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Abstract: The paraneoplastic syndrome referred in the literature as non-islet-cell tumor hypoglycemia
(NICTH) and extra-pancreatic tumor hypoglycemia (EPTH) was first reported almost a century
ago, and the role of cancer-secreted IGF-II in causing this blood glucose-lowering condition has
been widely established. The landscape emerging in the last few decades, based on molecular and
cellular findings, supports a broader role for IGF-II in cancer biology beyond its involvement in
the paraneoplastic syndrome. In particular, a few key findings are constantly observed during
tumorigenesis, (a) a relative and absolute increase in fetal insulin receptor isoform (IRA) content, with
(b) an increase in IGF-II high-molecular weight cancer-variants (big-IGF-II), and (c) a stage-progressive
increase in the IGF-II autocrine signal in the cancer cell, mostly during the transition from benign to
malignant growth. An increasing and still under-exploited combinatorial pattern of the IGF-II signal
in cancer is shaping up in the literature with respect to its transducing receptorial system and effector
intracellular network. Interestingly, while surgical and clinical reports have traditionally restricted
IGF-II secretion to a small number of solid malignancies displaying paraneoplastic hypoglycemia, a
retrospective literature analysis, along with publicly available expression data from patient-derived
cancer cell lines conveyed in the present perspective, clearly suggests that IGF-II expression in cancer
is a much more common event, especially in overt malignancy. These findings strengthen the view
that (1) IGF-II expression/secretion in solid tumor-derived cancer cell lines and tissues is a broader
and more common event compared to the reported IGF-II association to paraneoplastic hypoglycemia,
and (2) IGF-II associates to the commonly observed autocrine loops in cancer cells while IGF-I cancer-
promoting effects may be linked to its paracrine effects in the tumor microenvironment. Based on
these evidence-centered considerations, making the autocrine IGF-II loop a hallmark for malignant
cancer growth, we here propose the functional name of IGF-II secreting tumors (IGF-IIsT) to overcome
the view that IGF-II secretion and pro-tumorigenic actions affect only a clinical sub-group of rare
tumors with associated hypoglycemic symptoms. The proposed scenario provides an updated logical
frame towards biologically sound therapeutic strategies and personalized therapeutic interventions
for currently unaccounted IGF-II-producing cancers.

Keywords: NICTH; EPTH; NSILA; IGF1-IGF2 (gene); IGF-I-IGF-II (protein); IRA; IGF-IR; HRA/B;
IGF2oma; IGF2ST; SpI2-6/IGF-IIR

1. Introduction

The earliest reports of the paraneoplastic syndrome associating what has been later
referred as non-suppressible insulin-like activity (NSILA) [1] to hypoglycemia in cancer
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goes back to reports from W.H. Nadler and J.A. Wolfer in 1929 [2] and Karl W. Doege [3]
and R.P. Potter in 1930 [4]. In possible oversight of the earlier report, the term of Doege–
Potter Syndrome was adopted to describe these surgically treated intrathoracic tumors
associated with hypoglycemia. Later reports confirmed that paraneoplastic hypoglycemia
could indeed be found in cancers from all other (extra-thoracic) body districts and not
limited to those of fibrous (connective/soft tissue) origin (namely sarcomas), as already
suggested by the first under-looked report in 1929, but almost equally associated with
epithelial/parenchymal tissue-derived cancers (carcinomas) [5]. The first findings linking
IGF-II to cancer paraneoplastic hypoglycemia were related in the work of Doughaday
et al. [6,7]. The added value of his work is linked to the observation that cancer-secreted
IGF-II differs from physiologically produced IGF-II and that such difference confers cancer-
secreted (“Big”)IGF-II key biologic advantages underlying its now widely proven autocrine
loop effects. Specifically, cancer-secreted IGF-II corresponds to the IGF-II pro-hormone
retaining its E domain, allowing its O-Glycosylation [6,8,9]. This processing defect increases
the life-span and bioavailability of the IGF-II variants, both in the tumor microenvironment
and in the systemic circulation, by reducing binding to IGFBP-3 and the IGF-II scavenger
protein SpI2-6 (deceivingly known as the IGF-II “receptor” but actually causing IGF-II
sequestration and degradation) [10–12]. The timeline of key discoveries connecting IGF-II
to paraneoplastic hypoglycemia and proving its unique biological features are conveyed in
Figure 1.
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Figure 1. Historical timeline for key discoveries conferring a central role to IGF-II in the Insulin/IGF
receptorial system in cancer. References within figure are as follows: Nadler and Wolfer, 1929 [2];
Doege 1930 [3]; Potter 1930 [4]; Daughaday et al., 1981 [13]; Daughaday 1989 [6]; Rogler et al.,
1994; [14]; Christifori et al., 1994 [15]; Frasca et al., 1999 [16]; Ritter et al., 2002 [17]; Haley et al.,
2012 [18]; Dynkevich et al., 2013 [5]; Salia et al., 2023 [19].

2. Cancer-Secreted IGF-II and Paraneoplastic Hypoglycemia: Is There Sufficient
Evidence Supporting IGF-II as the Key IGF Ligand Involved in Solid Malignancy?

Despite the finding of IGF-II expression and secretion in cancer having long being
established through the literature (Table 1), some authors have been supporting a compara-
ble/interchangeable cancer-driving role for IGF-I, which mediates growth hormone effects
during post-natal development in all vertebrates. This view, which implies a biological
equivalence for IGF-I and IGF-II in cancer, cannot be supported any longer based on a
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number of available lines of evidence further discussed herein. Among these, we are
adding the literature and expression correlation analysis assigning cancer-secreted IGF-II a
distinctive hallmark compared to IGF-I. This is summarized in Figure 1 and Table 1 and
discussed herein.

Table 1. Literature analyses of cancer case reports involving IGF-I and IGF-II in relation to cancer-
associated hypoglycemia.

Cancer
Associated

Hypoglycemia

Reports of Secreted
Autocrine/Paracrine

Growth Factor

Reporting
Elevated Plasma
Growth Factor

Reports of Elevated
IGF Gene

Transcripts Level in
Underlying Tumor

Cancer Case
Report (1972)

Hypoglycemia
Case Reports

IGF-I IGF-II IGF-I IGF-II IGF-I IGF-II IGF-1 IGF-2 IGF-I IGF-II

Cancer
associated

hypoglycemia

Total cancer
associated

hypoglycemia
cases = 1949

18 171 66 24 1 2 1690 1690

Protein
expressing/
Secreted IGF

18 171 1644 * 3830 301 201 312 136 136 1657

Reporting
elevated

plasma IGF
66 24 322 201 893 892 172 16 22 64

Cancer
(case report) 1656 1656 980 1644 22 48 5 2 623,826 623,826

7616

* Mostly associated to stromal component secretion.

Specifically, through the present retrospective analysis of the reported cases of cancer-
associated hypoglycemia (Figure 1 and Table 1), we found that secreted-IGF-II constitutes
the absolute majority (95%, 171 out of 180) of the associated IGF. We also found IGF-II
to be linked to a wide number of solid cancers in patients with these paraneoplastic
symptoms, independently of the cancer embryological origin (spanning from sarcomas and
carcinomas). On the other hand, we found only 18 reported cases of IGF-I-secreting cancers,
out of which there were nine cases where IGF-II was not measured, three cases relating
to patients diagnosed with Acromegaly and IGF-I levels normalized after treatment, two
cases associated with patients diagnosed with childhood Leukemia but with initial levels
of IGF-I and IGF-II that were below normal range and which both further decreased after
treatment and remission, two cases describing patients with a benign pituitary tumor, and
two cases reporting patients diagnosed with Medulloblastoma and with IGF-I levels that
normalized after surgery with no significant changes in IGF-II levels.

Overall, the number of cancers with hypoglycemic symptoms secreting IGF-II and
associated with malignancies exceed the number and types of tumors (mainly pituitary in
origin) linked to IGF-I expression/secretion. This is in apparent conflict with the epidemi-
ology results displaying an association between IGF-I blood levels and solid cancer risk.

In this context, it is useful to trace back the lines of evidence which have led us to
the view linking IGF-I and IGF-II to cancer in order to highlight eventual incongruences.
A literature search again provides a quantity of actionable evidence to this regard. In
particular, given the physiological roles of these growth factors on developmental growth
such as those summarized based on genetic knock-down work in rodents [20–24], we
specifically minimized the inclusion of studies on IGFs genetics and physiology and focused
our literature review on the work on IGFs in solid malignancies at the cellular, molecular,
and clinical levels.

This parallel search shows that only a minor number of published works have looked
at both IGF-I and IGF-II in the same studied cancer model (cellular, molecular, clinical,
or epidemiologic). On the other hand, a larger number of highly referenced studies (e.g.,
trying to reconstitute signaling events) in vitro have made extensive use of exogenous
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stimulation of IGF-IR-expressing cellular models, often using supraphysiologic amounts of
IGF-I (e.g., 100 nM and higher) without properly integrating or reconstituting the in vivo
ligands and receptors landscape in their experimental design.

Overall, such a reductionistic in vitro approach, if it has, on one hand, advanced our
understanding on the mechanistic aspects of this ligands/receptor system, has, on the other
hand, been misleading in that the following aspects:

(a) It does not take in consideration the actual in vivo IGFs ligands and receptors co-
expression context, which, taken together, supports a specific and independent role
for cancer-secreted IGF-II and its autocrine loops;

(b) It does not succeed in explaining the failure of the individual pharmacological block-
ers of IGF-IR in clinical trials towards meeting the invoked therapeutic advantages
suggested by the in vitro and epidemiologic studies;

(c) It has kept excluding alternative hypotheses and proper controls in experimental
design which have been suggested by additional evidence available since the late
nineties and proving the existence of an IGF-II- Insulin fetal receptor isoform (IRA)
axis in mammalian fetal and cancer cells [16], as well as the expression and biological
impact of IGF-IR/IR isoform-specific hybrids [25] in the studied cancer models.

Arguably, even relatively recent studies published on reputable journals [26] keep
restricting the study focus on the IGF-I/IGF-IR axis as a standalone system in cancer without
including parallel analysis of the IGF-II/IRA ligand/RTK system in their experimental
design [27], reiterating the persistence of an unsupported bias in the interpretation of the
available experimental and observational data. Our retroactive analysis of the published
literature in regard to the IGFs’ involvement in cancer cases displaying NSILA-dependent
hypoglycemia is conveyed in Table 1 and graphically summarized in Figure 1 above.

Table 1: Based on the available literature out of all cases of cancer-associated hy-
poglycemia (1949 cases since 1929), 171 cases (10.3%) were reported after the available
immunometric test had been developed and could be clearly associated with high IGF-II
secretion levels versus 38 cases also reporting increased levels of IGF-I (1.94%) along with
IGF-II. IGF-II association with such paraneoplastic condition was underestimated due to the
fact that the IGF-II testing had been made available only in the early 1970′s. * Compatible
with cancer stromal component secretion as source of increased levels.

3. IGF-II Over-Expression Is a Common Event in Cancer Cell-Lines

While IGF2 expression in somatic cells is regulated via parental imprinting, its regula-
tion in cancer cells is determined by a combination of both imprinting and transcriptional
regulation mechanisms reviewed elsewhere [[28], ibidem]. Ultimately, independently of
the underlying genetic, translational, and post-translational mechanisms involved, the
phenotypic and functional effects of such increased expression is reflected in the secretion
of high molecular IGF-II pro-hormone variants [9] and its autocrine signal, which has
been associated with both paraneoplastic hypoglycemia and malignancy (summarized in
Figure 2 and Table 1).

Indeed, the idea of IGF-II secretion as a rare associated event in cancer has been
maintained in the scientific literature till present [29], somehow implying that IGF-II-
secreting tumors could be mostly benign in nature and fully surgically treatable. This has
motivated a group of authors to name such tumors as “IGF2omas” recalling the rare and
surgically removable features of the early reports [5]. However, the cumulative evidence
based on expression studies conducted at the histological and cellular level suggests a
different scenario than that proposed by clinical reports of its rarer hypoglycemic-associated
syndrome. In fact, based on the retrospective analysis of the published literature, which
we conveyed herein in Figure 1 and Table 1, it is clear that IGF-II secretion in tumors is a
much more common event than generally implied by IGF studies focusing on mechanistic
and reductionistic experimental design. Interestingly, IGF-II expression by cancer cells
and bioptic tissues from solid malignancies exceeds, by several orders of magnitude, the
number of cancers overtly displaying hypoglycemia. Although there is still not sufficient
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published evidence, increases in hypoxia and CO2 levels with resultant body acidification
in cancer patients may also result as a highly associated event with IGF-II secretion in
patients diagnosed with a solid tumor. The rational for this predicted association is based
on the demonstrated IGF-II expression increase in response to HIF-1 stimuli reported in a
variety of experimental cancer models [30]. To further characterize the expression levels
and patterns of IGF-II in cancer, we turned to the DepMap expression database, a publicly
available tool managed by the Broad Institute [31] (available at https://depmap.org/portal/
accessed on 24 September 2023), and focused on a few key parameters conveyed in Figure 3.
This analysis, relative to a number of well-characterized human-derived cancer cell lines,
has provided the following results:

1. The IGF-II transcript expression in cancer cells exceeds the expression of normal cells
and tissues by a range of 0.1- to 12-fold (Figure 3A–C);

2. The IGF-II transcript (mRNA) expression is not commonly associated with gene
duplication events (Figure 3A);

3. The IGF-II protein expression in human-derived cancer cells exceeds normal cells/tissues
by 0.1- to 5-fold (Figure 3B);

4. IGF-II gene editing and or transcript silencing negatively affects ~60–65% of cancer
cells (Figure 3C).
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Figure 2. Cancer cases in the scientific literature exhibiting hypoglycemia associated with IGFs
secretion. Venn diagram produced with online software available at https://www.meta-chart.com/
venn#/display (accessed on 21 October 2023). (A) IGF-I-related cases. (B) IGF-II-related cases. The data
analysis was the result of a PubMed literature search conveyed in Table 1. Note: the IGF reports in the
Venn diagram followed the advent of IGF-I and IGF-II immunometric testing development (1972).

As for IGF2 expression and its correlation to solid cancer, despite the established
association of IGF2 transcript and ligand (IGF-II) expression in a wider spectrum of solid
tumors (summarized in Table 1), a few studies have specifically looked at the cause–effect
between IGF-II overexpression and malignant switch. Two seminal studies addressing this
point are discussed in the following. The first, authored by Rogler et al. and conducted
in a IGF2 transgenic mice model [14], observed development of a broad spectrum of solid
malignancies (3.25-fold higher than normal control animals), with resulting transgenic
mice bearing an IGF2 transgene construct able to drive 20- to 30-times-higher plasma levels
than control animals. Interestingly, the study shows that in these mice, hypoglycemia
increased proportionally with the increase in the circulating IGF-II levels. In particular, in
animals with up to 20 times the mean levels of circulating IGF-II, the measured glycemic
levels were still in the normal range despite hypoglycemia being more frequent with
aging. On the other hand, all IGF2 transgenic mice displaying more than 30 times the
IGF-II levels compared to non-transgenic control animals did constantly display reduced
blood glucose levels and symptoms of hypoglycemia. This particular finding implies
that increased level of IGF2 transcript expression and consequent IGF-II ligand secretion
might affect a larger number of solid malignancies before setting or even in the absence of
underlying hypoglycemic symptoms. This is also consistent with the retrospective literature

https://depmap.org/portal/
https://www.meta-chart.com/venn#/display
https://www.meta-chart.com/venn#/display
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findings conveyed herein (Table 1 and Figure 1) supporting the idea that IGF2 transcript
or IGF-II protein expression is a broader event in cancer compared to the established but
rarer paraneoplastic hypoglycemic symptoms linked to IGF-II’s non-suppressible insulin-
like activity (NSILA) [1], also referred as non-islet-cell tumor hypoglycemia (NICTH) [8]
and extra-pancreatic tumor hypoglycemia (EPTH) [32]. A feasible explanation for such
discrepancy between actual expression and systemic symptoms occurrence stands on the
levels of circulating/systemic IGF-II required to cause hypoglycemic symptoms (able to
drive blood glucose below 60 mg/dL and trigger the physiologic compensatory glycolytic
response from insulin-counteracting hormones). Indeed, these compensatory mechanisms,
by releasing liver-stored glucose, may hinder the hypoglycemic symptoms, along with the
actual presence of IGF-II secretion by the tumor, for a very long time. The partial display
of hypoglycemic symptoms among patients with IGF-II-secreting tumors reported in the
literature is compliant with the possibility that the tissue concentration of IGF-II required
to sustain autocrine tumorigenic signals may be several orders lower compared to those
needed to trigger generalized hypoglycemia.
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in cancer cell lines. Note the consistent distribution of human cancer cells among those responding
to IGF2 gene block (by either CRISP or RNAi) irrespective of the folds of IGF2 transcript native
over-expression. The source of the data in Figure 3 is conveyed in the Supplemental Material (SM2).

A second seminal study clearly linking (a) endogenous tissue focal expression and
cancer-secretion of IGF-II (b) with the tumor malignant switch was published by Christo-
fori et al. [15] using an invaluable genetic mice model initially developed by Hanahan
et al. [33,34] that recapitulated the stage progression features and requirements of pancre-
atic carcinoma. In particular, this study provides the first direct evidence of IGF-II’s role as
a stage-specific component in the tumor angiogenic switch, the checkpoint at which a grow-
ing tumor acquires the capability to make its own blood vessels and acquire independent
tridimensional growth features as typically observed during malignant transformation.

4. The Role of IGF-II in Cancer Is Not Alternative to IGF-I

Traditionally, IGF-I and IGF-II have been considered almost to be interchangeable
and/or redundant ligands triggering the oncogenic effects of the IGF-IR. Nonetheless,
unlike IGF-II, IGF-I is not commonly found to be over-expressed or secreted by cancer cells
and it has been found to be negligibly associated with NICTH (summarized in Figure 1 and
Table 1). Indeed, there are a plethora of studies involving IGF-I in cancer. The current lines
of evidence supporting its role can be conveyed in (a) epidemiologic studies associating
relatively high levels of circulating IGF-I to increased incidence of prostate, breast, and other
cancers [35–38], and (b) other studies in vitro with human tumor cells implicating IGF-I
in growth, survival, migration, and metastatic behavior upon activation of the expressed
IGF-IR [39–41], as well as resistance to chemotherapeutic and radiation therapies [42].

Physiologically, IGF-I levels in all mammalian species including humans are known to
peak during the pubertal phase and slowly decrease throughout lifetime in response to GH,
which shares a similar age-related trend [43]. This general concentration decreasing pattern
is not different in that group of patients with increased cancer risk, despite such (relative
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increase in) circulating IGF-I amounts being significantly lower compared to the same
subject during pubertal age. In other words, there is no dose–response correspondence
between absolute IGF-I levels in blood and cancer risk given the very low prevalence of
cancer in the pubertal population.

Noteworthy, in the epidemiologic studies associating higher levels of IGF-I to increased
cancer risk, no specific attention has been given to the cellular source or cancer tissue com-
ponent responsible for IGF-I production. Additionally, while epidemiology has suggested
a link between high IGF-I blood levels and increased cancer risk, a cancer-protective role of
low IGF-I dose exposures, such as in IGF-I treated subjects affected by Laron syndrome
(a genetic form of IGF-1 deficiency), has been more difficult to demonstrate given the fact
that these subjects have cancer risk comparable to those exposed to higher IGF-I doses
[reviewed by Werner and Laron [44]]. Interestingly, updated FDA recommendations for
rhIGF-I usage in IGF-I deficiency conditions warn about increased occurrence of neoplasia,
especially when used at higher dosages, including some rare malignancies not typically
observed in children. This is in line with the widely described effects of supra-physiological
levels of IGF-I stimulation reported in vitro [20].

How, therefore, can these epidemiologic studies associating increased IGF-I levels to
increased cancer risk fit with its negligible presence among the paraneoplastic hypoglycemic
cases reported in the literature? A potential explanation can be found in the contextual
and stage-related expression pattern of IGF1 versus IGF2 at the focal tissue level (tumor
microenvironment). In fact, with the sole exception of leukemia, where IGF-I production
and secretion is observed more frequently than IGF-II in cancer cells [45], seminal studies on
the source of IGFs in cancer cells and bioptic tissues obtained from solid cancers have found
IGF-I to be expressed and secreted mostly, if not exclusively, by the stromal component
(fibroblast and other stromal cells) [46,47], with its high-affinity RTK receptor (IGF-IR)
being variably expressed in both stromal and cancer cells [48]. This proves that IGF-I acts
as a paracrine factor in these cancer types and that cancer stroma is a source of IGF-I in
these patients. Indeed, it is feasible that cancer stroma may be a major underscored source
of circulating IGF-I in those patients with parallel increased cancer risk and that such pools
of IGF-I do not correlate with the physiological source of circulating IGF-I, which is mostly
produced in the liver and may not change significantly during malignancies affecting
other organs or body districts. On the other hand, IGF-II has been found to be expressed
and secreted both in cancer cells and in the stromal tissue in the same cancer studies,
therefore establishing both paracrine and autocrine stimuli [47]. However, as for the type of
IGF-II signal provided in this context, it is worth mentioning that the predominant IGF-II
form secreted by cancer cells is its high-molecular weight (big)-IGF-II form which escapes
IGFBP-3 and SpI2-6 (IGF2R) binding [49,50] which can biologically differentiate the IGF-II
paracrine versus autocrine signal.

As a result, the type of broader evidence currently available to support IGF-I’s role in
cancer, suggesting foreseeable advantages in IGF-I targetability compared to the single block
of big-IGF-II in cancer, are highly debatable unless and until this is differently demonstrated
using appropriate experimental design (namely with selective IGF-I and IGF-II ligands
block and using positional biology multi-plex, or better, multi-omic methods to pinpoint
the exact cellular source of protein expression in the cancer tissue context). This concept is
even more actual on the base of the differential effects of these ligands in terms of malignant
switch, as further discussed in the next chapter.

Consistent with the concept of a differential effect of IGFs in cancer, increased IGF-II
bioavailability in the tumor microenvironment is also provided by reduced expression of its
high affinity scavenger receptor SpI2-6 [12], formerly referred as IGF2 receptor, secondary
to its loss of heterozygosity [51–53]. Indeed, SpI2-6/IGF2R tumor suppressor functions
have been widely demonstrated to be linked to its ability to sequestrate and degrade IGF-II
through direct cell internalization [10,54], while this does not apply to IGF-I, which displays
negligible binding to SpI2-6/IGF2R at physiological concentrations [55,56]. On the other
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hand, while locally expressed IGFBPs do bind both IGF-I and IGF-II (7.5 KDa), big-IGF-II
variants can escape such binding and exert biological advantages [50].

In this regard, IGF-I bioavailability in cancer can be further reduced via IGFBP-3
upregulation, which is triggered by (wild-type) TP53 activation induced via DNA damage
and/or hypoxia [57]. Hypoxia also upregulates IGF2 transcription via HIF-1 [58]. This
parallel increase in IGF2 transcription, coupled with defective cancer processing, gener-
ates the known high-molecular IGF-II pro-hormone variants [11], which are refractive
to IGFBP-3 [49,50] (and SpI2-6/IGF2R) binding [50] but not to the IGF-II RTKs (IGF-IR
and IRA) which are efficiently activated [11,50]. This contextual increase in big-IGF-II and
IGFBP-3 in the extracellular microenvironment can ultimately decrease IGF-I bioavailabil-
ity [59,60] and favor the big-IGF-II autocrine tumorigenic signal and effects. This scenario is
likely to play a distinctive role at the transition between benign and malignant growth [15]
when the urge for tridimensional growth in the absence of an established vascular network
in the growing tissue triggers inner mass hypoxia towards favoring an angiogenic switch.
Under these circumstances, based on the above bioavailability scenario, the big-IGF-II
autocrine growth stimuli may prevail over the combined IGFs paracrine stimuli. These
contextual mechanisms are graphically conveyed in Figure 4. Interestingly, EGFR overex-
pression also induces IGFBP-3 in cancer cell lines [61], supporting the idea that EGFR and
the IGF-II autocrine signals might act synergistically in a variety of solid cancers. It is worth
mentioning that such contextual circuitry fits with early-stage tumorigenic phases where
TP53 function is maintained. As for those advanced cancers (more than 50%) with loss of
function of TP53, this condition has been shown to further trigger IGF2 transcription [18]
and further consolidate the ability of a cancer cell to maintain its malignant features. Al-
though the genetic and epigenetic mechanisms underlying IGF2 expression in cancer have
been reviewed elsewhere [[28], ibidem] and are not the subject of the present perspective,
we included this mechanism as an example of the role of TP53 in the regulation of IGFBP-3,
which is directly involved in the high-affinity binding of mature IGF-I and IGF-II but not of
cancer-secreted big-IGF-II.

Other factors have been shown to play a mandatory role in IGF-I and IGF-II biosyn-
thesis, such as GRP94 [[62,63], reviewed in [64]]. The relevance of this chaperone protein
towards sustaining paracrine and autocrine loops is also suggested by its increased expres-
sion in cancer [65,66]. Since GRP94 exerts its maturation-/secretion-promoting activity on
IGFs by physically associating to its pro-hormones [62,63], it will be interesting to clarify
its specific role towards the production/secretion of big-IGF-II variants given their ability
to escape IGFBP proteins’ high-affinity binding. In terms of bioavailability at the microen-
vironmental level, it is reasonable to think that anytime IGF-I levels potentially escape
sequestration/neutralization by extracellular IGFBPs in the cancer microenvironment (e.g.,
by increased local cleavage of IGFBPs) [67], its signal may provide a further advantage
towards cancer cells’ viability and serum independence. Nonetheless, the exact biological
impact of IGF-I towards the acquisition and maintenance of malignant features has not
yet been demonstrated in vivo, unlike IGF-II [15]. Altogether, the published evidence
discussed above further supports differential roles between IGF-I and IGF-II in cancer.
Although it has been shown that the IGF-I signal seems to be provided mostly by the
cancer-surrounding stromal component [46,47], or what we call the cancer microenviron-
ment, it will be important to evaluate the contribution of stromal IGFs in terms of function
and potential synergistic effect with that provided by the big-IGF-II autocrine loop through-
out the tumorigenic process. A feasible scenario of this dynamic landscape and individual
contribution, in tight relationship with the underlying contextual receptorial system, is
provided in Figure 4.
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Figure 4. Role of IGFBP-3 in differential IGFs bioavailability in cancer microenvironment. Under
hypoxic conditions, IGF2 and IGFBP-3 are upregulated at the transcriptional level and consequently
over-expressed at the protein level. In cancer cells, the IGF2 transcript undergoes defective processing,
leading to its high molecular variant (big-IGF-II) which is secreted, along with IGFBP3, in the
cancer microenvironment. The refractory binding of big-IGF-II with IGFBP-3 favors the selective
sequestration of IGF-I and IGF-II secreted by the cancer stromal component [46,68], while big-IGF-II
is able to effectively stimulate autocrine parallel signals via the IGF-IR, the IRA, and the IGF-IR/IR
hybrid variant.

5. The IGF-II Cancer Driving Signal Mediating Receptors: An Unexploited
Combinatorial Landscape

The IGF-I signal in cancer cells relies on the expression of both the IGF-IR and the
IGF1R/IR hybrid. According to published evidence, the IGF-II ligand production/secretion
and autocrine signal, linked to the cancer angiogenic/malignant switch [15], can overcome
the cancer cell dependence on the IGF-I paracrine signal in more advanced stages. In
particular, at this transition checkpoint, the cancer cell acquires the ability to secrete big-
IGF-II and establish its autocrine stimulatory loop mediated via diversified signals that
big-IGF-II exerts via the IGF-IR and the Insulin receptor fetal variant (IRA) [69].

At the cellular level, IGF-I, at the concentrations observed in vivo, is able to acti-
vate both its receptor (IGF-IR) as well as the hybrid receptor made by the combination
of the IGF-IR alpha-beta component with the homologous hetero-dimer of the Insulin
receptor [25,70–73]. In the case of cancer-secreted (autocrine) IGF-II, even at lower tissue
concentrations than those found in the blood of patients with paraneoplastic hypoglycemia,
is able to activate the IGF-IR, the fetal IR isoform (IRA) which is over-expressed in can-
cers [16,48], as well as the IGF-IR/IRA hybrids [25].

Therefore, the old view that the IGF-I receptor (IGF-IR) would exclusively mediate
growth, proliferative, and anti-apoptotic signals from IGF-I and IGF-II while the Insulin
receptor (IR) would mediate metabolic actions in response to insulin is obsolete and does
not reflect the actual biology of IGFs in cancer, despite being perpetuated till recently.
Additionally, even in the presence of a partially redundant number of co-targeted intra-
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cellular molecules, the evidence of distinctive intracellular targeting abilities mediated by
the two receptors (IGF-IR and IRA) upon activation by the same autocrine ligand (IGF-II) (as
for the autocrine IGF-II/IRA-mediated degradation rescue of EphB4 [19,74]) or the different
targeting ability of individual Insulin/IGFs through same receptor (IRA) [25,75] has been
increasingly demonstrated. Furthermore, a number of published findings have identified
Insulin/IGF-ligand-dependent and hetero-dimeric receptor tyrosine kinase type-dependent
signals and underlying differentially regulated targets [25,71], supporting the view that
a number of distinctive signals are indeed generated in the same cell according to the
contextual ligands and receptors co-expression [16,23].

Even at levels of secreted IGF-II comparable to those observed in a subset of tumoral
cells, the over-expression in IGF-II signal-transducing RTKs (namely IGF-IR and Insulin
receptor fetal variant, up to six times the normal levels as shown in Figure 3) allows
cancer cells to effectively respond to the secreted ligand signal in addition to the biological
advantages provided by the cancer-specific IGF-II-secreted variant discussed herein and
elsewhere [6,76]. Noteworthy, the lack of isoform-specific information in the currently
available proteo-transcriptomic data sets constitutes a significant limitation. In fact, in
the context of the IGF system, this affects both the quantification of cancer-specific IGF-II
(o-glycosylated IGF-II pro-hormone) as well as the insulin receptor fetal isoform variant
(IRA) in patient-derived cancer cells. In particular, the level and relative quantification
of cancer-specific (big)IGF-II can be made possible upon long-read transcript sequencing
scouting for the retention of the exon regions coding for the IGF2 D and E domains bearing
the glycosylation sites responsible for the glyco-moiety present in its high molecular
variants [9]. Alternatively, the same type of information for both IR and IGF-II isoform
variants could be drawn upon specific identification of a proteomic peptide corresponding
to the alternatively spliced/exon retained region in a proteomic dataset, similar to what
has recently been achieved in an IGF canine NICTH model [77]. Until such large sets of
intron-inclusion/retention transcriptomic data and/or isoform-specific proteomic data are
made available on the same established (patient-derived) cancer cell lines, we can only
assume, with an high level of confidence, that the IGF2 cancer-specific isoform variant is
present at variable levels in the available datasets, with the highest probability in those
cells with higher IGF2 relative transcript expression and with a growing correlation from
the transcript to the protein level. Overall, the available transcript co-expression data for
IGF2 and its RTK-transducing receptors (IRA and IGF-IR) suggest the following:

(A) The IGF-II signal-transducing RTKs (IRA and IGF-IR) are variably overexpressed from
0.1- to 6-fold in patient-derived cancer cell lines (Figure 5A and B, respectively);

(B) The IGF2 transcript is over-expressed in the same cell lines from 0.1- to 12-fold
(Figure 5A,B)

As mentioned earlier, and as further strengthened by the data conveyed in Figure 5
below, a potential yet under-estimated implication of the widespread co-expression of
both IR and IGF-IR along with IGF-II in cancer cell lines stands on the combinatorial
and yet poorly studied effects of their hybrid receptors. In fact, hybrid receptors made
by the IGF-IR holo-dimer with the IR, irrespective of the underlying isoform (IRA/B),
have been reported to be responsive to IGF-I and IGF-II and insulin [78], which, under
the contextual co-expression circumstances found in the majority of cancers cited in the
present perspective (favoring big-IGF-II over IGF-I in vivo), makes the big-IGF-II/HR
an underscored ligand/receptor system in cancer, along with other yet undetermined
potential IR/non-IGF-IR RTK hybrids (similarly to the IGF-IR/ErbB hybrids), the presence
which is as yet unaccounted for, along with their impact at the biological and therapeutic
strategies level.
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Figure 5. Relative RNA transcript expression of IGF-II transducing receptor tyrosine kinases in cancer
cell lines. (A) Relative expression of IGF1R versus IGF2; (B) relative expression of Insulin receptor
versus IGF2. Red boxed areas include those lines with relative expressions >1 fold, both in ligand
and receptor, compared to normal and a group of tumoral cells. Purple boxed areas correspond to
those tumoral cells with relatively normal levels and isolated elevated levels of either IGF2 or its RTK
signal-transducing receptor transcripts. The source of the data used for Figure 5 is conveyed in the
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6. What Makes IGF-II Secretion in Solid Tumors a Hallmark of Malignancy beyond Its
Renown Para-Neoplastic Association?

The major features pointing at cancer-secreted IGF-II as the major and widely ex-
pressed IGF factor in solid cancer can be summarized in the following established pieces
of evidence, potentially affecting present and future pathology screening and therapeutic
targeting strategies (further discussed in Section 7):

(A) Cancer tissues, irrespective of their embryological tissue of origin (spanning from
sarcomas to carcinomas), express a wide-spanning number of IGF-I receptors (IGF-IR),
along with a tumorigenic stage-specific (from benign to malignant) increase in fetal
insulin receptor isoform variant (IRA). Under such circumstances, cancer cells and
tissues will display a variable amount of homogeneous receptors (individual IR and
IGF1R) along with an increasing amount of hybrid IGF1R-IR receptors (HRs) directly
depending on the increase in the expressed IGF1R (the higher the IGF-IR expression,
the higher the amount of HRs) [25].

(B) With the only exception of pancreatic beta-cell benign tumors (insulinomas), which
produce an excess of insulin, the vast majority of solid malignancies express IGF-II
in higher molecular variants (O-Glycosylated pro-hormone peptides with MW span-
ning between 15 and 27 KDa [7,74]) which are resistant to extracellular binding
and sequestration by physiological IGF binding/scavenging factors, namely IGFBP3
and SpI2-6 [12], improperly referred as IGF-II “receptor” (IGF2R). IGF-II produc-
tion/secretion has also been shown to be provided by cancer-associated fibrob-
lasts [68], although there is still no evidence that this type of IGF-II belongs to an
high-molecular-weight variant. As conveyed in Figure 1 and Table 1, it is worth noting
that isolated IGF-I over-expression in cancer cell is a minor event compared to IGF-II
over-expression, and it is mostly restricted to its stromal component, supporting its
paracrine functions (Figure 4).
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(C) IGF-II over-production in cancer is currently demonstrated in the clinical setting in the
presence of a diagnosed cancer patient displaying variable glycemic levels, spanning
from normal to sub-normal, along with recurrent episodes of hypoglycemic symptoms
fully reversible via surgical removal or ablation of the underlying cancer tissue. In
these patients, the measured blood IGF-II levels (by ELISA) span from overtly supra-
physiologic levels to apparently normal ranges but with a reduced or inverted ratio
between IGF-II and IGF-I (normally <10). In all other malignancies not displaying
such findings, IGF-II expression could be detected via both traditional histopatho-
logic means in the clinical setting or more accurately (not frequently adopted in the
clinical settings) via molecular techniques (namely qRT-PCR and NGS-RNAseq). The
inclusion of IGF-II among the high-throughput targets of positional tissue expression
panels able to localize and measure specific gene expression patterns within cellular
components throughout bioptic tissues will provide a confirmatory tool for both
the relative and absolute quantification of the above-cited IGF factors, along with
hundreds of other known cancer-driving gene products.

The factors affecting IGFs bioavailability at the level of cancer micro-environment
are conveyed in Table 2. An overview of the working hypothesis for the contextual IGFs
and their receptors role in tumor progression conveyed in the present work is graphically
summarized in Figure 6.

Table 2. Features affecting IGFs availability and oncogenic effects.

Feature Ligand Effect(s) Efficiency Biological/Clinical
context Reference(s)

Binding to
IGF-IR

IGF-I cell growth, pro-mitotic,
anti-apoptotic +++

Extracellular/
Tumor microen-

vironment

Li et al., 1997 [79]
Peruzzi et al., 1999 [80]

IGF-II cell growth, pro-mitotic,
anti-apoptotic ++ Potalitsyn et al., 2023 [50]

Big-IGF-II cell growth, anti-apoptotic
pro-tumorigenic ++ Potalitsyn et al., 2023 [50]

Binding to
IRA (*)

IGF-I Negligible at
physiological levels −/+

Extracellular/
Tumor microen-

vironment

Frasca et al., 1999, Sciacca
et al., 1999 [16,48]

IGF-II
IGF-I-like (**) plus

pro-angiogenic and
pro-invasive

++
Frasca et al., 1999, Morrione

et al, 1998, Louvi et al.,
1998, [16,23,81]

Big-IGF-II IGF-I-like (**) plus events
linked to malignant switch ++

Greenhall et al., 2013, Ulanet
et al., 2010, Scalia et al., 2019,

Potalitsyn et al.,
2023 [11,50,69,74]

Binding to
SpI2-6/IGF2R

IGF-I n/d −

Extracellular/
Tumor microen-

vironment

Nissley et al., 1984 [55]
Bond et al., 2000 [49]

IGF-II Overgrowth rescue,
IGF-II degradation +++ Lau et al., 1994 [82],

Oka et al., 1985 [10]

Big-IGF-II Maintenance of (big)IGF-II
Extracellular bioavailability −/+ Greenhall et al., 2013 [11]

Potalitsyn et al., 2023 [50]

Binding to
IGFBP-3

IGF-I Decrease bioavailability,
IGF-independent TBD +++

Extracellular/
Tumor microen-

vironment

Grimberg et al., 2005,
Silha et al., 2006, Takayoka

et al., 2007 [57,59,60]

IGF-II Decrease bioavailability (***),
IGF independent (TBD) ++/+++ Potsalitsyn et al., 2023 [50]

Big-IGF-II Maintained bioavailability −/+ Potsalitsyn et al., 2023 [50]
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Table 2. Cont.

Feature Ligand Effect(s) Efficiency Biological/Clinical
context Reference(s)

Source and
effects in
Cancer

IGF-I Tropic, survival,
Pro-tumorigenic (TBD) Stroma

normal tissue,
solid

malignancies

Yee et al., 1989, Cullen et al.,
1992, [46,47]

IGF-II
IGF-I-like (**),

pro-tumorigenic,
immune-evasion

Stroma solid
malignancies

Rogler et al., 1994, [14], Cullen
et al., 1992, Yee et al.,

1989, [46,47] Belfiore et al.,
2023 [83]

Big-IGF-II
Pro-tumorigenic,
events linked to

malignant switch
Cancer cell

solid
malignancies,

paraneoplastic
hypoglycemia

Doughaday et al., 1989,
Christofori et al., 1994

Dynkevich et al., 2013 [5,6,15]

(*) Feature/effect confirmed in vivo; (**) cell growth, pro-mitotic, anti-apoptotic effects; (***) A colorectal cancer
study suggests a cancer-protecting role for decreased IGFBP-3 levels and differentiating/benign-driving role for
increased IGF-I bioavailability (Baciuchka et al., 1998) [84].
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Figure 6. Checkpoint-driven tumorigenic progression model for the role of cancer-secreted (big)IGF-II.
A set of clinical, pathological, genetic, cellular, and biomolecular events established in the literature
have been conveyed at specific tumorigenic checkpoints, providing the displayed workflow for the
stage-associated function(s) of cancer-secreted IGF-II, supporting a specific role for IGF-II at the
malignant transition checkpoint in solid cancers.

7. Is IGF-II-Secreting Tumor (IGF-IIsT) a Biologically Sounder Acronym for the Role of
IGF-II in Cancer Biology?

Previous authors have used the terms Non-Suppressible Insulin-Like Activity (NSILA) [1],
Non-Islet Cell Tumor Hypoglycemia (NICTH) [8], and Extra-Pancreatic Tumor Hypo-
glycemia (EPTH) [32] for the paraneoplastic syndrome that has been associated with those
tumors secreting high levels of IGF-II, which, upon release into the bloodstream, deter-
mines systemic insulin-like hypoglycemic effects [85–87]. The acronym of IGF2omas has
previously been proposed for such tumors [5]. This acronym, on the one hand, reflects
the established association of this paraneoplastic syndrome to the exclusive production of
IGF-II while differentiating them from those associated with insulin secretion (by definition
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restricted to rare pancreatic insulinomas). On the other hand, the term differentiates this
group of tumors from those associated with secondary IGF-I secretion despite the reported
studies that have either displayed or omitted co-secretion of IGF-II (Table 1). As discussed
herein, IGF-II-associated paraneoplastic condition is a much rarer occurrence compared to
the number of IGF-II-secreting malignancies that do not (yet) display such symptoms [88].
Despite the fact that, to date, no large-scale studies have yet been produced to determine
the rate of solid cancers expressing/secreting IGF-II, the DepMap analysis from patient-
derived cancer cells conveyed in Figure 3B suggests that such a number may exceed 65%
percent. Based on the wider and underscored occurrence of IGF-II secretion among solid
malignancies, independently from the circulating levels clinically associated with hypo-
glycemia, we find it to be more appropriate to classify tumors as either IGF-II-secreting
tumors (IGF-IIsT) or non-IGF-II-secreting tumors (non-IGF-IIsT). Specifically, for IGF-IIsT,
we refer to all cancers positive for IGF-II secretion (usually displaying various degrees of
dedifferentiation associated with a high IRA/IRB expression ratio), which confers malignant
and aggressive tumor behavior. IGF-IIsT, therefore, includes the smaller group formerly
defined as IGF2omas and further extends to all IGF-II-bearing autocrine loop-positive
cancers, as confirmed via (a) histopathological or other protein-positional pathology de-
tection/imaging methods, (b) transcript (RNAseq) or protein (mass-spectrometry-based)
panels in patient-derived circulating tumor cells (CTCs), or (c) IGF-II-neutralizing antibody-
inhibited cultural growth of patient primary cells or CTC cultures. In particular, the latter
two methods (in circulating tumor cells) provide ex vivo testable parameters attainable
as part of a liquid biopsy. These approaches can be several magnitudes more sensitive
compared to the cancer patient IGF-I/IGF-II high blood ratio currently reported as the
discriminating metabolic hallmark for paraneoplastic hypoglycemia-associated cancers [28].
In this context, the proposed parameters for inclusion of a solid tumor under the proposed
IGF-IIsT extended group include previously described tumors with the following features:

(a) Any tumor mass, independent of its size or staging, characterized by inner mass
hypoxic conditions (e.g., by CT/PET-FDG) and underlying angiogenic switch, preced-
ing any other histopathological feature coupled with an inversion of the circulating
detectable IGF-I/IGF-II ratio (with IGF-II > IGF-I);

(b) Any histopathology or molecular biology report of a solid tumor bioptic specimen
displaying co-expression of pre-pro-IGF-II (associated with its cancer-secreted high-
molecular weight variant) and Insulin receptor fetal isoform (IRA) transcripts;

(c) Any undetected metastatic foci in a previously diagnosed patient or in an apparently
normal subject with familiarity for solid cancer in which a circulating tumor cell (CTC)
can be isolated and analyzed using available high-sensitivity single-cell applicable
methodologies (dPCR).

From a biological standpoint, it is worth noting that, given the ubiquitous expression
of the Insulin receptor and its fetal variant’s increased levels in cancer cells, coupled with
the variable expression patterns of the IGF-IR, the simple IGF-II transcript detection via
available molecular detection methods identifies, bona fide, an autocrine IGF-II loop and,
therefore, an IGF-II secreting tumor (IGF-IIsT).

The cumulative features conveyed in the IGF-IIsT group definition, we believe, may
offer a biologically sounder context for both classification and future personalized molecular
targeting strategies pointing at cancer-secreted IGF-II and its malignant-switch-specific
intracellular signal as a widely evidence-based target over any of its individual receptors.

8. Conclusions and Perspectives

Published work on the Insulin/IGF ligands and receptorial system in cancer provides
an emerging landscape with a distinctive role for cancer-secreted IGF-II and its autocrine ef-
fects. The latest findings associating IGF-II autocrine loops in cancer to the Over-Expression-
by-Degradation Rescue (OEDR) of an IGF-II signal-targeted angiogenic/oncogenic RTK [19]
adds an underscored mechanistic tool used by cancer-secreted IGF-II to exert its tumori-
genic effects. Our present work is compliant with a differential role and significance of
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endocrine IGFs compared to those acting in the extracellular environment during tumori-
genesis. Such a working hypothesis envisions systemic (bloodstream) circulating IGFs
in cancer as an epiphenomenon rather than a causal and/or primary risk factor. Indeed,
our interpretation of the reviewed literature supports a view by which circulating IGFs
levels are secondary to underlying processes such as cancer-associated inflammation [89]
and/or tumor-microenvironment-mediated hormonal/growth factor loops [90–93], where
prolonged, locally enhanced IGFs signals in parenchymal and/or stromal cancer com-
ponents may underlie the epidemiologically (IGF-I) and/or clinically (hypoglycemia by
big-IGF-II) reported ligand-specific systemic spillover effects. Our analysis of the published
literature on the role of IGFs with specific regards to solid cancers is compliant with our
evidence-based premises, pointing at a differential production source (IGF-I from cancer
stroma acting as paracrine factor, and IGF-II from overt cancer cells acting as an autocrine
factor, respectively) and pattern (with pro-hormone IGF-II variant being preferred in the
cancer-secreted form). This, coupled with the aforementioned increase in the fetal variant
of the insulin receptor (isoform A) at the malignant switch checkpoint, along with the syn-
ergistic and differential role provided by the IGF-IR variable expression in tumorigenesis
towards cell growth and survival, provides a contextual framework on which to modulate
future molecular and therapeutic interventions. Altogether, analysis of the published
evidence and publicly available expression dataset conveyed herein further strengthens an
actionable role for cancer-secreted (big)IGF-II, with a wider impact compared to its sole
detection in the clinically associated paraneoplastic hypoglycemic syndrome.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biomedicines12010040/s1, SM.1: Literature analysis of cancer-associated
hypoglycemia case reports in Table 1 and Figure 2. SM.2: DepMap data conveyed in Figures 3 and 5
for the cancer cell lines-based co-expression and/or silenced-gene expression analysis.
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