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ABSTRACT 

 

Species distribution modelling of the marine environment has been extensively used to 

assess species–environment relationships to predict fish spatial distributions 

accurately. In this study we explored the application of two distinct modelling 

techniques, maximum entropy model (MaxEnt) and generalized linear models (GLMs) 

for predicting the potential distribution in the Azores economic exclusive zone (EEZ) of 

four economically important demersal fish species: blackbelly rosefish, Helicolenus 

dactylopterus dactylopterus, forkbeard, Phycis phycis, wreckfish, Polyprion americanus 

and offshore rockfish, Pontinus kuhlii. Models were constructed based on 13 years of 

fish presence/absence data derived from bottom longline surveys performed in the 

study area combined with high resolution (300 m) topographic and biogeochemical 

habitat seafloor variables. The most important predictors were depth and slope 

followed by sediment type, oxygen saturation and salinity, with relative contributions 

being similar among species. GLMs provided ‘outstanding’ model predictions 

(AUC>0.9) for two of the four fish species while MaxEnt provided ‘excellent’ model 

predictions (AUC=0.8–0.9) for three of four species. The level of agreement between 

observed and predicted presence/absence sites for both modelling techniques was 

‘moderate’ (K=0.4–0.6) for three of the four species with P. americanus models 

presenting the lowest level of agreement (K<0.1). For the scope of this study, both 

modelling approaches presented here were determined to produce viable 

presence/absence maps which represent a snap–shot of the potential distributions of 

the investigated species. This information provides a better description of demersal 

fish spatial ecology and can be of a great deal of interest for future fisheries 

management and conservation planning. 

 

Keywords: demersal fish, Generalized Linear Models, MaxEnt, species distribution 

models. 
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INTRODUCTION 

 Knowledge of geographical distributions patterns of marine species is essential 

for population’s ecology research, fisheries management and biodiversity 

conservation. Studying the relationship between environmental variables thought to 

influence species distributions and abundance is crucial to provide useful information 

for adequate conservation planning and management (Macleod et al., 2008; Franklin, 

2009). In this sense, species distribution modelling (SDM) is a mathematical approach 

used to investigate species–environment interactions by relating occurrence or 

abundance of species with environmental variables or predictors (Franklin, 2009). With 

a large variety of modelling techniques combined with the increasing availability of 

remote sensing data on environmental factors for studying oceans dynamics, SDMs 

provides the ability to create species potential distribution maps and assess habitat 

usage and preferences (Guisan & Zimmermann, 2000). SDMs studies for the marine 

environment have been presented for a broad range of ecological assessments, e.g., 

analyzing feeding areas of seabirds (Skov et al., 2008), predicting habitat distribution of 

deep–water corals (Leverette & Metaxas, 2005; Davies & Guinotte, 2011), 

characterization of macro–epibenthic habitats (Freeman & Rogers, 2003), influence of 

climate changes on fish distribution (Perry et al., 2005; Lenoir et al., 2011), 

identification of priority conservation sites in coastal marine environments (Francis et 

al., 2005) and for implementation of Marine Protected Areas (Conover et al., 2000). 

 A wide array of modelling techniques have been developing to predict species 

distribution and detailed comparisons between model performances were presented 

for various terrestrial species (e.g. Guisan & Zimmermann 2000; Tsoar et al., 2007; 

Franklin 2009), freshwater fishes (Olden & Jackson, 2002) and marine mammals and 

fishes (MacLeod et al., 2008, Valavanis et al., 2008; Ready et al., 2010). Most of the 

modelling techniques require abundance or presence/absence data collected in 

geographic regions that were systematically surveyed (Guisan & Zimmermann 2000). 

These techniques vary in how they model the distribution of the response variable, 

select relevant predictor variables, define fitted functions for each variable, weight 

variable contributions, allow for interactions, and predict geographic patterns of 

occurrence or abundance (Elith et al., 2006; Franklin, 2009). Statistical methods used 

to analyze abundance data include multivariate ordination and clustering analysis, 
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generalized linear models (GLM), generalized additive models (GAM), classification and 

regression trees (CART) and multivariate adaptive regression splines (MARS).  

Some of these techniques have been extensively used to established 

associations between biotic and abiotic environmental features and demersal fish 

species richness (Leathwick et al., 2006) and relative abundance or other density 

measurement like CPUE (O’Brien & Rago, 1996; Maravelias et al., 2007a; 2007b; 

Katsanevakis & Maravelias, 2009), assessed with commercial fishing landings data 

(Morris & Ball, 2006; Sundermeyer et al., 2006). These studies demonstrated that 

many of the relationships between fish abundance and environmental variables were 

shown to be non–linear, indicating that traditional linear methods of statistical analysis 

(namely multivariate analysis and GLMs) may be inadequate for this kind of analysis 

because it represents a violation of models assumptions (Maravelias et al., 2003). 

Additionally, abundance models presented poor performances compared to 

presence/absence models, mostly due to the fact these models rely on assumptions 

regarding linearity and symmetric distribution of the response variable (e.g. 

abundance), that is not in agreement with observations in the field (Francis et al., 

2005). Modelling approaches that make use of presence/absence data require 

accurate data on locations where the species is known to occur (presence data) but 

also where does not occur (absence data). This will generate statistical functions or 

discriminative rules allowing habitat suitability to be ranked according to the 

probability of species presence and absence along environmental gradients (Valavanis 

et al., 2008). However, this kind of information is not always available, particularly for 

marine species that occur at great depth and are difficult to detect due to their 

mobility or inadequate sampling procedures (MacLeod et al., 2008). Even so, a few 

studies using presence/absence data have been conducted to predict marine fish 

distributions at a local (Moore et al., 2009; Young et al., 2010), regional (Maravelias et 

al., 2003; Crec’hriou et al., 2008) and global scale (Ready et al., 2010). 

 There is a growing interest in models using presence only data, consisting only 

of observations of the organism presence but with no reliable data on where the 

species is not found (Pearce & Boyce, 2006). Hence, recent advanced statistical and 

computer algorithms techniques are now better in recognizing and learning the 

complex nonlinear relationships between biotic and abiotic aspects of the marine 
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environment (Phillips et al., 2006; Franklin 2009). Presence only models (e.g. ENFA, 

BIOCLIM, DOMAIN, GARP, MaxEnt) are adequate for data deficient species and can be 

used with coarse–scale spatial environmental predictors (see Franklin, 2009). Thus, 

they were found to be effective in predicting distributions for many species of different 

regions (Elith et al., 2006).  

 The structure and zonation of demersal fish assemblages in the Azores 

Archipelago are very well described and relationships between abiotic variables (e.g. 

mean depth, mean temperature, bottom steepness and irregularity, and depth 

stratum size) and assemblages composition have been established using multivariate 

analysis approaches (Menezes et al., 2006; 2009). In the present study we used the 

maximum entropy model (MaxEnt) and generalized linear models (GLM) to assess the 

potential distribution in the Azorean economic exclusive zone (EEZ) of four demersal 

fish species with high commercial and economic interest: blackbelly rosefish, 

Helicolenus dactylopterus dactylopterus, forkbeard, Phycis phycis, wreckfish, Polyprion 

americanus and offshore rockfish, Pontinus kuhlii. We used fish presence/absence data 

collected from 13 years of regular longline surveys combined with geostatistical and 

GIS tools to estimate the probability of occurrence of the target species from seven 

candidate predictor variables: depth, oxygen saturation, bottom salinity, slope, 

sediment type, eastness and northness (both derived from aspect). We’re interested 

to determinate the relative importance of the predictors in fish distributions and 

compare the performance and output of a presence–absence GLM versus presence–

only MaxEnt. This study represents the first attempt to apply habitat predictive 

modelling with environmental grids to predict the distribution of demersal fish species 

in the Azores EEZ. The potential distribution maps here produced reflect the average 

distribution of the investigated species and could help in future fisheries management 

planning. 

 

MATERIAL AND METHODS 

 

Study area 

 The Azores archipelago is located in the north Atlantic between 36–40⁰N and 

24–32⁰W and it is composed by 9 volcanic islands distributed in 3 groups along a 
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tectonic zone extending about 600 km WNW–ESE (Figure 1). The Azorean EEZ 

comprises a total area of approximately 1.000.000 Km2 with an average depth of about 

3.000 m. Depths lesser than 600 m comprise a total area of 7.000 Km2, less than 1% of 

the total EZZ area. The seafloor surrounding the Azores islands is characterized by very 

narrow shelves and steep slopes, and the sea bottom is very irregular and rocky 

(Menezes, 2003; 2006). Seamounts or submarine elevations are common features in 

the Azores and may occupy 37 % of the total area of the EEZ (Morato, 2008). They are 

known to be very important for fisheries and biodiversity (Pitcher et al., 2007).  

 

 

Figure 1. Map showing the location of the Azores EEZ and the location of the 488 
bottom longline fishing sets analysed in the present study. 
  

For the modelling approach the Azores EEZ was divided in 0.0027 degree cells 

(approximately 250m x 300m) originating about 24 millions cells. The size of the cells 

were defined taking into account the resolution of the environmental layers available 

and our limited capability to allocate fish to spatial grids of about 280m. We thus 

found the spatial resolution to be adequate for our analysis since the problem of 

having duplicate records per cell is minimized by the scale of the grid. 
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Fisheries Surveys and biological data 

 Species investigated in the present study are major components of the Azores 

bottom longline fisheries and were chosen according to their commercial importance, 

and homogeneous life history traits and habitat preferences (Table I). These species 

were: blackbelly rosefish, Helicolenus dactylopterus dactylopterus, forkbeard, Phycis 

phycis, wreckfish, Polyprion americanus and offshore rockfish, Pontinus kuhlii. Species 

occurrence data were obtained from IMAR/DOP UAz bottom longline surveys 

performed from 1996 to 2011, with the exception of 1998 and 2006, conducted on 

coastal and on offshore banks of the Azores archipelago on board of the research 

vessel “Arquipélago” (Menezes, 2006). A total of 27 cruises comprising 488 bottom 

longline fishing sets performed within the Azores Economic Exclusive Zone were 

analyzed. 

 

Table I. Common name, family, habitat and number of presence data points of the four 
investigated demersal fish species. 

Species Common name Family Habitat 
Presence data 

points 

Helicolenus 
dactylopterus  

Blackbelly 
rosefish 

Sebastidae Benthic 3492 

Phycis phycis Forkbeard Phycidae Bentopelagic 1249 
Polyprion americanus Wreckfish Polyprionidae Benthic 296 

Pontinus kuhlii 
Offshore 
rockfish 

Scorpaenidae Benthic 889 

  

Details about the bottom longline surveys sampling design and strategies are 

presented in Menezes (2003; 2006). Research cruises were completed in spring (393 

sets) with few performed in summer (55 sets) and autumn (40 sets). Longline surveys 

were preformed from about 50m to 1200m depth. The fishing gear used in the surveys 

was similar to the one normally used by Azorean commercial fishery, locally known as 

´stone/buoy bottom longline’ (Figure 2). The longlines are set from four sided skates 

(each corresponding to a quarter–skate line), with about 30 hooks (hook size n⁰ 9) by 

quarter–skate side (each approximately 36.5 m long), baited with ‘chopped salted 

sardine’. On average 12 skates gear length cover approximately 1 nautical mile. 

Usually, lines are set at 4:30 AM and hauled at 8:00 AM. 
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Figure 2. Schematic representation of the bottom longline gear used in the surveys (in 
Menezes, 2003). 

 

 To meet the objectives of this study we started by allocating a geographical 

position to the presence or absence of fish species in the bottom longlines surveys. 

Since the position of every fish was not recorded on board the research vessel, we 

used the best approximation available. The geographic position of the beginning and 

end of a quarter skate line is recorded when the gear is deployed. However, fish catch 

was only recorded by 50 m depth strata (Menezes, 2003). To allocate a geographic 

position to fish presence or absence we 1) estimated the mean geographic position of 

each quarter skate line and the correspondent depth strata, 2) then analysed the catch 

by depth strata and allocated fish species presence (1) or absence (0) accordingly. A 

total of 8124 presence/absence species data sites or locations were obtained.  

Geographic positions of quarter skate lines were converted to ESRI shapefile 

and prepared in ArcMap. From these intermediate positions we kept the ones that 

represented the beginning and the end of a stratum for each set and connected them 

by polylines. The longline track polylines were created using the ET GeoWizard “point 

to polyline” feature in ArcGIS 10 software. For each polyline we calculated the mean 

longitude and latitude, which represented the geographic position of the species point 

data to be used in the modeling process. Projected data (WGS 84) were checked and 

points were removed if they were located outside of the Azorean EEZ or in land. 
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Environmental data 

 From a total of twenty one environmental layers of geomorphologic and 

biogeochemical characteristics available for the Azores EEZ, we choose those that were 

expected to contribute in explaining fish distribution. These were: depth (m), oxygen 

saturation (%), bottom salinity (‰), slope (degrees), sediment type (categorical with 7 

levels: mud, rock, mixed sediments, sand, muddy sand, coarse sediment and sandy 

mud), northness and eastness (derived from aspect). All these variables, except for 

oxygen saturation, have previously been identified as influencing fish distribution 

(Appendix 1). The inclusion of these variables in the modelling process was dependent 

on data availability and whether they are known or thought to be directly or indirectly 

relevant to the target–species distributions. The remaining variables examined 

(bottom temperature, bathymetric positioning index, slope rugosity, general 

curvature, plan curvature, profile curvature, bottom pH, bottom alkalinity, bottom 

Ωaragonite, bottom Ωcalcite, phosphate, silicate, nitrate, dissolved oxygen, apparent 

oxygen utilization) were discarded due to collinearity problems or low contribution to 

the model construction (data not shown). Details about the environmental layers 

creation will be presented elsewhere (Tempera, submitted). Fish presence or absence 

data points in cells with no environmental data values were excluded from further 

analysis.  

Depth values of species occurrences applied in the models were taken from the 

vessel depth soundings in the surveyed data, known to be more precise than values 

presented in global depth layers. Oxygen saturation and salinity layers were assembled 

as long term averages from satellite data, while slope, aspect and sediment type were 

derived from acoustic bathymetric data. Aspect is a circular rather than a continuous 

variable and defines de compass orientation in which the slope is facing. We selected 

this variable as a possible candidate to be included in the modelling process because 

the aspect of the slope relative to the prevailing ocean current direction may influence 

habitat suitability and occurrence of the species (Macleod et al., 2008; Monk et al., 

2012). Aspect was subsequently converted into eastness and northness to produce 

two layers where eastness=sin (aspect) and northness=cos (aspect). These two 

variables have values varying from –1 to 1 that represent the extent which slope faces 

north (1), south (–1), and east (1) or west (–1).  
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We performed a preliminary data exploration analysis in order to avoid 

multicollinearity between predictors by conducting a Variance Inflation Factor (VIF) 

analysis and plotting multi–pannel scatterplots using BRODGAR 2.5.7. Variables with 

the highest VIF (>10) were excluded and the remaining data re–analyzed. We repeated 

this process until all remaining variables had a VIF of less than 10. Also, if a high degree 

of collinearity exists between two variables (>80%), those variables with the least 

collinearity with other variables were retained in the modelling process.  

 Previous to the modelling process, it was necessary to generate two data sets: 

one presence/absence set for the GLM’s and one presence set only for the MaxEnt 

model. We included all occurrence data available to develop the models, which is 

hoped to contribute in capturing the species true limits to the tested environmental 

gradients. Sampling bias can undermine the confidence in species occurrence data, 

whereas the knowledge of species tolerant limits can be biased by incomplete or 

limited surveyed data.  

For each fish presence or absence data we extracted the length weighted mean 

values for each continuous environmental variable using the software Geospatial 

Modelling Environment 0.6.0.0 (Beyer, 2012). Worth to say that fish data are very 

often autocorrelated in space, time or both (Planque et al., 2011). More particularly, 

spatial autocorrelation is the tendency of neighboring sample units to possess more 

similar values than those further apart and represents a potential problem for all area–

based studies because the assumption of independency between observations is 

violated (Fielding & Bell, 1997). There are methods available to face this issue (see 

Dormann et al., 2007), however we did not further investigated spatial autocorrelation 

aspects in this study. 

 

Data Analysis 

Generalized Linear models 

 We assessed the relationships between the probabilities of species presence 

(response variable) and the selected environmental predictors at the sampled 

locations using binomial generalized linear models (GLM) with a logistic link function 

(McCullagh & Nelder, 1989). The GLM is a flexible generalization of ordinary least 

squares regression that allow for non–linearity and non–constant variance structures 
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in the data, while data can be assumed to be from several probability of distributions 

(e.g. normal, binomial, gamma, Poisson) which better fit the non–normal error 

structures of most ecological data (see Guisan et al., 2002). GLMs were fitted using 

presence–absence data from 8124 observation points and 7 predictor variables in 

order to select a final model, represented by the best set of predictors that explained 

species distributions, using the statistical programming environment R v2.14.2 (R 

Development Core Team, 2012). The selection of significant predictor variables was 

carried out through manual stepwise forward selection (i.e. process starts with a null 

model and takes a step by adding one term to the current model) and models were 

fitted with linear and second order polynomial terms specified for all quantitative 

predictors. We also plotted density histograms (Appendix 2) showing the distribution 

of each variable for the presence and absence data of each species to determine if the 

presence points could be statistically separated from the absence points.  

 For each target species, final models included predictors which satisfied three 

criteria: (i) contributed to the reduction of the Akaike’s Information Criterion value 

(AIC; Akaike, 1974), (ii) significant at the 0.05 confidence measured with the chi–

square test of deviance reduction, and (iii) had to explain at least 1% of the deviance. 

For variable selection criteria, AIC is normally used among published SDM studies and 

it’s a measure of the likelihood between the fitted values of the model and the 

observed values, penalized by the number of parameters in the model (Planque et al., 

2011). AIC is based on the principle of parsimony, which helps identifying the model 

that accounts for the most variation with the fewest variables, and was computed as a 

measure of the “goodness–of–fit” to determinate variable inclusion or exclusion. 

However, AIC tends to select models with too many parameters when sample sizes are 

large (Boyce et al., 2002). Increasing the complexity of a model by including additional 

terms will increase the accuracy of the regression for the training data but will also 

tend to decrease the accuracy when it is used for prediction (Venables & Dichmont, 

2004). Furthermore, P–values are considered insufficient (Burnham & Anderson, 

2001). Therefore, we decided to adopt Guisan & Hofer (2003) approach by excluding 

predictors with less than 1 % of deviance reduction. We also followed Maxwell et al. 

(2009) approach by not including possible interactions between the variables as they 

were considered to have limited biological meaning. After having selected a final 
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model, the fitted values were plotted against each selected term in order to 

characterize the shape of the influence of the predictor on the probability of presence. 

Finally, we mapped the fitted probabilities of occurrence for each species given by the 

respective final GLM, using the Marine Geospatial Ecology Toolbox (MGET; Roberts et 

al., 2010) which integrates ArcGIS with R program language (R Development Core 

Team, 2012). The GLM tool within the MGET produces a predictive map of species 

distribution based on the model and input raster layers. Since potential species 

distributions maps were derived from the model logistic output probabilities of 

presence, a threshold for considering the species presence had to be adopted (see 

below). 

 

Maximum entropy model MaxEnt  

 Presence–only models for each investigated species were developed using 

MaxEnt software (V. 3.3.3k), downloaded from the MaxEnt software for species 

habitat modelling web page (www.cs.princeton.edu/~schapire/maxent). This algorithm 

developed by Phillips et al. (2006), is based on the principles of maximum entropy, 

whereby a target probability distribution is estimated by finding the probability 

distribution of maximum entropy, i.e., that is most spread out or closest to uniform, 

subject to a set of constraints that represent incomplete information about the target 

distribution. A recent description provided by Elith et al. (2011) stated that MaxEnt 

minimizes the relative entropy between two probability densities (i.e. one estimated 

from the presence data and one, from the landscape) defined in covariate space. This 

technique focuses on fitting a probability distribution of species presence in a set of 

commonly georeferenced gridded layers or environmental variables, and produce 

predictions between 0 and 1, representing logistic probabilities of species occurrence 

(Phillips et al., 2004; 2006). Maxent has been used to study the distribution of both 

terrestrial (Elith et al., 2006; Peterson et al., 2007) and marine species (Lefkaditou et 

al., 2008; Ready et al., 2010; Hermosilla et al., 2011; Pittman & Brown, 2011, Jones et 

al., 2012). 

 Although MaxEnt is a presence–only algorithm, for the background or absence 

data we adopted the Elith & Leathwick (2007) approach designated by ‘target–group 

background’, i.e. localities where other species in the group of interest have been 
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collected, but not the particular species being modeled. Using observed absences 

instead of randomly selected pseudo–absences (Philips et al., 2006) was found to 

improve significantly model performance (Phillips & Dudík, 2008, Mateo et al., 2010). 

Default settings for features and regularization were used. Data were modeled using 

the SWD (samples–with–data) format in MaxEnt, i.e. the environmental variables data 

is presented in spreadsheet–like summaries at both presence and absence 

(background) sites (Elith et al., 2011). The maximum number of iterations that allow 

the algorithm to get close to convergence was set to 500. The convergence threshold 

and regularization multiplier were all left at the default value of 0.0001 and 1 

respectively. The relative predictor importance to the model was investigated based 

on MaxEnt output and the fitted response curve plots of the three most important 

predictors to the target–species distributions. Since there’s no independent data to 

test models predictions, we used 5 fold cross–validation to get estimates of 

uncertainty for the response curves. Similar to GLM, the potential species distributions 

maps were derived from the model output probabilities of presence and a threshold 

for considering the species presence had to be adopted (see below). 

 

Model performance evaluation 

 The evaluation of the models was conducted in two parts and focused on the 

predictive performance at sites. First, the ability of the model to discriminate between 

presence and absence states was determined by using the Area Under the Curve (AUC) 

of the Receiver Operating Characteristics (ROC) plot test statistics. AUC has been 

extensively used in SDM studies. An ROC curve compares the proportion of true 

positive predictions (sensitivity) and the proportion of false positive predictions (i.e. 1–

specificity) obtained from the model across a range of thresholds or cutoff points. AUC 

ranges from 0 to 1, where a score of 1 indicates perfect discrimination and a score of 

0.5 implies predictive discrimination no better than a random guess (Elith et al., 2006). 

We adopted Hosmer and Lemeshow (2000) interpretation presented in Pittman & 

Brown (2011), whereby an AUC value of 0.7–0.8 is considered an ‘acceptable’ 

prediction, 0.8–0.9 is ‘excellent’ and >0.9 is ‘outstanding’.  

 However, the sole use of AUC for measuring predictive performance reveals 

some concern (Austin, 2007; Lobo et al., 2008). Therefore, in the second part of the 
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evaluation process we used Kappa (Cohen, 1960) statistics, which is a chance–

corrected measure of the agreement between observed and predicted values. Fielding 

& Bell (1997) adapted the classification of Landis & Koch (1977) considered in medical 

applications and interpreted Kappa values of 0.0–0.4 indicating slight to fair model 

performance, values of 0.4–0.6 moderate, 0.6–0.8 substantial and 0.8–1.0 almost 

perfect. K value estimation for GLM and MaxEnt models was performed using the 

“SDMTools” package in R software (Core Development Team, 2012). Kappa requires a 

threshold to be applied to the predictions in order to dichotomize the continuous 

probability output from the models into a binary result (0 or 1), whereby cell values 

with a probability higher than the selected cutoff value are classified as presence (1), 

and lower probabilities as absence (0).  

 For the threshold determination, we decided to use the ROC procedure to 

identify an optimum probability threshold by reading the point on the curve at which 

the sum of sensitivity plus specificity is maximized. Liu et al. (2005) found this 

approach to be relatively good, in which the predictive success of the models is 

maximized. Thresholds selected in GLM were estimated by the maximization of the 

Youden index (J, see Perkins & Schisterman, 2006), selected by default within the 

MGEToolbox, and in MaxEnt models we applied the maximal training sensitivity plus 

specificity threshold rule. Providing a similar threshold rule in the two modelling 

techniques will allow direct comparisons between models performances.  

 

RESULTS 

Model fit and explanatory variable contribution 

 The forward stepwise variable selection performed in GLM reduced our 

environmental predictors set to the following 5 variables: depth, slope, sediment type, 

sea bottom oxygen saturation and salinity. Although the methods for selecting 

significant explanatory variables vary between the two modelling approaches used, 

our results showed that similar explanatory variable were significant for P. phycis, P. 

americanus and P. kuhlii GLM and MaxEnt models (Table II, III). The most important 

explanatory variables for P. Phycis were depth, slope and oxygen saturation while for 

P. americanus were depth, slope and sediment type. For P. Kuhlii the most important 

explanatory variables were depth, sediment type and slope. For H. dactylopterus, the 
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two modelling techniques selected slightly different significant explanatory variables. 

Depth and slope were significant for both modelling techniques but salinity was 

significant in the GLM and oxygen saturation when using MaxEnt modelling technique. 

 The total deviance values for all GLMs varied from 19.5% for P. americanus to 

39.6% for P. phycis. Pontinus kuhlii and H. dactylopterus deviance explained was 35.2% 

and 17.4%, respectively. The explained deviance of the GLM fitted to each species was 

consistent with those typically fitted for standardization of catch data (Su et al., 2008) 

and indicated that species distributions were somehow associated with the 

environmental variables tested in this study. We found that second order polynomial 

functions gave a better description of environmental associations than linear terms. 

 For all four species depth was found to be the single most important 

explanatory variable with relative contributions ranging from 82.1% to 94.9% of the 

explained deviance for GLMs (Table II) and 79.4% to 94.1% of relative contributions 

estimated by MaxEnt (Table III), in both case for P. americanus and P. phycis, 

respectively. Slope was, in general, the second most important variable explaining the 

distribution of fish ranging from 2.5% to 13.1% in the GLMs and 2.4% to 5.9 in the 

MaxEnt. Sediment type and oxygen saturation explanatory power ranged from 2.5% to 

8.2% in the GLMs and 1.7% to 6.6% in the MaxEnt.  

 

Tabel II. The final GLM for each fish species investigated, AIC score, contribution of 
each significant  variable to the percentage of total deviance explained and prevalence 
(i.e. proportion of sites at which the species were present). 2 alongside the variable 
indicate the use of second–order polynomial. Osat=Oxygen saturation, Sedt=sediment 
type. 

Species Fitted parameters AIC % of total deviance Prevalence 
(%) 

H. dactylopterus Depth2 + Slope2 + Salin 8063 27.4 (82.8 + 13.1 + 4.4) 43 
P. phycis Depth2 + Slope2 + Osat2 4221 39.6 (94.9 + 2.5 + 2.5) 15 
P. americanus Depth2 + Slope + Sedt 2006 19.5 (82.1 + 2.7 + 8.2) 4 
P. kuhlii Depth2 + Sedt + Slope 3666 35.2 (91.5 + 5.1 + 3.4) 12 
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Tabel III. Relative contribution of the environmental variables estimated by 5 fold 
cross–validation MaxEnt model for the four demersal fish species investigated.  

Species 
Variable importance (%) 

Depth O2 Sat. Salinity Slope Eastness Northness Sediment type 

H. dactylopterus  89.1 2.7 0.4 5.9 0.2 1.1 0.6 
P. phycis 94.1 1.7 0.9 2.4 0.1 0.2 0.5 
P. americanus 79.4 4.1 0.7 7.1 1.6 0.5 6.6 
P. kuhlii 91.1 1.2 0.1 3 0.4 0.3 3.2 

 

The patens observed for the response curves of environmental predictors were 

similar despite the modelling technique used (Figure 3). This is an important result 

leading to an increased degree of consistency and confidence in the models 

developed. Additional insights to the underlying ecology of the studied species can be 

drawn from the fitted response curves. Worth to mention that fitted probabilities of 

occurrence do not describe the physiological limits of the species, but can be seen as 

graphical descriptions of how the environmental variables included in the models 

correlate with the empirical distribution (Chatfield et al., 2010). Nevertheless, the 

following analyses highlight some broad patterns of the modelled species distribution.  

Our models showed a wider bathymetric distribution for H. dactylopterus, 

ranging from 84 to 1000 m depth, with increasing probabilities of occurrence from 

shallow than 500 m and decreasing for greater depths. In contrast, P. phycis showed a 

narrower bathymetric distribution, with decreasing probabilities of occurrence from 30 

to 500 m depth. Regarding slope, all four species presented higher probabilities of 

occurrence in flat areas or steep slopes, but with P. americanus showing a decrease in 

suitable habitat has the slope increased. Sediment type was particularly important for 

P. americanus and P. kuhlii, where both showed a greater association with sandy mud 

habitats, while P. americanus and P. kuhlii showed stronger associations with rock and 

sandy bottoms, respectively. Oxygen saturation was the third most important 

predictor for P. phycis and H. dactylopterus MaxEnt model, which illustrated similar 

response curves but with increased probabilities of occurrence on locations with 

middle oxygen saturation values. Salinity was important for H. dactylopterus 

distribution, where this species is likely to be found in sites close to 35 ‰. The other 

variables tested in this study showed no clear response or association with the target–

species distributions. 
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Helicolenus dactylopterus (Blackbelly rosefish)  

  

 

Phycis phycis (Forkbeard) 

 
 

Polyprion americanus (Wreckfish) 
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Pontinus kuhlii (Offshore rockfish) 

 
 

Figure 3. Response curves for MaxEnt and GLM analysis relating target species fitted 
probabilities of occurrence to the three most important environmental predictors. 
GLM fitted probabilities were plotted by modelling the original sample data (black 
circles and lines) with the final model along with estimated standard error (grey). 
MaxEnt generated response curve plots represent the mean response of 5–fold cross 
validation replicates (red) and the mean +/– one standard deviation (blue) for the 
sediment type variable. Sediment type classes were: 1, mud; 2, rock; 3, mixed 
sediments; 4, sand; 5, muddy sand; 6, coarse sediment; and 7, sandy mud. 
 

Comparison of GLM and MaxEnt model performances 

 Our results indicate that the models developed here can be used to predict the 

likely distributions of the investigated species. According to Hosmer & Lemeshow 

(2000) AUC interpretation, all of the 8 models developed here (two for each of the four 

species) had at least ‘acceptable’ discriminatory ability (AUC>0.7) and 2 were 

‘outstanding’ (AUC>0.9). GLM showed slightly higher AUC scores than MaxEnt for all of 

the four species. P. phycis and P. kuhlii GLMs provided ‘outstanding’ predictions 

(AUC>0.9) and the remaining two species ‘excellent’ (AUC=0.8–0.9). MaxEnt models 

provided ‘excellent’ predictions for three species, and ‘acceptable’ predictions 

(AUC=0.7–0.8) for H. dactylopterus. Threshold probability values determined for each 

model technique are not directly comparable but showed some agreement between 3 
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of the four modelled species, with values ranging from 0.032 to 0.425 in GLM and 

0.298 to 0.431 in MaxEnt (Table IV).  

 Modelling performances evaluated by Kappa analysis showed similar results 

between the two modelling techniques. However the highest performing model 

measured by AUC did not have the highest Kappa score. Kappa scores ranged from 

0.064 to 0.486, with the highest score attributed to GLM for three of the four 

investigated species. Following Kappa interpretation offered by Landis & Koch (1977), 

two species presented moderate (K=0.4–0.6) model performance while the remaining 

two species provided slight to fair (K=0.0–0.4) model performance. Kappa estimates 

showed H. dactylopterus GLM and P. phycis MaxEnt models to be the most accurate, 

with scores of 0.486 and 0.464, respectively (Table IV). In contrast, the worst accuracy 

performance was obtained for P. americanus GLM and MaxEnt models with K values of 

0.101 and 0.064, respectively. 

GLM also presented higher rates of true positive predictions (sensitivity) for all 

species, ranging from 86% to 93% while in MaxEnt models varied from 65% to 83% 

(Table IV). True negatives or absence predictions (specificity) rates were not so clear in 

distinguishing the best modelling approach considered here. MaxEnt specificity rates 

ranged from 57% to 87% presenting the highest values in two species and the lowest 

for one of the four species, while GLM specificity rates varied from 63% to 79% (Table 

IV). P. phycis and P. americanus GLMs presented the highest sensitivity rates, with 93.2 

and 91.2%, respectively, while P. phycis MaxEnt and P. kuhlii GLM and MaxEnt showed 

the highest specificity rate, with 87.4 and 79.1%, respectively (Table IV). 

 

Table IV Summary of model predictive performances for each investigated species 
measured using the Area Under the Curve (AUC) of the Receiver Operating 
Characteristics (ROC), Cohen’s Kappa statistics (K), sensitivity (% correctly predicted 
presences) and specificity (% correct predicted absences) calculated from the training 
data. Presences and absences for assessing Kappa scores, sensitivity and specificity 
rates were determined using the selected optimum threshold. 

Species Model AUC Threshold K Sensitivity(%) Specificity(%) 

H. dactylopterus GLM 0.822 0.425 0.486 86.7 63.9 
MaxEnt 0.707 0.431 0.453 74.3 71.6 

P. phycis GLM 0.909 0.138 0.457 93.2 75.9 
MaxEnt 0.856 0.397 0.464 65.7 87.4 

P. americanus GLM 0.842 0.032 0.101 91.2 64.4 
MaxEnt 0.823 0.304 0.064 83.7 57.2 
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P. kuhlii GLM 0.905 0.165 0.396 88.0 79.1 
MaxEnt 0.870 0.298 0.336 76.0 79.1 

 

 

Species habitat suitability maps 

 The final habitat predictive models for all species that resulted from GLMs or 

MaxEnt were extremely similar (Figure 4). After applying the threshold value (Table IV) 

to the predicted probability of occurrence for each species, we found that all of the 

four modelled species occur on the islands slopes and offshore banks in the Azores 

EEZ, with different amplitudes of predicted suitable habitat. H. dactylopterus showed a 

wider distribution along the banks and on less steep slopes around the islands (Figure 

4a), while P. phycis and P. kuhlii habitat suitability map revealed a more restricted 

distribution compared to the other species modelled (Figure 4b and d, respectively). P. 

americanus distribution map presented a wider suitable habitat areas on the offshore 

banks and narrower near the islands slopes (Figure 4c). 

 

 

 (a) Helicolenus dactylopterus 

GLM 
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(b) Phycis phycis 

MaxEnt 

GLM 
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(c) Polyprion americanus 

MaxEnt 

GLM 
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MaxEnt 

(d) Pontinus kuhlii 

GLM 
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Figure 4. Predicted distributions defined by the GLMs and MaxEnt models for (a) H. 
dactylopterus, (b) P. phycis, (c) P. americanus and (d) P. kuhlii. Predicted presence 
areas (in red) were estimated using the optimum thresholds (see Table IV). 
 

 

DISCUSSION 

 Our study explored the application of MaxEnt and GLMs to high resolution 

seafloor topographic and biogeochemical data to accurately predict the potential 

distributions of four economically important demersal fish species in the Azores EEZ. In 

general, we found species predicted spatial distributions restricted to habitats over 

seamounts, offshore banks and islands slopes, but with different suitable habitat 

ranges among the target species. Our models showed relative proportions of potential 

suitable habitat to the entire Azores EEZ of 1,2% for blackbelly rosefish, 0,5% for 

forkbeard and wreckfish and 0.3% for offshore rockfish, which comprises total areas 

ranging approximately from 11.187 to 3.070 Km2.  

The models developed here contained the significant predictors depth, sea 

bottom slope, sediment type, oxygen saturation and salinity. Depth was found to be 

the most important predictor for all species because it was the most detailed layer 

MaxEnt 
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used in this study. In contrast, sea bottom oxygen saturation and salinity layers tested 

in our study were derived from global data sets and perhaps do not reflect the true 

ranges of these variables in the study area. The effect of sea bottom salinity in defining 

demersal fish habitat is not so clear with studies demonstrating to be determinant 

(Maravelias et al., 2007a) while others showed that it did not appeared to explain fish 

spatial distribution (Lauria et al., 2011). Beside the marginal effect in species 

occurrences caused by the later predictors, the models emphasized the importance of 

depth and bottom slope in determining the target species distributions. Many other 

SDM studies have demonstrated the influence of these variables on demersal fish 

assemblage structure (García–Charton & Pérez–Ruzafa, 2001; Menezes, 2003; 2006; 

Moore et al., 2009), occurrence (Maravelias et al., 2003; Crec’hriou et al., 2008; 

MaxWell et al., 2009; Chatfield et al., 2010; Young et al., 2010; Ready et al., 2011) and 

relative abundance (Morris & Ball, 2006, Sundermeyer et al., 2006; Maravelias et al., 

2007b; 2007c; Katsanevakis & Maravelias, 2009; Lauria et al., 2011). 

 Our GLM analysis indicated that 19.5 to 39.6% of the variation in the target 

species distributions could be explained by the environmental variables included in the 

final models, confirming their importance in dictating species distributions. The 

remaining 80.5 to 60.4% of unexplained deviance for the four species can be attributed 

to unmeasured environmental variables found important in influencing fish 

distributions, such as temperature (Perry et al., 2005; Maravelias et al., 2007b) and 

exposure to currents or wave action (Fulton and Bellwood, 2004). Other causes of 

unexplained deviance may be attributed to unaccounted for ecological characteristics, 

life history, and behavioural traits such as diet, size, mobility, predation, and 

competition (Guisan & Zimmermann, 2000; Franklin 2009; Moore et al, 2009; Chatfield 

et al., 2010; Young et al., 2010).  

 Previous researches have addressed the problem of comparing distinct 

modelling techniques, namely with uncertainties associated with the data–type used, 

model parameterization processes and underlined assumptions behind each modelling 

mechanism (Jones et al., 2012). While direct comparisons can be questioned, 

establishing robust methods to understand and define marine species distributions is 

crucial to effective fisheries management and conservation planning (Moore et al., 

2009). All models developed here had good discriminatory abilities (AUC >0.5).  
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The lowest AUC score was reported for H. dactylopterus MaxEnt model which 

can be attributed to the fact that this species presented a wider spatial distribution 

compared to the other species modelled. A wider niche corresponds generally with a 

lower AUC values (Phillips et al., 2004). In contrast, only three of the four modelled 

species provided ‘moderate’ agreement between observed and predicted values 

assessed by Kappa statistics. P. americanus MaxEnt and GLM models had consistently 

low Kappa scores compared to the other species investigated, resulting in a low 

specificity rate, although with a relatively high sensitivity rate. We believe that the low 

number of presence observations (prevalence) in the training data set for this species 

influenced model performance.  

The effect of prevalence on performance measures has been well documented 

(e.g. Fielding & Bell 1997; Manel et al., 2001). AUC values are independent of the 

prevalence of the organism being measured and our results are in accordance with this 

statement, with examples of high AUC scores calculated for both high and low 

prevalence species. However, the effect of prevalence on Kappa is not so clear. Manel 

et al. (2001) in their work found that the effect of prevalence appear to be negligible, 

but other study in a different biological field showed some concerns that kappa is 

affected by low prevalence (Ridenour & Heath 1999).  

Furthermore, the optimum threshold estimated for the production of the 

binary fish presence absence distribution maps differed between modelling techniques 

for three of the four species. Liu et al. (2005) suggested that taking the prevalence of 

model building data as a threshold helps in obtain a good presence/absence 

prediction. The optimum threshold probability estimated for the GLMs for each 

species were very close to the prevalence which they had on the training data set, and 

consequently these models revealed higher sensitivity rates. In contrast, the estimated 

specificity rates were not so clear in distinguishing the most accurate technique, with 

MaxEnt models showing the highest and the lowest rates for P. phycis and P. 

americanus. Models performances can be degraded due to the similarity of negative 

locations to positive locations, resulting in too many false presences and/or absences. 

There are a variety of ecological processes, operating over a range of timescales that 

can give rise to data of this type (see Fielding & Bell, 1997). Overall, the predictive 

ability of both methods was very similar across all but the lowest–prevalence species.  
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 The assessment provided by this work is hampered by the lack of an 

appropriate spatial autocorrelation analysis. Nevertheless, our use of different 

modelling techniques and performance measures combined with potential distribution 

maps, provided insights to species–environment relationships and a better 

understanding of demersal fish species spatial ecology in the Azores region. Our range 

of predictions for these four fish species should be subject to future testing by the 

collection of new data, especially in predicted areas that were previously unsampled. 

Further analysis in the future will include abundance data in order to assess fish 

preferred habitat and to explore temporal variations in habitat selection. Thus, more 

robust models should incorporate fishing effort data in order to quantify how the 

predicted potential occurrence areas for demersal fish species are affected by fishing 

pressure and help to define closure areas for stocks recovering.  
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APPENDIX 1. Examples of previous research that have investigated the influence that physical 

and biological variables have on patterns of fish distribution and relative abundance. 

Environmental variable Study 

Water depth Maravelias et al., 2003;Morris & Ball, 

2006; Maravelias et al., 2007a,b and c; 

Vaz et al., 2008; Maxwell et al., 2009; 

Moore et al., 2009; Chatfield et al., 2010; 

Ready et al., 2010; Young et al., 2010; 

Lauria et al., 2011; Lenoir et al., 2011 

Slope Anderson et al., 2009; Moore et al., 2009; 

Young et al., 2010 

Sediment and substrate type Morris & Ball, 2006; Sundermeyer et al., 

2006; Vaz et al., 2008; Maxwell et al., 

2009; Chatfield et al., 2010; Lauria et al., 

2011 

Bottom Salinity Maravelias et al., 2007a; Lauria et al., 

2011 

Northness, eastness and parameters 

derived from aspect 

Pittman & Brown, 2011; Monk et al 2012 
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APPENDIX 2. Density histograms of Helicolenus dactylopterus presence (dashed line) 

and absence (solid line) points along with the seven candidate predictor variables. 

Sediment type classes were: 1, mud; 2, rock; 3, mixed sediments; 4, sand; 5, muddy 

sand; 6, coarse sediment; and 7, sandy mud. 
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Density histograms of Phycis phycis presence (dashed line) and absence (solid line) 

points along with the seven candidate predictor variables. Sediment type classes were: 

1, mud; 2, rock; 3, mixed sediments; 4, sand; 5, muddy sand; 6, coarse sediment; and 

7, sandy mud. 
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Density histograms of Polyprion americanus presence (dashed line) and absence (solid 

line) points along with the seven candidate predictor variables. Sediment type classes 

were: 1, mud; 2, rock; 3, mixed sediments; 4, sand; 5, muddy sand; 6, coarse sediment; 

and 7, sandy mud. 
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Density histograms of Pontinus kuhlii presence (dashed line) and absence (solid line) 

points along with the seven candidate predictor variables. Sediment type classes were: 

1, mud; 2, rock; 3, mixed sediments; 4, sand; 5, muddy sand; 6, coarse sediment; and 

7, sandy mud. 
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