data about the reuse of pre-trained deep neural network
models (PTMs) is emerging. This work provides the first systematic literature review on PTM reuse, focused on extracting the claims present in
the prior work (RQ1) and providing quantitative evaluation of the un-quantified and under-quantified claims (RQ2).

• We conduct a systematic literature review on PTM reuse in the
Hugging Face registry, and extract a list of qualitative claims
from prior work. (§4)

• We map the qualitative claims to quantitative measurements.
We use these measurements to validate the prior findings, via
comparison of our quantitative measurements of Hugging Face
to representative traditional SPRs. (§5)

• Our work provides recommendations for future work on devel-
oping tools to analyze and keeping datasets updated to support
further investigations on the PTM supply chain. (§7)

Significance for Software Engineering: Prior work has made
both quantitative and qualitative claims about software engineers’
reuse of PTMs. We systematically synthesized this knowledge
through a literature review and developed quantifiable metrics
to corroborate the qualitative claims. Our findings confirm several
qualitative results about PTM reuse, and also quantify the dynamic
reuse environment within the PTM ecosystem. Our results will
inform research infrastructure and the development of new metrics
to guide and refine PTM development and reuse.

2 Background and Related Work
In this section, we first explain how software package registries
facilitate the reuse of software (§2.1). We then discuss the rise of
Deep Neural Networks (DNNs) and their presence in software engi-
neering reuse as PTM packages (§2.2). We also detail how software
package registries have been measured in previous works, and
the limited effort towards quantitatively evaluating PTM registries
(§2.3). Our work aims to advance the state of the art when it comes
to quantitative evaluation of PTM registries.

2.1 Software Package Registries
Figure 2 depicts the software supply chain. Software Package Reg-
istries (SPRs) serve as collaborative hubs that connect package
contributors, reusers, and the packages themselves, facilitating
software reuse. These registries are important for engineers be-
cause they provide comprehensive information that significantly
enhances downstream software development.

SPRs act as platforms for creators to upload and share their soft-
ware packages, featuring version control to allow users to access

Package

Package

Evolve

Package Evolve

Contributors Reusers

 Contribute

Contribute

 Contribute

Software Registry

System Reuse

System

 Reuse

System

 Reuse

Figure 2: The Software Supply Chain. Engineers contribute Packages
to model registries, Packages evolve through internal development
and external dependence on other Packages, and are used by down-
stream Reusers who incorporate them into Systems.

previous package versions as needed [1, 4]. These platforms pro-
mote package discoverability and perceived quality through user
engagement tools like comments, likes, and ratings. Additionally,
collaboration is fostered by discussion threads and version man-
agement, enhancing user interaction and visibility. Registries also
provide comprehensive metadata, improving package visibility in
search results and aiding in package selection. Tools for package
downloading, bundling, andmanaging versions and updates stream-
line the reuse process, simplifying package lifecycle management.

Recently, PTM package registries (e.g., Hugging Face [57], Py-
Torch Hub [5], ONNX Model Zoo [2]) emerged to support efficient
development of AI systems [15, 31]. PTM packages include tradi-
tional components (e.g., documentation, dependencies). However,
they also include additional DNN-specific components, such as
pre-trained weights, training dataset, and model architecture [29].
Figure 3 depicts the structural similarity in package reuse between
traditional and PTM packages.

2.2 Deep Neural Networks and Pre-Trained
Model Packages

Deep Neural Networks (DNNs), comprising numerous hidden lay-
ers, have gained popularity as a cutting-edge solution for complex
problems in various fields, such as image recognition in autonomous

What do we know about Hugging Face?

Table 1: Example metrics used to characterize traditional software package registries. The metrics in this table are used as guidance when
developing metrics to measure the claims in Table 3.

Metric Description & Implication Package Registries Example Works

User Reach The amount of ecosystem controlled by a
fraction of its maintainers. NPM, PyPI, Cargo, Elm, CRAN [7, 9, 10, 24, 36, 63, 64]

Dependency Degree The number of dependencies among soft-
ware packages.

NPM, PyPi, Cargo, CPAN, CRAN,
NuGet, Packageist, RubyGems, Maven

[9, 10, 16, 17, 24, 35, 36, 44,
49, 55, 58, 60–62, 64]

Popularity The frequency of use for top packages, in-
dicating the concentration of usage. NPM, PyPI, OpenStack [18, 55, 62]

Technical Lag The delay in adopting new updates. NPM, PyPI, Maven, Cargo [16, 44, 49, 55, 60, 61]

Develop
From Scratch

Integrate into Final Product

Evaluate
Software

Yes

No

Pre-Existing
Software?

Define
Problem

Train From
Scratch

Evaluate
Models

Yes
No

Pre-Existing
Models?

Identify
Requirements

Optional

Select Best
Fit

Finetune

Optional

Select Best
Fit

Modify for
Requirements

Define
Problem

Identify
Requirements

Traditional Software Pre-Trained Models

Figure 3: Reuse processes of traditional software and of PTMs, as
reported by Jiang et al. [29]. Reuse processes are similar, suggesting
that SPR measurements and trends may be similar.

vehicles [19] and AI voice assistant systems [41]. Developing and
training these models from scratch requires significant time and
resources [25, 42, 45]. For example, a Llama-2-70B model needs
1720K GPU hours to train from scratch [52]. To overcome this,
engineers increasingly opt for using Pre-Trained Models (PTMs),
which allows them to forego the lengthy and resource-intensive
initial training phase. By leveraging PTMs, they can focus on a
much shorter training period to fine-tune the models for specific
tasks [15, 27, 29].

Within the context of PTMs, the term “software reuse” refers
to the reuse of models along with their training configurations
and weights, i.e., reuse of the PTM packages. Figure 3 shows the
comparison of reuse process between PTM and traditional pack-
ages. Reusing DNNs as PTM packages mirrors traditional practices
of software package reuse, where existing software components
are integrated and adapted rather than built from scratch [21, 31].
This practice can enhance efficiency and reducing development
time [23]. This adaptation involves not only the models but also

their pre-trained states, which can be adjusted for specific appli-
cations, thereby constituting a combination of model reuse and
customization rather than traditional software package reuse alone.

2.3 Measurements of Software Package
Registries

Research on software package registries has traditionally focused
on quantifying various aspects [16, 20, 61]. However, PTM reg-
istry research has primarily focused on qualitative and small-scale
quantitative measurements.

2.3.1 General Comparisons: The measurement of software pack-
age registries is an established research area within traditional
software. Table 1 shows the metrics used in prior work e.g., user
reach [64], license [20], and technical lag [16]. These studies provide
critical insights for software engineers, aiding in effective package
selection and reuse, and for researchers, deepening understanding
of software supply chains and registry dynamics.

This research approach has been adapted to PTM registries re-
cently [28, 29]. Early studies have explored how PTMs are reused
and adapted, examining both qualitative and quantitative aspects.
For instance, research has started to analyze contribution patterns
and the reuse dynamics specific to PTM registries, such as those
found in TensorFlow Hub and Hugging Face [15, 29, 37]. However,
there are still gaps in understanding the evolution and reuse pat-
terns in the PTM registries [29, 32]. Our work bridges this gap by
providing additional quantitative measurements and comparing
our results to traditional SPRs.

2.3.2 To Explain or Quantify Phenomena: Despite these efforts,
there remains a gap in research that connects qualitative observa-
tions with quantitative measurements across these registries.

Recent studies within traditional SPRs typically start with quali-
tative observations that are later supported by quantitative data. Is-
sues such as package obsolescence and the spread of vulnerabilities,
initially observed quantitatively, have been rigorously quantified
in ecosystems like NPM [6, 40]. These investigations form a crucial
basis for comprehending how features of software registries impact
the practices of software development.

In the research domain of PTM registries, similar investigations
are needed. For example, Jiang et al. provide a comprehensive
analysis on the risks while using PTMs, and the PTM reuse pro-
cess [29, 31]. As a follow-up work, they also collected both qualita-
tive and quantitative data on PTM naming practices [28]. This line

Jason Jones, Wenxin Jiang, Nicholas Synovic, George K. Thiruvathukal, and James C. Davis

of research is crucial for understanding PTM package registries.
However, their qualitative insights have not been substantiated by
quantitative analysis. We address this gap by conducting a system-
atic literature review and deriving quantifiable metrics to assess
the claims from previous studies.

3 Knowledge Gap and Research Questions
To summarize the knowledge gap, we lack a cohesive understanding
on PTM package reuse that synthesizes prior research on Hugging
Face. Additionally, there is a lack of some quantitative measure-
ments, which reduce our understanding of the registry.

To address the gap of knowledge synthesis, we ask:
RQ1 What claims about package reuse on Hugging Face are

made by prior research?
By gathering and analyzing these claims, we aim to convert the

qualitative data into a set of quantifiable metrics. This effort will not
only enrich our understanding of Hugging Face as a PTM platform
but also enhance the comparability of data across different software
ecosystems. Specifically, this analysis enables future researchers
to establish metrics that facilitate the comparison of Hugging Face
and traditional software registries similarities and differences in
package reuse practices.

Answering RQ1 also prepares us for further empirical inquiry:
RQ2 Do the qualitative claims about package reuse (PTM) on

Hugging Face hold up when quantified?

3.1 Overview of Methodology
Figure 1 shows the overview of our work’s context and approach.
We answered these questions through three steps:

(1) We conducted a systematic literature review (SLR) on PTM
reuse, aiming to compile a comprehensive list of claims
about package reuse.

(2) We synthesized these claims into quantifiable measure-
ments, performed the measurements, and then compared
them to the previous findings.

(3) Where possible, we compared these to those from tradi-
tional software to see differences between the reuse pat-
terns in different registries.

The detailed method per RQ is in the corresponding sections.

4 RQ1: What claims about package reuse on
Hugging Face are made by prior research?

Finding 1. The Systematic Literature Review (SLR) identified
12 quantifiable claims about package reuse on Hugging Face.
Finding 2. The claims are distributed among five quantifiable
categories of methods: small- and large-scale quantitative mea-
surements, qualitative surveys, interviews, and case studies.
Finding 3. After this classification, four quantitatively uneval-
uated claims remained, within the categories of design trends,
documentation and understanding, and selection considerations.
This finding shows a gap that we address in RQ2.

To enhance our understanding of the existing claims related
to PTM reuse within package registries, we followed empirical
standards and conducted a systematic literature review [11, 34, 46,

47]. Our initial step involved a pilot study to define the scope of
our review (§4.1.1). A systematic literature review entails five steps:
identification of research, study selection, study quality assessment,
data extraction, and data analysis [34, 38]. Figure 4 illustrates the
results of each step. We detail them next.

Step 1: Research identification
Query: Hugging Face,

HuggingFace,
Pre Trained Model

Hub|registry|repository|
repositories|registries|zoo

papers: 31

Step 3: Selection Criteria
papers: 18

Step 4: Data Extraction
motivation claims: 19

work claims: 30

Step 5: Data Analysis
distinct claims: 12

categories: 5

Step 0: Pilot study
papers: 4

Figure 4: Systematic literature review process. Step 1 details the
search query used. The subsequent filtering and distinct claims,
along with the summarized categories, are discussed in §4.2.

4.1 Methods
4.1.1 Pilot Study We define the scope of our review by conducting
a pilot study. In the pilot study, we first search for papers about
“pre-trained model reuse” using Google Scholar and looked at the
first three results, which were [21, 29, 31]. The papers indicated
that Hugging Face is the only “open” model registry [31] and is
the most popular model registry. Additionally, Hugging Face hosts
the largest number of PTM packages, and provides useful tools to
facilitate PTM reuse. We then decided to scope down our study
on Hugging Face model registry specifically to represent the PTM
supply chain, as indicated by Jiang et al. [29, 32].

4.1.2 Search Strategy and Query The goal of our search is to iden-
tify papers that are relevant to the categories of PTM reuse, the
PTM supply chain, or the PTM ecosystem. Informed by our pilot
study (§4.1.1), the final search query we used is indicated in Fig-
ure 4. These search queries gave us 45 papers. We then removed
duplicate entries, reducing the number of papers to 31.

To verify the efficacy of our search queries, we employed pa-
pers from the pilot study as benchmarks to assess each query’s
retrieval effectiveness. We ensured that all papers identified in the
pilot study were also retrieved by our final search query. This step
was essential to confirm the robustness of our search strategy, en-
suring it was capable of capturing the most relevant studies. Such
a comprehensive approach allowed for an exhaustive review of the
literature concerning PTM reuse within its operational ecosystem.

4.1.3 Selection Criteria The goal of our selection criteria is to
identify the most relevant and rigorously supported research that
specifically addresses the context and impact of PTM reuse. During
our study, we applied two types of criteria: inclusive and exclusive.

Inclusion Criteria We applied the following inclusion criterion: a
paper is included if it describes the reuse of models within a specific
PTM registry. This criterion excluded papers that apply PTMs to
specific tasks, reducing our set from 31 papers to 20.

What do we know about Hugging Face?

Exclusion Criteria Our exclusion criterion was that we excluded
non-primary sources. We exclude works whose claims are not sub-
stantiated directly through qualitative or quantitative methods. This
reduced our set from 20 papers to 18.

4.1.4 Data Extraction Once we identified the most relevant and rig-
orously supported research that specifically addresses the context
and impact of PTM reuse, the next step is to extract “claims” from
these papers that provide evidence of qualitative or quantitative
methods that could inform our quantitative study. A “claim” in this
context refers to a statement or assertion made in a research paper,
which is supported by evidence.

The data extraction involve four steps. First, two co-authors went
through a paper from the pilot study together to get an agreement
of the data extraction process. The goal of this process was to
identify and extract all claims that might be tangentially related
to PTM reuse. Second, they individually extracted the claims from
the papers. This involved reading each paper to identify the key
claims, with an emphasis placed on the abstract, introduction, and,
if available, finding boxes of each paper. Exact quotations from the
papers were extracted. Third, the two co-authors met and presented
their extracted claims from each paper, with an explanation of why
it was chosen, and a discussion of the relevance of the claim if it
was not immediately obvious. A total of 256 claims were discussed
in this step. Finally, for each paper, they discussed which claims
were the most descriptive of PTM reuse and discarded the rest. This
selection step resulted in a total of 49 claims.

4.2 Analysis and Results

We categorized these claims into two categories: (1) “Motivation
claims” and (2) “Work claims”. The detailed definitions and examples
of each claim are shown in Table 2. This classification process
yielded 19 motivation claims and 30 work claims. One of our goals
(RQ2) was to substantiate prior findings with further quantitative
measurements, so we chose to focus more deeply on the work
claims. Within this subset, we identified overlapping claims and
consolidated them, resulting in a refined set of 12 distinct claims.
These consolidated claims are detailed in Table 3.

The primary aim of our SLR is to summarize the existing claims
about package reuse on Hugging Face and to extract quantifiable
measurements from these claims. From the consolidated set of 12
claims, we categorized the basis of each claim into one of five meth-
ods: small- and large-scale quantitative measurements, qualitative
surveys, interviews, and case studies. Small-scale measurements
involved less than 10% of a population, whereas large-scale mea-
surements encompassed more than 10%. After this classification,
five quantitatively unevaluated claims remained: one concerning
design trends, two regarding selection considerations, and two about
documentation and understanding.

The categorization result and extracted themes are detailed in
Table 3. Our results provide a thorough knowledge synthesis which
are then used to answer RQ2 (§5).

5 RQ2: Do the qualitative claims about package
reuse (PTM) on Hugging Face hold up when
quantified?

Finding 4. Our study shows that the Transformers library is
preferred in over 80% of PTM descendants, surpassing PyTorch.
The rise of the SafeTensors library underscores a shift toward
prioritizing security in PTM development.

Finding 5. Figure 6 reveals that Hugging Face has a significantly
higher package turnover rate than traditional software registries
indicative of a fast-paced, innovation-driven PTM ecosystem.
Finding 6. There is a correlation between model popularity
and descendant count, indicating that while popular models
have more descendants, other factors influence model selection
decisions.
Finding 7. There is a strong correlation between documen-
tation quality and PTM popularity, with the top 1000 models
significantly outperforming the bottom 1000 in documentation,
highlighting its importance in model selection.

To answer this question, we first derive quantifiable metrics from
the claims we extracted from our SLR (§4) on Hugging Face (§5.1).
Then we present the available datasets and the specific data we
used from each (§5.2). Subsequently, we present our methods and
results for measurement on metrics for each claims (§5.3–§5.5).

5.1 Metrics Developed from Claims
In this section, we explain how we developed quantifiable met-
rics from the claims identified in our SLR (§4). The metrics were
specifically designed to quantify the hypothesized results inferred
from these claims. Drawing on traditional software engineering
practices, we adopted metrics that have been previously used to
evaluate similar claims in other contexts if available.

Particular attention was paid to metrics that are widely rec-
ognized and have been frequently cited in the literature, as well
as those that have been implemented across various traditional
software registries. This approach ensures that our metrics are
grounded in established methodologies and are robust enough to
provide meaningful insights.

Table 4 shows the relationship between the claims extracted and
the corresponding metrics, along with the expected measurements.
This mapping both validaties the claims and contextualizes their
implications within the context of package reuse on Hugging Face.

5.2 Available Datasets
The section presents the PTM package datasets (§5.2.1) and tradi-
tional software package dataset (§5.2.2) we used in our work.

5.2.1 PTM Datasets In the PTM literature, there are four datasets
available publicly: HF Model Metadata [53], PTMTorrent [30], HF-
Community [8], and PeaTMOSS [32].

(1) HF Model Metadata provides a snapshot of 10,406 Hugging-
Face model metadata as of 11/2022, including details of model
label, README and length of each README file [53].

Jason Jones, Wenxin Jiang, Nicholas Synovic, George K. Thiruvathukal, and James C. Davis

Table 2: The detailed definition and examples of each claim category we extracted from the literature review.

Claim Category Definition Examples

Motivation claims Articulates the rationale behind a paper’s
problem statement, illustrating why the work
is significant and worthy of investigation.

“The reuse of pre-trained models introduces large costs and additional
problems of checking whether arbitrary pre-trained models are suitable
for the task-specific reuse or not.” [21]
“With the commodification of AI, and NLP in particular...[we] need easy
to use, no-code tools for understanding AI artifacts.” [43]

Work claims Refers to the assertions a paper makes based
on its collected data and analyses.

“Hugging Face’s popularity has exponentially increased over time, which
is evident from the upward trends in the number of new models, likes,
commits, unique authors, and discussions aggregated monthly.” [12]
“Engineers follow specific naming practices and encounter challenges
that are specific to PTM naming.” [28]

Table 3: Consolidated themes and claims collected from our systematic literature review. Small-Scale measurements refer to measurements
made on a selection of a population less than 10% of the overall size, Large-scale measurements are measurements made on a selection of a
population that is more than 10%, Survey refers to a survey, Interviews refer to interviews, Case study refers to either an examination of a
specific case or the creation of a model to verify the claim. † : The claim basis is not a large-scale quantification.

Themes Claims Claim Basis Works

Trends in Design A small group of contributors owns popular models. Large-Scale Measurement [12]
The Transformers library increases the accessibility of PTM cre-
ation and downstream reuse.

Large-Scale Measurement,
Case Study

[12, 32, 33,
57]

† (1) The Transformers library improves the process of PTM evolution. Case Study [57]
Forking repositories introduces low severity vulnerabilities. Large-Scale Measurement [33]

Selection Considera-
tions

† (4) DL-specific attributes such as model architecture, performance,
reproducibility, and portability affect PTM selection and reuse.

Interviews [29]

† (2) The traditional attribute of Popularity affects PTM selection
and reuse more than Maintenance and Quality.

Interviews [29]

Repository Lifecycle
and Maintenance

Models receive perfective maintenance over time, with high-
maintenance models tending to be more popular, larger, and better
documented.

Large-Scale Measurement [12]

Documentation and
Understanding Model properties are under-documented across Hugging Face. Small-Scale and Large-Scale

Measurement, Survey
[21, 33, 39,
51]

† (3) Documentation quality impacts model selection. Survey, Case Study [13, 39, 51]
Naming models is inconsistent and can inadequately represent
model architectures.

Large-Scale Measurement,
Survey [28]

Dataset documentation is correlated with dataset popularity. Small-Scale Measurement [59]

Downstream Usage Hugging Face is an exponentially growing platform. Large-Scale Measurement [12]

(2) PTMTorrent encompasses a snapshot of five model hubs, to-
taling 15,913 PTM packages as of 08/2023, all formatted in a
uniform data schema to facilitate cross-hub mining [30].

(3) HFCommunity is an offline relational database constructed
from the data at the Hugging Face Hub. It allows for queries on
the repositories hosted within the Hugging Face platform [8].

(4) PeaTMOSS offers comprehensive metadata on 281,638 PTM
packages as of 10/2023, including 281,276 from Hugging Face
and 362 from PyTorch Hub, along with details on 28,575 GitHub

projects that use PTMs as dependencies and 44,337 links from
these GitHub repositories back to the PTMs they depend on [32].

In this work, we primarily used the PeaTMOSS dataset, as the
accessibility of metadata allowed for easier measurements. We
also used the HF Model Metadata and PTMTorrent datasets for
longitudinal trends in the turnover metric (§5.4), and an April 2024
recent snapshot of the most popular models from the Hugging
Face Hub API for the same reason. The detailed data used for each
measurement are presented in their respective sections.

What do we know about Hugging Face?

5.2.2 Traditional package datasets To directly compare measure-
ments between the PTM registry and traditional Software Package
Registries (SPRs), we utilized the Ecosyste.ms software package
dataset for traditional packages, following the approach outlined
in prior work [48]. This dataset provides a set of free and open
resources for those working to sustain and secure open source soft-
ware. Ecosyste.ms publishes open data and APIs that map software
interdependencies, as well as providing data on the usage, creation,
and potential impact of packages.

In this work, we used the version of the dataset from October
2023, as this is the closest in time to when the PeaTMOSS dataset
was created. This includes the usage of data from two software
package registries: PyPI and NPM.

5.3 𝐶1: The Transformers library increases the
accessibility of PTM creation and
downstream reuse.

5.3.1 Method We present the metric we developed for claim 1.
Metric 1: Preservation rate of libraries to descendents: Some
models support multiple libraries. If the claim holds, then descen-
dants of those models should make use of (and thus support) the
more reuse-friendly libraries. We consider each library 𝐿 in turn
to assess how frequently its descendants continue to use it. The
ingredients of our measure are: the library 𝐿 being assessed, the set
of base models 𝐵 that use library 𝐿 and at least one other library,
the set 𝐷𝑏 of direct descendants of base model 𝑏 ∈ 𝐵, and a func-
tion 𝑆 (𝑑, 𝐿) that returns 1 if descendant 𝑑 ∈ 𝐷𝑏 supports library
𝐿, otherwise 0. We can then calculate the preservation rate 𝑃𝐿 of a
library 𝐿 as:

𝑃𝐿 =

∑
𝑏∈𝐵

∑
𝑑∈𝐷𝑏

𝑆 (𝑑, 𝐿)∑
𝑏∈𝐵 |𝐷𝑏 |

(1)

The numerator is the total descendants supporting library 𝐿, cal-
culated as:

∑
𝑏∈𝐵

∑
𝑑∈𝐷𝑏

𝑆 (𝑑, 𝐿). The denominator is the total count
of direct descendants across all base models in set 𝐵:

∑
𝑏∈𝐵 |𝐷𝑏 |.

This equation will give the percentage of direct descendants that
support library 𝐿. The raw count of descendants supporting the
library can be found using the numerator.

5.3.2 Results Metric 1: Preservation rate of libraries to de-
scendents: As depicted in Figure 5, the Transformers library has
the highest survival rate from a parent model to its descendant
among all libraries used. Specifically, over 80% of descendant mod-
els continue to employ the Transformers library, establishing it as
the preferred choice for generating descendant models. Transform-
ers is also the most popular library (has the largest population of
models that use it). Contrarily, despite previous studies suggesting
high prevalence, PyTorch was not favored among PTM descendants,
a departure from claims within our systematic literature review
that both Transformers and PyTorch are dominant on Hugging
Face [12].

Instead, our findings highlight the Transformers and SafeTensors
libraries as the most prevalent, suggesting a community shift to-
wards prioritizing security, as SafeTensors is designed to replace the
commonly used Python pickle library with a more secure container
for deploying models. We attribute this discrepancy to prior studies’
broader approach, which did not differentiate between model types

tra
nsf

orm
ers

saf
ete

nso
rs

ten
sor

bo
ard tim

m

sen
ten

ce-
tx

dif
fus

ers on
nx rus

t

tra
nsf

orm
ers

.js

ult
ral

yti
cs

Library

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 D
ire

ct
De

sc
en

da
nt

 M
od

el
s 2699

1929

1173

263 220 182 124 78 25 21

Proportion of Direct Descendant Models per Library

Figure 5: The usage proportion of the top-10 libraries that PTMs
utilizing at least two different libraries use on Hugging Face. For
PTM packages that leverage support at least two libraries, most
packages support the transformers library, followed by the Hugging
Face promoted SafeTensors library. Most other libraries have little
usage in comparison. In contrast to previous work [12], PyTorch is
not one of the most popular library to be supported when a PTM
package supports more than one library.

and analyzed only a single snapshot of Hugging Face, thus lack-
ing the detailed analysis presented here. Our results suggest that
PTM synthesizers are willing to compromise on functionality and
portability to ensure the distribution of more secure PTM packages.

5.4 𝐶2: Popularity Affects PTM Selection and
Reuse More than Other Trad’l. Attributes

Our claim interpretation is that popular models are more likely to be
used, so that the “rich get richer”. We examined this claim with two
metrics. First, we measure the stability (i.e., non-turnover) of the top
PTM packages over time, expecting it to be low (popular packages
are used directly). Second, we measure the correlation between
popularity and the number of descendants of top PTM packages,
expecting it to be positive (popular packages are fine-tuned).

5.4.1 Methods We present the metrics we developed for claim
2. Metric 2: Turnover of Top PTMs: Drawing on prior work
characterizing the stability of top packages over time [18], we mea-
sured the top-𝐾 turnover for each registry. Let 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 be the set
of 𝐾 most popular packages in the current snapshot, and 𝑆𝑙𝑎𝑠𝑡 be
the set of top 𝐾 packages in the last snapshot. We also consider
𝑆ℎ𝑖𝑠𝑡𝑜𝑟𝑦 , the set of packages in any snapshot before 𝑆𝑙𝑎𝑠𝑡 . We then
distinguish three categories for packages in 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 :
(1) Remained: Packages that were in both 𝑆𝑙𝑎𝑠𝑡 and 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 .

Remained = 𝑆𝑙𝑎𝑠𝑡 ∩ 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (2)

(2) Newcomers: Packages in 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 in no previous snapshot.

Newcomers = 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 \ (𝑆ℎ𝑖𝑠𝑡𝑜𝑟𝑦 ∪ 𝑆𝑙𝑎𝑠𝑡) (3)

(3) Returning: Packages that were once in the top 1000 (𝑆ℎ𝑖𝑠𝑡𝑜𝑟𝑦),
were not in 𝑆𝑙𝑎𝑠𝑡 , but are in 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 again.

Returning = (𝑆ℎ𝑖𝑠𝑡𝑜𝑟𝑦 \ 𝑆𝑙𝑎𝑠𝑡) ∩ 𝑆𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (4)

Jason Jones, Wenxin Jiang, Nicholas Synovic, George K. Thiruvathukal, and James C. Davis

Table 4: This table displays the relationships between Qualitative Claims, the Metric(s) used to evaluate them, and the Hypothesized Results.
Where applicable, a reference is made to the traditional software prior work and metric that informed our metric. Note that not every
metric contains a reference to a traditional software prior work that uses this metric as no analog exists. For those metrics, we utilize the
Goal-Question-Metric process to develop metric(s) associated with the claim. Since the goal of these measurements is to substantiate existing
claims from prior work, we include a hypothesis about what the quantitative measurement will be if the claim is true.

Qualitative Claim Metric Hypothesized Result

𝐶1: The Transformers library improves the pro-
cess of PTM evolution.

Preservation rate of Libraries to descen-
dents.

The preservation of Transformers as a li-
brary to its descendents will be greater
than that of other libaries.

𝐶2: The traditional attribute of Popularity affects
PTM selection and reuse more than Maintenance
and Quality.

Turnover of top Packages over time
[18].

Models with high popularity remain pop-
ular over time (“rich get richer”).

Descendent amount of models Models with high popularity have a larger
number of descendent models.

𝐶3: Documentation quality impacts model selec-
tion.

Popularity of PTMs based on their doc-
umentation quality.

Models with more information are more
discoverable and therefore more popular
[60].

𝐶4: DL-specific attributes such as model architec-
ture, performance, reproducibility, and portability
affect PTM selection and reuse.

Popularity of PTMs based on their At-
tributes [60].

Popular architectures, high performance,
description of where the PTM came from,
ease of use, and size all impact model pop-
ularity.

For the measurement, we defined popularity by the number
of downloads, and examined the top-1000 packages. We obtained
snapshots across four dates for both traditional software and PTMs.
Data came from several HuggingFace snapshots (datasets: HFModel
Metadata–June 2022, PTMTorrent–May 2023, PeaTMOSS–Oct. 2023).
We took a current snapshot of the top 1000 PTMs directly from
Hugging Face (April 2024). We used the Ecosyste.ms dataset (NPM,
PyPI) for a comparison with traditional software package registries.

Metric 3: Number of Descendents of Top Packages: Our sec-
ond measure of the impact of popularity on reuse was the number
of descendent models. In this case, we defined descendent models as
a downstream model that is fine-tuned and references the original
model as a base model. We compare the number of descendent
models with the popularity of model and determine the strength of
correlation between them — the claim implies it should be positive.

For themeasurement, we again defined popularity by the number
of downloads. The descendent-base relation is available from the
PeaTMOSS dataset, for the 15,000 most popular PTMs on Hugging
Face. Given that these models account for ∼99% of the downloads
in the snapshot, we believe this is representative.

We initially planned to compare our findings with traditional
software, similar to Metric 2. However, identifying a direct counter-
part to PTM descendants in traditional software proved challenging.
We considered using GitHub forks and GitHub or registry depen-
dencies as analogs, but each presented unique implications that
complicated a direct comparison with PTM descendants.

5.4.2 Results Metric 2: Turnover of Traditional Software and
PTM registries: Figure 6 shows the results for Hugging Face.
The Hugging Face data does not match our interpretation of the
claim. About half of the top-1K Hugging Face PTMs turned over
in each snapshot. This high turnover rate suggests that packages

on Hugging Face have a shorter lifespan, indicating a dynamic
PTM environment where the requirements and preferred models
frequently change [23]. Further investigation could analyze the
lifecycle of these PTMs to determinewhether they are newermodels
briefly appearing or established ones losing prominence, as well as
identifying the traits of PTMs or maintainers who consistently stay
within the top rankings. This result is consistent with the claim,
but implies that popularity is likely driven by performance (a latent
variable not present in the claim).

Figure 6 also shows NPM for comparison. The results for PyPI
were similar. Traditional registries show stability with their most
popular packages. Quantitatively, 2535 distinct packages were in
the HuggingFace top-1K, while only 1127 were there for NPM.

The rapid turnover on Hugging Face compared to the stabil-
ity observed in traditional software packages indicates that PTM
needs are continually evolving, unlike the more established needs
in traditional software domains. This evolution often leads to older
PTMs being supplanted by newer models that better meet current
requirements or offer superior performance, highlighting a market
driven by innovation and rapid adaptation. This trend suggests that
PTM users are quick to adopt new advancements, reflecting the
field’s fast-paced development and the shifting demands across its
various application domains.

Metric 3: Number of Descendents of Top Packages: Fig-
ure 7 shows the results for this metric. We observe a weak positive
correlation between popularity (downloads) and the number of
descendent models. Popular models tend to have more descendants,
but the correlation was weaker than expected. Notably, some highly
popular models had relatively few descendants, while others with
similar popularity levels had many. This suggests that while popu-
larity influences the likelihood of a model being chosen for further
development, it is not the sole factor. Further analysis, including a

What do we know about Hugging Face?

Figure 6: The turnover of the top-1000 Packages on Hugging Face,
NPM. Note that in traditional software package registries such as
NPM, the level of turnover is low. Hugging Face has a much larger
amount of packages re-enter the Top 1000 as shown by the larger
green bars in the second and fourth snapshot compared to NPM,
with few returners as shown by the relative lack of green bars.

Figure 7: Aheatmap showing the correlation betweenDownloads and
Number of Direct Descendent Models. Note that this is a log-log plot.
The red-line displays the best-fit relationship between downloads
and descendant count, with a slope of 0.15. This positive correlation
suggests that models with higher download counts generally have a
larger number of direct descendants, indicating that popular models
tend to be reused more frequently in derivative work.

breakdown by model task and domain, is necessary to understand
if variations in descendant counts are influenced by the specific
popularity within less prominent domains or tasks. This analysis
could expose the decision-making processes engineers use when
selecting models to fine-tune and develop further.

5.5 𝐶3: Docs Quality Impacts Model Selection
Our interpretation of Claim 3 is that PTMs with better documenta-
tion will be more popular.

5.5.1 Method Metric 4: Documentation Quality: Prior work
has examined documentation quality in many ways [22, 50]. We
used those ideas to develop our measure of quality. The primary
documentation for PTMs is called a “model card”, which is similar to
the README of a GitHub repository or the landing page of an NPM
or PyPI package. We considered two factors: (1) the completeness
of the model card; and (2) the availability of metadata.

To measure completeness, we identified five typical sections
found in highly popular PTMs such as Google’s Bet base uncased:
Model Description, Limitations, How to Use, Training, and Evaluation.
We scored model cards on an integer scale from 0 to 5 — to receive
a score of 5, a PTM’s card needed all of these sections. To assess
whether each section was present, we queried OpenAI’s ChatGPT-4
with the prompt shown in Listing 1.

Listing 1: ChatGPT-4 prompt for evaluating model cards.
You will receive a model card and are expected to analyze

it for the following details:
1. Model description: A description of the model itself
2. Limitations: Any limitations of the model
3. How to use: Instructions on how to use the model

downstream
4. Training: Details of the training process or data
5. Evaluation: Reports on the model 's performance

evaluation

Please respond with a JSON object indicating whether each
of these points is present with true/false.

Here is the model card to evaluate:

To measure the availability of metadata, we referenced the PeaT-
MOSS dataset, which extracted over 20 distinct pieces of metadata
if they were present in a PTM’s model card and associated config-
uration files. We scored PTMs on an integer scale from 0 to the
maximum, i.e., the number of distinct pieces of metadata considered
in the PeaTMOSS database schema. A PTM scoring perfectly in
this category would possess all available metadata according to
PeatMOSS.

The PeaTMOSS dataset comprises extracted metadata from all
models on Hugging Face and includes snapshots of the top 15,000
most popular models, each with over 50 monthly downloads. These
models were further analyzed using an LLM, which extracted ad-
ditional metadata from the model cards and the config.json files.
Consequently, our analysis focused on these top 15,000 models to
assess whether documentation quality influences model selection.

For this measure, we considered popularity in three ways: Down-
loads and Likes, according to Hugging Face, and Downstream De-
pendents, based on the mapping offered by the PeaTMOSS dataset.

To test our interpretation of the metric, we selected the top 1000
and bottom 1000 models from PeaTMOSS’s set of 15,000 PTMs.
We evaluated their documentation quality, summing an overall
documentation score as a (0,1) metric that normalized and then
weighted the two components equally. Then we compared the
distributions using a box-and-whisker plot and statistical tests.

5.5.2 Results Metric 4: Documentation Quality: We evaluated
the impact of documentation quality on the popularity of PTMs.
Two representative box and whisker plots are shown in Figure 8.

Jason Jones, Wenxin Jiang, Nicholas Synovic, George K. Thiruvathukal, and James C. Davis

Figure 8: This figure shows the impact of documentation quality
on model popularity using two popularity metrics: downloads and
downstream reuse. The left box plot compares the documentation
quality of the top 1,000 and bottom1,000models based on the number
of downloads. The right box plot makes a similar comparison based
on the number of downstream repositories. In both metrics, the top
models demonstrate higher documentation quality scores than the
bottommodels, highlighting that models with better documentation
are more popular and are reused more frequently.

Specifically, the top 1000 most popular models consistently ex-
hibited significantly better documentation than the bottom 1000
models (𝑝 < 0.01. This finding supports the claim that documenta-
tion quality significantly influences model selection. If the relation
is causative (documentation→ popularity), then research can focus
on developing tools and methods to enhance the documentation
quality of models, supporting better usability and adoption.

6 Threats to Validity
We discuss three types of threats to validity [56], while considering
the criticisms of Verdecchia et al. [54].

Construct Threats are potential limitations of how we opera-
tionalized concepts. In the systematic literature review (RQ1), we
manually extracted claims from papers, which might introduce
potential bias to our results. As a mitigation, to improve objectivity
two authors worked together on the process and the filtering of
claims. In the validation of non-quantified claims, we proposed
metrics that seemed suitable based on our judgment. As a miti-
gation, where possible we used multiple measures and leveraged
previously-defined metrics.

Internal threats are those that affect cause-effect relationships.
We emphasize that our approach for RQ2 is of the form: “If claim
𝐶 is true, then measurement 𝑀 should show us that...”. In each
case the measurement produced the expected result. However, this
result is correlative, not causative — there may be a latent variable
in each case, or the causative relationship may be reversed. For
example, in Figure 8 we found that better documentation corre-
lates with greater popularity. It may be that the latent variable is
performance, such that models become popular because they have
good performance, and they accrue documentation because they
are popular. When qualitative and quantitative claims agree, as is
the case in this study, we learn both “Why?” and “How much?”.

External threats may impact generalizability. We recognize
both immediate and longitudinal threats in this regard. Immediately,

we were interested in studying PTM reuse, but we only examined
one registry for PTMs: the Hugging Face platform. While this is
by far the most popular and feature-rich platform, other platforms
exist, such as PyTorch Hub (less popular), PapersWithCode (fewer
features), and GitHub (not PTM-specific). In terms of longitudinally,
keep in mind that Hugging Face is itself relatively young — created
in 2016 and only seeing major use beginning in 2020 — so devel-
oper practices may not have stabilized. Lastly, we consider that the
technologies and platforms that support PTMs are rapidly evolv-
ing, so current claims (whether qualitative or quantitative) may
change over time and require ongoing reassessment. As indicated
in the discussion, this property suggests an opportunity for further
research, but it also means that our findings may be unstable.

7 Future Work
In Table 4, we identified one claim that we could not operationalize
for measurement:𝐶4, that different deep learning-specific attributes
would affect PTM selection and reuse. Although the PeaTMOSS
dataset does include some of these measures in a structured format,
the claim is sufficiently broad that quantifying it was beyond the
scope of this study. Future work could explore the multi-variable
relationship implied by this claim.

Our study provides the first systematic literature review of cur-
rent knowledge about PTM reuse. Another opportunity is a system-
atic comparison of the software package registries associated with
traditional software packages, and the software package registries
associated with PTMs. Jiang et al. observed similarities and differ-
ences in the reuse processes [29] — how and to what extent can
we measure the differences? As discussed in §5.4.1 with respect to
an analogue for PTM descendants, finding the limits of compari-
son (e.g., appropriate measurements) between traditional vs. PTM
software package registries is an open challenge.

The rapid development of PTM technologies presents an ongo-
ing challenge for empirical research on PTM reuse. The Hugging
Face platform continues to grow exponentially [12], the state of the
art performance of models at all sizes continues to advance [3], and
the tooling available to adapt and deploy these models continues to
improve [26]. While datasets and tooling such as HFCommunity
and PeaTMOSS support studies like ours, they also present some
limitations. Innovation is needed to help empirical software engi-
neering researchers keep up with the scale of activity and volume of
data that we are seeing in the context of PTM reuse. Given Hugging
Face’s dynamic growth, even data that is a few months old may
not accurately reflect the current state of the platform, suggesting
a need for regular snapshotting, which imposes significant storage
requirements (beyond the already-substantial requirements of >50
TB). This highlights the need for tools that can provide real-time,
incrementally-updated data to keep pace with rapid changes, en-
suring that analyses remain relevant and reflective of the present
situation in PTM reuse.

8 Conclusion
Pre-trained models are the motive force of the new generation of
software engineering. Understanding engineers’ PTM reuse prac-
tices is crucial to optimizing and securing the process. Our system-
atic literature review and quantification of claims has illuminated

What do we know about Hugging Face?

significant aspects of PTM reuse. We also shed light on unique dy-
namics within the PTM reuse landscape as compared to traditional
software package registries. Specifically, we observed a shorter lifes-
pan of packages in PTM registries compared to traditional SPRs.
Our findings underscore the need for research infrastructure and
novel tools to support PTM reuse, adapting to the much higher
turnover of popular PTM packages. We must ensure that PTM reg-
istries can meet the evolving demands of the software engineering
community.

9 Data Availability
An anonymous artifact containing the results of the systematic
literature review (RQ1) as well as our software and results for
quantification of claims (RQ2) is available at https://github.com/
anonsub1234/ptm-quantify-esem-2024.

10 Research Ethics
No human subjects were involved in the conduct of this project.
We are aware of no other ethical concerns.

Acknowledgments
We acknowledge support from NSF awards OAC-2107020 and OAC-
2107230.

https://github.com/anonsub1234/ptm-quantify-esem-2024
https://github.com/anonsub1234/ptm-quantify-esem-2024

Jason Jones, Wenxin Jiang, Nicholas Synovic, George K. Thiruvathukal, and James C. Davis

References
[1] [n. d.]. npm: a package manager for JavaScript. https://www.npmjs.com/.
[2] [n. d.]. ONNX Model Zoo: a collection of pre-trained, state-of-the-art models in

the ONNX format. https://github.com/onnx/models.
[3] [n. d.]. Papers with Code. https://paperswithcode.com
[4] [n. d.]. PyPI: the Python Package Index. https://pypi.org/.
[5] [n. d.]. PyTorch Hub: a pre-trained model repository designed for research

reproducibility. https://pytorch.org/hub/.
[6] Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid, and Emad

Shihab. 2017. Why do developers use trivial packages? an empirical case study
on npm. In Proceedings of the 2017 11th joint meeting on foundations of software
engineering. 385–395.

[7] Iftekhar Ahmed, Darren Forrest, and Carlos Jensen. 2017. A case study of
motivations for corporate contribution to FOSS. In 2017 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC) (Raleigh, NC, 2017-
10-01). IEEE, 223–231. https://doi.org/10.1109/VLHCC.2017.8103471

[8] Adem Ait, Javier Luis Cánovas Izquierdo, and Jordi Cabot. 2023. HFCommunity:
A tool to analyze the hugging face hub community. In 2023 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE,
728–732.

[9] Oliver A Blanthorn, Colin M Caine, and Eva M Navarro-López. 2019. Evolution
of communities of software: using tensor decompositions to compare software
ecosystems. Applied Network Science 4, 1 (2019), 120.

[10] Ethan Bommarito and Michael James Bommarito. 2019. An Empirical Analysis
of the Python Package Index (PyPI). https://doi.org/10.2139/ssrn.3426281

[11] Michael Borenstien, Larry Hedges, Julian Higgins, and Hannah Rothstein. 2009.
Introduction to meta-analysis. West Sussex, United Kingdon: John Wiley & Sons
(2009).

[12] Joel Castaño, Silverio Martínez-Fernández, Xavier Franch, and Justus Bogner.
2023. Analyzing the evolution and maintenance of ml models on hugging face.
arXiv preprint arXiv:2311.13380 (2023).

[13] Joel Castaño, Silverio Martínez-Fernández, and Xavier Franch. 2024. Lessons
Learned from Mining the Hugging Face Repository. arXiv:2402.07323 [cs.SE]

[14] Joel Castaño, Silverio Martínez-Fernández, Xavier Franch, and Justus Bogner.
2023. Exploring the Carbon Footprint of Hugging Face’sMLModels: A Repository
Mining Study. In 2023 ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM). 1–12. https://doi.org/10.1109/ESEM56168.
2023.10304801

[15] James C Davis, Purvish Jajal, Wenxin Jiang, Taylor R Schorlemmer, Nicholas
Synovic, and George K Thiruvathukal. 2023. Reusing deep learning models:
Challenges and directions in software engineering. In 2023 IEEE John Vincent
Atanasoff International Symposium on Modern Computing (JVA). IEEE, 17–30.

[16] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the evolution of
technical lag in the npm package dependency network. In 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME). IEEE, 404–414.

[17] Alexandre Decan, Tom Mens, and Philippe Grosjean. 2019. An empirical compar-
ison of dependency network evolution in seven software packaging ecosystems.
Empirical Software Engineering 24, 1 (2019), 381–416.

[18] Tapajit Dey and Audris Mockus. 2018. Are software dependency supply chain
metrics useful in predicting change of popularity of npm packages?. In Proceed-
ings of the 14th international conference on predictive models and data analytics in
software engineering. 66–69.

[19] Joshua Garcia, Yang Feng, Junjie Shen, Sumaya Almanee, Yuan Xia, Chen, and Qi
Alfred. 2020. A comprehensive study of autonomous vehicle bugs. In Proceedings
of the ACM/IEEE 42nd international conference on software engineering. 385–396.

[20] Daniel M. German, Massimiliano Di Penta, and Julius Davies. 2010. Understand-
ing and Auditing the Licensing of Open Source Software Distributions. In 2010
IEEE 18th International Conference on Program Comprehension (2010-06). 84–93.
https://doi.org/10.1109/ICPC.2010.48 ISSN: 1092-8138.

[21] Lina Gong, Jingxuan Zhang, MingqiangWei, Haoxiang Zhang, and Zhiqiu Huang.
2023. What Is the Intended Usage Context of This Model? An Exploratory Study
of Pre-Trained Models on Various Model Repositories. ACM Transactions on
Software Engineering and Methodology 32, 3 (2023), 69:1–69:57. https://doi.org/
10.1145/3569934

[22] Lina Gong, Jingxuan Zhang, MingqiangWei, Haoxiang Zhang, and Zhiqiu Huang.
2023. What is the intended usage context of this model? An exploratory study of
pre-trained models on various model repositories. ACM Transactions on Software
Engineering and Methodology 32, 3 (2023), 1–57.

[23] Nikhil Krishna Gopalakrishna, Dharun Anandayuvaraj, Annan Detti, Forrest Lee
Bland, Sazzadur Rahaman, and James C. Davis. 2023. "If security is required":
engineering and security practices for machine learning-based IoT devices. In
Proceedings of the 4th International Workshop on Software Engineering Research
and Practice for the IoT (Pittsburgh Pennsylvania, 2022-05-19). ACM, 1–8. https:
//doi.org/10.1145/3528227.3528565

[24] Yacong Gu, Lingyun Ying, Yingyuan Pu, Xiao Hu, Huajun Chai, Ruimin Wang,
Xing Gao, and Haixin Duan. 2023. Investigating package related security threats
in software registries. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE,

1578–1595.
[25] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,

Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Jo-
hannes Welbl, Aidan Clark, et al. 2022. Training compute-optimal large language
models. arXiv preprint arXiv:2203.15556 (2022).

[26] Purvish Jajal, Wenxin Jiang, Arav Tewari, Joseph Woo, George K Thiruvathukal,
and James C Davis. 2023. Analysis of failures and risks in deep learning model
converters: A case study in the onnx ecosystem. arXiv preprint arXiv:2303.17708
(2023).

[27] Wenxin Jiang, Vishnu Banna, Naveen Vivek, Abhinav Goel, Nicholas Synovic,
George K Thiruvathukal, and James C Davis. 2023. Challenges and practices
of deep learning model reengineering: A case study on computer vision. arXiv
preprint arXiv:2303.07476 (2023).

[28] Wenxin Jiang, Chingwo Cheung, Mingyu Kim, Heesoo Kim, George K. Thiru-
vathukal, and James C. Davis. 2024. Naming Practices of Pre-Trained Models in
Hugging Face. arXiv:2310.01642 [cs.SE]

[29] Wenxin Jiang, Nicholas Synovic, Matt Hyatt, Taylor R. Schorlemmer, Rohan
Sethi, Yung-Hsiang Lu, George K. Thiruvathukal, and James C. Davis. 2023. An
Empirical Study of Pre-Trained Model Reuse in the Hugging Face Deep Learning
Model Registry. In 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE). 2463–2475. https://doi.org/10.1109/ICSE48619.2023.00206

[30] Wenxin Jiang, Nicholas Synovic, Purvish Jajal, Taylor R. Schorlemmer, Arav
Tewari, Bhavesh Pareek, George K. Thiruvathukal, and James C. Davis. 2023.
PTMTorrent: A Dataset for Mining Open-source Pre-trained Model Packages. ,
57-61 pages. https://doi.org/10.1109/MSR59073.2023.00021

[31] Wenxin Jiang, Nicholas Synovic, Rohan Sethi, Aryan Indarapu, Matt Hyatt, Tay-
lor R Schorlemmer, George K Thiruvathukal, and James C Davis. 2022. An
empirical study of artifacts and security risks in the pre-trained model sup-
ply chain. In Proceedings of the 2022 ACM Workshop on Software Supply Chain
Offensive Research and Ecosystem Defenses. 105–114.

[32] Wenxin Jiang, Jerin Yasmin, Jason Jones, Nicholas Synovic, Jiashen Kuo,
Nathaniel Bielanski, Yuan Tian, George K Thiruvathukal, and James C Davis.
2024. PeaTMOSS: A Dataset and Initial Analysis of Pre-Trained Models in
Open-Source Software.

[33] Adhishree Kathikar, Aishwarya Nair, Ben Lazarine, Agrim Sachdeva, and Sagar
Samtani. 2023. Assessing the Vulnerabilities of the Open-Source Artificial Intel-
ligence (AI) Landscape: A Large-Scale Analysis of the Hugging Face Platform. In
2023 IEEE International Conference on Intelligence and Security Informatics (ISI)
(2023-10). 1–6. https://doi.org/10.1109/ISI58743.2023.10297271

[34] Staffs Keele et al. 2007. Guidelines for performing systematic literature reviews
in software engineering.

[35] Raula Gaikovina Kula, Coen De Roover, Daniel German, Takashi Ishio, and
Katsuro Inoue. 2014. Visualizing the evolution of systems and their library
dependencies. In 2014 Second IEEE Working Conference on Software Visualization.
IEEE, 127–136.

[36] Chengwei Liu, Sen Chen, Lingling Fan, Bihuan Chen, Yang Liu, and Xin Peng.
2022. Demystifying the vulnerability propagation and its evolution via de-
pendency trees in the npm ecosystem. In Proceedings of the 44th International
Conference on Software Engineering. 672–684.

[37] Hui Miao, Ang Li, Larry S Davis, and Amol Deshpande. 2017. Modelhub: Deep
learning lifecycle management. In 2017 IEEE 33rd International Conference on
Data Engineering (ICDE). IEEE, 1393–1394.

[38] David Moher, Alessandro Liberati, Jennifer Tetzlaff, Douglas G Altman, Prisma
Group, et al. 2010. Preferred reporting items for systematic reviews and meta-
analyses: the PRISMA statement. International journal of surgery 8, 5 (2010),
336–341.

[39] Diego Montes, Pongpatapee Peerapatanapokin, Jeff Schultz, Chengjun Guo,
Wenxin Jiang, and James C Davis. 2022. Discrepancies among pre-trained deep
neural networks: a new threat to model zoo reliability. , 1605–1609 pages.

[40] Suhaib Mujahid, Rabe Abdalkareem, and Emad Shihab. 2023. What are the
characteristics of highly-selected packages? A case study on the npm ecosystem.
Journal of Systems and Software 198 (2023), 111588.

[41] Farzaneh Nasirian, Mohsen Ahmadian, and One-Ki Daniel Lee. 2017. AI-based
voice assistant systems: Evaluating from the interaction and trust perspectives.
(2017).

[42] D Patterson. 2022. Good news about the carbon footprint of machine learning
training. Google AI Blog (2022).

[43] Aleksandra Piktus, Odunayo Ogundepo, Christopher Akiki, Akintunde Oladipo,
Xinyu Zhang, Hailey Schoelkopf, Stella Biderman, Martin Potthast, and Jimmy
Lin. 2023. GAIA search: Hugging face and pyserini interoperability for nlp
training data exploration. arXiv preprint arXiv:2306.01481 (2023).

[44] Donald Pinckney, Federico Cassano, Arjun Guha, and Jonathan Bell. 2023. A large
scale analysis of semantic versioning in npm. In 2023 IEEE/ACM 20th International
Conference on Mining Software Repositories (MSR). IEEE, 485–497.

[45] Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann,
Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young,
et al. 2021. Scaling language models: Methods, analysis & insights from training
gopher. arXiv preprint arXiv:2112.11446 (2021).

https://www.npmjs.com/
https://github.com/onnx/models
https://paperswithcode.com
https://pypi.org/
https://pytorch.org/hub/
https://doi.org/10.1109/VLHCC.2017.8103471
https://doi.org/10.2139/ssrn.3426281
https://arxiv.org/abs/2402.07323
https://doi.org/10.1109/ESEM56168.2023.10304801
https://doi.org/10.1109/ESEM56168.2023.10304801
https://doi.org/10.1109/ICPC.2010.48
https://doi.org/10.1145/3569934
https://doi.org/10.1145/3569934
https://doi.org/10.1145/3528227.3528565
https://doi.org/10.1145/3528227.3528565
https://arxiv.org/abs/2310.01642
https://doi.org/10.1109/ICSE48619.2023.00206
https://doi.org/10.1109/MSR59073.2023.00021
https://doi.org/10.1109/ISI58743.2023.10297271

What do we know about Hugging Face?

[46] Paul Ralph, Nauman bin Ali, Sebastian Baltes, Domenico Bianculli, Jessica Diaz,
Yvonne Dittrich, Neil Ernst, Michael Felderer, Robert Feldt, Antonio Filieri, et al.
2020. Empirical standards for software engineering research. arXiv preprint
arXiv:2010.03525 (2020).

[47] Paul Ralph and Sebastian Baltes. 2022. Paving the way for mature secondary
research: the seven types of literature review. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 1632–1636.

[48] Taylor R. Schorlemmer, Kelechi G. Kalu, Luke Chigges, Kyung Myung Ko, Eman
Abdul-Muhd Abu Isghair, Saurabh Baghi, Santiago Torres-Arias, and James C.
Davis. 2024. Signing in Four Public Software Package Registries: Quantity,
Quality, and Influencing Factors. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P).

[49] Jacob Stringer, Amjed Tahir, Kelly Blincoe, and Jens Dietrich. 2020. Technical lag
of dependencies in major package managers. In 2020 27th Asia-Pacific Software
Engineering Conference (APSEC). IEEE, 228–237.

[50] Henry Tang and Sarah Nadi. 2023. Evaluating Software Documentation Quality.
In 2023 IEEE/ACM 20th International Conference on Mining Software Repositories
(MSR). 67–78. https://doi.org/10.1109/MSR59073.2023.00023

[51] Mina Taraghi, Gianolli Dorcelus, Armstrong Foundjem, Florian Tambon, and
Foutse Khomh. 2024. Deep Learning Model Reuse in the HuggingFace Commu-
nity: Challenges, Benefit and Trends.

[52] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, et al. 2023. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288 (2023).

[53] Daniel Van Strien. 2022. Hugging Face Model Metadata Dataset. https:
//huggingface.co/datasets/davanstrien/hf_model_metadata.

[54] Roberto Verdecchia, Emelie Engström, Patricia Lago, Per Runeson, and Qunying
Song. 2023. Threats to validity in software engineering research: A critical
reflection. Information and Software Technology 164 (2023), 107329.

[55] Erik Wittern, Philippe Suter, and Shriram Rajagopalan. 2016. A Look at the
Dynamics of the JavaScript Package Ecosystem. In 2016 IEEE/ACM 13th Working
Conference on Mining Software Repositories (MSR) (Austin Texas). ACM, 351–361.
https://doi.org/10.1145/2901739.2901743

[56] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

[57] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien
Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. HuggingFace’s Transformers: State-of-
the-art Natural Language Processing. https://doi.org/10.48550/arXiv.1910.03771
arXiv:1910.03771 [cs]

[58] Yulun Wu, Zeliang Yu, Ming Wen, Qiang Li, Deqing Zou, and Hai Jin. 2023.
Understanding the threats of upstream vulnerabilities to downstream projects
in the maven ecosystem. In 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE). IEEE, 1046–1058.

[59] Xinyu Yang, Weixin Liang, and James Zou. 2024. Navigating Dataset Docu-
mentations in AI: A Large-Scale Analysis of Dataset Cards on Hugging Face.
https://doi.org/10.48550/arXiv.2401.13822 arXiv:2401.13822 [cs]

[60] Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and Jesús
González-Barahona. 2018. An empirical analysis of technical lag in npm package
dependencies. In International conference on software reuse. Springer, 95–110.

[61] Ahmed Zerouali, Tom Mens, Jesus Gonzalez-Barahona, Alexandre Decan, Eleni
Constantinou, and Gregorio Robles. 2019. A formal framework for measuring
technical lag in component repositories—and its application to npm. Journal of
Software: Evolution and Process 31, 8 (2019), e2157.

[62] Ahmed Zerouali, Tom Mens, Gregorio Robles, and Jesus M Gonzalez-Barahona.
2019. On the diversity of software package popularity metrics: An empirical
study of npm. In 2019 IEEE 26th international conference on software analysis,
Evolution and Reengineering (SANER). IEEE, 589–593.

[63] Yuxia Zhang, Minghui Zhou, Klaas-Jan Stol, Jianyu Wu, and Zhi Jin. 2020. How
do companies collaborate in open source ecosystems? an empirical study of
openstack. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. 1196–1208.

[64] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael
Pradel. 2019. Small world with high risks: A study of security threats in the npm
ecosystem. In 28th USENIX Security Symposium (USENIX Security 19). 995–1010.

https://doi.org/10.1109/MSR59073.2023.00023
https://huggingface.co/datasets/davanstrien/hf_model_metadata
https://huggingface.co/datasets/davanstrien/hf_model_metadata
https://doi.org/10.1145/2901739.2901743
https://doi.org/10.48550/arXiv.1910.03771
https://arxiv.org/abs/1910.03771 [cs]
https://doi.org/10.48550/arXiv.2401.13822
https://arxiv.org/abs/2401.13822 [cs]

	What Do We Know About Hugging Face? A Systematic Literature Review and Quantitative Validation of Qualitative Claims
	Author Manuscript
	Recommended Citation

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Software Package Registries
	2.2 Deep Neural Networks and Pre-Trained Model Packages
	2.3 Measurements of Software Package Registries

	3 Knowledge Gap and Research Questions
	3.1 Overview of Methodology

	4 RQ1: What claims about package reuse on Hugging Face are made by prior research?
	4.1 Methods
	4.2 Analysis and Results

	5 RQ2: Do the qualitative claims about package reuse (PTM) on Hugging Face hold up when quantified?
	5.1 Metrics Developed from Claims
	5.2 Available Datasets
	5.3 C1: The Transformers library increases the accessibility of PTM creation and downstream reuse.
	5.4 C2: Popularity Affects PTM Selection and Reuse More than Other Trad'l. Attributes
	5.5 C3: Docs Quality Impacts Model Selection

	6 Threats to Validity
	7 Future Work
	8 Conclusion
	9 Data Availability
	10 Research Ethics
	References

