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1. THE AZORES ARCHIPELAGO 

Located in the mid-North Atlantic (25° – 32° W and 37° - 40° N), about 1,500 

km from the shores of mainland Portugal – is a group of very young oceanic islands, 

featuring youthful volcanic landforms that are generally devoid of exposed marine 

volcanic and sedimentary sequences (Serralheiro et al., 2003) (Fig. 1). 

 

 

Figure 1. Geographical and tectonic setting of the Eurasia-Africa-North America plate boundary 

(modified from Argus et al., 1989). AM=American plate; AF= African (Nubian) plate; AGFZ= Azores 

Gibraltar Fracture Zone; EU= Eurasian plate; MAR= Mid-Atlantic ridge. Bathymetry of the area Azores-

Gibraltar from GEBCO (IOC IHO & BODC, 2003) (after Quartau, 2007). 

 

 

The islands emerge from the Azores volcanic plateau (Fig. 2), which is a first-order 

morphological feature in the Atlantic basin. It has an overall triangular shape 

corresponding to a surface area of approximately 400,000 km
2
 of elevated oceanic crust, 

roughly underlined by the 2,000 m isobath (Lourenço et al., 1998). The plateau is 

mainly constructed of alkaline basalt volcanism. Geochemistry and petrology suggest a 

hotspot origin for this volcanism (White et al., 1976). The plateau crosses to the west 

the Mid-Atlantic Ridge (MAR) and is limited to the south by the East Azores fracture 
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Zone (EAFZ). The western group of islands (Flores and Corvo) lie on the American 

plate, while the islands of the central (Terceira, Graciosa, S. Jorge, Pico and Faial) and 

eastern groups (S. Miguel, Santa Maria and Formigas) lie on the Azores plateau 

(Quartau, 2007). 

 

 

Figure 2. Tectonic setting of the Azores archipelago (after Luis et al., 1994). 

 

 

Discovered by the Portuguese navigators in 1427, the Azores seem to have been 

previously known, according to old maps; after more than one century of biodiversity 

inventory, we still lack an estimate of the number of species occurring in the Azores 

(Borges et al., 2010). 

In what regards the shallow marine groups, in particular the Ostracoda and 

Bryozoa fauna, the data are scarce. Meireles et al. (2012) were the first to publish on the 

Miocene marine ostracods from the Azores (Chapter 4) and this thesis (Chapters 5 and 

6) presents the first account on the systematics, palaeo-ecology and taphonomics 

processes of the marine ostracods from these islands. Several papers were published 

reporting Bryozoa from the Azores: Jullien (1882), Jullien & Calvet (1903), Calvet 

(1931), Hondt (1975), Harmelin (1977, 1978, 1988), Harmelin & Aristegui (1988), 

Zabala, Maluquer & Harmelin (1993), Reverter-Gil & Fernández-Pulpeiro (2007), 

Berning & Kuklinski (2008), Amat & Tempera (2009) and Costa et al. (2010). 
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The lack of information about these groups in the Azores and the convenience of 

studying benthic species with contrasting “ways of life” (the sessile Bryozoa and the 

mobile Ostracoda) provided the trigger for the description and subsequent 

interpretations of the marine palaeo-ecological and depositional processes presented in 

this thesis. This work is the results of efforts between January 2010 to May 2013, and 

aims to study the fossil and Recent Ostracoda and Bryozoa of the Azores from a 

systematical, sedimentological, palaeontological, taphonomical, palaeo-ecological and 

palaeo-biogeographicals points of view.  I hope with this thesis to fuel and encourage 

further research in the fields of Marine Biology-Zoology / Oceanography / Geology of 

the archipelago. 

 

 

1.1. OSTRACODA 

Ostracods are small crustaceans ranging in length from 0.08 to 3 mm, or more. 

Their entire body is encased in a bivalve, calcified carapace which can be smooth to 

variously ornamented. The two valves are joined by a dorsal hinge opposed by closing 

muscle. The body is unsegmented and has a reduced number of limbs. The head is 

larger than both the thorax and abdomen combined. It bears five paired appendages: 

first and second antennae, mandibles, and the first and second maxillae. Commonly, 

two additional thoracopods are also present. The second maxillae and the two 

thoracopods are often used as walking or cleaning legs. The abdomen terminates in a 

pair of furcae. Between the last thoracopods and the furcae there may be a pair of large 

male copulatory organs (Keyser, 1988). The general schematic classification is show in 

Fig. 3. Some 65,000 living and fossil species have been described, grouped into several 

orders. This group may not be monophyletic; ostracod taxa are grouped into a Class 

based on gross morphology (Horne et al., 2002). 

Although several authors have recently attempted to unify terminology 

pertaining ostracod limbs and their chaetotaxy (see Namiotko et al., 2011 for an 

overview), there is still lack of consensus on this matter in the literature and many 

confusion exists about limb homologies with other crustacean taxa and even within 

Ostracoda. Here we adopted the terminology of the general limb morphology after 

Horne et al. (2002). 

Ostracods have a short compact body with no true segmentation as often 

recognizable in other crustaceans. A faint constriction of the body usually just in front 
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of the centre marks the indistinct boundary between two main parts, the anterior head 

(cephalon) and the posterior trunk (consisting of the reduced thorax and the rudimentary 

abdomen) (Namiotko et al., 2011). The later portion shows in a few taxa some external 

traces of segmentation, suggesting 4-7 (subclass Myodocopa) or 10-11 (subclass 

Podocopa) barely discernible postcephalic segments (Horne et al., 2002). 

 

 

Figure 3. The internal features of a podocopida left valve (modified from Van Morkhoven, 1962). 

 

 

Ostracod limbs (or appendages), except the antennule (or first antenna), are 

considered to derive from a generalized ancestral crustacean appendage composed of a 

basal protopod on which distally two rami are carried: an inner endopod (commonly 

larger) and an outer exopod (often strongly reduced). Adult ostracods possess up to 

eight pairs of functionally specialized limbs, including male copulatory appendages 

(Horne et al., 2002) (Fig. 4). 
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Figure 4. Central ostracod schematic drawing (male Podocopida) adapted from Horne et al. (2002). 

Morphology of a male of Callistocythere insularis sp. nov. (Azores archipelago), as an example of a 

leptocytheridean ostracod (Podocopida; Leptocytheridae). Left valve in external view: A1 – antennule, 

A2 – antenna, MD – mandible, Mx1 – maxillula, L5 – fifth limb (walking leg), L6 – sixth limb (walking 

leg), L7 – seventh leg (cleaning and walking leg), CO – copulatory organ (hemipenis). 

 

 

1.2. BRYOZOA 

Bryozoa is the name of a phylum for which Ectoprocta is generally regarded as a 

synonym, these names being used by zoologists according to personal preference. 

Entoprocta (synonym Calyssozoa) is likewise regarded as an independent phylum. A 

minority regards Ectoprocta and Entoprocta as subphyla within the Bryozoa, while 

others maintain Ectoprocta and Entoprocta as phyla (Margulis & Schwartz, 1999) but 

link them under Bryozoa as a name of convenience (Ryland, 1970).The phylum 

contains some 20,000 described species, one-fifth of them living. These are distributed 

among three classes and a somewhat variable number of orders. This phylum consists of 

sessile aquatic invertebrates (also called Polyzoa) which form colonies of zooids. Each 

zooid, in its basic form, has a lophophore of ciliated tentacles situated distally on an 

introvert, a looped gut with the mouth inside the lophophore and the anus outside, a 

coelomic body cavity, and (commonly) a protective exoskeleton. The colonies are 
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variable in size and habit (Figs. 5, 6 and 7). Some are known as lace corals and others as 

sea mats, but the only general name is bryozoans (sea mosses) (Ryland, 1970). 

Bryozoans are a paradoxical group of creatures. They are common aquatic 

animals, but few people other than professional zoologists recognize them. Their 

protean colony shape generally guarantees that they will be taken for hydroids, corals, 

or even seaweeds – anything but what they actually are. They are fascinating 

scientifically, but relatively few specialists study them. Even their precise relationships 

with other animal phyla are controversial (Nielsen, 1995). Yet their potential for 

yielding new discoveries, theories, and products is considerable, and anyone who starts 

researching their biology will certainly be rewarded. Bryozoans are a greatly 

understudied group, full of unsolved mysteries (Gordon et al., 2009). 

Worldwide, approximately 6,000 living species and 15,000 fossil species have 

been recognised, and it is likely that several thousand unknown species have yet to be 

discovered and described. Bushy bryozoans used to be called moss animals, and flat 

encrusting ones, sea mats, but hardly anyone now uses these names. ‘Lace corals’ is a 

good descriptor for those species whose colonies look like ruffs and chalices of 

coloured lace, but bryozoans are coelomate animals unrelated to true cnidarian corals. 

No common names adequately apply to all the species, so the technical name Bryozoa 

(Greek for ‘moss animals’) is probably the best to use (Gordon et al., 2009). 

In Azorean waters, bryozoan colonies range in size from microscopic to the size 

of footballs or cabbage heads. Bryozoans on wharf-piles, vessel hulls, pontoons, small 

rocks, and shells form small to moderate-sized encrustations or bushy colonies. The 

colony may be minute, of not more than a single feeding zooid and its immediate buds, 

or substantial, forming masses 1 m in circumference, festoons 0.5 m in length, or 

patches 0.25 m
2
 in area. Commonly the colonies form incrustations not more than a few 

square centimeters in area, small twiggy bushes up to about 3 cm in height, or soft 

masses up to about 10 cm in the largest dimension. In many colonies much of the bulk 

consists of the zooid exoskeletons, termed zooecia, which may persist long after the 

death of the organism and account for the abundance of fossilized bryozoan remains. 

The bryozoan body design is that of a colony of tiny individuals (zooids), each 

of which is somewhat box- or tube-shaped, with an opening at one end for feeding 

tentacles to emerge. Each zooid is generally about half a millimeter long but some may 

be smaller or very much larger. Most marine bryozoan zooids live inside a hard 

calcareous box, usually attached to other identical boxes to form a colony. Colony size 
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ranges from microscopic to more than a metre in diameter (Smith & Gordon, 2011) 

(Fig. 6). 

 

Figure 5. Zooid structure in Callopora lineata (Hayward & Ryland, 1979). 

 

 

Figure 6. Scanning electron micrograph of zooid skeletons of Schizomavella cornuta (Heller, 1867) 

[=Schizomavella cuspidata (Hincks, 1880)]. 

http://www.marinespecies.org/aphia.php?p=taxdetails&id=221521
http://www.marinespecies.org/aphia.php?p=taxdetails&id=111093
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Many bryozoans display polymorphism, having certain zooids adapted in 

particular ways to perform specialized functions, such as protection, cleaning the 

surface, anchoring the colony, or sheltering the embryo. The evolution of nonfeeding 

polymorphs is dependent upon some form of intercommunication between zooids 

(Ryland, 1970). 

 

 

Figure 7. Zooid structure in the anascan cheilostome, Membranipora membranacea (Linnaeus, 1767) 

(Hayward & Ryland, 1979). 
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1.3. THESIS OUTLINE 

In this thesis I aimed to 1) undertake a taxonomic revision of the Fossil and 

Recent shallow (from the intertidal down to 100 m depth) Ostracoda and of the Recent 

shallow Bryozoa of the Azores; 2) describe the zonation of the Recent species of 

Ostracoda on the Azorean shores; 3) use the above-mentioned studies to compare with 

the palaeo-ecological studies that were done on the fossiliferous Late-Miocene-Early-

Pliocene of the Santa Maria Island’s outcrops; 4) establish the palaeo-biogeographical 

relationships of the Recent and fossil ostracods; 5) produce a Reference Collection of 

the Bryozoa and Ostracoda which will be deposited at the Departament of Biology, 

Universtity of the Azores, in order to provide additional tools for identifying the more 

conspicuous species of Bryozoa and Ostracoda from the Azores. 

In Chapter 2, I assess the methods used to study the Recent and fossil records 

done on this thesis. Adaptations and suggestions to future works about these groups are 

also reported. 

Chapter 3 is dedicated to the Scientific Curation of Collections. The 

identification processes and the methods used for the curation of the samples studied on 

this thesis (including holotypes, paratypes and topotypes specimens) are discussed. It 

includes the most recent and updated checklist of the benthic Bryozoa and Ostracods 

(Recent and fossil) of the Azores. 

Chapter 4 reports the late Miocene-early Pliocene fossil ostracods from Santa 

Maria Island, and discusses the geological/micropalaeontological technics used to 

describe these fossils, as well as the importance of this palaeontological record. 

In Chapter 5, I assess the systematics and biogeographical relationships of the 

Recent shallow-water marine ostracods of the archipelago. A systematic review is 

provided and the first biogeographical study of this class is done for the Azores. The 

importance of providing additional tools for identifying the more conspicuous species of 

Ostracoda from the Azores is also discussed. 

Chapter 6 presents a study about the taphonomy and palaeoecology of the 

Quaternary shallow-water marine ostracods of the Azores. 

Chapter 7 shows and discusses the research results about Ponta do Castelo 

locality as an outstanding outcrop for the explanation of the depositional processes of 

sedimentary bodies (containing fossils) on oceanic island shelves. This study proposes a 

general depositional model of sedimentation applicable to the insular shelves of reefless 

oceanic volcanic islands worldwide. 
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Figure 8 was designed to provide a fast view of the thesis outline. In this figure it 

is possible to see the thesis publications, other author publications (not directly related 

with the main theme of this thesis), scientific campaigns, and technical visits to 

museums, as well as the workshops, advanced courses and conferences in which the 

author participated, between January 2010 and May 2013. 

 

 

 

 

Figure 8. Schematic thesis outline (January 2010 - May 2013). 
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CHAPTER 2 

 

 
METHODS USED TO STUDY THE RECENT AND THE FOSSIL RECORDS 
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1. Field Techniques 

In general, there are six aspects on sedimentary rocks to consider in the field, 

which should be recorded in as much detail as possible. These are: 1) the lithology, that 

is the composition and/or mineralogy of the sediment; 2) the texture, referring to the 

features and arrangements of the grains in the sediment, of which the most important 

aspect to examine in the field is the grain-size; 3) the sedimentary structures present on 

bedding surfaces and within beds, some of which record the palaeocurrents which 

deposited the rock; 4) the colour of the sediments; 5) the geometry and relationships of 

the beds or rock units, and their lateral and vertical changes; and 6) the nature, 

distribution and preservation of fossils contained within the sedimentary rocks (Tucker, 

2003). 

The various attributes of a sedimentary rock combine to define a facies, which is 

the product of a particular depositional environment or depositional process in that 

environment. Facies identification and facies analysis are the next steps after the field 

data have been collected. Nowadays, there is much interest in the broaderscale aspects 

of sedimentary successions: the geometric arrangements of rock units, the lateral and 

vertical variation in such features as lithology and grain-size, the packaging and 

stacking patterns of units, and the presence of cycles and rhythms in the succession. 

These features reflect the longer-term, larger-scale controls on deposition, primarily 

relative sea level change, accommodation (the space available for sediments), tectonics, 

sediment supply/production, and climate. A general scheme for the study of 

sedimentary rocks in the field is given in Tucker (2003). 

 

2. Petrography 

Sample preparations for various analytical steps were made in the laboratories of 

the Centro de Vulcanologia e Avaliação de Riscos Geológicos (CVARG), University of 

the Azores. The details of these materials are showed in Chapters 4 and 7. 

A preliminary washing with deionized water for a couple of days allowed 

removing salt, loose debris and organic matter from the bulk samples. After drying in an 

oven overnight (60°C), cleaned fragments were impregnated in epoxy in vacuum 

conditions. With this operation, open pores and fractures were sealed, increasing the 

resistance of samples which are naturally fragile. 

Samples were then trimmed off with a diamond blade and grinded with coarse 

silica carbide abrasive powder (grit 220 or 400) to obtain a flat side, suitable for optical 
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observations. The flat side was then grinded by the use of progressively thinner 

abrasives (up to grit 600) in order to produce a homogeneous and scratch-free surface. 

Optical observations were made by the use of a stereoscopy binocular Nikon 

SMZ1000 equipped with a Nikon Coolpix 995 digital camera (3.34 Mpixel). 

The thin sections for petrographic studies were prepared by using a Logitech 

PM5 semi-automated station. This machine allows the contemporaneous preparation of 

6 samples with a jig (sample holder) equipped with a very precise system for thickness 

control. 

Samples were lapped up to grit 800 and then cleaned in an ultrasonic bath. 

Each sample was studied using an Olympus BX52 polarizing microscopy, 

equipped with a DP25 digital camera (10 Mpixel). Digital imaging allowed the capture 

of multiple images to assemble maps. 

Modal counting of components in three selected thin sections was performed 

with a semiautomated digital stepper, by counting a total number of 1.500 points. 

 

3. Carbonate Microinvertebrates (Ostracoda; Bryozoa and Foraminifera): 

Collection, Preparation and Preservation. 

The work of the micropalaeontologist in the field usually consists in collecting 

not fossils but samples of rock, which he believes may contain the fossils in sufficient 

number and in satisfactory preservation (Glaessne, 1948). Experience is essential in 

collecting microsamples. 

The usual samples taken for micropalaeontological analysis are 200 to 250 

grams. The most important precaution to be exercised during sample collection is to 

avoid contamination. Hammers, chisels and shovels should be cleaned before each 

sample is taken. In general, the less the treatment necessary to free the fossils from the 

matrix the better (see Jones, 1956 for an overview). Least amount of crushing, boiling 

and sieving should be used in order to ensure minimum breakage of specimens. 

The fossils are separated from the disintegrated material by Hydrogen peroxide 

(H2O2, vol. 30%) and washing. The fine grade of rock particles, smaller than the 

microfossils, is passed through fine sieves and discarded. This can be done by means of 

screening. A set of sieves with 40, 80 and 200 mesh to the inch is sufficient, for 

practical purposes. A jet of water under pressure is directed upon the sample and the 

sieves may be shaken. Much care has to be taken to clean the used screens with brushes 

and a strong jet of water before placing another sample on them. 
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All equipment must be kept thoroughly clean to prevent contamination; sieves 

are used can be made by dipping them in a solution of methylene blue after washing 

each sample. For more detail about the micropalaeontological techniques see Van 

Morkhoven (1962). 

The final stage of separation involves removing the microfossils from the dried 

residue composed of mineral grains, fine rock fragments and microfossils. The most 

common practice is to pick individual specimens from the various screened fractions of 

the residue with a fine camel's -hair brush, and to mount them on a gummed 

micropalaeontological slide. Skill in using the moistened and pointed brush for picking 

up the specimens under the microscope can be acquired only with practice. 

Moisten the brush in a small dish of water. Make it pointed and place in a 

hovering position over the field of' the microscope. The moistened brush is lowered 

over the specimen desired and allowed to touch the surface, to which the specimen will 

adhere. Then it is transferred to the slide. 

Many types of micropalaeontological slides have been developed for specific 

uses. The faunal slide has 48, 60 or 100 divisions for mounting a representative fauna 

(see Chapter 3 for more information). 

 

4. Living Bryozoa and Ostracoda: techniques of sampling and soft-parts 

preparation 

Bryozoans’ are sessile organisms and sampling, in general, was done during 

SCUBA dive and/or snorkel activity. When collecting bryozoans it is desirable to keep 

the specimens intact. Hard, brittle substrata, such as stone, require a hammer and cold 

chisel. The review about the Bryozoa checklist, presented in Chapter 3 (Table 1) was 

revised by Dennis Gordon (2013, personal communication), after a technical visit to the 

National Institute of Water & Atmospheric Research (NIWA), in Wellington (New 

Zealand). 

Ostracods are mobile organisms and require a more specific method. For the 

Ostracoda sampling we used the method adapted by Keyser (2012; personal 

communication), after a technical course in the University of Hamburg (Germany). The 

Ostracoda checklist, presented in Chapter 3 (Table 2) was reviewed by Gliozzi & 

Faranda (2011) and by Keyser (2012). 

For the sampling, it was necessary: a bucket, several nets of 80µm mesh size, 

sieves for coarse material and sample glasses. The sieves for the coarse material, which 
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we do not want to have in our samples, must fit in the opening of the collection net. One 

can use other sieves, especially when the material is very coarse, or when we need other 

fractions. 

During collection on the surface or in deeper waters (by SCUBA diving) the net 

should only be about two to five centimeters in the ground. The reason is that ostracods 

are not deeper than 2-4 cm burrying into the sediment. The net should be moved in 

waves over the ground, into the sediment out of the sediment and again into the 

sediment. The reason for this is to gather also the animals who might swim away. 

The collected material is thoroughly washed in the net in the water to reduce the 

amount of very fine particles like clay or mud but to keep the ostracods which are held 

back by the net. To reduce the amount of the sample even more it is placed in the bucket 

and filled up with water. 

In the laboratory it is best to work on the ostracods as quick as possible, for 

when they are still living and moving around, they are easier to spot. The sample is put 

into a Petri dish and look through it under the binoculars. All living ostracods you can 

pick out are collected with a pipette and transfered into another dish and then into 70% 

alcohol. When they are in the alcohol, they can stay there for a long time. The samples 

in seawater will very soon get spoiled and will stink terribly. If you do not have time to 

pick the living animals immediately, you can put the whole sample in alcohol and pick 

the ostracods later. 

For the studies on the soft parts of the living ostracods we used the methodology 

by Namiotko et al. (2011). A set of materials are necessary for dissection and slide-

preparation of ostracods: dissecting needles, pipettes, forceps, fine brushes, an embryo 

dish, nail varnish, mounting medium (Hydro-Matrix®), an aluminium holder for a glass 

slide and/or cover slips, a three-well embryo slide, a micropalaeontological slide, self-

adhesive paper labels, a standard glass slide, depression glass slide, cover slips and a 

small Petri dish. 
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INTRODUCTION 

This chapter allows users to search for information about individual fossil and 

Recent BRYOZOA and OSTRACODA collections housed at the Department of 

Biology of the University of the Azores. The information given is about collections 

rather than individual specimens and is intended to act as a “taster” so that more 

detailed enquiries can be made to the curator if necessary. For each collection, there is a 

list of taxa identified, associated with the sample number. The build-up of the 

collections was based in the Collection & Curations course accomplished in the NHM 

(Natural History Museum) in London (Giles Miller, 2010; personal communication). 

The Ostracoda checklist was supervised by Elsa Gliozzi (Università Roma Tre – 2011) 

and Dietmar Keyser (Hamburg University – 2012). The Bryozoa checklist was 

supervised by Dennis Gordon (NIWA – 2013). 

The raw documentation of the material is based on laboratory books, papers 

published and work in progress, checklists, tables and SEM photos, which provide 

information about the processing techniques applied to each sample and the data when 

the work was completed (Fig. 1). For more information about Scientific Curator please 

consult Brunton (1979), Brunton et al. (1984), Fothergill (2005) and Beagrie (2006). 

 

Figure 1. Laboratory books containing information about the processing of the works. 
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All material was curated and catalogued and the major part of the collection is 

now available as a searchable database on the Department of Biology, University of the 

Azores (DBUA, Ponta Delgada, Portugal), the Bryozoa under prefix “DB/BRY nº” and 

the Ostracoda under prefix “DB/OS nº”. The Ostracoda are stored in 

micropalaeontological slides (Figs 3 and 4) and the Bryozoa (Fig. 4) are kept in bottles 

at the DBUA; both collections are available for further studies. 

 

 

Figure 3. Micropalaeontological slides used to held the individual specimens of Ostracoda and Bryozoa. 

 

 

Figure 4. Bottles used to held the specimens of Bryozoa. 

 

The residues for every slide were kept and stored for future reference. These are 

a vital addition to the slide collection. Occasionally, if the residue was very small a 

stored reserve was not possible; consequently there are a few gaps in the run of sample 

numbers. The residues are held in wood drawers (Fig. 5). 
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Figure 5. Residue containers used to fossil and Recent dry sediments. 

 

These represent the biggest catalogue of the Bryozoa and Ostracoda Collections. 

In the future all collections will be accessible online in the MPB website 

(http://www.mpb.uac.pt/) (Fig. 2). 

 

 

Figure 2. The MPB – Marine PalaeoBiogeography working group website. 

 

 

 

 

 

http://www.mpb.uac.pt/
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THE BRYOZOA & OSTRACODA COLLECTIONS 

 

1- Bryozoa and Ostracoda checklist of the Azores (Tables 1 and 2). 

2- Bryozoa and Ostracoda (Recent and fossil) collection (Tables 3 and 4). 

3- Slides; large bottles and residues from some different locations and depths 

around the Azores archipelago (Figs 3; 4 and 5). 

4- SEM photos, soft-parts drawers and digital collection records database. 

 

 

 

DONATIONS OF THE COLLECTIONS 

 

Part of the material will be donated for other Institutions/Museums, and new 

reference numbers (for this secondary collection) will be proposed: 

 

1º - Ostracoda Collection (Recente and Fossil) – paratypes – Natural History Museum, 

London; to Dr. Giles Muller. 

2º - Ostracoda Collection (Recent and fossil) – partypes - Zoological Institute and 

Museum, University of Hamburg, Germany; to Dr. Dietmar Keyser. 

3º - Ostracoda Collection (fossil) – paratypes - Dipartimento di Scienze Geologiche, 

Università Roma Tre, Italy; to Dra. Elsa Gliozzi. 

4º - Ostracoda Collection (Recent and fossil) – paratypes – Universidade de Lisboa, 

Portugal; to Dra. Ana Cristina Cabral. 
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TABLE 1. CHECKLIST OF THE RECENT MARINE BRYOZOANS OF THE AZORES ARCHIPELAGO * 

 

PHYLUM BRYOZOA 

CLASS GYMNOLAEMATA ALLMAN, 1856 

 
Geographical Distribution Bathymetry (m) References 

ORDER CHEILOSTOMATA BUSK, 1852    

SUPERFAMILY AETEOIDEA    

Family Aeteidae Smitt, 1868    

Genus Aetea Lamouroux, 1812    

Aetea anguina (Linnaeus, 1758) Azores 5 – 6 m Jullien & Calvet, 1903 

Aetea truncata (Landsborough, 1852) Azores - Jullien & Calvet, 1903 

Aetea sica (Couch, 1844) Azores - Jullien & Calvet, 1903 

SUPERFAMILY CALLOPOROIDEA    

Family Calloporidae Norman, 1903    

Genus Aplousina Canu & Bassler, 1927    

Aplousina capriensis (Waters, 1898) Azores - 
Meireles & Gordon, 
2013 (unpublished) 

Aplousina filum (Jullien & Calvet, 1903) Azores 130 m Jullien & Calvet, 1903 

Genus Amphiblestrum Gray, 1848    
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Amphiblestrum auritum (Hincks, 1877) Azores 130 m Jullien & Calvet, 1903 

Family Chaperiidae Jullien, 1888    

Genus Chaperiopsis Uttley, 1949    

Chaperiopsis hirsuta Reverter, Souto & Pulpeiro, 2009 Azores - 

Meireles & Gordon, 

2013 (unpublished) 

Chaperiopsis annulus (Manzoni, 1870) Azores - Jullien & Calvet, 1903 

Family Farciminariidae Busk, 1852    

Genus Farciminellum Harmer, 1926    

Farciminellum alice (Jullien & Calvet, 1903) Azores 578 – 3293 m Calvet, 1931 

SUPERFAMILY FLUSTROIDEA    

Family Flustridae Fleming, 1828    

Genus Gregarinidra Barroso, 1949    

Gregarinidra gregaria (Heller, 1867) Azores - 
Meireles & Gordon, 

2013 (unpublished) 

Genus Columnella Levinsen, 1914    

Columnella magna (Busk, 1884) Azores and Argentina 1240 – 1732 m Calvet, 1931 

SUPERFAMILY BUGULOIDEA    

Family Bugulidae Gray, 1848    

Genus Bugula Oken, 1815    

Bugula dentata (Lamouroux, 1816) Azores - 
Meireles & Gordon, 
2013 (unpublished) 

Bugula neritina Linnaeus, 1758 Azores - 
Meireles & Gordon, 

2013 (unpublished) 

Bugula simplex Hincks, 1886 Azores - Tempera et al., 2010 
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Bugula stolonifera Ryland, 1960 Azores - Tempera et al., 2010 

Genus Bicellariella Levinsen, 1909    

Bicellariella ciliata (Linnaeus, 1758) Azores - 
Meireles & Gordon, 

2013 (unpublished) 

Bicellariella sp. ? Azores 845 – 2460 m Calvet, 1931 

Family Beaniidae Canu & Bassler, 1927    

Genus Beania Johnston, 1840    

Beania cylindrica (Hincks, 1886) Azores - 
Meireles & Gordon, 
2013 (unpublished) 

Beania mirabilis Johnston, 1840 Azores 130 m Jullien & Calvet, 1903 

Family Candidae d'Orbigny, 1851    

Genus Scrupocellaria van Beneden, 1845    

Scrupocellaria maderensis Busk, 1860 Azores - 
Meireles & Gordon, 

2013 (unpublished) 

Scrupocellaria incurvata Waters, 1896 Azores - 
Meireles & Gordon, 
2013 (unpublished) 

Scrupocellaria scrupea Busk, 1852 

Azores, Belgian coast, British Isles, Portugal 

(WORMS, 2013) 130 m Tempera et al., 2010 

Scrupocellaria hirsuta Jullien & Calvet, 1903 Azores 27 - 130 m Calvet, 1931 

Scrupocellaria scruposa (Linnaeus, 1758) Azores and Cape Verde 52 – 550 m Calvet, 1931 

Scrupocellaria reptans (Linnaeus, 1758) Azores 27 m Calvet, 1931 

Genus Notoplites Harmer, 1923    

Notoplites marsupiatus (Jullien, 1882) Azores and NW Spain 65 – 1250 m Calvet, 1931 

Genus Caberea Lamouroux, 1816    

Caberea boryi (Audouin, 1826) Azores 130 m 
Meireles & Gordon, 

2013 (unpublished) 
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SUPERFAMILY MICROPOROIDEA    

Family Microporidae Gray, 1848    

Genus Micropora Gray, 1848    

Micropora coriacea (Johnston, 1847) Azores 130 m Jullien & Calvet, 1903 

SUPERFAMILY CELLARIOIDEA    

Family Cellariidae Fleming, 1828    

Genus Cellaria Ellis & Solander, 1786    

Cellaria salicornioides Lamouroux, 1816 Azores  
Meireles & Gordon, 

2013 (unpublished) 

Cellaria gracilis (Busk, 1852) Azores (Princess Alice seamount) 200 m Calvet, 1931 

Cellaria biseriata Maplestone, 1900 Azores; cap. Blane and Sargasses sea 1732 - 3530 m  Calvet, 1931 

SUPERFAMILY CRIBRILINOIDEA    

Family Cribrilinidae Hincks, 1879    

Genus Puellina Jullien, 1886    

Puellina bathyalis (Harmelin & Aristegui, 1988) Azores, Canary 220 – 900 m 
Harmelin & Aristegui, 

1988 

Puellina orientalis azorensis (Harmelin, 1988) Azores, Canary 10 – 300 m Harmelin, 1988 

Puellina orientalis lusitanica (Harmelin, 1988) Azores, Portugal, Mediterranean, Gibraltar 205 – 690 m Harmelin, 1988 

Puellina radiata (Moll, 1803) 

Azores, Madeira, Canarias; Atlantic oriental 
(France, Spain, Maroc), Mediterranean, Tristan 

da Cunha, Florida and Pacific (Australia, 

China, Philippines, Bornèo, etc.) 

98 – 930 m Calvet, 1931 

Puellina sp. 1 Azores  
Meireles & Gordon, 

2013 (unpublished) 

Genus Membraniporella Smitt, 1873    

Membraniporella alice Jullien, 1903 Azores 130 m Jullien & Calvet, 1903 
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Membraniporella neptuni Jullien, 1903 Azores 130 m Jullien & Calvet, 1903 

Genus Figularia Jullien, 1886    

Figularia figularis (Johnston, 1847) Azores 130 m Jullien & Calvet, 1903 

SUPERFAMILY LEPRALIELLOIDEA (UMBONULOIDEA)    

Family Umbonulidae Canu, 1904    

Genus Umbonula Hincks, 1880    

Umbonula verrucosa (Esper, 1790) Azores 5 – 318 m 
Jullien & Calvet, 1903 
/ Tempera et al., 2010 

Family Bryocryptellidae Vigneaux, 1949    

Genus Porella Gray, 1848    

Porella belli (Dawson, 1859) Azores 1165 m Calvet, 1931 

Genus Palmiskenea Bishop & Hayward, 1989    

Palmiskenea skenei (Ellis & Solander, 1786) Azores 736 m Jullien & Calvet, 1903 

Family Romancheinidae Jullien, 1888    

Genus Escharella Gray, 1848    

Escharella laqueata (Norman, 1864) Azores 1165 m Calvet, 1931 

Family Tessaradomidae Jullien, 1903    

Genus Tessaradoma Norman, 1869    

Tessaradoma boreale (Busk, 1860) Azores; coast of Bretagne. 224 – 1600 m 

Calvet, 1931 / 

Meireles & Gordon, 

2013 (unpublished) 

SUPERFAMILY SMITTINOIDEA    

Family Smittinidae Levinsen, 1909    
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Genus Smittina Norman, 1903    

Smittina ensifera Jullien & Calvet, 1903 Azores 130 m Jullien & Calvet, 1903 

Genus Smittoidea Osburn, 1952    

Smittoidea avicularia (Calvet, 1907) Azores 349 – 1360 m 
Meireles & Gordon, 

2013 (unpublished) 

Smittoidea azorensis (Jullien, 1903) Azores; Princess Alice seamount 200 – 1250 m Calvet, 1931 

Smittoidea ophidiana (Waters, 1878) Azores and Canarias 69 – 540 m Calvet, 1931 

Family Bitectiporidae MacGillivray, 1895    

Genus Metroperiella Canu & Bassler, 1917    

Metroperiella lepralioides (Calvet, 1903) Azores 130 m Jullien & Calvet, 1903 

Genus Schizomavella Canu & Bassler, 1917    

Schizomavella cuspidata (Hincks, 1880) Azores  
Meireles & Gordon, 

2013 (unpublished) 

Schizomavella auriculata (Hassall, 1842) Azores 95 – 130 m Jullien & Calvet, 1903 

Schizomavella triaviculata (Calvet, 1903) Azores 98 – 550 m 

Calvet, 1931 / 

Meireles & Gordon, 
2013 (unpublished) 

Schizomavella neptuni (Jullien, 1883)    

Family Lanceoporidae Harmer, 1957    

Genus Stephanotheca Reverter, Souto & Pulpeiro, 2012    

Stephanotheca richardi (Calvet, 1903) Azores 130 m Jullien & Calvet, 1903 

Stephanotheca fayalensis (Calvet in Jullien & Calvet, 1903) Azores 130 m Jullien & Calvet, 1903 

Family Watersiporidae Vigneaux, 1949    

Genus Watersipora Neviani, 1896    
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Watersipora complanata (Norman, 1864) Azores  
Meireles & Gordon, 

2013 (unpublished) 

Watersipora subtorquata (d'Orbigny, 1852) Azores Tidal - 130 – 318 m 

Jullien & Calvet, 1903 

/ Meireles & Gordon, 

2013 (unpublished) 

Watersipora cucullata (Busk, 1854) Azores; Gibraltar; Cape Verde 0 – 219 m Calvet, 1931 

SUPERFAMILY SCHIZOPORELLOIDEA    

Family Schizoporellidae Jullien, 1883    

Genus Schizoporella Hincks, 1877    

Schizoporella dunkeri (Reuss,1848) Azores  Tempera et al., 2010 

Schizoporella guttata Jullien & Calvet, 1903 Azores 130 m Jullien & Calvet, 1903 

Schizoporella jullieni Jullien & Calvet, 1903 Azores 130 m Jullien & Calvet, 1903 

Family Escharinidae Tilbrook, 2006    

Genus Escharina Milne Edwards, 1836    

Escharina vulgaris (Moll, 1803) Azores 130 m 
Meireles & Gordon, 

2013 (unpublished) 

Escharina protecta Zabala, Maluquer, Harmelin, 1993 
Azores, Madeira, Mediterranean, Red Sea, 

?Pacific Ocean 
6 – 130 m 

Zabala, Maluquer, 
Harmelin, 1993 

Family Microporellidae Hincks, 1879    

Genus Microporella Hincks, 1877    

Microporella ciliata (Pallas, 1766) Azores 130 m Jullien & Calvet, 1903 

Microporella hastigera (Busk, 1884) Azores 130 m Jullien & Calvet, 1903 

Family Calwelliidae MacGillivray, 1887    

Genus Ichthyaria Busk, 1884    

Ichthyaria grimaldii Jullien & Calvet, 1903 Azores 318 – 1300 m Jullien & Calvet, 1903 
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Ichthyaria picoensis Jullien & Calvet, 1903 Azores 736 m Jullien & Calvet, 1903 

Family Jaculinidae Zabala, 1986    

Genus Jaculina Jullien in Jullien & Calvet, 1903    

Jaculina blanchardi Jullien & Calvet, 1903 Azores 318 m Jullien & Calvet, 1903 

Jaculina dichotoma Calvet, 1931 Azores 1250 m Calvet, 1931 

SUPERFAMILY CELLEPOROIDEA    

Family Celleporidae Johnston, 1838    

Genus Buffonellaria Canu & Bassler, 1927    

Buffonellaria acorensis Berning & Kuklinski, 2008 Azores 135 – 230 m 
Berning & Kuklinski, 

2008 

Buffonellaria nebulosa (Jullien & Calvet, 1903) Azores 130 – 318 m Jullien & Calvet, 1903 

Genus Buskea Heller, 1867    

Buskea dichotoma (Hincks, 1862) Azores; Canaries; Coast of Bretagne 98 - 2170 m Calvet, 1931 

Genus Celleporina Gray, 1848    

Celleporina decipiens Hayward, 1976 Azores  
Meireles & Gordon, 
2013 (unpublished) 

Celleporina hassallii (Johnston, 1847) Azores  
Meireles & Gordon, 

2013 (unpublished) 

Celleporina costazii (Audouin, 1826) Azores 0 - 550 m Calvet, 1931 

Genus Galeopsis Jullien, 1903    

Galeopsis pentagonus (d'Orbigny, 1842) Azores 130 m Jullien & Calvet, 1903 

Galeopsis rabidus Jullien, 1903 Azores 318 – 736 m Jullien & Calvet, 1903 

Genus Lagenipora Hincks, 1877    

Lagenipora polita Jullien, 1903 Azores 318 m Jullien & Calvet, 1903 
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Lagenipora socialis Hincks, 1877 Azores 130 m Jullien & Calvet, 1903 

Genus Osthimosia Jullien, 1888    

Osthimosia parvula Jullien, 1903 Azores 845 - 1250 m Calvet, 1931 

Genus Omalosecosa Canu & Bassler, 1925    

Omalosecosa ramulosa (Linnaeus, 1767) Azores  Jullien & Calvet, 1903 

Family Phidoloporidae Gabb & Horn, 1862    

Genus Stephanollona Duvergier, 1921    

Stephanollona armata (Hincks, 1862) Azores  
Meireles & Gordon, 

2013 (unpublished) 

Genus Schizotheca Hincks, 1877    

Schizotheca carmenae Reverter-Gil & Pulpeiro, 2007 Azores and SW Portugal (Sagres) 45 – 148 m 
Reverter & Pulpeiro, 

2007 

Genus Reteporella Busk, 1884    

Reteporella septentrionalis (Harmer, 1933) Azores 20 – 1300 m Jullien & Calvet, 1903 

Reteporella oceanica (Jullien & Calvet, 1903) Azores 318 - 1300 m 
Jullien & Calvet, 1903 

/ Calvet 1931 

Reteporella gracilis (Jullien & Calvet, 1903) Azores 523 – 845 m 
Jullien & Calvet, 1903 

/ Calvet 1931 

Reteporella tristis (Jullien & Calvet, 1903) Azores 200 – 349 m 
Jullien & Calvet, 1903 

/ Calvet 1931 

Reteporella rara (Jullien & Calvet, 1903) Azores 318 m Jullien & Calvet, 1903 

Reteporella producta (Busk, 1884) Azores 318 m Jullien & Calvet, 1903 

Reteporella dichotoma (Hincks, 1878) Azores 318 m Jullien & Calvet, 1903 

Reteporella sp. Azores  Jullien & Calvet, 1903 

Reteporella sp. 1 Azores  
Meireles & Gordon, 

2013 (unpublished) 

SUPERFAMILY ADEONOIDEA    
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Genus Reptadeonella Busk, 1884    

Reptadeonella violacea (Johnston, 1847) Azores  
Meireles & Gordon, 
2013 (unpublished) 

Reptadeonella insidiosa (Jullien, 1903) 
Azores; Cape Verde, Morroco, Guernesey, 

Hasting, Gulf of Gascogne 
52 – 219 m Calvet, 1931 

Genus Adeonellopsis MacGillivray, 1886    

Adeonellopsis distoma (Busk, 1858) 
Azores; Madeira, Canaries, western 

Mediterranean and Indian Ocean 
98 – 1262 m Calvet, 1931 

SUPERFAMILY HIPPOTHOOIDEA    

Family Hippothoidae Busk, 1859    

Genus Hippothoa Lamouroux, 1821    

Hippothoa divaricata Lamouroux, 1821 Azores 130 m Jullien & Calvet, 1903 

Hippothoa flagellum Manzoni, 1870 Azores 130 m Jullien & Calvet, 1903 

Hippothoa amoena Jullien & Calvet, 1903 Azores 130 - 318 m Jullien & Calvet, 1903 

Family Chorizoporidae Vigneaux, 1949    

Genus Chorizopora Hincks, 1879    

Chorizopora brongniartii (Audouin, 1826) Azores 130 – 1300 m 
Meireles & Gordon, 
2013 (unpublished) 

Family Trypostegidae Gordon, Tilbrook & Winston in Winston, 2005    

Genus Trypostega Levinsen, 1909    

Trypostega papillata (Busk, 1859) Azores  Jullien & Calvet, 1903 

Trypostega amaena Jullien, 1903 Azores  Jullien & Calvet, 1903 

Family Haplopomidae Gordon in De Blauwe, 2009    

Genus Haplopoma Levinsen, 1909    

Haplopoma bimucronatum (Moll, 1803) Azores  
Meireles & Gordon, 

2013 (unpublished) 
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SUPERFAMILY SCHIZOPORELLOIDEA    

Family Escharinidae Tilbrook, 2006    

Genus Herentia Gray, 1848     

Herentia hyndmanni (Johnston, 1847) Azores 120 – 130 m Jullien & Calvet, 1903 

Family Lacernidae Jullien, 1888    

Genus Nimba Jullien & Calvet, 1903    

Nimba praetexta Jullien & Calvet, 1903 Azores 130 – 318 m Jullien & Calvet, 1903 

Genus Nimbella Jullien & Calvet, 1903    

Nimbella limbata Jullien & Calvet, 1903 Azores 120 m Jullien & Calvet, 1903 

    

    

ORDER CTENOSTOMATA BUSK, 1852    

SUPERFAMILY ALCYONIDIOIDEA    

Family Pherusellidae Osburn & Soule, 1953    

Genus Pherusella Soule, 1951    

Pherusella tubulosa (Solander, 1786) 
Mediterranean, Atlantic Ocean (Dominique, 

Brazil, Azores, Cape verde) and Chile 
91 – 318 m Calvet, 1931 

SUPERFAMILY VESICULARIOIDEA    

Family Vesiculariidae Hincks, 1880    

Genus Amathia Lamouroux, 1812    

Amathia lendigera (Linnaeus, 1758) Azores 5 – 6 m Jullien & Calvet, 1903 

Genus Bowerbankia Farre, 1837    
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Bowerbankia pusilla Jullien & Calvet, 1903 Azores  Jullien & Calvet, 1903 

Genus Zoobotryon Ehrenberg, 1831    

Zoobotryon verticillatum (Delle Chiaje, 1822) Azores  Tempera et al., 2010 

    

    

ORDER CYCLOSTOMATA BUSK, 1852    

SUBORDER TUBULIPORINA    

Family Annectocymidae Hayward & Ryland, 1985    

Genus Annectocyma Hayward & Ryland, 1985    

Annectocyma major (Johnston, 1847) Azores 130 m Jullien & Calvet, 1903 

Genus Entalophoroecia Harmelin, 1976    

Entalophoroecia crisioides (Calvet in Jullien & Calvet, 1903) Azores 130 m Jullien & Calvet, 1903 

Entalophoroecia deflexa (Couch, 1842) Azores  Jullien & Calvet, 1903 

Family Terviidae Canu & Bassler, 1920    

Genus Tervia Jullien, 1883    

Tervia irregularis (Meneghini, 1844) Azores 318 m Jullien & Calvet, 1903 

Family Tubuliporidae Johnston, 1838    

Genus Idmidronea Canu & Bassler, 1920    

Idmidronea atlantica (Forbes in Johnston, 1847) Azores 5 - 318 m Jullien & Calvet, 1903 

Idmidronea contorta (Busk, 1875) Azores 95 m Jullien & Calvet, 1903 

Genus Tubulipora Lamarck, 1816    
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Tubulipora notomala (Busk, 1875) Azores  Jullien & Calvet, 1903 

Tubulipora liliacea (Pallas, 1766) Azores  Jullien & Calvet, 1903 

Family Plagioeciidae Canu, 1918    

Genus Diplosolen Canu, 1918    

Diplosolen grimaldii Jullien & Calvet, 1903 Azores  Jullien & Calvet, 1903 

Family Mecynoeciidae Canu, 1918    

Genus Mecynoecia Canu, 1918    

Mecynoecia idmoneoides Calvet, 1903 Azores 318 – 736 m Jullien & Calvet, 1903 

Mecynoecia sp. Azores 454 m Jullien & Calvet, 1903 

SUBORDER CANCELLATA    

Family Horneridae Gregory, 1899    

Genus Hornera Lamouroux, 1821    

Hornera canui Calvet, 1911 Azores 880 - 1385 m Calvet, 1931 

Family Lichenoporidae Smitt, 1867    

Genus Disporella Gray, 1848    

Disporella novaehollandiae (d'Orbigny, 1853) Azores  Jullien & Calvet, 1903 

Disporella picoensis (Calvet in Jullien & Calvet, 1903) Azores  Jullien & Calvet, 1903 

Disporella fimbriata (Busk, 1875) 
Antartic and subantartic Atlantic to Pacific; 

Azores, Cape Verde, Cile and Gulf of 

Gascogne 

52 – 219 m Calvet, 1931 

SUBORDER ARTICULINA    

Family Crisiidae Johnston, 1838    
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Genus Crisia Lamouroux, 1812    

Crisia eburnea (Linnaeus, 1758) Azores 736 m 
Meireles & Gordon, 
2013 (unpublished) 

Crisia denticulata (Lamarck, 1816) Azores tidal Jullien & Calvet, 1903 

Crisia ramosa Harmer, 1891 Azores, Mediterranean, Monaco 27 – 69 m Calvet, 1931 

Family Crisinidae d'Orbigny, 1853    

Genus Biidmonea Calvet, 1903    

Biidmonea fayalensis Calvet in Jullien & Calvet, 1903 ? ? ? 

    

 

* This checklist was development during a technical visit to Dr. Dennis Gordon (NIWA- National Institute of Water & Atmospheric Research, 

Wellington, New Zealand [February-July 2013]) and contains unpublished data. This table will submit to publish in a scientific journal. 
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TABLE 2. CHECKLIST OF THE RECENT AND FOSSIL MARINE OSTRACODA OF THE AZORES ARCHIPELAGO 
†
 

 

 

CLASS OSTRACODA LATREILLE, 1802 

 

 
Geographical Distribution Bathymetry (m) References 

ORDER PODOCOPIDA MÜLLER, 1894    

Family Bairdiidae Sars, 1888    

Genus Neonesidea Maddocks, 1969    

Neonesidea longisetosa (Brady 1902) Azores; Carribbean; Florida 1 and 85 m Meireles et al., 2013 

Neonesidea sp. 1 Azores 249 - 371 m 
Meireles 

(unpublished) 

Family Leptocytheridae Hanai, 1957    

Genus Leptocythere Müller, 1927    

Leptocythere pellucida (Baird, 1850). 
Azores; North Sea, Atlantic Coast of 

France and Britain, southern Norway and 

the western Baltic 

1 to 50 m Meireles et al., 2013 

Genus Callistocythere Ruggieri, 1953    

Callistocythere insularis n. sp. Azores 1 to 23 m Meireles et al., 2013 

Family Cytherideidae Sars, 1925    
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Genus Cyprideis Jones, 1856    

Cyprideis torosa (Jones, 1850) 
Azores; Widespread throughout Europe 

and as far north as Iceland, W and Central 

Asia, and N Africa.Also found in lakes in 

Central Africa. 

freshwater to littoral Meireles et al., 2013 

Family Trachyleberididae Sylvester-Bradley, 1948    

Genus Carinocythereis Ruggieri, 1956    

Carinocythereis whitei (Baird, 1850) Azores; British Isles, the Atlantic coast of 

France and the Mediterranean 
1 to 20 m Meireles et al., 2013 

Family Hemicytheridae Puri, 1953    

Genus Aurila Porkorný, 1955    

Aurila convexa (Baird, 1850) Azores; North Sea, France, Portugal, the 

Mediterranean and Britain 
1 to 54 m Meireles et al., 2013 

Aurila woutersi Horne, 1986 Azores; Southern British Isles 1 to 20 m Meireles et al., 2013 

Aurila prasina Barbeito-Gonzalez, 197 Azores; Lecce and S. Maria di Leuca, in 

Adriatic Sea and in Naxos, Greece 
1 to 20 m Meireles et al., 2013 

Genus Heterocythereis Elofson, 1941    

Heterocythereis albomaculata (Baird, 1938) Azores; North Sea and Atlantic 1 to 20 m Meireles et al., 2013 

Genus Urocythereis Ruggieri, 1950    

Urocythereis britannica Athersuch, 1977 Azores; Atlantic, the North Sea and 

probably in the Mediterranean 
1 to 69 m Meireles et al., 2013 

Family Loxoconchidae Sars, 1925    

Genus Loxoconcha Sars, 1866    

Loxoconcha rhomboidea (Fischer, 1855) 
Azores; Europe, from N Norway to 

Madeira and Canary Islands, off N 

Africa. Mediterranean 

1 to 70 m Meireles et al., 2013 
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Loxoconcha cf. ochlockoneensis Puri, 1960 
Azores; West coast of Florida and the 

Bermudas 
1 to 20 m Meireles et al., 2013 

Family Cytheruridae Müller, 1894    

Genus Semicytherura Wagner, 1957    

Semicytherura brandoni n. sp. Azores littoral Meireles et al., 2013 

Semicytherura cf. cornuta (Brady, 1868) Azores; Atlantic coast of France and S 

Norway 
littoral (~18 m) Meireles et al., 2013 

Family Xestoleberididae Sars, 1928    

Genus Xestoleberis Sars, 1866    

Xestoleberis rubens Whittaker, 1978 Azores; North Sea and the Atlantic coast 

of France 
1 to 45 m Meireles et al., 2013 

Xestoleberis cf. depressa Sars, 1866 Azores; North Sea, Scandinavia and also 

in the Western part of the Baltic 
littoral Meireles et al., 2013 

Xestoleberis sp. Azores littoral Meireles et al., 2013 

Family Bythocytheridae Sars, 1866    

Genus Sclerochilus Sars, 1866    

Sclerochilus hicksi Athersuch & Horne 1987 Azores; N Atlantic, Mediterranean littoral Meireles et al., 2013 

Family Paradoxostomatidae Brady & Norman, 1889    

Genus Lanceostoma Schornikov & Keyser, 2004    

Lanceostoma simplex n. sp Azores 1 to 20 m Meireles et al., 2013 

ORDER MYODOCOPIDA SARS, 1866    

Family Cylindroleberididae Müller, 1906    
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Genus Cylindroleberis Brady, 1867    

Cylindroleberis sp. Azores littoral Meireles et al., 2013 

    

    

FOSSILS 
   

ORDER PODOCOPIDA MÜLLER, 1894 
   

Family Xestoleberididae Sars, 1928 
   

Genus Xestoleberis Sars, 1866 
   

Xestoleberis cf. paisi Nascimento, 1989 
  Meireles et al., 2012 

Family Loxoconchidae Sars, 1925 
   

Genus Loxoconcha Sars, 1866 
   

Loxoconcha stellifera Müeller, 1894 
  Meireles et al., 2012 

Loxoconcha rhomboidea (Fischer, 1855)   Meireles et al., 2012 

Family Leptocytheridae Hanai, 1957 
   

Genus Callistocythere Ruggieri, 1953 
   

Callistocythere oertlii Nascimento, 1989 
  Meireles et al., 2012 
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Genus Leptocythere Sars, 1922 
   

Leptocythere azorica Meireles & Faranda, 2012 
  Meireles et al., 2012 

Family Hemicytheridae Puri, 1953 
   

Genus Pachycaudites Uliczny, 1969 
   

Pachycaudites cf. armilla Ciampo, 1986 
  Meireles et al., 2012 

Genus Dameriacella Liebau, 1991    

Dameriacella cf. dameriacensis (Keij, 1958)   
Meireles et al., 2012 

Genus Aurila Pokorný, 1955 
   

Aurila sp. 
  Meireles et al., 2012 

Genus Quadracythere Hornibrook, 1952 
   

?Quadracythere sp. 
  Meireles et al., 2012 

Genus Heliocythere Bonaduce, Ruggieri, Russo, 1988 
   

Heliocythere magnei (Keij, 1953) 
  Meireles et al., 2012 

Family Bairdiidae Sars, 1888 
   

Genus Neonesidea Maddocks, 1969 
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Neonesidea rochae Nascimento, 1989 
  Meireles et al., 2012 

Family Candonidae Kaufmann, 1900 
   

Genus Paracypris Sars, 1866 
   

Paracypris sp. 
  Meireles et al., 2012 

Family Cytherideidae Sars, 1925 
   

Genus Cyamocytheridea Oertli, 1956 
   

Cyamocytheridea sp. 
  Meireles et al., 2012 

 

†
 This table uses published and unplublished data, and is restricted to benthic species. 
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TABLE 3. THE BRYOZOA (FOSSIL AND RECENT) COLLECTION OF THE DBUA (Department of Biology of the University of the 

Azores). 

 

BRYOZOA COLLECTION 
 

Curator: Ricardo Piazza Meireles 

Prefix Species Family Location Deep (m) Sample 

DB/BRY 0001 Scrupocellaria sp. 1  Candidae d'Orbigny, 1851 Faial Island -30 PAM 0041 

DB/BRY 0002 Scrupocellaria maderensis Busk, 1860  Candidae d'Orbigny, 1851 Faial Island -30 PAM 0041 

DB/BRY 0003 Reteporella mediterranea  Phidoloporidae Gabb & Horn, 1862 Faial Island -30 PAM 0041 

DB/BRY 0004 Crisia eburnea  Crisiidae Johnston, 1838 Faial Island -30 PAM 0041 

DB/BRY 0005 #  Tubuliporidae Johnston, 1838 Faial Island -30 PAM 0041 

DB/BRY 0006 Celleporina hassallii (Johnston, 1847) Celleporidae Johnston, 1838 Faial Island -30 PAM 0041 

DB/BRY 0007 Schizomavella cuspidata (Hincks, 1880)  Bitectiporidae MacGillivray, 1895 Faial Island -30 PAM 0041 

DB/BRY 0008 Watersipora subovoidea (d'Orbigny, 1852)  Watersiporidae Vigneaux, 1949 Faial Island -30 PAM 0041 

DB/BRY 0009 Gen. and sp. indet 5  # Faial Island -30 PAM 0041 

DB/BRY 0010 Gen. and sp. indet 2  # Faial Island -30 PAM 0041 

DB/BRY 0011 Beania cylindrica (Hincks, 1886) Beaniidae Canu & Bassler, 1927 Flores Island -3 PAM 0002 

DB/BRY 0012 Watersipora subtorquata (d'Orbigny, 1852) Watersiporidae Vigneaux, 1949 São Miguel Island -10 PAM 0014 

DB/BRY 0013 Gen. and sp. indet 4  # Graciosa Island 0 PAM 0022 
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DB/BRY 0014 Caberea boryi (Audouin, 1826) Candidae d'Orbigny, 1851 São Miguel Island 0 PAM 0020 

DB/BRY 0015 Escharina vulgaris (Moll, 1803) Escharinidae Tilbrook, 2006 Pico Island -46 PAM 0042 

DB/BRY 0016 Gen. and sp. indet 8  # Faial Island -30 PAM 0046 

DB/BRY 0017 Caberea boryi (Audouin, 1826) Candidae d'Orbigny, 1851 São Miguel Island -20 PAM 0047 

DB/BRY 0018 Chorizopora brongniartii (Audouin, 1826)  Chorizoporidae Vigneaux, 1949 Faial Island -30 PAM 0054 

DB/BRY 0019 Bicellariella ciliata (Linnaeus, 1758)  Bugulidae Gray, 1848 São Miguel Island -10 
DOP-3896-

BRY 

DB/BRY 0020 Stephanollona armata (Hincks, 1862)  Phidoloporidae Gabb & Horn, 1862 Faial Island -20 
DOP-3900-

BRY 

DB/BRY 0021 Bugula dentata (Lamouroux, 1816) Bugulidae Gray, 1848 Corvo Island mergulho 
DOP-3901-

BRY 

DB/BRY 0022 Gregarinidra gregaria (Heller, 1867) Flustridae Fleming, 1828 Faial Island -10 / -20 
DOP-3955-

BRY 

DB/BRY 0023 Reptadeonella violacea (Johnston, 1847) Adeonidae Busk, 1884 Faial Island -5 / -10 
DOP-3959-

BRY 

DB/BRY 0024 # Tubuliporidae Johnston, 1838 Faial Island -10 / -15 
DOP-3960-

BRY 

DB/BRY 0025 Watersipora complanata (Norman, 1864)  Watersiporidae Vigneaux, 1949 Formigas Islet -10 
DOP-3992-

BRY 

DB/BRY 0026 Watersipora complanata (Norman, 1864)  Watersiporidae Vigneaux, 1949 Flores Island -10 / -15 
DOP-4003-

BRY 

DB/BRY 0027 # # Faial Island -5 / -10 
DOP-4011-

BRY 

DB/BRY 0028 Cellaria salicornioides Lamouroux, 1816 Cellariidae Fleming, 1828 Formigas Islet # 
DOP-4013-

BRY 

DB/BRY 0029 
Schizomavella triaviculata (Jullien & Calvet, 

1903) 
Bitectiporidae MacGillivray, 1895 Açores Seamount -219 / -329 E-1713-BRY 

DB/BRY 0030 
Schizomavella triaviculata (Jullien & Calvet, 

1903) 
Bitectiporidae MacGillivray, 1895 Pico Island -200 E-2035-BRY 

DB/BRY 0031 Anthoathecata Stylasteridae 
Princesa Alice 

Seamount 
-238 E-1679-BRY 

DB/BRY 0032 Adeonellopsis distoma (Busk, 1858)  Adeonidae Busk, 1884 Azores archipelago # E-2469-BRY 
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DB/BRY 0033 Spiralaria cf. florea Flustridae Fleming, 1828 
Rainbow 

(hydrothermal field) 
# E-2500-BRY 

DB/BRY 0034 Escharina vulgaris (Moll, 1803)  Escharinidae Tilbrook, 2006 Faial Island -10 
DOP-3948-

BRY 

DB/BRY 0035 
Puellina sp. 

Cribrilinidae Hincks, 1879 Santa Maria Island outcrop # 

DB/BRY 0036 Escharina sp. Escharinidae Tilbrook, 2006 Santa Maria Island outcrop # 

DB/BRY 0037 Onychocella sp. Onychocellidae Jullien, 1882 Santa Maria Island outcrop # 

DB/BRY 0038 Schizotheca sp. Phidoloporidae Gabb & Horn, 1862 Santa Maria Island outcrop # 

DB/BRY 0039 Cribrilina sp. Cribrilinidae Hincks, 1879 Santa Maria Island outcrop # 

DB/BRY 0040 Cryptosula sp. Cryptosulidae Vigneaux, 1949 Santa Maria Island outcrop # 

DB/BRY 0041 Escharina sp. Escharinidae Tilbrook, 2006 Santa Maria Island outcrop # 

DB/BRY 0042 # # Santa Maria Island outcrop # 

DB/BRY 0043 # # Santa Maria Island outcrop # 

DB/BRY 0044 # # Santa Maria Island outcrop # 

DB/BRY 0045 # # Santa Maria Island outcrop # 

DB/BRY 0046 # # Santa Maria Island outcrop DBUA-F 911 

DB/BRY 0047 # # Santa Maria Island outcrop DBUA-F 494 

DB/BRY 0048 # # Santa Maria Island outcrop # 

DB/BRY 0049 # # Santa Maria Island outcrop # 

DB/BRY 0050 # # Santa Maria Island outcrop # 

DB/BRY 0051 # # Santa Maria Island outcrop # 

DB/BRY 0052 # # Santa Maria Island outcrop # 
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DB/BRY 0053 # # Santa Maria Island outcrop # 

DB/BRY 0054 # # Santa Maria Island outcrop # 

DB/BRY 0055 # # Santa Maria Island outcrop MP 0001 

DB/BRY 0056 # # Santa Maria Island outcrop MP 0001 

DB/BRY 0057 # # Santa Maria Island outcrop MP 0007 

DB/BRY 0058 # # Santa Maria Island outcrop MP 0007 

DB/BRY 0059 # # Santa Maria Island outcrop MP 0009 

DB/BRY 0060 # # Santa Maria Island outcrop MP 0009 

DB/BRY 0061 # # Santa Maria Island outcrop MP 0009 

DB/BRY 0062 # # Santa Maria Island outcrop MP 0009 

DB/BRY 0063 # # Santa Maria Island outcrop MP 0009 

DB/BRY 0064 # # Santa Maria Island outcrop MP 0018 

DB/BRY 0065 # # Santa Maria Island outcrop MP 0018 

DB/BRY 0066 # # Santa Maria Island outcrop MP 0018 

DB/BRY 0067 # # Santa Maria Island outcrop MP 0018 

DB/BRY 0068 Tessaradoma boreale (Busk, 1860) Tessaradomidae Jullien, 1903 ? -304 DOP 2861 

DB/BRY 0069 # # Açores Seamount -441 DOP 3272 

DB/BRY 0070 Puellina sp. 1 Cribrilinidae Hincks, 1879 Condor Seamount -400 DOP 3257 

DB/BRY 0071 Aplousina capriensis (Waters, 1898) Calloporidae Norman, 1903 Pico-Faial chanal -130 DOP 974 

DB/BRY 0072 # # Formigas Islet -20 / -30 68a 

DB/BRY 0073 # # Formigas Islet -20 / -30 68b 
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DB/BRY 0074 # # Faial Island -23 47 

DB/BRY 0075 Schizoporella dunkeri Schizoporellidae Jullien, 1883 Faial Island -10 / -12 25 

DB/BRY 0076 # # Faial Island -10 / -12 27 

DB/BRY 0077 # # Santa Maria Island -20 24 

DB/BRY 0078 # # Formigas Islet -30 97 

DB/BRY 0079 Smittoidea avicularia (Calvet, 1907) Smittinidae Levinsen, 1909 São Jorge Island -188? 2701 

DB/BRY 0080 Cellaria salicornioides Lamouroux, 1816 Cellariidae Fleming, 1828 Terceira Island -354? 2918 

DB/BRY 0081 Scrupocellaria maderensis Busk, 1860  Candidae d'Orbigny, 1851 38,524N/-28,585W -457 DOP # 821 

DB/BRY 0082 Celleporina hassallii (Johnston, 1847) Celleporidae Johnston, 1838 Faial Island -30 PAM 0041 

DB/BRY 0083 Celleporina decipiens Hayward, 1976 Celleporidae Johnston, 1839 Flores Island -20 PAM 0002 

DB/BRY 0084 Cellaria salicornioides Lamouroux, 1816 Cellariidae Fleming, 1828 -- -- DOP 3125 

DB/BRY 0085 Escharina vulgaris (Moll, 1803)  Escharinidae Tilbrook, 2006 Pico Island -69 PAM 0055 

DB/BRY 0086 Schizomavella cuspidata (Hincks, 1880)  Bitectiporidae MacGillivray, 1895 Faial Island -30 PAM 0046 

DB/BRY 0087 Schizomavella cuspidata (Hincks, 1880)  Bitectiporidae MacGillivray, 1895 Faial Island -30 PAM 0046 

DB/BRY 0088 Haplopoma bimucronatum (Moll, 1803)  
Haplopomidae Gordon in De Blauwe, 

2009 
Faial Island -30 PAM 0041 

DB/BRY 0089 
Chaperiopsis hirsuta Reverter-Gil, Souto & 

Fernández-Pulpeiro, 2009 
Chaperiidae Jullien, 1888 Faial Island -85 PAM 0043 

DB/BRY 0090 
Chaperiopsis hirsuta Reverter-Gil, Souto & 

Fernández-Pulpeiro, 2009 
Chaperiidae Jullien, 1888 Faial Island -85 PAM 0043 

DB/BRY 0091 Stephanollona armata (Hincks, 1862)  Phidoloporidae Gabb & Horn, 1862 Faial Island -85 PAM 0043 

DB/BRY 0092 Stephanollona armata (Hincks, 1862)  Phidoloporidae Gabb & Horn, 1862 Faial Island -30 PAM 0046 

DB/BRY 0093 Reteporella sp. Phidoloporidae Gabb & Horn, 1862 Açores Seamount -402 DOP # 986 
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DB/BRY 0094 Reteporella sp. Phidoloporidae Gabb & Horn, 1862 -- -- DOP # 79 

DB/BRY 0095 Reteporella sp. Phidoloporidae Gabb & Horn, 1862 Condor Seamount -238 / -243 DOP # 1933 

DB/BRY 0096 Reteporella sp. Phidoloporidae Gabb & Horn, 1862 -- -- DOP # 19 

DB/BRY 0097 Reteporella sp. Phidoloporidae Gabb & Horn, 1862 -- -- DOP # 2607 

DB/BRY 0098 Reteporella sp. Phidoloporidae Gabb & Horn, 1862 Santa Maria Island -25 DOP # 2456 

DB/BRY 0099 Reteporella sp. Phidoloporidae Gabb & Horn, 1862 Mar da prata -278.5 DOP # 2930 

DB/BRY 0100 Reteporella sp. Phidoloporidae Gabb & Horn, 1862 São Miguel Island -67,4 / -768 DOP # 2459 

DB/BRY 0101 Scrupocellaria sp. Candidae d'Orbigny, 1851 -- -- DOP # 1 

DB/BRY 0102 Scrupocellaria sp. Candidae d'Orbigny, 1851 
Princesa Alice 

Seamount 
-238 / -329 DOP # 1681 

DB/BRY 0103 Scrupocellaria sp. Candidae d'Orbigny, 1851 -- -- DOP # 71 

DB/BRY 0104 Scrupocellaria sp. Candidae d'Orbigny, 1851 -- -- DOP # 67 

DB/BRY 0105 Scrupocellaria sp. Candidae d'Orbigny, 1851 -- -- DOP # 5 

DB/BRY 0106 Scrupocellaria sp. Candidae d'Orbigny, 1851 Açores Seamount -307 DOP # 1428 

DB/BRY 0107 Scrupocellaria sp. Candidae d'Orbigny, 1851   DOP # 22 

DB/BRY 0108 Scrupocellaria sp. Candidae d'Orbigny, 1851 38,524N/-28,585W -457 DOP # 821 

DB/BRY 0109 Bugula dentata (Lamouroux, 1816) Bugulidae Gray, 1848 -- -- DOP # 17 

DB/BRY 0110 Bugula neritina (Linnaeus, 1758) Bugulidae Gray, 1848 -- -- DOP # 72 
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TABLE 4. THE OSTRACODA (FOSSIL AND RECENT) COLLECTION OF THE DBUA (Department of Biology of the University of the 

Azores). 

 

OSTRACODA COLLECTION 

 
Curator: Ricardo Piazza Meireles 

Prefix Species Location Deep (m) Sample Habitat 

DB/OS 0001 Loxoconcha cf. ochlockoneensis Pico Island -1 PAM 0001 intertidal 

DB/OS 0002 Loxoconcha cf. ochlockoneensis Pico Island 
-1 PAM 0001 intertidal 

DB/OS 0003 
Loxoconcha cf. ochlockoneensis Pico Island -1 PAM 0001 intertidal 

DB/OS 0004 Loxoconcha cf. ochlockoneensis Pico Island 
-1 PAM 0001 intertidal 

DB/OS 0005 
Loxoconcha cf. ochlockoneensis Pico Island -1 PAM 0001 intertidal 

DB/OS 0006 Xestoleberis rubens Pico Island -1 PAM 0001 intertidal 

DB/OS 0007 Xestoleberis rubens Pico Island -1 PAM 0001 intertidal 

DB/OS 0008 Xestoleberis rubens Pico Island -1 PAM 0001 intertidal 

DB/OS 0009 Xestoleberis rubens Pico Island -1 PAM 0001 intertidal 

DB/OS 0010 Xestoleberis rubens Pico Island -1 PAM 0001 intertidal 

DB/OS 0011 Cyprideis torosa Pico Island -1 PAM 0001 intertidal 

DB/OS 0012 Cyprideis torosa Pico Island -1 PAM 0001 intertidal 
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DB/OS 0013 Cyprideis torosa Pico Island -1 PAM 0001 intertidal 

DB/OS 0014 Cyprideis torosa Pico Island -1 PAM 0001 intertidal 

DB/OS 0015 Cyprideis torosa Pico Island -1 PAM 0001 intertidal 

DB/OS 0016 Urocythereis britannica Terceira Island -1 PAM 0007 intertidal 

DB/OS 0017 Urocythereis britannica Terceira Island -1 PAM 0007 intertidal 

DB/OS 0018 Urocythereis britannica Terceira Island -1 PAM 0007 intertidal 

DB/OS 0019 Urocythereis britannica Terceira Island -1 PAM 0007 intertidal 

DB/OS 0020 Urocythereis britannica Terceira Island -1 PAM 0007 intertidal 

DB/OS 0021 Urocythereis britannica Terceira Island -1 PAM 0007 intertidal 

DB/OS 0022 Urocythereis britannica Terceira Island -1 PAM 0007 intertidal 

DB/OS 0023 Urocythereis britannica Terceira Island -1 PAM 0007 intertidal 

DB/OS 0024 Urocythereis britannica Terceira Island -1 PAM 0007 intertidal 

DB/OS 0025 Urocythereis britannica Terceira Island -1 PAM 0007 intertidal 

DB/OS 0026 Loxoconcha rhomboidea Terceira Island -1 PAM 0007 intertidal 

DB/OS 0027 Loxoconcha rhomboidea Terceira Island -1 PAM 0007 intertidal 

DB/OS 0028 Loxoconcha rhomboidea Terceira Island -1 PAM 0007 intertidal 

DB/OS 0029 Loxoconcha rhomboidea Terceira Island -1 PAM 0007 intertidal 

DB/OS 0030 Loxoconcha rhomboidea Terceira Island -1 PAM 0007 intertidal 

DB/OS 0031 Aurila woutersi Pico Island -54 PAM 0045 inner shelf 

DB/OS 0032 Aurila convexa Terceira Island -1 PAM 0007 intertidal 

DB/OS 0033 Aurila convexa Terceira Island -1 PAM 0007 intertidal 
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DB/OS 0034 Aurila convexa Terceira Island -23 PAM 0004 inner shelf 

DB/OS 0035 Aurila convexa Terceira Island -1 PAM 0007 intertidal 

DB/OS 0036 Heterocythereis albomaculata Terceira Island -1 PAM 0007 intertidal 

DB/OS 0037 Heterocythereis albomaculata Terceira Island -1 PAM 0007 intertidal 

DB/OS 0038 Heterocythereis albomaculata Terceira Island -1 PAM 0007 intertidal 

DB/OS 0039 Aurila prasina Terceira Island -1 PAM 0007 intertidal 

DB/OS 0040 Aurila prasina Terceira Island -1 PAM 0007 intertidal 

DB/OS 0041 Heterocythereis albomaculata Terceira Island -3 PAM 0006 intertidal 

DB/OS 0042 Heterocythereis albomaculata Terceira Island -3 PAM 0006 intertidal 

DB/OS 0043 Heterocythereis albomaculata Terceira Island -3 PAM 0006 intertidal 

DB/OS 0044 Heterocythereis albomaculata Terceira Island -1 PAM 0007 intertidal 

DB/OS 0045 Heterocythereis albomaculata Terceira Island -1 PAM 0007 intertidal 

DB/OS 0046 Aurila prasina Terceira Island -1 PAM 0007 intertidal 

DB/OS 0047 Aurila prasina Graciosa Island -1 PAM 0012 intertidal 

DB/OS 0048 Aurila prasina Terceira Island -1 PAM 0007 intertidal 

DB/OS 0049 Aurila prasina São Miguel Island -20 PAM 0047 inner shelf 

DB/OS 0050 Aurila prasina Faial Island -30 PAM 0054 inner shelf 

DB/OS 0051 Cyprideis torosa Terceira Island -3 PAM 0006 intertidal 

DB/OS 0052 Cyprideis torosa Terceira Island -3 PAM 0006 intertidal 

DB/OS 0053 Cyprideis torosa Terceira Island -3 PAM 0006 intertidal 

DB/OS 0054 Carinocythereis whitei Terceira Island -23 PAM 0004 inner shelf 
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DB/OS 0055 Carinocythereis whitei  São Miguel Island -20 PAM 0047 inner shelf 

DB/OS 0056 Carinocythereis whitei São Miguel Island -20 PAM 0047 inner shelf 

DB/OS 0057 Leptocythere pellucida Terceira Island -3 PAM 0006 intertidal 

DB/OS 0058 Leptocythere sp. 2 São Miguel Island -20 PAM 0047 inner shelf 

DB/OS 0059 Leptocythere sp. 2 São Miguel Island -20 PAM 0047 inner shelf 

DB/OS 0060 Leptocythere sp. 2 São Miguel Island -20 PAM 0047 inner shelf 

DB/OS 0061 Callistocythere insularis sp. nov. Terceira Island -23 PAM 0004 inner shelf 

DB/OS 0062 Callistocythere insularis sp. nov. Graciosa Island -1 PAM 0012 intertidal 

DB/OS 0063 Callistocythere insularis sp. nov. Flores Island -3 PAM 0002 intertidal 

DB/OS 0064 Semicytherura cf. cornuta Santa Maria Island -13 PAM 0013 inner shelf 

DB/OS 0065 Semicytherura sp. 2 Pico Island -54 PAM 0045 inner shelf 

DB/OS 0066 Semicytherura sp. 2 Pico Island -54 PAM 0045 inner shelf 

DB/OS 0067 Semicytherura sp. 3 São Miguel Island -20 PAM 0047 inner shelf 

DB/OS 0068 Lanceostoma simplex sp. nov. Flores Island -3 PAM 0002 intertidal 

DB/OS 0069 Lanceostoma simplex sp. nov. Flores Island -3 PAM 0002 intertidal 

DB/OS 0070 Lanceostoma simplex sp. nov. Terceira Island -23 PAM 0004 inner shelf 

DB/OS 0071 Lanceostoma simplex sp. nov. Pico Island -54 PAM 0045 inner shelf 

DB/OS 0072 Paradoxostoma sp. 2 Pico Island -54 PAM 0045 inner shelf 

DB/OS 0073 Xestoleberis paisi Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0074 Xestoleberis paisi Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0075 Xestoleberis paisi Santa Maria Island outcrop DBUA-F 717 fossil 
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DB/OS 0076 Loxoconcha stellifera  Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0077 Loxoconcha stellifera  Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0078 Loxoconcha stellifera  Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0079 Loxoconcha rhomboidea  Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0080 Loxoconcha rhomboidea  Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0081 Loxoconcha rhomboidea  Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0082 Callistocythere oertlii  Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0083 Callistocythere oertlii  Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0084 Callistocythere oertlii  Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0085 Leptocythere azorica sp. nov. Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0086 Leptocythere azorica sp. nov. Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0087 Leptocythere azorica sp. nov. Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0088 Pachycaudites cf. armilla Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0089 Pachycaudites cf. armilla Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0090 Pachycaudites cf. armilla Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0091 Dameriacella cf. dameriacensis Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0092 Dameriacella cf. dameriacensis Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0093 Dameriacella cf. dameriacensis Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0094 Aurila sp. Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0095 Aurila sp. Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0096 ?Quadracythere sp. Santa Maria Island outcrop DBUA-F 717 fossil 
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DB/OS 0097 ?Quadracythere sp. Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0098 ?Quadracythere sp. Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0099 Heliocythere magnei  Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0100 Heliocythere magnei  Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0101 Heliocythere magnei  Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0102 Neonesidea rochae  Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0103 Neonesidea rochae  Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0104 Neonesidea rochae  Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0105 Paracypris sp. Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0106 Paracypris sp. Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0107 Cyamocytheridea sp. Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0108 Cyamocytheridea sp. Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0109 Cyamocytheridea sp. Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0110 Leptocythere azorica sp. nov. Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0111 Leptocythere azorica sp. nov. Santa Maria Island outcrop DBUA-F 717 fossil 

DB/OS 0112 Loxoconcha rhomboidea São Miguel Island -2 PAM 0065 intertidal 

DB/OS 0113 Heterocythereis albomaculata São Miguel Island -2,5 PAM 0060 intertidal 

DB/OS 0114 Heterocythereis albomaculata São Miguel Island -2,5 PAM 0061 intertidal 

DB/OS 0115 Heterocythereis albomaculata São Miguel Island -2,5 PAM 0062 intertidal 

DB/OS 0116 Heterocythereis albomaculata São Miguel Island -5 PAM 0062 intertidal 

DB/OS 0117 Lanceostoma simplex sp. nov. São Miguel Island -2,5 PAM 0060 intertidal 



54 
 

DB/OS 0118 Xestoleberis rubens São Miguel Island -2,5 PAM 0060 intertidal 

DB/OS 0119 Neonesidea longisetosa São Miguel Island -2,5 PAM 0060 intertidal 

DB/OS 0120 Aurila woutersi São Miguel Island -2,5 PAM 0060 intertidal 

DB/OS 0121 Lanceostoma simplex sp. nov. São Miguel Island -2,5 PAM 0060 intertidal 

DB/OS 0122 
Xestoleberis rubens 

São Miguel Island -2 PAM 0065 intertidal 

DB/OS 0123 Semicytherura brandoni sp. nov. São Miguel Island -2 PAM 0065 intertidal 

DB/OS 0124 Semicytherura brandoni sp. nov. São Miguel Island -2 PAM 0065 intertidal 

DB/OS 0125 Heterocythereis albomaculata São Miguel Island -1 PAM 0066 intertidal 

DB/OS 0126 Loxoconcha rhomboidea São Miguel Island -2,5 PAM 0060 intertidal 

DB/OS 0127 Semicytherura brandoni sp. nov. São Miguel Island -2,5 PAM 0060 intertidal 

DB/OS 0128 Loxoconcha sp. (lost carapace)* São Miguel Island -2,5 PAM 0060 intertidal 

DB/OS 0129 Lanceostoma simplex sp. nov. São Miguel Island -2,5 PAM 0060 intertidal 

DB/OS 0130 Semicytherura brandoni sp. nov. São Miguel Island -2,5 PAM 0060 intertidal 

DB/OS 0131 Propontocypris cf. pirifera Formigas Islet -10 PAM 0003 inner shelf 

DB/OS 0132 Neocytherideis sp. Terceira Island -3 PAM 0006 intertidal 

DB/OS 0133 Neonesidea longisetosa Formigas Islet -48 DBUA-1004 inner shelf 

DB/OS 0134 Heterocythereis albomaculata ? ? ? ? 

DB/OS 0135 Callistocythere insularis sp. nov. São Miguel Island -15 PAM 0068 inner shelf 

DB/OS 0136 Neonesidea longisetosa São Miguel Island -15 PAM 0068 inner shelf 

DB/OS 0137 Xestoleberis sp. São Miguel Island -15 PAM 0068 inner shelf 

DB/OS 0138 Callistocythere insularis sp. nov. São Miguel Island -15 PAM 0068 inner shelf 
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DB/OS 0139 Aurila convexa São Miguel Island -15 PAM 0068 inner shelf 

DB/OS 0140 Loxoconcha romboidea São Miguel Island -1 PAM 0064 intertidal 

DB/OS 0141 Lanceostoma simplex sp. nov. São Miguel Island -1 PAM 0064 intertidal 

DB/OS 0142 Lanceostoma simplex sp. nov. São Miguel Island -1 PAM 0064 intertidal 

DB/OS 0143 Neocytherideis sp. São Miguel Island -1 PAM 0066 intertidal 

DB/OS 0144 Loxoconcha rhomboidea São Miguel Island -1 PAM 0066 intertidal 

DB/OS 0145 Loxoconcha rhomboidea São Miguel Island -1 PAM 0066 intertidal 

DB/OS 0146 Sclerockilus hicksi São Miguel Island -9 PAM 0069 inner shelf 

DB/OS 0147 Callistocythere insularis sp. nov. São Miguel Island -15 PAM 0068 inner shelf 

DB/OS 0148 Callistocythere insularis sp. nov. São Miguel Island -15 PAM 0068 inner shelf 

DB/OS 0149 Callistocythere insularis sp. nov. São Miguel Island -15 PAM 0068 inner shelf 

DB/OS 0150 Callistocythere insularis sp. nov. São Miguel Island -15 PAM 0068 inner shelf 

DB/OS 0151 Callistocythere insularis sp. nov. São Miguel Island -15 PAM 0068 inner shelf 

DB/OS 0152 Aurila convexa São Miguel Island -15 PAM 0068 inner shelf 

DB/OS 0153 Aurila woutersi São Miguel Island -15 PAM 0068 inner shelf 

DB/OS 0154 Loxoconcha rhomboidea São Miguel Island -15 PAM 0068 inner shelf 

DB/OS 0155 Neonesidea sp. Princesa Alice Seamount -249 / -371 PAM 0081 insular slope 

DB/OS 0156 Neonesidea sp. Princesa Alice Seamount -249 / -371 PAM 0081 insular slope 

DB/OS 0157 Gen. et sp. indet. Princesa Alice Seamount -249 / -371 PAM 0081 insular slope 

DB/OS 0158 Gen. et sp. indet. Princesa Alice Seamount -249 / -371 PAM 0081 insular slope 

DB/OS 0159 Neonesidea sp. Princesa Alice Seamount -249 / -371 PAM 0081 insular slope 
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DB/OS 0160 Gen. et sp. indet. Princesa Alice Seamount -249 / -371 PAM 0081 insular slope 

DB/OS 0161 Neonesidea sp. Princesa Alice Seamount -249 / -371 PAM 0081 insular slope 

DB/OS 0162 Gen. et sp. indet. Condor Seamount -442 PAM 0082 insular slope 

DB/OS 0163 Gen. et sp. indet. Condor Seamount -442 PAM 0082 insular slope 

DB/OS 0164 Gen. et sp. indet. Condor Seamount -442 PAM 0082 insular slope 

DB/OS 0165 Gen. et sp. indet. Condor Seamount -442 PAM 0082 insular slope 

DB/OS 0166 Gen. et sp. indet. Condor Seamount -442 PAM 0082 insular slope 

DB/OS 0167 Gen. et sp. indet. Condor Seamount -442 PAM 0082 insular slope 

DB/OS 0168 Neonesidea sp. Condor Seamount -442 PAM 0082 insular slope 

DB/OS 0169 Gen. et sp. indet. Condor Seamount -442 PAM 0082 insular slope 

DB/OS 0170 Gen. et sp. indet. Condor Seamount -442 PAM 0082 insular slope 

DB/OS 0171 Gen. et sp. indet. Princesa Alice Seamount -201 PAM 0083 insular slope 

DB/OS 0172 Neonesidea sp. Princesa Alice Seamount -201 PAM 0083 insular slope 

DB/OS 0173 Neonesidea sp. Princesa Alice Seamount -201 PAM 0083 insular slope 

DB/OS 0174 Gen. et sp. indet. Princesa Alice Seamount -201 PAM 0083 insular slope 

DB/OS 0175 Gen. et sp. indet. Açores Seamount -202,4 PAM 0084 insular slope 

DB/OS 0176 Gen. et sp. indet. Açores Seamount -202,4 PAM 0084 insular slope 

DB/OS 0177 Neonesidea sp. Açores Seamount -202,4 PAM 0084 insular slope 

DB/OS 0178 Neonesidea sp. Açores Seamount -202,4 PAM 0084 insular slope 

DB/OS 0179 Neonesidea sp. Açores Seamount -202,4 PAM 0084 insular slope 

DB/OS 0180 Cylindroleberis sp. São Miguel Island -4 Sponge (Tedania) intertidal 
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DB/OS 0181 Xestoleberis cf. depressa  Pico Island -1 PAM 0001 intertidal 

DB/OS 0182 Gen. et sp. indet. Pico Island -1 Pam 0001 intertidal 
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ABSTRACT 

The nine oceanic islands that comprise the Azores archipelago are located in the middle 

of the northern Atlantic Ocean. In this isolated archipelago there is a rich fossil record in 

one of the islands, Santa Maria. In this island, samples were collected in the Upper 

Miocene composite section of Malbusca outcrop, located in the southern shore of the 

island, and the fossil marine Ostracoda were studied. This work represents the first 

report of fossil ostracods from the Azores archipelago. Thirteen species were found, 

representing 7 families and 12 genera (Xestoleberis, Loxoconcha, Callistocythere, 

Leptocythere, Dameriacella, Aurila, Heliocythere, Pachycaudites, Neonesidea, 

Cyamocytheridea, ?Quadracythere and Paracypris). Among the identified species, one 

new species, Leptocythere azorica n. sp., is described. Loxoconcha (2 species) was the 

most diversified genus. The collected species are mainly ornamented and typical of 

warm waters and epi-neritic habitats (~10–50 m of depth). 

 

Key words: Ostracoda; Miocene; Azores archipelago; Palaeoecology. 

 

 

Résumé 

Le neuf îles océaniques formant l'archipel des Açores sont situées au centre de l'Océan 

Atlantique Nord. Dans cet archipel isolé, l'île de Santa Maria présente de riches niveaux 

fossilifères. Les ostracodes ont été étudiés dans la coupe composite du Miocène de 

Mabusca sur la côte sud de l'île. Ce travail est le premier concernant les ostracodes 

fossiles de l'archipel des Açores. Treize espèces ont été identifiées, appartenant à 7 

familles et 12 genres (Xestoleberis, Loxoconcha, Callistocythere, Leptocythere, 

Dameriacella, Aurila, Heliocythere, Pachycaudites, Neonesidea, Cyamocytheridea, 

?Quadracythere and Paracypris). Parmis les espèces reconnues, une espèce nouvelle est 

créée, Leptocythere azorica sp. nov. Le genre Loxoconcha avec deux espèces est le plus 

diversifié. La plupart des espèces sont ornmentées et caractérisent des eaux chaudes epi-

néritiques (~10-50 m de profondeur). 

 

Mots clés: Ostracodes; Miocène; Archipel des Açores; Paléoécologie. 
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INTRODUCTION 

Located in the central north Atlantic Ocean (36° 55’ N to 39° 45’ N, 24° 45’ W 

to 31° 17’ W), about 1,500 km off shore of mainland Portugal, nine oceanic islands 

form the archipelago of the Azores (Fig. 1). Due to their extreme isolation, these islands 

are a perfect place to study processes and patterns of dispersion, colonization and 

speciation, and to test ecological, evolutionary and biogeographical theories. 

 

Figure 1. Map of the Azores archipelago, with the location of Santa Maria island. The the oldest 

radiometric ages for each island are reported, expressed in Ma (geochronological data from from Abdel-

Monem et al., 1975; Feraud et al., 1980; Chovelon, 1982; Johnson et al., 1998; Azevedo, 1999; Dias, 

2001; Calvert et al., 2006; Hildenbrand et al., 2008). 

 

 

Nowadays, the pattern of the sea currents in the North Atlantic is dominated by 

the Gulf Stream that flows from west to the east, that is, from the American coasts to 

Europe (Johnson & Stevens, 2000; Rogerson et. al., 2004). Nevertheless, the present 

faunal affinities of the Azores show a consistent picture in several phyla, both terrestrial 

and marine (Morton & Briton, 2000; Ávila, 2000, 2005), that is different than what one 

might expect from the major sea-surface currents, generating what Ávila (2000) called 

"the Azorean Biogeographical Paradox". This suggests, perhaps, that factors other than 

the present sea-surface currents may play (or have played) an important role in building 

up the coastal faunal biogeography of the Azores (Ávila et al., 2008; 2009a). For this 

reason, since 2002, a series of international workshops was put in place on the 

“Palaeontology in Atlantic Islands, in order to study the fossils of the Azores, the 
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occurrence of which is restricted to Santa Maria Island. As a result, a number of papers 

was published regarding the fossil marine fauna: gastropods (Ávila et al., 2002; 2007; 

2009b; Janssen et al., 2008), brachiopods (Kroh et al., 2008), barnacles (Winkelmann et 

al., 2010), echinoderms (Madeira et al., 2011) and fish (sharks) (Ávila et al., 2012). 

Although the marine fossils of Santa Maria Island are known since the pioneer works of 

Ferreira (1955; 1961), Hartung (1860), Zbyszewski & Ferreira (1961), Reiss (1862) and 

Mayer (1864), this is the first publication on the fossil ostracods from the Azores. 

The aim of this work is to document and study the ostracod species that were 

present during the Late Miocene in the Azores in order to make palaeoecological, 

biostratigraphical and palaeobioegeographical scenarios for these oceanic islands. 

 

Geological setting 

The volcanic mid-Atlantic islands of the Azores are the emergent portions of 

submarine volcanic edifices that rise from the large Azores Oceanic Plateau (e.g. 

Needham & Francheteau, 1974; Searle, 1980; Lourenço et al., 1998). The archipelago is 

located in a complex geodynamic setting where the North American, Eurasian and 

Nubian lithospheric plates meet at the Azores triple junction. In this region, plate 

boundaries are marked by the presence of three main structures: the Mid-Atlantic Ridge, 

the Terceira Rift and the East Azores Fracture Zone (Madeira & Ribeiro, 1990; Luís et 

al., 1994; Vogt & Jung 2004). 

Santa Maria Island is located in the eastern group of islands of the Azores 

archipelago with São Miguel Island and the Formigas Islets. Santa Maria is the oldest 

island of the Azores, being Late Miocene in age (about 7.1 Ma) (Abdel-Monem et al., 

1975; Feraud et al., 1980), and is the only island where both marine and terrestrial 

Neogene fossils have been found. The Upper Miocene - Lower Pliocene sedimentary 

rocks of Santa Maria are grouped in two units: the Touril and the Facho-Pico Alto 

volcano-sedimentary Complexes (Madeira, 1986; Serralheiro, 2003). The older Touril 

Complex includes Ponta dos Frades, Cré, Figueiral and Malbusca fossiliferous 

localities; the younger Facho-Pico Alto Complex includes the fossiliferous localities of 

Pedra-que-Pica and Ponta do Castelo (Serralheiro & Madeira, 1990). All those sections 

have already been the object of paleontological studies concerning Brachiopoda (Kroh 

et al., 2008), Mollusca (Gastropoda) (Janssen et al., 2008), Crustaceans (Cirripedia) 

(Winkelmann et al., 2010), Echinodermata (Madeira et al., 2011), Bryozoa (Meireles et 

al., unpublished data), and also some geochemical dating by means of Strontium 
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isotopes analyses (Kirby et al., 2007). The ostracods studied in the present paper were 

collected at the main sedimentary layer closer to the base of Malbusca sequence - a 

sequence that essentially corresponds to a subhorizontal pile of submarine lava flows 

and hyaloclastites intercalated by a few calcarenitic beds. 

The outcrop at Malbusca, located in the southern shore of Santa Maria, was 

studied in detail and a composite stratigraphic section was performed (Fig. 2). The base 

of the section is formed by basaltic lavas belonging to the underlying Touril Complex, 

whereas the top of the section is erosive and covered by basalt flows. The sedimentary 

succession is made of three different lithologies, from the base to the top: a) 1 m-thick 

coquina level very rich in benthic foraminifers, ostracods, molluscs, bryozoans and 

echinoids; b) 2 m-thick fine-grained fossiliferous sandstones (calcarenites) with benthic 

foraminifers, ostracods and bryozoans; and c) 4 m-thick cross-bedded fine-grained 

sandstones (calcarenites) with benthic foraminifers and bryozoans. 

Based on the calcareous nannofossils reported in Winkelman et al. (2010) and, 

in particular, on the concomitant presence of the species Reticulofenestra 

pseudombilicus and Reticulofenestra rotaria, the Malbusca section has been dated to 

Messinian (nannofossil biozone NN11b, from the end of the R. pseudombilicus paracme 

at 7.08 Ma to 5.88 Ma (LO of R. rotaria in the Atlantic Ocean) (Theodoridis, 1984; 

Huang, 1997; Lourens et al., 2004, Waterman et al., 2011). 

 

MATERIALS AND METHODS 

A total of 8 bulk samples were collected from the Upper Miocene Malbusca 

section (Fig. 2). Ostracods were collected at the coquina and the fossiliferous sandstone 

levels (Fig. 2: A and B). Additionally, samples were collected on all the three levels for 

petrographic and mineralogical analyses (Fig. 2: A) DBUA-F 818, B) DBUA-F 819 

and, C) DBUA-F 821); (Fig. 3). Samples were processed in the Sedimentology 

Laboratory of the University of the Azores using conventional techniques for the study 

of ostracods and petrographic analyses. For the analyses, each sample, approximately 

100g of sedimentary rock, was disaggregated in a 5% H2O2 solution and washed over a 

0.063mm sieve. The residues were dried and sieved into fractions greater than 

0.250mm, 0.125mm and 0.063mm, respectively, to access species distribution in 

individual size fractions. Hand-picked specimens were photographed using the scanning 

electronic microscope (SEM) at the Biology Department of the University of the 

Azores. Ostracods abundance was quantified by counting the number of carapaces. A 
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semi-quantitative method was used, with three different classes: Rare (≤10 carapaces), 

Frequent (11 to 20), Abundant (>20). The material is made up mainly by carapaces, 

more rarely by loose valves. Therefore, internal details are not usually available to help 

the taxonomic identification. We followed Horne et al. (2002) for the nomenclature of 

suprageneric taxa. Ostracods specimens studied in this work are housed in the 

Microfossil Collection of the Department of Biology of the University of the Azores 

(DB/OST 0073 - 0109). Petrographic sections studied are housed in the Fossil 

Collection of the Department of Biology (DBUA-F 818, 819 and 821). 

 

 

Figure 2. Top left: Map of the sedimentary deposits of Santa Maria Island (modified from Serralheiro, 

2003). Bottom left: photograph of the Malbusca outcrop (people height about 1.70 m). Right: Malbusca 

composite section with the location of samples (A, B, C) for petrographical and mineralogical analyses, 

and (A, B) paleontological (ostracods) analyses. 
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RESULTS 

4.1. Petrographic description of the Malbusca composite section 

The lithological composition of the exposed sediments forming the stratigraphic 

section is homogeneous (Fig. 2), as revealed by the petrographic study of three samples, 

considered as representative of the entire section. Modal analyses have also been carried 

out with a point-counter stage. 

All samples are sandstones (calcarenites) composed of detrital grains, crystals 

and fossils in different amounts and with different size and textural degrees of 

evolution. Coarse to medium-coarse sparite is the typical cement in all three samples 

(Fig. 3). 

The first sample comes from the base of the stratigraphic sequence, from a 1-m-

thick coquina deposit following an erosive contact and a basaltic lava deposit. The 

sample is composed of bioclasts (43.2%), detrital volcanic grains of lithic volcaniclastic 

origin (9.8%) and separate crystals (12.4%). Calcite cement (34.6%) is fairy coarse 

(sparite), sometimes forming microgeods (Fig. 3: A). Secondary fractures, filled with 

microcrystalline calcite, indicate high-energy conditions during sedimentation. Detrital 

grains are mature fragments of basaltic lavas (Fig 3: B and C). Separate crystals ( 80-

250 µm) are olivine, plagioclase, clinopyroxene, magnetite, hematite, nepheline and 

calcite in order of decreasing abundance (Fig. 3: D). Bioclasts (~150-400 µm) are 

represented by ostracods, echinoid spines, barnacles, planktonic foraminfers, gastropods 

and bryozoans. This high diversity indicates the presence of different source-areas.  

The second sample comes from a ~2-m-thick fossiliferous, fine- to medium-

grained sandstone, which rests on top of the coquina level. The general characteristics 

are similar to the previous sample, but, in general, the constituents show different 

amounts of detrital fragments (31.6%), separate crystals (18.6%), bioclasts (11.2%) and 

sparite cement (38.6%). The characteristics of the constituents are similar to the 

previous sample, except that ooids (Fig. 3, E and F), nepheline and calcite crystal are 

missing. The general degree of morphological evolution of the constituents is also 

similar to the previous sample. 

The third sample was collected from a ~4m-thick sandstone, at the top of the 

stratigraphic section, beneath the uppermost conglomerate. It is very similar to the 

previous sample, but with a reduced amount of bioclasts and a general smaller grain size 

of the constituents, which again are represented by basaltic lava fragments (32%), 

separate crystals (18.6%), fossils (5.8%) and sparite cement (43.6%) (Fig. 3: G and H).  
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The progressive reduction in grain size of the constituents of all studied samples, 

collected from the bottom to the top of the sequence, indicates a decrease in 

environment energy during the sedimentation process. We envisage deposition during a 

transgressive phase. 

 

Figure 3. Thin section photographs of the Malbusca sandstones (Touril Complex), under the polarized-

light microscope: A–D) DBUA-F 818 = level A on the column of Fig. 2; E–F) DBUA-F 819 = level B on 

the column of Fig. 2; G-H) DBUA-F 821 = level C on the column of Fig. 2. 
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TAXONOMY 

Class Ostracoda Latreille, 1802 

Order Podocopida Müller, 1894 

Family Xestoleberididae Sars, 1928 

Genus Xestoleberis Sars, 1866 

Xestoleberis cf. paisi Nascimento, 1989 

(Plate 1, figs 1 - 3) 

 

1988 Xestoleberis paisi n. sp. Nascimento, p. 200-201, pl. 14, figs. 3-5. (nomen nudum) 

1989 Xestoleberis paisi n. sp. Nascimento, p. 123, pl. 3, figs. 12-14. 

 

Material: 29 carapaces (abundant). 

Dimensions: DB/OST 0073: length = 0.62 mm, height = 0.38 mm, width = 0.36 mm; 

DB/OST 0074: length = 0.50 mm, height = 0.33 mm, width = 0.26 mm; DB/OST 0075: 

length = 0.60 mm, height = 0.38 mm, width = 0.33 mm. 

Description: Carapace sub-rounded in lateral view. Greater height located slightly 

posteriorly to the middle portion of the shell. Right valve larger, with valve overlap in 

the anterior, ventral and postero-dorsal area. Sub-rectilinear ventral margin, slightly 

convex in the posterior half, arched dorsal margin, bending anteriorly. Surface of the 

carapace smooth. 

Remarks: The collected specimens are comparable to X. paisi Nascimento (1989) 

(holotype dimensions: length = 0.64 mm, height = 0.36 mm, width = 0.34 mm), mainly 

for its sub-rounded form, elongated anterior margin, sub-angular posterior margin and 

smooth surface.  

Stratigraphic and geographic distribution: Early Miocene (Aquitanian to 

Serravallian) of Tejo Bay, Lisbon (Nascimento, 1988, 1989); Late Miocene (Messinian) 

of Santa Maria Island, Azores (this paper). 

Ecology and palaeoecology: Nascimento (1988) defines this species as brackish-

infralittoral. 

 

Family Loxoconchidae Sars, 1925 

Genus Loxoconcha Sars, 1866 

Loxoconcha stellifera Müeller, 1894 

(Plate 1, figs 4 - 6) 
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1894 Loxoconcha stellifera n.sp. Müeller, p. 343-344, Pl. 27, figs. 15, 18, 21; Pl. 28, figs. 2,7. 

1992 Loxoconcha aff. stellifera Müeller - Bonaduce et al., p. 82, Pl. 24, fig. 11; in Bonaduce et al. (1992), 

it is indicated as Loxoconcha aff. stellifera. 

 

Material: 46 carapaces (abundant). 

Dimensions: DB/OST 0076: length = 0.52 mm, height = 0.38 mm, width = 0.33 mm; 

DB/OST 0077: length = 0.57 mm, height = 0.31 mm, width = 0.33 mm; DB/OST 0078: 

length = 0.52 mm, height = 0.36 mm, width = 0.29 mm.  

Description: Carapace sub-rhomboidal in lateral view. Maximum height located 

slightly anterior to the mid of the valve. Left valve larger than the right one with 

reduced overlap in the anteroventral area. Ventral margin with strong convexity in the 

posteroventral area. Sub-rectilinear dorsal margin, truncated in the posterodorsal area. 

Punctate carapace. 

Remarks: The collected specimens are comparable to L. stellifera Müeller (1894) and 

with L. aff. L. stellifera in Bonaduce et al. (1992) (holotype dimensions: length = 0.65-

0.68 mm) for the sub-rhomboidal form, anterior truncated area, posterior area and the 

small concavity in the central ventral area. 

Stratigraphic and geographic distribution: Late Miocene (Messinian) of the Gulf of 

Gabés, Tunisia (Bonaduce et al., 1992); Late Miocene (Messinian) Santa Maria Island, 

Azores, Portugal (this paper); Recent of the Gulf of Naples (Müeller, 1894). 

Ecology and palaeoecology: in the Mediterranean, Bonaduce et al. (1976) signal the 

abundant presence of L. stellifera in littoral environment influenced by subterranean 

freshwater not deeper than 20 m; Lachenal (1989) reports the species from mediolittoral 

to infralittoral stages on Posidonia leaves and vegetated bottoms. 

 

Loxoconcha rhomboidea (Fischer, 1855) 

(Plate 1, figs 7 - 9) 

 

1854 Cythere flavida Müeller - Zenker, p. 86-87, Pl. 5, figs. B 1-4. 

1855 Cythere rhomboidea n. sp. Fischer, p. 656. 

1968b Loxoconcha impressa (Baird), Brady, 433, pl. 25, figs. 35-40, pl. 40, fig. 4. 

1985 Loxoconcha rhomboidea (Fischer, 1855) – Guillaume et al., 1985, p. 363, pl. 109, figs. 7-9. 

 

Material: 11 carapaces (frequent). 
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Dimensions: DB/OST 0079: length = 0.60 mm, height = 0.38 mm, width = 0.33 mm; 

DB/OST 0080: length = 0.55 mm, height = 0.29 mm, width = 0.24 mm; DB/OST 0081: 

length = 0.60 mm, height = 0.36 mm, width = 0.26 mm. 

Description: Carapace rhomboidal in shape in lateral view. Median maximum height. 

Left valve larger than the right one with overlap in the anteroventral area. Ventral 

margin with strong convexity in the posteroventral area. Rounded dorsal margin. Pitted 

carapace. 

Remarks: The collected specimens are reportable to L. rhomboidea (Fischer, 1855) 

(Guillaume et al., 1985) (holotype dimensions: length = 0.68 mm, height = 0.41 mm, 

width = 0.34 mm) for their rhomboidal shape, carapace overlap and ornamentation.  

Stratigraphic and geographic distribution: Late Miocene (Tortonian) of Rio 

Mazzapiedi (Piedmont, Italy) (Ciampo, 1986); Late Miocene (Messinian) of Santa 

Maria Island, Azores (this paper); Quaternary of the Bay of Biscaye (Guillaume et al., 

1985); Recent on most of the British coasts, Madeira, and the Canary Islands 

(Athersuch, et. al., 1989) and Mediterranean (Bonaduce et al., 1976; Lachenal, 1989).  

Ecology and palaeoecology: intertidal to littoral depths, with vegetated bottoms 

(Guillaume et al., 1985; Athersuch et. al., 1989; Lachenal, 1989). 

 

Family Leptocytheridae Hanai, 1957 

Genus Callistocythere Ruggieri, 1953 

Callistocythere oertlii Nascimento, 1989 

(Plate 1, figs 10 - 12) 

 

1965 Callistocythere aff. C. canaliculata (Reuss) - Moyes, p. 28, pl. 3, fig. 10. 

1979 Callistocythere aff. C. canaliculata (Reuss) – McKenzie et al., p. 36. 

1983 Callistocythere aff. C. canaliculata (Reuss) – Nascimento, p. 432. 

1988 Callistocythere oertlii n. sp. Nascimento, pp. 76-78, pl. 3, figs. 6-7. (nomen nudum) 

1989 Callistocythere oertlii n. sp. Nascimento, p. 119, pl. 1, figs. 10-11. 

 

Material: 19 carapaces (frequent). 

Dimensions: DB/OST 0082: length = 0.38 mm, height = 0.21 mm, width = 0.17 mm; 

DB/OST 0083: length = 0.48 mm, height = 0.21 mm, width = 0.19 mm; DB/OST 0084: 

length = 0.40 mm, height = 0.21 mm, width = 0.17 mm. 

Description: sub-rectangular carapace in lateral view. Maximum height in front of the 

mid of the valve. Left valve slightly larger than right valve with overlap in the anterior 
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area. Ventral margin with slight median concavity.  Slightly convex dorsal margin in the 

anterior portion and rectilinear truncation in the median-posterior portion. Prominent 

median rib. 

Remarks: The collected specimens are similar to C. oertlii Nascimento, 1989 (holotype 

dimensions: length = 0.72 mm, height = 0.34 mm, width = 0.28 mm) in the sub-

rectangular form and strong ornamentation. In comparison with the holotype, the 

Azorean specimens are smaller, but the two posterior ribs, parallel to the posterior 

margin and the shape are similar. 

Stratigraphic and geographic distribution: Oligocene- Early Miocene (Aquitanian) 

of the Aquitaine Basin; Late Miocene (Aquitanian-Tortonian) of Tejo Bay, Lisbon 

(Nascimento, 1988, 1989); Late Miocene (Messinian) of Santa Maria Island, Azores 

(this paper); Pliocene of Pombal (Portugal). 

Ecology and palaeoecology: infralittoral, coastal areas (McKenzie et al., 1979; 

Nascimento, 1988). 

 

Genus Leptocythere Sars, 1922 

Leptocythere azorica Meireles & Faranda n. sp. 

(Plate 1, figs 13 - 17) 

 

2011 Leptocythere azorica sp. nov. Meireles and Gliozzi, p. 128, Fig. 2,5 (nomen nudum). 

 

Derivation of name: with reference to the Azores archipelago (NE Atlantic). 

Holotype: Adult carapace; DB/OST 0085: length = 0.48 mm, height = 0.24 mm, width 

= 0.21 mm. 

Type locality: Malbusca outcrop, sample DBUA-F 717. 

Age: Messinian (Late Miocene). 

Material: 13 carapaces (frequent). 

Dimensions: Holotype DB/OST 0085: length = 0.48 mm, height = 0.24 mm, width = 

0.21 mm; Paratype DB/OST 0086: length = 0.48 mm, height = 0.24 mm, width = 0.19 

mm; Paratype DB/OST 0087: length = 0.48 mm, height = 0.24 mm, width = 0.21 mm. 

Diagnosis: In lateral view, posterior area with two well-marked sulci and in dorsal 

view, two well-marked ribs running from the posterior end to the median area. 

Description: Carapace sub-rectangular in lateral view; rectilinear dorsal margin with 

alar process in the anterior area, sub-rectilinear ventral margin with moderate concavity 
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in the median portion; two well-marked sulci in the posterior portion. In dorsal view 

two well-marked “ribs” running from the posterior end to the median area are visible.  

Remarks: Although no inner characters are visible, but Leptocythere azorica was 

compared, in terms of external morphology, with several Miocene other species of 

Leptocythere, for example: Leptocythere cleopatrae Bonaduce, Ruggieri, Russo and 

Bismuth, 1992; Leptocythere complicata Bonaduce, Ruggieri, Russo and Bismuth, 

1992; Leptocythere festiva Bonaduce, Ruggieri, Russo and Bismuth, 1992; Leptocythere 

johnnealei Bonaduce, Ruggieri, Russo and Bismuth, 1992; Leptocythere arabesca 

Stancheva, 1964; Leptocythere bisulcata Stancheva, 1964 and  Leptocythere slatinensis 

Stancheva, 1964. No other known Leptocythere species shows similar posterior sulci 

and two dorsal ribs. However, there are discussions about the generic attribution. 

Stratigraphic and geographic distribution: Late Miocene (Messinian) of Santa Maria 

Island, Azores (this paper). 

 

Family Hemicytheridae Puri, 1953 

Genus Pachycaudites Uliczny, 1969 

Pachycaudites cf. armilla Ciampo, 1986 

(Plate 2, figs 1- 3) 

 

Material: 25 carapaces and 3 valves (abundant). 

Dimensions: DB/OST 0088: length = 0.76 mm, height = 0.40 mm, width = 0.36 mm; 

DB/OST 0089: length = 0.79 mm, height = 0.45 mm, width = 0.40 mm; DB/OST 0090: 

length = 0.74 mm, height = 0.48 mm, width = 0.36 mm. 

Description: Carapace sub-trapezoidal, in lateral view. Greater height in the anterior 

area. Left valve larger than the right one. Rectilinear ventral margin with a slight gap in 

the anterior area and an inclination of about 30
o
 in the posterior area. Dorsal margin 

with prominent eye-tubercle. Two prominent tubercles are well evident, one located on 

the postero-dorsal angle and the second in the mid of the valve. A short ventral keel is 

visible in the middle portion of the valve. 

Remarks: The collected specimens are very similar to Pachycaudites armilla Ciampo, 

1986 from the early Messinian of Rio Mazzapiedi (Piedmont, northern Italy). They 

differ from this species for the smaller size (P. armilla: length = 0.87-0.90 mm, height = 

0.43-0.49 mm,) and for the less developed central rib. The bad preservation of the valve 

surfaces prevents to establish a new species. 
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Stratigraphic and geographic distribution: Late Mioecene (Early Messinian) of Italy 

(Ciampo, 1986); Late Miocene (Messinian) of Santa Maria Island, Azores (this paper). 

 

Genus Dameriacella Liebau, 1991 

Dameriacella cf. dameriacensis (Keij, 1958) 

(Plate 2, figs 4 - 6) 

 

1955 Cythereis macropora (Bosquet)- Apostolescu p. 270, pl. 7, figs. 116-117 (non Cythere macropora 

Bosquet 1952). 

1991 Dameriacella dameriacensis (Keij) - Liebau, p. 125-126; pl. 39, figs; 1-4, pl. 40, figs. 1-4, 6-8, pl. 

41; figs. 1-5, pl. 50, fig. 3., tex-fig. 58, 95. 

 

Material: 38 carapaces and 5 valves (abundant). 

Dimensions: DB/OST 0091: length = 0.55 mm, height = 0.29 mm, width = 0.26 mm; 

DB/OST 0092: length = 0.64 mm, height = 0.38 mm, width = 0.36 mm; DB/OST 0093: 

length = 0.74 mm, height = 0.40 mm, width = 0.36 mm. 

Description: Carapace sub-triangular, in lateral view. Greater length in the ventral area 

and greater height in the anterior area. Left valve larger than the right one. Sub-

rectilinear ventral margin. Dorsal margin with remarkable eye tubercle; pointed postero-

dorsal tubercle and prominent tubercle in the central portion of the valve; presence of a 

short rib running from the anteroventral to the posteroventral area; posteriorly it ends 

with a rounded tubercle. In dorsal view the eye tubercles and the edge of the dorsal rib 

are prominent. 

Remarks: The collected specimens are similar to D. dameriacensis (Keij, 1958) 

(holotype dimensions: length = 0.50 mm, height = 0.29 mm, width = 0.26 mm) for their 

sub-triangular shape and for the rib pattern, but differs slightly for the more prominent 

caudal process of the left valve. The bad preservation of the valve ornamentation 

prevents a certain attribution of the S. Maria valves to that species. Moreover, up to now 

D. dameriacensis is known only from older deposits [Middle Eocene (Lutetian) of 

Marne, France (Keij, 1958); Middle Eocene (Lutetian) of Paris basin, France 

(Apostolescu, 1961; Ducasse et. al., 1985); Oligocene of Western Europe (Bosquet, 

1852)]. Until better preserved material is collected, we prefer to refer the collected 

valves to a species similar to D. dameriacensis. 
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Stratigraphic and geographic distribution: Middle Eocene (Lutetian) of Marne, 

France (Keij, 1958); Middle Eocene (Lutetian) of Paris basin, France (Apostolescu, 

1961); Late Miocene (Messinian) of Santa Maria Island, Azores (this paper). 

 

Genus Aurila Pokorný, 1955 

Aurila sp. 

(Plate 2, figs 7 - 9) 

 

Material: 6 carapaces (rare). 

Dimensions: DB/OST 0094: length = 0.86 mm, height = 0.50 mm, width = 0.40 mm; 

DB/OST 0095: length = 0.95 mm, height = 0.62 mm, width = 0.45 mm. 

Description: Carapace sub-triangular, in lateral view. Greater height located in the 

middle of the valve. Left valve larger than the right one with overlap throughout the 

entire dorsal margin and anterior area. Convex ventral margin in the central ventral area 

and concave anteroventrally. Highly arched dorsal margin. Rib running from the 

posteroventral to the anteroventral area and bordering a central inflation. In dorsal view 

the eye tubercles are visible. 

Remarks: the scarcity of the collected material coupled with the poor preservation 

prevents a specific identification.  

 

Genus Quadracythere Hornibrook, 1952 

?Quadracythere sp. 

(Plate 2, figs 10 - 12) 

 

Material: 41 carapaces (abundant). 

Dimensions: DB/OST 0096: length = 0.71 mm, height = 0.40 mm, width = 0.31 mm; 

DB/OST 0097: length = 0.67 mm, height = 0.38 mm, width = 0.29 mm; DB/OST 0098: 

length = 0.70 mm, height = 0.40 mm, width = 0.30 mm. 

Description: Carapace sub-rectangular in lateral view, with anterior area just a little 

higher than the posterior; left valve larger than the right one with overlap in the anterior 

and ventral area. Winding ventral margin with median concavity. Dorsal sub-rectilinear 

margin. Dorsal and ventral ribs run parallel from the anterior to the posterior border. A 

third subparallel rib is less visible in the central area of the valve, particularly in the 



73 
 

right valve; rib extending throughout the entire ventral area. Eye tubercle visible mainly 

in dorsal view. Surface of the valve rather strongly reticulated. Amphidont hinge. 

Remarks: notwithstanding the abundance of the collected material, its poor 

preservation makes difficult even the generic attribution. The absence of well preserved 

loose valves prevented the observation of internal characters. On the basis of the general 

shape in lateral and dorsal view and on what it is possible to argue about the surface 

ornamentation, we dubitatively refer the collected material to ?Quadracythere. 

 

Genus Heliocythere Bonaduce, Ruggieri, Russo, 1988 

Heliocythere magnei (Keij, 1953) 

(Plate 3, figs 7 - 9) 

 

1953 Hemicythere magnei n.sp. Keij, p. 123, pl. 18, figs. 3-4. 

1965 Aurila magnei Keij – Moyes, p. 105, pl. 12, fig. 4. 

1988 Heliocythere magnei Keij - Bonaduce et. al., p. 356, pl. 4, figs. 1-3. 

 

Material: 12 carapaces and 2 valves (frequent). 

Dimensions: DB/OST 0099: length = 0.62 mm, height = 0.36 mm, width = 0.31 mm; 

DB/OST 0100: length = 0.60 mm, height = 0.31 mm, width = 0.24 mm; DB/OST 0101: 

length = 0.60 mm, height = 0.30 mm, width = 0.23 mm. 

Description: Carapace sub-rectangular, in lateral view. Greater height in the anterior 

area. Left valve larger than the right one with small anterior overlap from the 

mediodorsal to the medioventral areas. Ventral margin with a feeble concavity in the 

antero-ventral portion. Dorsal margin with well developed eye tubercle and sharp rib 

that end in a dorsally protruding posterior tubercle.  A second, more marked rib extends 

throughout the ventral area. Two V-shaped ribs are visible beginning in the 

anterocentral area and extending one towards the anterior border and the other towards 

the posterior one. Surface of the valve pitted anteriorly and reticulated posteriorly. 

Remarks: The collected specimens are similar to H. magnei (Keij, 1953) (holotype 

dimensions: length = 0.78 mm, height = 0.45 mm) as illustrated by Bonaduce et al. 

(1988) for their sub-rectangular shape and ornamentation pattern.  

Stratigraphic and geographic distribution: Early Miocene(Aquitanian) of the 

Aquitaine Basin (Bonaduce et al., 1988); Late Miocene, Messinian, Santa Maria Island, 

Azores (this paper). 
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Ecology and palaeoecology: Moyes (1965) reports this species from the coastal-

epineritic facies of the Villandraut area (Aquitaine Basin, France). 

 

Family Bairdiidae Sars, 1888 

Genus Neonesidea Maddocks, 1969 

Neonesidea rochae Nascimento, 1989 

(Plate 3, figs 1- 3) 

 

1988 Neonesidea rochae n. sp.– Nascimento, p. 63-65, pl. 2, figs. 6-8. 

1989 Neonesidea rochae n. sp.– Nascimento, p. 119, pl. 1, figs. 7-9. 

 

Material: 7 carapaces (rare). 

Dimensions: DB/OST 0102: length = 0.71 mm, height = 0.43 mm, width = 0.26 mm; 

DB/OST 0103: length = 0.57 mm, height = 0.33 mm, width = 0.29 mm; DB/OST 0104: 

length = 0.57 mm, height = 0.33 mm, width = 0.21 mm. 

Description: Carapace sub-triangular, in lateral view. Greater height located at the 

middle of the valve. Left valve larger than the right one with overlap throughout the 

entire margin. Slightly convex ventral margin in the right valve, slightly convex in the 

left one. Broadly arched rounded dorsal margin. Smooth carapace surface. 

Remarks: The collected specimens are similar to N. rochae Nascimento (1989) 

(holotype dimensions: length = 1.00 mm, height = 0.64 mm, width = 0.46 mm) for their 

sub-triangular form and for presenting a well-marked overlap in right lateral view. The 

Azorean specimens are consistently smaller than the European ones. 

Stratigraphic and geographical distribution: Early Miocene (Aquitanian-

Burdigalian) of the Tejo Basin, Lisbon (Nascimento, 1989); Late Miocene (Messinian) 

of Santa Maria Island, Azores (this paper). 

Ecology and palaeoecology: the species has been recovered in coastal and infralittoral 

environments (Nascimento, 1989). 

 

Family Candonidae Kaufmann, 1900 

Genus Paracypris Sars, 1866 

Paracypris sp. 

(Plate 3, figs 4 - 6) 
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Material: 5 carapaces (rare). 

Dimensions: DB/OST 0105: length = 0.60 mm, height = 0.29 mm, width = 0.19 mm; 

DB/OST 0106: length = 0.60 mm, height = 0.31 mm, width = 0.24 mm.  

Description: Carapace sub-triangular in lateral view. Greater height in the mid of the 

valve. Left valve larger than the right one with overlap in the anterior area. Rather 

sinuate ventral margin (particularly in the right valve) and highly arched dorsal margin. 

Smooth carapace. Poorly preserved. 

Remarks: The specimens were comparable with species of Paracypris, but the smooth 

carapace, the poorly preserved and the rare material did not allow better identification. 

Stratigraphic and geographic distribution: Late Miocene (Messinian) of Santa Maria 

Island, Azores (this paper). The genus is also known from Miocene level of coastal 

areas in NE Brazil (Nogueira et al., 2011). 

 

Family Cytherideidae Sars, 1925 

Genus Cyamocytheridea Oertli, 1956 

Cyamocytheridea sp. 

(Plate 3, figs 10 - 12) 

 

Material: 3 carapace (rare). 

Dimensions: DB/OST 0107: length = 0.81 mm, height = 0.40 mm, width = 0.38 mm; 

DB/OST 0108: length = 0.81 mm, height = 0.40 mm, width = 0.40 mm; DB/OST 0109: 

length = 0.50 mm, height = 0.26 mm, width = 0.24 mm. 

Description: Bean-shaped carapace, elongated in lateral view. Greater height  slightly 

in front of the middle of the valve. Left valve larger than the right one with  slight 

overlap throughout the ventral and postero-dorsal margin. Sub-rectilinear ventral margin 

that become subrounded in the postero-ventral portion. Surface pitted with large, rare 

and shallow pits. 

Remarks: The specimens were comparable with species of Cyamocytheridea, but the 

smooth carapace, the poorly preserved and the rare material did not allow better 

identification. 

Stratigraphic and geographic distribution: Late Miocene (Messinian) of Santa Maria 

Island, Azores (this paper). 

 

 



76 
 

DISCUSSION 

Stratigraphic and geographic distribution of the ostracods assemblage 

The ostracods fauna of the Messinian Malbusca section is represented by 13 

taxa, including a new species, five taxa left in open nomenclature and one species 

identified with doubt. All species are new records for the fossil fauna of the Azores and 

they significantly increase the knowledge of the fossil diversity at Santa Maria Island. 

They belong to 7 families and 12 genera, of which Loxoconcha (2 species) is the most 

diversified. 

The majotity of the identified species are present in deposits older than the 

Messinian’s e.g.: Dameriacella aff. D. dameriacensis (Middle Eocene), Callistocythere 

oertlii (Oligocene), Xestoleberis cf. paisi, Heliocythere magnei, and Neonesidea rochae 

(Aquitanian) (Fig. 4). Only Loxoconcha stellifera and Loxoconcha rhomboidea are 

known starting from the Late Miocene. Some of them disappeared during the Messinian 

(Dameriacella aff. D. dameriacensis, H. magnei), whilst others, supposed to be extinct, 

have recently been found in the living ostracod fauna of the Azores (L. stellifera and L. 

rhomboidea , X. paisi, C. oertlii, N. rochae) (Meireles, unpublished data) (Fig. 4). It is 

worth to note that, in some cases (Dameriacella aff. D. dameriacensis, H. magnei, N. 

rochae), the recovery in the Messinian deposits of Malbusca represents the last and 

southernmost occurrence in the central Atlantic domain. Only two species among those 

identified at the Malbusca outcrop are widespread from Late Miocene to Recent in the 

Mediterranean domain: L. stellifera, whose occurrence in the Messinian of Malbusca 

represents the first recovery in the Atlantic, and L. rhomboidea, well known as fossil 

and still present in the Mediterranean and the Atlantic (Fig. 5). 

 

 

Palaeoecological and Palaeobiogeographical considerations 

Most of the species of ostracods found at Malbusca are ornamented, indicating 

shallow coastal environments (Van Morkhoven, 1962). Among them, the most abundant 

are Loxoconcha stellifera, Dameriacella aff. D. dameriacensis, and ?Quadracythere sp., 

followed by Xestoleberis cf. paisi and Pachycaudites aff. P. armilla (Fig. 6). 
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Figure 4. Stratigraphic range of the Late Miocene ostracod species collected at the Malbusca outcrop 

(Santa Maria Island, Azores). Biostratigraphic interval based on selected species of calcareous 

nannofossils (modified from Theodoridis, 1984). 

 

 

Within the ostracods assemblage, 5 out of the 13 Miocene taxa are species that 

still occur nowadays in the Azores (Xestoleberis cf. paisi, Loxoconcha rhomboidea, L. 

stellifera, Callistocythere oertlii and Neonesidea rochae) in shallow-water 

environments (from the intertidal zone down to 40 m depth), thus we interpret them as 

eurithermic species. The other taxa of the assemblage disappeared from the Azores and 

the Atlantic domain after the Messinian (including the new species Leptocythere 

azorica), and it is possible to hypotesize that they were warm-water taxa that did not 

survive the Plio-Pleistocene climatic deterioration. Some of the extinct species, such as 

Heliocythere magnei is also interpreted as epineritic dweller (Moyes, 1965; Carbonel, 

1985). The majority of the marine species from other phyla found in this fossil 

assemblage are also thermophilic, e.g. the brachiopod Novocrania turbinata  (Poli, 

1795) (Kroh et al., 2008), the sea-urchins Eucidaris tribuloides (Lamarck, 1816), 

Echinoneus cf. cyclostomus Leske, 1778, and the extinct Clypeaster altus (Lamarck, 

1816) (Madeira et al., 2011), the also extinct endemic barnacle Zullobalanus 

santamariaensis Buckeridge & Winkelmann, 2010 (Winkelmann et al., 2010), the 

extant bivalve Manupecten pesfelis (Linnaeus, 1758), the extinct bivalves 
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Gigantopecten latissimus (Brocchi, 1814) and Hinnites crispus (Brochi, 1814), the 

endemics and also extincts Lopha plicatuloides (Mayer, 1864) and Cardium hartungi 

(Bronn in Hartung, 1860), as well as several species of gastropods (Zbyszewski & 

Ferreira, 1962). 

 

 

Figure 5. Geographic distribution and stratigraphic occurrence of the fossil ostracod species recovered in 

the Messinian deposits of Malbusca composite section. 

 

Thus, for the Messinian sedimentary deposits outcropping at the Malbusca 

section it is possible to infer an epineritic environment characterised by vegetated 

bottoms and warm-water conditions. 

All the identified Messinian Azorean ostracods are of European affinity (Fig. 5); 

not a single species is reported from the Miocene of the western Atlantic. This pattern is 
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also seen in other well-studied phyla of similar age from the Azores such as the 

echinoderms (Madeira et al., 2011) and the molluscs (Zbyszewski & Ferreira, 1962). 

Ostracods are mainly benthic epifaunal detritivore-grazer species that, in some 

cases, brood their instars. This gives them an enormous potential for a successful 

colonization after chance events of dispersal in rafts provided by detached algae, a 

plausible process for reaching such an isolated island as Santa Maria would be about 5-

7 Ma ago. Indeed, available geophysical and geological data agree in considering that in 

the area of the Azores plateau, at that time, Santa Maria was probably the only emerged 

island (Madeira, 1986; Serralheiro & Madeira, 1990; Serralheiro, 2003). 

 

 

Figure 6. Abundance of the Late Miocene marine ostracod species collected from the Malbusca outcrop 

(Santa Maria Island, Azores). Absolute numbers refer to the occurrence of carapaces and valves in the 

Malbusca locality. a) Loxoconcha stellifera; b) Dameriacella aff. D. dameriacensis; c) ?Quadracythere 

sp.; d) Xestoleberis cf. paisi; e) Pachycaudites aff. P. armilla; f) Callistocythere oertlii; g) Heliocythere 

magnei; h) Leptocythere azorica; i) Loxoconcha rhomboidea; j) Aurila sp. k) Neonesidea rochae; l) 

Paracypris sp., and m) Cyamocytheridea sp. 

 

 

CONCLUSIONS 

The outcrop of Malbusca, located in the southern shores of Santa Maria Island, 

was studied in detail from a composite stratigraphic section. Petrographic data (decrease 

in grain size from the base to the top of the sequence, presence of ooids only at the base 

of the succession) and paleontologic data provided by ostracods and other phyla 
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indicates that the entire Malbusca section was deposited in low energy shallow warm 

waters (~10-50 m depth) that slightly deepens upwards, suggesting a transgressive 

phase during the time of deposition of the studied sequence. 

All the identified Azorean ostracods species are of European affinity. For them a 

passive dispersal through rafts provided by detached algae is proposed. 

It is worth to stress that despite the fact that fossils of Santa Maria Island are 

known since the 19
th

 century, there is still much to be discovered and this is especially 

true for some less well-studied marine phyla (e.g.: Porifera, Foraminifera, Bryozoa, 

Cnidaria). The new information herein provided by the fossil marine ostracods of Santa 

Maria Island is just another piece for this biogeographic puzzle, highlighting the crucial 

role of the Azores archipelago for understanding the biogeographical history of the 

North Atlantic faunas and floras during the last 10 Ma of the Neogene period. 
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PLATE 1. 

Figs. 1 – 3. Xestoleberis cf. paisi Nascimento, 1989. DB/OST 0073. 

Figs. 4 – 6. Loxoconcha stellifera Mueller, 1894. DB/OST 0076. 

Figs. 7 – 9. Loxoconcha rhomboidea (Fischer, 1855). DB/OST 0079. 

Figs. 10 - 12. Callistocythere oertlii Nascimento, 1989. DB/OST 0082. 

Figs. 13 – 15. Leptocythere azorica Meireles & Faranda n. sp. DB/OST 0085. 

Figs. 16. Leptocythere azorica n. sp. DB/OST 0110. Right valve in the external view. 

Figs. 17. Leptocythere azorica n. sp. DB/OST 0111. Right valve in the external view. 
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PLATE 1 
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PLATE 2. 

Figs. 1 – 3. Pachycaudites aff. armilla Ciampo, 1986. DB/OST 0088. 

Figs. 4 – 6. Dameriacella aff. dameriacensis (Keij, 1958). DB/OST 0091. 

Figs. 7 – 9. Aurila sp. DB/OST 0094. 

Figs. 10 – 12. ?Quadracythere sp. DB/OST 0096. 
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PLATE 2 
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PLATE 3. 

Figs. 1 – 3. Neonesidea rochae Nascimento, 1989. DB/OST 0102. 

Figs. 4 – 6. Paracypris sp. DB/OST 0105. 

Figs. 7 – 9. Heliocythere magnei (Keij, 1953). DB/OST 0099. 

Figs. 10 – 12. Cyamocytheridea sp. DB/OST 0107. 
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PLATE 3 
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ABSTRACT 

This is the first report about the systematics and the biogeography of the 

Holocene to Recent shallow marine ostracods of the Azores archipelago (Portugal). 

Twenty species were found, representing 10 families and 14 genera (Neonesidea, 

Leptocythere, Callistocythere, Cyprideis, Carinocythereis, Aurila, Heterocythereis, 

Urocythereis, Loxoconcha, Semicytherura, Xestoleberis, Sclerochilus, Lanceostoma and 

Cylindroleberis). Seven new taxa are here reported for the Azores: 5 new records – the 

species Neonesidea longisetosa (Brady 1902), Cyprideis torosa (Jones, 1850), Aurila 

prasina Barbeito-Gonzalez, 1971 and Sclerochilus hicksi Athersuch & Horne 1987 – 

and 3 new species to Science, Callistocythere insularis n. sp. Semicytherura brandoni n. 

sp. and Lanceostoma simplex n. sp., which are herein described. The representatives of 

the families present in the Azores are typical of infralittoral marine environments 

around the world. Based on our results, the Azorean shallow-water marine ostracod 

communities (between 1 to 100m) appear to be less diverse than similar communities 

found elsewhere. In terms of biogeography context, the faunal founded are typical of 

Celtic, Gascoynian and Mediterranean zoogeographical provinces and secondarily at 

Lusitanian province. Ostracods bear great potential for applications in environmental 

studies. Our checklist and systematic study provide a base for the identification of 

ostracods from shallow water in the Azores region. 

 

Key words: Ostracods; Holocene; Recent; Systematics; Biogeography; Azores archipelago. 
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INTRODUCTION 

Ostracods are small crustaceans ranging in length from 0.08 to 3 mm, or more. 

Their entire body is encased in a bivalved, calcified carapace which can be smooth to 

variously ornamented. The two valves are joined by a dorsal hinge and by a closing 

muscle. The body is unsegmented and has a reduced number of limbs. The head is 

larger than both the thorax and abdomen combined. The ostracod bears normally eight 

pairs of appendages: first and second antennae, mandible, maxilla and three additional 

thoracopods with a pair of caudal rami. The three thoracopods are often used as walking 

or cleaning legs. The abdomen terminates in a pair of caudal rami. Between the last 

thoracopods and the caudal rami are the genital organs. Obvious are often the large male 

copulatory organs (Keyser, 1988) which fill up the posterior half of the whole carapace. 

Some 65,000 living and fossil species have been described, grouped into several orders. 

The class of Ostracoda is based on gross morphology and may not be monophyletic 

(Horne et al., 2002). 

The Azores Archipelago is a group of nine islands located in the North Atlantic 

approximately between 25° – 32° W and 37° – 40° N, about 1,500 km from mainland 

Portugal. The archipelago is located in an area defined by a complex tectonic setting 

whose meaning is a matter of extensive discussion among scientists. Two of the 

Azorean islands – Flores and Corvo – rise from the western flank of the mid-Atlantic 

Ridge, whilst the remaining seven islands are located to the east of this structure along 

the western segment of the Eurasia–Nubia boundary (Fig. 1). 

Few studies have been published on the Recent ostracod fauna of the Azores, 

and most of them were related with the freshwater ostracods (Richard, 1896; Petkowski, 

1963; Meisch & Broodbaker, 1993; Petkowski et al., 1993). The only papers devoted to 

the marine ostracods were published by Poulsen (1972) and Angel (1973), who reported 

on the bathyal myodocopids from the Azores. 

Meireles et al. (2012) were the first to study the fossil record of the Azores. 

These authors examined the Late Miocene ostracods of the island of Santa Maria, 

reporting 13 species, representing 7 families and 12 genera (Xestoleberis, Loxoconcha, 

Callistocythere, Leptocythere, Dameriacella, Aurila, Heliocythere, Pachycaudites, 

Neonesidea, Cyamocytheridea, ?Quadracythere and Paracypris). 

Meireles et al. (Chapter 6) studied the palaeoecology and the taphonomical 

aspects of the Holocene to Recent ostracods from the Azores. Fifteen species were 

recovered, representing 8 families and 12 genera (Loxoconcha, Neonesidea, 
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Xestoleberis, Aurila, Urocythereis, Heterocythereis, Carinocythereis, Callistocythere, 

Leptocythere, Semicytherura, Lanceostoma and Cylindroleberis). Large-scale (sea-

surface currents, Holocene relative sea-level, storms) and small-scale processes 

(geographical location, coastal fragmentation into dynamic cells with impermeable 

lateral boundaries, physiognomy of the coast line, seafloor stability of the sediments) 

are responsible for shaping the Azorean Holocene to Recent ostracods communities. 

The aims of our study are to: 1) improve the knowledge about the shallow-water 

marine ostracods of the Azores; 2) present the first systematic study about these 

organisms, review all reported species and describe new species; 3) establish the 

biogeographical relationships of this invertebrate group. 

 

 

Figure 1. Map of the Azores archipelago. 

 

 

MATERIALS AND METHODS 

Holocene samples collected around the Azores and Recent samples collected on 

São Miguel and Santa Maria Islands were used for this study. For a complete list of the 

stations please consult Table 1 (Meireles et al., Chapter 6). The animals were sampled 

with grabs, corers and handnet. They were sieved, dried and handpicked from the 

sediments under a stereomicroscope. Specimens used for SEM studies were coated with 
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gold-palladium, and viewed under a JEOL JSM-5410 Scanning Microscope. For light 

microscopy the ostracods were dissected with small needles and embedded in Hydro-

Matrix solution. Light microscopy photographs were taken and also the soft parts 

drawn. 

The taxonomy and classification adopted follows Horne et al. (2002). The 

figured specimens (SEM) are stored in the Ostracoda Collection of the Department of 

Biology, University of the Azores, under prefix “DB/OS nº”. Other abbreviations used: 

RV=right valve, LV=left valve. For a complete list of stations please see Chapter 3 

(Table 4). 

A table was constructed with the geographical distribution of the Ostracoda species 

reported from the Azores (Table 1). We used the ostracod biogeographical provinces of 

Wood & Whatley (1994) modified by Frenzel et al. (2010) with the frontiers as in Fig. 

2. For the biogeographical study, the species endemic to the Azores and all species 

identified only to the genus were excluded of the analysis. A simple percentage index 

was used to compare the number of species in a given location in relation to the total 

number of ostracod species occurring in the Azores (Table 2). A dendrogram showing 

the biogeographical relationships of the Azorean ostracods’ fauna was drawn using non-

transformed presence-absence data, the Bray-Curtis similarity index and UPGMA 

method, PRIMER version Plymouth Marine Laboratory package (Fig. 3). 
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Figure 2. Ostracod biogeographical provinces of Wood & Whatley (1994) modified by Frenzel et al. 

(2010). Records from the western-Atlantic (Tropical biogeographical province) not shown in this map. 
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RESULTS 

Systematic part 

Class OSTRACODA Latreille, 1802 

Order PODOCOPIDA Müller, 1894 

Family Bairdiidae Sars, 1888 

Genus Neonesidea Maddocks, 1969 

Neonesidea longisetosa (Brady, 1902) 

(Plate 2, Figs A-L) 

 

1902 Bairdia longisetosa Brady, p.197, pl.25, fig 8,9 

1963 Neonesidea gerda (Benson and Coleman).pp. 19, 20, fig.8, pI. 1, figs. 14-16. 

1969 Neonesidea gerda Maddocks, pp.24 25, fig.7 

 

Material examined: DB/OS 0119, 0133, 0136. 

Description: Carapace sub-triangular, in lateral view. Greater height located at the 

middle of the valve. Left valve larger than the right one with overlap throughout the 

entire margin. Slightly convex ventral margin in the right valve, slightly convex in the 

left one. Broadly arched rounded dorsal margin. Smooth carapace surface. 

Remarks: The collected specimens are identical to N. longisetosa considering the 

carapace morphology. The morphology of the soft parts is comparable to the figures 

Maddocks (1969) gave for Neonesidea gerda, and by this  reason we consider N. gerda 

as a junior synonym of N. longiseta. This is the first record for the Azores. 

Geographical Distribution: The species N. longisetosa was described by Brady (1902) 

from the Caribbean. Benson & Coleman (1963) reported N. gerda from Florida. N. 

longiseta has so far been recorded around the Azores archipelago, between 1 and 85 m 

depth (Meireles et al., submitted; Chapter 6). 

 

Family Leptocytheridae Hanai, 1957 

Genus Leptocythere Müller, 1927 

Leptocythere pellucida (Baird, 1850). 

(Plate 5, Fig. Q) 

 

1850 Cythere pellucida sp. nov. Baird, 173, pl. 21, fig. 7. 

1925 Leptocythere pellucida (Baird); Sars, 172, pl. 79, fig. 1. 

1989 Leptocythere pellucida (Baird); Athersuch et al., pl. 1(3,4), fig. 33. 



94 
 

Material examined: DB/OS 0057. 

Description: Carapace strongly calcified, elongated, with large pits, sometimes also 

smooth. 

Remarks: The collected specimens are identical to L. pellucida in regards to its 

elongated, robust carapace with large fossae. 

Geographical Distribution: A marine, sublittoral species (to 50 m depth), common on 

sandy bottoms in the North Sea, Atlantic Coast of France and Britain, southern Norway 

and the western Baltic (Athersuch et al., 1989). Rare material, found on Terceira (this 

study) and on São Miguel and Faial (Meireles et al., submitted; Chapter 6). 

 

Genus Callistocythere Ruggieri, 1953 

Callistocythere insularis Meireles & Keyser n. sp. 

(Plate 8, Figs A-F) 

(Plate 9, A-E) 

 

Chapter 6 Callistocythere sp.; Meireles et al., fig. 2 (photo 11), DB/OS 0148. 

 

Derivation of name: With reference to the insular shelf of the Azores archipelago (NE 

Atlantic). 

Holotype: Male, adult valve; DB/OS 0148: length = 0.48 mm, height = 0.24 mm. 

Type locality: São Miguel Island (ETAR Pranchinha; N 37º 44' 32,1''/ W 025º 38' 

55,5''), Azores Archipelago, Portugal. Recent. 

Figured specimens: DB/OS 0148 (holotype, male), DB/OS 0147 (female). Collected 

alive from ETAR Pranchinha localities in the inner shelf by Ricardo Meireles and Paulo 

Antunes, September 2011; salinity 32 to 35‰, water temperature 14 to 17
o
C, at 15 m 

depth. 

Age: Holocene to Recent. 

Material examined: Holotype: DB/OS 0148. Paratypes: DB/OS 0135, 0149, 0150. 

Other material: DB/OS 0061, 0062, 0063, 0138, 0147, 0150, 0151. 

Dimensions: Holotype DB/OS 0148: length = 0.48 mm, height = 0.24 mm; Paratype 

DB/OS 0135: length = 0.52 mm, height = 0.25 mm; Paratype DB/OS 0149: length = 

0.48 mm, height = 0.24 mm, width = 0.19 mm; Paratype DB/OS 0150: length = 0.48 

mm, height = 0.24 mm, width = 0.19 mm. 
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Diagnosis: Nearly rectangular carapace in lateral view. Maximum height anterior and 

posterior of the middle of the valve, due to a ventral margin with strong median 

concavity. Left valve slightly larger than right valve with overlap in the anterior area. 

Dorsal margin straight and rectilinear truncation in the median-posterior portion. Three 

prominent posterior ribs running dorso-ventral with a very distinct rib connecting the 

first and second posterior rib on the ventro-caudal edge. Distinct copulatory organ. 

Description: Carapace robust, rather small with three prominent ribs in dorso-ventral 

direction. Dorsal margin straight, ventral margin with strong concavity. One distinct 

ridge connecting first and second posterior ridge on ventro-caudal edge. Normal pore 

canals. Inner lamella broad, radial pore canals branched with distinct large anterior and 

smaller posterior vestibule. 

Antennule: 5 jointed (4:3:1:2:1,4), second joint with one ventro-distal seta, third joint 

with a short dorso-distal claw, fourth joint with one median seta and one short and one 

medium dorso-medial claws,as well as one big and one small dorso-distal claws and a 

seta as long as the big claw. Also with a long ventro-distal seta. Ultimate joint with one 

big claw and a small and long seta. 

Antenna: Endopod three-jointed (5:16:1). Exopodit two-jointed reaching to the tip of 

the claws of the endopod. First joint of endopod with one strong ventro-distal seta. 

Second joint long at three-fifth of length dorso-median one long and one short seta, the 

long seta reaching the distal end of joint. Ventro-median also one small and one strong 

seta. Ventro-distal a strong claw reaching to the distal end of endopod. Ultimate joint 

with two strong claws, ventral one slightly shorter than the dorsal one. 

Mandible and maxilla as for the genus. 

P1: Four-jointed with long distal claw (7:4:2,5:2,5:3,5). First joint with one ventral seta 

proximal, one dorsal seta median and two setae at the distal part of the joint. Second 

joint with one ventro-distal seta. Last joint with two small setae at the base of the claw. 

P2: Four-jointed with long distal claw (7:3:2,5:3:4). First joint with one ventral seta 

proximal, one dorsal seta median and one small and one longer seta at the distal part of 

the joint. All other joints without setae. 

P3: Four-jointed with long distal claw (7:4:3:3,5:4). First joint with one dorsal seta 

median and one seta at the distal part of the joint. Second joint with one ventro-distal 

seta. Third joint with a small seta ventrally. Last joint with two small setae at the base of 

the claw. 
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Copulatory organ: With a typical pointed triangular process; ductus ejaculatorius 

sclerified and looped. 

Remarks: This species has probably been confused with Callistocythere littoralis 

(Müller, 1894) and Callistocythere badia (Norman 1862) fide Athersuch & Whittaker 

(1977), from which it can be distinguished by its more rectangular carapace and the 

above mentioned ridges, and the different copulatory organ (text-pl. 9; Athersuch & 

Whittaker, 1977). 

Geographical Distribution: Recent; shallow marine, Callistocythere insularis n. sp. 

has so far been recorded on six islands of the Azores archipelago: Santa Maria (18 m 

depth), São Miguel Island (15 to 20m depth), Terceira (3 to 23 m depth), Pico (1 to 54 

m depth), Graciosa (1 m depth) and Flores (3 m depth) (Chapter 3 - table 4 and Meireles 

et al., submitted; Chapter 6). 

 

Family Cytherideidae Sars, 1925 

Genus Cyprideis Jones, 1856 

Cyprideis torosa (Jones, 1850) 

(Plate 7, Figs H-L) 

 

1850 Candona torosa sp. nov. Jones, 27, pl. 3, figs 6a-e. 

1974 Cyprideis torosa (Jones); Kilenyi & Wittaker, 21-32. 

1989 Cyprideis torosa (Jones); Athersuch et al., pp. 114, fig. 44a-k. 

 

Material examined: DB/OS 0011, 0012, 0013, 0014, 0015, 0051, 0052, 0053. 

Description: Female carapace subovate in lateral view; inflated posteriorly. Male 

carapace more elongate and not inflated posteriorly. Valves smooth to variably pitted, 

sometimes nodose. Big sieve pores present. 

Remarks: The collected specimens are identical to Cyprideis torosa (Jones, 1850) with 

regards to the subovate carapace. Apparent sexual dimorphism, with valves smooth to 

variably pitted, sometimes with strong nodes in very low salinity (Keyser & Aladin 

2004). Found in a wide range of salinities from almost freshwater to over 60‰ in inland 

ponds, lakes, lagoons, estuaries, fjords, deltas and other marginal marine environments, 

down to a depth of around 13 m. C. torosa appears to prefer a muddy or sandy mud 

substrate but is sometimes also found on algae. This is the first record for the Azores. 
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Geographical Distribution: Widespread throughout Europe and as far north as Iceland, 

Mediterranean region, W and Central Asia, and Middle East and North Africa. Also 

found in lakes in Central Africa. In the Azores, it is reported from Pico and Terceira. 

 

Family Trachyleberididae Sylvester-Bradley, 1948 

Genus Carinocythereis Ruggieri, 1956 

Carinocythereis whitei (Baird, 1850) 

(Plate 8, Figs L-N) 

 

1850 Cythereis whitei sp. novo W. Baird, pl. 20, figs. 3, 3a. 

1969 Carinocythereis bairdi sp. novo F. Uliczny, pp. 79, pI. 5, fig. 7; pl.16, fig. 7. 

1985 Carinocythereis whitei (Baird); J. Athersuch, D. J. Home & J. E. Whittaker, pp. 153-158, pl. 1, figs. 

12-15; pl. 2, figs. 7, 8. 

1987 Carinocythereis whitei (Baird); Athersuch, J. & Whittaker, J. E., pp. 103-110. 

 

Specimens: Material collected alive on São Miguel and Terceira Islands at 20 and at 23 

m depth, respectivelly. 

Material examined: DB/OS 0054, 0055, 0056.  

Description: Carapace rectangular in lateral view, ornaments consisting of three 

longitudinal carinae (costae) of which the ventral one bends anteriorly upwards. 

Remarks: The species was long time misinterpreted and was described as C. antiquate 

(Baird) or C. bairdi. Athersuch et al. (1985) reinstated the name C. whitei (Baird) after 

careful investigation of the syntypes of Baird. 

Geographical Distribution: A species found in the South of the British Isles, the 

Atlantic coast of France and the Mediterranean. Typically living on sand, in the Azores 

archipelago C. whitei has been recorded from São Miguel Island and Terceira (this 

study) and also from Santa Maria (at the beach), Pico (54 m depth) and Faial (10 to 30 

m depth) (Meireles et al., submitted; Chapter 6). 

 

Family Hemicytheridae Puri, 1953 

Genus Aurila Porkorný, 1955 

Aurila convexa (Baird, 1850) 

(Plate 5, Figs A-K) 

 

1850 Cythere convexa sp. nov. Baird, pp. 174, pl. 21, fig. 3. 



98 
 

1894 Cythereis convexa (Baird); G.W. Müller, pp. 366, pl. 28, figs 14, 19; pl. 30, figs 49-51; pl. 35, figs 

6, 13, 19-21. 

1982 Aurila convexa (Baird), “form A”; Horne, pl. 1, fig. 13. 

1989 Aurila convexa (Baird); Athersuch et al., pp. 157, fig. 62; pl. 5(1). 

 

Specimens: Material collected alive from ETAR Pranchinha, in inner shelf, 4
th

 

September 2011; salinity 32 to 35‰, water temperature 14 to 17
o
C, at 15 m depth. Also 

collected on Terceira Island, at 1 m and 23 m depth. 

Material examined: DB/OS 0032, 0033, 0034, 0035, 0139, 0152. 

Description: The species shows a clear postero-dorsal angle; two ridges in the frontal 

region, and postero-ventral rounded caudal process. 

Remarks: A. convexa has previously been confused with A. woutersi Horne, 1986; the 

two species were formerly considered by Horne (1982) as “form A” and “form B” 

respectively of A. convexa (see Horne (1986) for further discussion). 

Geographical Distribution: Recent; a common littoral to shallow sublittoral marine 

species in southern North Sea, typically living amongst algae such as Corallina, 

Laminaria holdfast, algae debris, or on sand; it is known from France, Portugal and the 

Mediterranean, but not from Scandinavia; it therefore appears to be at the northern limit 

of its distribution in southern Britain (Athersuch et al., 1989). Typically living on sand, 

A. convexa is one of the commonest ostracods in the Azores and it has so far been 

recorded from Formigas Islets (20 m depth), São Miguel (1 to 15 m depth), Pico (46 to 

69 m depth), Faial (10 to 85 m depth, Graciosa (1 m depth), Flores (3 m depth), and 

Terceira (intertidal down to 23 m depth). 

 

Aurila woutersi Horne, 1986 

(Plate 6, Figs A-E) 

 

1973 Aurila convexa (Baird); Wouters, pp. 16, pl. 2, fig. 2. 

1982 Aurila convexa (Baird), “form B.”; Horne, pp. 1, pl. 1, fig. 14. 

1986 Aurila woutersi Horne; pp. 33-38. 

 

Specimens: Material collected alive on São Miguel Island: at Caloura, in the inner 

shelf, 15
th

 March 2012, salinity 32 to 35‰, water temperature 16 to 19
o
C, at 2.5 m 

depth; and at ETAR Pranchinha, in the inner shelf, 4
th

 September 2011, salinity 32 to 
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35‰, water temperature 14 to 17
o
C, at 15 m depth. Also collected alive on Pico Island, 

locality in the insular shelf, November 2003, at 54 m depth. 

Material examined: DB/OS 0031, 0120, 0153. 

Description: This species is more quadrate than the previous; the posterior-ventral 

region is curved and runs into a rounded caudal process. Only one frontal ridge and a 

larger one in the posterior region are present. 

Remarks: A. woutersi has previously been confused with A. convexa; the two species 

were formerly considered by Horne (1982) as A. convexa “form A” and “form B”. “The 

two species are most easily distinguished by comparison of their left valves; that of A. 

woutersi is more quadrate, while that of A. convexa is subtriangular with a distinct angle 

at the highest point of its dorsal margin” (Horne, 1986). 

Geographical Distribution: A Recent marine ostracod species living mainly on sand in 

the littoral area. It is part of the phytal community and lives here in the holdfasts and the 

area between the algae. It seems to be common in the Southern British Isles (Athersuch 

et al., 1989). A. woutersi has so far been recorded from three islands on the Azores 

archipelago: São Miguel (intertidal down to 20 m depth) Pico (54 m depth) and  

Terceira (intertidal down to 23 m depth) (this study and Meireles et al., submitted; 

Chapter 6). 

 

Aurila prasina Barbeito-Gonzalez, 1971 

(Plate 6, Figs F-M) 

 

1971 Aurila prasina Barbeito-Gonzalez, 277, pl. 12, figs 1a, 2a, 3a, pl. 46, figs 11, 12. 

1975 Aurila prasina Barbeito-Gonzalez; Bonaduce et al., 44, pl. 20, figs 1-7. 

 

Material examined: DB/OS 0039, 0040, 0046, 0047, 0048, 0049, 0050. 

Description: This species shows a strong postero-dorsal angel; the anterio-ventral 

region is broadly rounded; ocular tubercle present. Valves are finely punctated, with 

conspicuous normal and sieve pores. 

Remarks: A. prasina has previously been confused with A. woodwardi (Brady, 1868). 

This is the first record for the Azores. 

Geographical Distribution: Recent, this species is a typical near-shore form. It has 

been found only between Lecce and S. Maria di Leuca, in Adriatic Sea, at depths not 

exceeding 20 m (Bonaduce et al., 1975) and in Naxos, Greece (Barbeito-Gonzalez, 
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1971). Typically found on sands, A. prasina was found in Holocene sediments on 

Terceira Island (1 m depth), Graciosa (1 m depth), São Miguel (20 m depth) and Faial 

(30 m depth). 

 

 

Genus Heterocythereis Elofson, 1941 

Heterocythereis albomaculata (Baird, 1938) 

(Plate 7, Figs A-G) 

 

1838 Cythere albo-maculata sp. nov. Baird, pp. 142, pl. 5, fig. 23. 

1957 Heterocythereis albomaculata (Baird); Wagner, pp. 57, pl. 24, figs 1-7. 

1979 Heterocythereis albomaculata (Baird); Athersuch & Wittaker, pp. 117-124. 

1989 Heterocythereis albomaculata (Baird); Athersuch et al., pp. 165, pl. 5(4), fig. 66. 

 

Specimens: Material collected alive on São Miguel Island, Caloura, in the inner shelf, 

15
th

 March 2012, salinity 32 to35‰, water temperature 16 to 19
o
C, at 2.5 m depth. 

Material examined: DB/OS 0036, 0037, 0038, 0041, 0042, 0043, 0044, 0045, 0113, 

0114, 0115, 0116, 0125, 0134. 

Description: Valves finely punctate, with conspicuous normal and sieve pores; lineate 

and often faintly reticulate ventrally. Sexual dimorphism pronounced, male 

considerably longer than female. Male copulatory organ specific. 

Remarks: The collected specimens are identical to H. albomaculata (Baird, 1938) in 

respect to the carapace morphology. Male copulatory appendage with a “tapering, 

somewhat sinuous distal process and a moderately long ejaculatory duct (text-fig. 1)” 

(Athersuch et al., 1989). 

Geographical Distribution: Recent; a common littoral to shallow littoral marine 

species found along the shores of the North Sea and the Atlantic. Living on sand and in 

phythal communities (Athersuch et al., 1989), H. albomaculata is one of the 

commonest ostracods of the Azores, being reported from Santa Maria (18 m depth), São 

Miguel (intertidal down to 20 m depth), Graciosa (1 m depth), Terceira (intertidal down 

to 3 m depth), Pico (54-69 m depth) and Faial (10-30 m depth). 
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Genus Urocythereis Ruggieri, 1950 

Urocythereis britannica Athersuch, 1977 

(Plate 4, Figs A-P) 

 

1868b Cythere oblonga Brady; Brady, pp. 400, pl. 31, figs 14-17 (non Brady, 1866). 

1977 Urocythereis britannica sp. nov. Athersuch, 255, pl. 1, figs 4-6; pl. 2, figs 1-6; pl. 3, figs 1-6; pl. 4, 

figs 1-5; text-figs 3a, b, 4a, e, g. 

1989 Urocythereis britannica Athersuch, 1977; Athersuch et al., 1989, pp. 170, fig. 68a-f. 

 

Material examined: DB/OS 0016, 0017, 0018, 0019, 0020, 0021, 0022, 0023, 0024, 

0025. 

Description: Carapace subrectangular, strongly calcified, ornament reticulate with 

different sized fossae. 

Remarks: “This species was long confused with the Mediterranean species, U. oblonga 

(Brady, 1866), itself a junior objective homonym of Cythere oblonga M´Coy, 1844, and 

renamed U. distinguenda by Neviani (1928), the two differ in the shapes of their 

carapaces and male copulatory appendages” (Athersuch et al., 1989). 

Distribution: This species is found along the coasts of the Atlantic, the North Sea and 

probably in the Mediterranean. In the Azores, it seems to be more frequent on the 

southern shores (Meireles et al., submitted; Chapter 6). It lives mainly on sands and 

prefers shallower marine habitats. U. britannica has so far been recorded from Santa 

Maria (intertidal), São Miguel (intertidal down to 20 m depth), Terceira (0-3 m depth), 

Pico (1-69 m depth) and Faial (10-85 m depth) (this study and Meireles et al., 

submitted; Chapter 6). 

 

Family Loxoconchidae Sars, 1925 

Genus Loxoconcha Sars, 1866 

Loxoconcha rhomboidea (Fischer, 1855) 

(Plate 1, Figs A-J) 

 

1854 Cythere flavida O.F.Müller; W.Zenker, pp. 20, pp. 86, pl. 5, fig. B4, figs. B1-3 (non C. flavida 

O.F.Müller, 1785). 

1855 Cythere rhomboidea sp. nov., Fischer pp. 656. 

1976 Loxoconcha rhomboidea (Fischer); Athersuch & Whittaker, pp. 81-90. 
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Specimens: Samples collected alive on São Miguel Island, Rosto do Cão, in tidal pool, 

15
th

 March 2012, salinity 32 to 35‰, water temperature 16 to 19
o
C, at 1 m depth. 

Material examined: DB/OS 0026, 0027, 0028, 0029, 0030, 0112, 0126, 0140, 0144, 

0145, 0154. 

Description: Carapace rather inflated in dorsal view, subrhomboid in lateral view, 

dorsal margin of female strongly arched. Ornament of concentrically arranged fine to 

medium sizes puncta. 

Remarks: The collected specimens are identical to Loxoconcha rhomboidea (Fischer, 

1855) in carapace outline and sexual dimorphism. 

Geographical Distribution: Recent: a common phytal species in the eulittoral and 

sublittoral zones of the coasts of Europe, from N Norway to Madeira and Canary 

Islands, off N Africa. Mediterranean records need careful revision (Athersuch & 

Whittaker 1976). Late Miocene of Santa Maria Island (Azores) (Meireles et al., 2012). 

Typically living on sand near or amongst algae, L. rhomboidea was recorded from all 

the sampled islands of the Azores: Santa Maria (intertidal down to 18 m depth), 

Formigas Islets (20 m depth), São Miguel (intertidal down to 20 m depth), Terceira 

(intertidal down to 23 m depth), Pico (46-69 m depth), Faial (intertidal down to 30 m 

depth), Graciosa (intertidal down to 1 m depth) and Flores (3-20 m depth) (Meireles et 

al., submitted; Chapter 6). On São Miguel, it was found living associated with brown-

algae and sponges, between 1 and 15 m depth. 

 

Loxoconcha cf. ochlockoneensis Puri, 1960 

(Plate 1, Figs K-R) 

 

1960 Loxoconcha ochlockoneensis Puri pp. 111, pl. 3, figs. 13, 14. 

2000 Loxoconcha ochlockoneensis Puri; Keyser & Schöning, pp.573, pl. 5, figs. 81-82. 

 

Specimens: Sample collected on Lajes do Pico, in tidal pool, August 2010, salinity 28 

to 34‰, water temperature 16 to 19
o
C, at 1 m depth. 

Material examined: DB/OS 0001, 0002, 0003, 0004, 0005. 

Description: Strongly dimorphic, male larger, female more subovate. Posterior and 

anterior margins of the carapace flat, dorsal margin almost straight in male, slightly 

arched in female. Valves finely punctated. 
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Remarks: This Loxoconcha has in common with L. elliptica Brady, 1868 the finely 

punctated surface, which readily discriminate this species from the other Loxoconchidae 

found in the Azores. However, it differs from L. elliptica in having anteriorly and 

posteriorly along the margin, flat parts of the carapace, which look like they are glued 

together. Although the original drawings of Puri (1960) are hard to interpret, we are 

positive that our species is a close relative to Loxoconcha ochlockoneensis. 

Geographical Distribution: A mainly brackish water species. It is found on muddy to 

sandy grounds with growth of algae. It is known from the West coast of Florida and the 

Bermudas (Keyser & Schöning, 2000). We have recorded it from São Miguel (1-2 m 

depth), Santa Maria (18 m depth), Formigas Islets (20 m depth), Terceira (3-23 m 

depth), Pico (1-54 m depth), Graciosa (1 m depth) and Flores (20 m depth) (Meireles et 

al., submitted; Chapter 6). 

 

Family Cytheruridae Müller, 1894 

Genus Semicytherura Wagner, 1957 

Semicytherura brandoni Meireles & Keyser n. sp. 

(Plate 8, Figs G-J) 

(Plate 10, A-E) 

 

Chapter 6 Semicytherura sp.; Meireles et al., fig. 2 (photo 12), DB/OS 0123 

 

Derivation of name: In honor to Dra. Simone Nunes Brandão by her important studies 

on marine ostracods. 

Holotype: Male, adult carapace; DB/OS 0123: length = 0.43 mm, height = 0.23 mm. 

Carapace was destroyed during soft-parts studies. 

Type locality: São Miguel Island (Mosteiros, N 37º 53' 56,6'' / W 025º 49' 18,0''), 

Azores Archipelago, Portugal. Recent, littoral. 

Figured specimen: DB/OS 0130 (paratype, female). Sample collected alive on São 

Miguel Island, Mosteiros, in tidal pools, 15
th

 March 2012, salinity 32 to 35‰, water 

temperature 16 to 19
o
C, at 2 m depth. 

Age: Recent. 

Material examined: Holotype: DB/OS 0123, Paratypes: DB/OS 0124, 0127, 0130. 

Dimensions: Holotype DB/OS 0123: length = 0.43 mm, height = 0.23 mm; Paratype: 

DB/OS 0124: length = 0.47 mm, height = 0.24 mm; Paratype: DB/OS 0127: length = 
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0.47 mm, height = 0.24 mm; Paratype: DB/OST 0130: length = 0.43 mm, height = 0.25 

mm. 

Diagnosis: Carapace small, subquadrate, with caudal process above mid-height. 

Ornament reticulate with conspicuous longitudinal muri, which are merging anteriorly. 

Typical strong depression dorso-anteriorly. 

Description: Carapace small, subquadrat. Caudal process present. Slightly bulged in 

ventro-posterior region. Ridges merging anteriorly. Flat and smooth area dorso-

anteriorly. Inner lamella typical for the genus calcified. 

Antennula: Sixth-jointed and a distal claw (8: 7: 3,5: 5: 4: 2,5: 5), third joint with one 

distal seta, fourth joint with one distal seta, fifth joint with one long seta reaching 

beyond the tip of the distal claw and two smaller setae. Last segment with one strong 

claw, one long and one short setae. 

Antenna: Endopodit four-jointed (4:6,5:11:1,5), exopodit as long as the endopodit with 

two segments. First joint of endopodit with one ventro-distal seta, second joint with one 

strong and one smaller setae and one aethetask seta, third joint with one dorso-median 

seta and one ventro-distal seta. Last joint with two strong claws. 

Mandibula: not observed. 

Maxillula: Slender with one palpus and three endites. Vibratory plate with two aberrant 

bristles. 

P1: Four-jointed (6:3:2:2,5). First joint with one long basic ventral, one dorso-median 

seta and one strong and one small distal setae, second joint with one distal seta. Last 

segment with strong claw. 

P2: Four-jointed (7:4:2:3). First joint with one dorso-median and one distal setae, 

second joint with one distal seta, last segment with strong claw. 

P3: Four-jointed (7,5:6:2,5:4). First joint with one short distal seta, second joint with 

one seta and distal segment with strong claw. 

Copulatory organ: With anvil-like main process and shoe-like smaller secondary 

process. Ductus ejaculatorius coiled in one circle, three quarter strongly chintinized. 

Remarks: The species is defined by the small size. The typical male copulatory organ 

(text-pl. 10) resembles the one in Semicytherura tela Horne & Whittaker, 1980, but 

having a more straight anvil-like processus, while S. tela exhibits a more pointed leaf-

like processus. This species has probably been confused with S. tela and Semicytherura 

cornuta (Brady, 1968), from which it can be distinguished by its smaller size, an alar 

process in the postero-ventral margin, and distinctive copulatory organ. 
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Geographical Distribution: Recent; shallow marine, in the Azores, Semicytherura 

brandoni n. sp. has so far been recorded from Santa Maria (18 m depth), the Formigas 

Islets (20 m depth), São Miguel (1-9 m depth), Terceira (intertidal) and Pico (1 m depth) 

(Meireles et al., submitted; Chapter 6). 

 

Semicytherura cf. cornuta (Brady, 1868) 

(Plate 8, Fig. K) 

 

1868 Cytherura cornuta sp. nov. Brady, 445, pl. 32, figs 12-15 (female). 

1974 Semicytherura cornuta (Brady); Wittaker, 77-84. 

1989 Semicytherura cornuta (Brady); Athersuch et al., 213, fig. 86a-d. 

 

Specimen:Collected alive on Santa Maria Island, on Ilhéu da Vila, July 2010, salinity 

32 to 35‰, water temperature 13 to 16
o
C, at 13 m depth. 

Material examined: DB/OS 0064. 

Description: Carapace subquadrate, with caudal process above mid-height. Ornament 

reticulated, with conspicuous longitudinal muri merging anteriorly and one of which 

runs into a postero ventral alar protuberance. 

Remarks: Our species is similar to S. cornuta, but it is strikingly smaller (length = 0.46 

mm, height = 0.23 mm). It has a higher and more conspicuous caudal process than S. 

sella and is more elongated than S. acuticostata, and the ornamentation is also different 

(see Athersuch et al., 1989 for further discussion). The absence of copulatory organ in 

the material prevents us of describing a new species. 

Geographical Distribution: This species has been mentioned as S. cornuta only from 

the British Isles; two records under the name of S.intumescens, however, are from the 

Atlantic coast of France (de Vos, 1957) and S Norway (Sars, 1925). This species seems 

to live among littoral marine algae (Athersuch et al., 1989). 

 

Family Xestoleberididae Sars, 1928 

Genus Xestoleberis Sars, 1866 

Xestoleberis rubens Whittaker, 1978 

(Plate 3, Figs A-O) 

 

1978 Xestoleberis rubens Whittaker pp. 35-44. 
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1989 Xestoleberis rubens Whittaker; Athersuch et al, 239, fig. 101a-e; 

 

Specimens: Material collected alive on São Miguel Island, at Caloura and Mosteiros, in 

tidal pools, March 2012, salinity 32 to 35‰, water temperature 16 to 19
o
C, at 2 m 

depth. 

Material examined: DB/OS 0006, 0007, 0008, 0009, 0010, 0118, 0122. 

Description: Shell moderately inflated in dorsal view; in lateral view sub-reniform with 

rounded dorsal margin and distinctive ventral sinuosity. 

Remarks: The carapace morphology of the collected specimens are identical to 

Xestoleberis rubens Whittaker, 1978. 

Geographical Distribution: A marine phytal species, known from the North Sea and 

the Atlantic coast of France (as X. aurantia, by de Vos, 1957 and Yassini, 1969) 

(Athersuch et al., 1989). Typically living on sandy sediment, in the Azores Xestoleberis 

rubens has so far been recorded from Santa Maria (4-18 m depth), Formigas Islets (20 

m depth), São Miguel (1-20 m depth, associated with brown-algae and sponges), 

Terceira (0-23 m depth), Pico (1-54 m depth), Faial (10 m depth), Graciosa (1 m depth) 

and Flores (20 m depth) (Meireles et al., submitted; Chapter 6). 

 

Xestoleberis cf. depressa Sars, 1866 

(Plate 3, Figs P-Q) 

 

1866 Xestoleberis depressa sp. nov. Sars, 68. 

1989 Xestoleberis depressa Sars, Athersuch et al., pp. 235, fig. 99a-f. 

 

Specimens: Collected alive on Pico, Lajes do Pico, in tidal pool, August 2010, salinity 

28 to 34‰, water temperature 16 to 19
o
C, at 1 m depth. 

Material examined: DB/OS 0181. 

Description: Shell moderately long in lateral view with strong dimorphism; ventral 

margin straight or weakly sinuous. 

Remarks: Notwithstanding the abundance of the collected material, its poor 

preservation makes difficult even the generic attribution. On the basis of the general 

shape in lateral and dorsal view and on what it is possible to argue about the surface 

ornamentation, we dubitatively refer the collected material to Xestoleberis depressa. 
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The collected specimens have affinities to X. depressa Sars, 1866 in respect to the 

general morphology (see Athersuch et al., 1989, for further discussion). 

Geographical Distribution: X. depressa is known from frequent stations in the North 

Sea, Scandinavia and also in the Western part of the Baltic. It was found associated with 

coarse sediment and algae (Athersuch et al., 1989). In the Azores, this species is 

reported from Santa Maria (18 m depth), Formigas Islets (20 m depth), São Miguel (10 

m depth), Terceira (23 m depth), Pico (1m depth) and Graciosa (1 m depth) (Meireles et 

al., submitted; Chapter 6). 

 

Xestoleberis sp. 

(Plate 3, Figs R-X) 

 

Specimens: Material collected alive on São Miguel Island, ETAR Pranchinha, 4
th

 

September 2011, salinity 32 to 35‰, water temperature 14 to 17
o
C, at 15 m depth. 

Material examined: DB/OS 0137. 

Dimensions: length = 0.53 mm, height = 0.27 mm. 

Description: Carapace sub-rectangular in lateral view. Greater height located slightly 

posterior of the middle portion of the shell. Right valve larger, with valve overlap in the 

anterior, ventral and postero-dorsal area. Rectilinear ventral margin, arched dorsal 

margin, bending anteriorly and posteriorly. Surface of the carapace smooth. 

Remarks: The scarcity of the collected material prevents a specific identification. 

Reported from São Miguel (this study) and Terceira (0-3 m depth; Meireles et al., 

submitted; Chapter 6). 

 

Family Bythocytheridae Sars, 1866 

Genus Sclerochilus Sars, 1866 

Sclerochilus hicksi Athersuch & Horne 1987 

(Plate 5, Figs L-P) 

 

1987 Sclerochilus hicksi Athersuch & Horne 1987, pp. 211-212, fig.9A-J 

1989 Sclerochilus hicksi Athersuch et al., p. 268-69, fig.114 

 

Specimens: Material collected alive on São Miguel Island, ETAR Pranchinha, 4
th

 

September 2011, salinity 32 to 35‰, water temperature 14 to 17
o
C, at 9 m depth. 
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Material examined: DB/OS 0146. 

Description: Carapace smooth, bean shaped, compressed laterally. Size: length: 0.48 

mm; height: 0.25 mm. Few normal pores. Typical copulatory organ (Athersuch & 

Horne 1987). 

Remarks: The animals have been collected alive on sandy bottoms. This is the first 

record for the Azores. 

Geographical Distribution: European waters (General Sea Area [include North Sea 

and Mediterranean]) (Horne et al., 2001); United Kingdom Exclusive Economic Zone 

(Medin, 2011); Azores archipelago (this work). 

 

Family Paradoxostomatidae Brady & Norman, 1889 

Genus Lanceostoma Schornikov & Keyser, 2004 

Lanceostoma simplex Meireles & Keyser n. sp. 

(Plate 2, Figs M-U)  

(Plate 11, Figs A-D) 

 

Chapter 6 Lanceostoma sp.; Meireles et al., fig. 2 (photo 13), DB/OS 0117. 

 

Derivation of name: With reference to the simple form of the species. 

Holotype: Only soft-parts; Male, adult valve; DB/OS 0117: length = 0.67 mm, height = 

0.28 mm, width = 0.20 mm. Carapace was destroyed during soft-parts studies. 

Type locality: São Miguel Island (Caloura; N 37º 42' 48,2''/ W 025º 29' 44,9''), Azores 

Archipelago, Portugal. Recent, littoral. 

Figured specimens: DB/OS 0121 (paratype) and DB/OS 0068 (paratype). Material 

collected alive on Caloura, in tidal pools, March 2012; salinity 32 to 35‰, water 

temperature 16 to 19
o
C, at 2 m depth. 

Age: Holocene to Recent. 

Material examined: Holotype: DB/OS 0117, Paratypes: DB/OS 0068, 0121, 0129. 

Other material: DB/OS 0069, 0070, 0071, 0141, 0142. 

Dimensions: Holotype DB/OS 0117: length = 0.67 mm, height = 0.28 mm, width = 

0.20 mm; Paratype: DB/OS 0121: length = 0.69 mm, height = 0.32 mm; Paratype: 

DB/OS 0129: length = 0.69 mm, height = 0.31 mm. 

Diagnosis: Carapace ellipsoid, with distinct caudal process. Surface smooth with 

relative few normal lateral pores. Calcified inner lamella broad, line of congrescens 
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showing one big frontal vestibule, one small medio-ventral and one ventro-posterior 

vestibule. Copulatory organ with a cuneiform process connected to a clasping structure 

at the back. 

Description: Shell pointed ovoid. Anterior rounded and slightly pointed, posterior with 

slight caudal process. Dorsal margin slightly convex, ventral margin slightly concave, 

anteriorly of the middle. Inner calcified lamella broad with about the same distance 

from the ventral margin. Line of congrescens displays three different vestibules, one 

anterior, one venbtral and one in the posterior of the shell. Muscelscars four in a row 

with one rather small frontal one.  

Antennula: Six-jointed (5:4,5:5:7:2,5:1). Second segment with 1 distal seta, third joint 

with one short distal seta, fourth joint with one small distal seta, fifth joint with 2 short 

and one long distal setae and last segment with 3 setae. 

Antenna: Exopod three-jointed (11:2,5:4) as long as the endopod. Endopod four-jointed 

(3:5:6:1). First segment of endopod with one strong distal seta, second and third joint 

each with small distal seta and last segment with two strong claws. 

Mandibula and Maxillula are not well preserved and could not be figured. 

P1: Four-jointed (5:4:2:2,5). First joint with basal long seta and one thick distal seta 

reaching to the end of the second segment.second joint with small distal seta, last 

segment with distal claw. 

P2: Four jointed (6:3,5:2:2,5). First segment with small median seta and distal a thick 

(less than P1) seta. Second segment with one distal seta and the last joint with a distal 

claw. 

P3: Four-jointed (7:6:2,5:3). First and second segment with thin distal seta, last segment 

with distal claw. 

Copulatory organ: With a well defined cuneiform process connected to a clasping 

structure on the opposite side. Ductus ejaculatorius within this attachment. 

Remarks: The shell of this species resembles L. tenerifense Schornikov & Keyser, the 

line of congrescens as well as the extension of the inner lamella are similar. However, 

the copulatory organ is different in having an extension of the cuneiform process which 

seems to be a kind of clasping structure. 

Geographical Distribution: Recent; shallow marine, L. simplex was reported by 

Meireles et al. (submitted; Chapter 6) to Santa Maria (4 m depth), Formigas Islets (20 m 

depth), São Miguel (1-15 m depth), Terceira (23 m depth), Pico (54 m depth) and 
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Graciosa (1 m depth). This study enlarges the distribution of this species to Flores 

Island, at 3 m depth. 

 

Order Myodocopida Sars, 1866 

Family Cylindroleberididae Müller, 1906 

Genus Cylindroleberis Brady, 1867 

Cylindroleberis sp. 

(Plate 5, Figs R-T) 

 

Specimens: Material collected alive on São Miguel Island, Caloura, by Joana Xavier 

and Andreia Cunha, March 2012; associated with sponges (genus Haliclona Grant, 

1836) at 4 m depth. 

Material examined: DB/OS 0180. 

Description: In lateral view oval, elongate, with greatest height slightly behind middle; 

anterior and posterior margins evenly rounded; lateral surface smooth, with scattered 

normal pore canals, some with short hairs; incisure deep, narrow, with upper margin 

overlapping lower proximally. 

Remarks: The scarcity of the collected material prevents a specific identification. 

Typically living upon sponges, Cylindroleberis sp. has so far been recorded on São 

Miguel. 

 

 

DISCUSSION 

Systematics 

Ostracoda fauna differ in the number of families and species around the world, 

usually with more species in continental margins than in insular habitats (see Chapter 6 

for an overview). Before our study, only two species of marine ostracods had been 

reported from the Azores, the widespread podocopids Heterocythereis albomaculata 

and Loxoconcha rhomboidea (Costa, 2003). This chapter expands to 20 the number of 

benthic species occurring nowadays in the archipelago, with 10 families and 14 genera 

represented. The Azorean Ostracoda assemblages include genus/species that also occur 

in other regions, namely Xestoleberis and Semicytherura in the Pacific (Allison & 

Holden, 1971); Callistocythere, Loxoconcha, Semicytherura, Leptocythere and 

Xestoleberis in Kuwait Bay (Al-Abdul-Razzaq et al., 1983); Xestoleberis and 
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Semicytherura in the UK (Hull, 1997); Xestoleberis and Callistocythere in Brazil 

(Machado et al., 2005); Callistocythere, Leptocythere, Semicytherura, Xestoleberis and 

Urocythereis, and the species Aurila convexa and Loxoconcha rhomboidea in Holocene 

mainland Portugal (Cabral et al., 2006); Xestoleberis, Loxoconcha, Urocythereis, 

Callistocythere and the species Aurila convexa in Cyprus (Athersuch, 1979); and the 

genus Urocythereis and the specie Aurila convexa in the Basque shelf (Pascual et al., 

2008). The representatives of the families present in the Azores are thus typical of 

infralittoral marine environments around the world (Machado et al., 2005, for an 

overview). According to Meireles et al. (Chapter 6), the Recent assemblages are 

dominated by specimens of the Loxoconchidae, whereas the Holocene assemblages are 

dominated by specimens of the Loxoconchidae, Hemicytheridae and Bairdiidae. The 

most abundant species, Loxoconcha rhomboidea, occurred in both Recent (0-40 m 

depth) and Holocene sediments (here, together with Aurila convexa, Neonesidea 

longisetosa, Xestoleberis rubens and Heterocythereis albomaculata). The shift from 

life-dominated assemblages in the shallower depths to death assemblages at greater 

depths is a consequence of significant transport downwards (cf. Meireles et al., Chapter 

6). Interestingly, no living specimens were found in the samples collected at the beach 

faces, thus reinforcing the interpretations of Ávila et al. (2008) and Ávila (in press) who 

proposed that sandy beaches in far-away reefless small volcanic oceanic islands located 

at temperate latitudes are almost devoid of life due to historical reasons related with the 

sea-level drops associated to cyclic glacial-interglacial-glacial episodes, which are 

responsible for the local disappearances of most (if not all) species associated to fine 

sand habitats from the shores of such islands, every time sea-level drops below the shelf 

edge of the island. 

The 3 newly described endemic species for the Azores are the confirmation that 

many novelties are still to be discovered in these oceanic islands, especially in the less-

known invertebrate groups (Ostracoda, Bryozoa, Foraminifera, Ctenophora, Sipuncula).  

 

 

Biogeography 

The Azores islands are located almost midway between Europe and America and 

are one of the most remote oceanic islands in the Atlantic. The geographical situation of 

this archipelago thus raises interesting biogeographical questions related with the 

patterns and processes of colonization of these islands, the times of colonization and of 
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speciation events and the origins of the ancestral of the shallow water biota presently 

living there (e.g. Wirtz & Martins, 1993; Tittley & Neto, 1995, 2006; Ávila, 2000, 

2005; Almada et al., 2001; Ávila et al., 2009, 2012). Most of the species that occur at 

the Azores are also reported from the Celtic province (73.3%), the Mediterranean Sea 

(46.7%), the Gascoynian province (46.7%) and the Lusitanian province (40%) (Table 

2). The low number of species shared with Portugal (Lusitanian province) is probably 

an artefact, for the shallow marine Portuguese ostracods is one of the least known 

faunas in Europe. Moro et al. (2003) reported 42 ostracod species to the Canary Islands, 

of which 35 are planktotrophic; of the remaining 7 benthic species, 3 species are 

considered as endemic from Canaries (Eupolycope pnyx Kornicker and Iliffe, 1995, 

Danielopolina phalanx Kornicker and Iliffe, 1995, and Danielopolina wilkensi Brady, 

1880), and only one species (Loxoconcha rhomboidea) is shared with the ostracods’ 

checklist from the Azores (cf. Table 2). 

 

Table 2. Biogeographical relationships of the ostracods species of shared with the Azores (in %). 

 AZO (%) 

CEL 80.0 

MED 46.7 

GAS 46.7 

LUS 40.0 

NWA 20.0 

TRO 13.3 

WAF 6.7 

MAD 6.7 

CAN 6.7 

 

 

Similarly to other biogeographical studies made on the shallow marine fauna and 

flora of the Azores (Tittley & Neto, 1995, 2006; Wirtz, 1998; Ávila, 2000, 2005; 

Almada et al., 2001; Ávila & Albergaria, 2002; Ávila et al., 2009a, 2012a; Xavier & 

Soest, 2012), the majority of the identified Azorean ostracods are of European affinity 

(Fig. 3). However, it is surprising the low similarity of the ostracod fauna between the 

Mediterranean Sea and the Azores (47%; Table 2), which contrasts with the numbers 

known for the Recent shallow marine molluscs (78.0%; Ávila, 2005). With the 

exception of a possible gap on the taxonomic knowledge of the benthic ostracods of 

both the Gascoynian and the Lusitanian provinces, we do not envisage other plausible 
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explanation for the higher similarities of the Azorean ostracods with the Celtic province 

instead of the nearer Lusitanian province or the Mediterranean Sea (Fig. 3). This 

peculiar pattern does not occur with any of the best known marine animal groups in the 

Azores: fishes (Santos et al., 1997), molluscs (Ávila, 2005), sponges (Xavier & Soest, 

2012) and echinoderms (Micael et al., 2012), all of them showing higher 

biogeographical similarities with the western Mediterranean and the Macaronesian 

archipelagos (Madeira and Canary Islands). In a similar manner, the floristic affinities 

of the marine algae of the Azores are mainly with Madeira and Canary Islands (Tittley 

& Neto, 2006). 

 

 

Figure 3. Biogeographical relationships of the Azorean ostracods. 

 

 

CONCLUSIONS 

Twenty species were found, representing 10 families and 14 genera, with eight 

new records for the Azores. The Recent assemblages are dominated by specimens of the 

Loxoconchidae, whereas the Holocene assemblages are dominated by specimens of the 

Loxoconchidae, Hemicytheridae and Bairdiidae. The most abundant species, 

Loxoconcha rhomboidea, occurred in both Recent (0-20 m depth) and Holocene 
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sediments, and together with Neonesidea longisetosa, Xestoleberis rubens and 

Heterocythereis albomaculata. 

3 new species to Science which are herein described: Callistocythere insularis n. 

sp. Semicytherura brandoni n. sp. and Lanceostoma simplex n. sp. 

Ostracods bear great potential for applications in environmental studies. Our 

checklist and systematic study provide a base for the identification of ostracods from 

shallow water in the Azores region. When identified, the ostracod taxa can be used as 

environmental proxies. 

Furthermore, the data set presented here can be used as a reference in 

biogeographical and systematic studies. 
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Table 1. Geographical distribution of the Azorean species of ostracods. LUS – Lusitanian province: western Atlantic shores of Spain and Portugal, from Cabo Vilán 

(Northern Galicia) to Cape São Vicente (western tip of Algarve); AZO – Azores; GAS – Gascoynian province: Atlantic shores of Spain and France, from 48°31'N, 4°46'W 

south to Cabo Vilán; CEL – Celtic province: including British Isles, Ireland, the Channel and the North Sea; MED – Mediterranean Sea; TRO – Tropical biogeographical 

province: Atlantic shores of USA, south of Cape Canaveral (28.30° N), including western and eastern shores of Florida, Gulf of Mexico (Louisiana and Texas shores, as well 

as Yucatan Peninsula, Mexico), Bahamas, Caribbean Sea, south to Cabo Frio (Brazil) (23° S); WAF – West African shores: Atlantic Morocco, from Straits of Gibraltar south, 

Western Sahara, and Mauritania, Cape Verde (Senegal); MAD – Madeira; CAN – Canary Islands; NWA – North Western Atlantic shores, from the Arctic south to Cape 

Hatteras, North Carolina (35° N). 

 

 LUS AZO GAS CEL MED TRO WAF MAD CAN NWA 

Neonesidea longisetosa   1    1     

Leptocythere pellucida  1 1 1 1 1     1 

Cyprideis torosa  1 1 1 1 1      

Carinocythereis whitei   1 1 1 1     1 

Aurila convexa  1 1 1 1 1      

Aurila woutersi   1  1       

Aurila prasina   1   1      

Heterocythereis albomaculata   1  1 1      

Urocythereis britannica  1 1 1 1       

Loxoconcha rhomboidea  1 1 1 1 1  1 1 1  

Loxoconcha cf. ochlockoneensis   1    1     

Semicytherura cf. cornuta   1  1       

Xestoleberis rubens  1 1 1 1       

Xestoleberis cf. depressa   1  1      1 

Sclerochilus hicksi   1  1       

TOTAL 6 15 7 12 7 2 1 1 1 3 
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PLATE 1 

 

 

A-J) Loxoconcha rhomboidea (Fischer, 1855); 

 

A) RV ♀; B.) LV♀; C) Inner view RV ♀; D) RV ♂; E) LV ♂; F) Inner view LV ♂;G) 

Muscel scars; H) sieve pore; I) anterior part of hinge LV♂; J) posterior part of hinge 

RV♀. 

 

 

 

K-R) Loxoconcha ochlockoneensis Puri, 1960; 

 

K) RV♂; L) LV♂; M) RV ♀; N) LV ♀; O) sieve pore; P) RV♂; Q) sieve pore; R) sieve 

pore. 

 

  



117 
 

PLATE 1 
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PLATE 2 

 

 

A-L) Neonesidea longisetosa (Brady, 1902); 

 

A) Dorsal View; B) LV♀; C) RV♀; D) Inner view RV ♀; E) Inner view LV ♀; F) LV 

juvenil; G) RV juvenil; H) Inner view RV juvenil; I) Muscel scars; J) sieve pore; K) 

sieve pore; L) Inner view LV. 

 

 

 

M-U) Lanceostoma simplex Meireles & Keyser n. sp.; 

 

M) RV♂; N) LV♂; O) posterior part of hinge RV♂; P) Inner view RV♂; Q) Inner view 

LV♂; R) Inner view LV♂; S) RV♂; T) LV♂; U) Muscel scars. 
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PLATE 2 
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PLATE 3 

 

 

A-O) Xestoleberis rubens Whittaker, 1978; 

 

A) Dorsal View; B) LV ♀; C) LV ♀; D) Muscel scars; E) RV ♀; F) LV ♀; G) sieve 

pore; H) Dorsal View; I) RV ♀; J) Inner view LV ♀; K) posterior part of hinge RV ♀; 

L) Inner view RV ♀; M) sieve pore; N) sieve pore; O) sieve pore. 

 

 

 

P-Q) Xestoleberis depressa Sars, 1866; 

 

P) RV ♀; Q) sieve pore. 

 

 

 

R-W) Xestoleberis sp.; 

 

R) RV ♀; S) LV ♀; T) sieve pore; U) Inner view RV ♀; V) Inner view LV ♀; W) 

Muscel scars. 
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PLATE 3 
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PLATE 4 

 

 

A-Q) Urocythereis britannica Athersuch, 1977; 

 

A) Dorsal view; B) RV ♀; C) RV ♀; D) LV ♀; E) LV ♀; F) anterior part of hinge LV 

♀; G) RV ♀; H) LV ♀; I) posterior part of hinge RV ♀; J) sieve pore; K) Inner view 

LV ♀; L) Inner view LV ♀; M) Inner view RV ♀; N) anterior part of hinge LV ♀; O) 

sieve pore; P) Muscel scars; Q) posterior part of hinge RV ♀. 
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PLATE 4 
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PLATE 5 

 

 

A-K) Aurila convexa (Baird, 1850); 

 

A) Dorsal view; B) LV ♀; C) LV ♀; D) Muscel scars; E) RV ♀; F) LV ♀; G) sieve 

pore; H) sieve pore; I) Inner view LV ♀; J) Inner view RV ♀; K) anterior part of hinge 

RV ♀. 

 

 

 

L-P) Sclerochilus hicksi Athersuch & Horne, 1987; 

 

L) RV ♀; M) LV ♀; N) Muscel scars; O) Inner view RV ♀; P) Inner view LV ♀. 

 

 

 

Q) Leptocythere pellucida (Baird, 1850); 

 

Q) RV. 

 

 

 

R-T) Cylindroleberis sp.; 

 

R) RV ♀; S) Rostrum; T) LV ♀. 
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PLATE 5 
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PLATE 6 

 

 

A-E) Aurila woutersi Horne, 1986; 

 

A) LV ♀; B) LV ♀; C) LV (A-1); D) sieve pore; E) LV (A-3). 

 

 

 

F-M) Aurila prasina Barbieto-Gonzalez, 1971; 

 

F) RV ♀; G) LV ♀; H) sieve pore; I) RV ♀; J) LV ♀; K) sieve pore; L) LV (A-4); M) 

sieve pore. 
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PLATE 6 
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PLATE 7 

 

 

A-G) Heterocythereis albomaculata (Baird, 1838); 

 

A) Dorsal View; B) LV ♂; C) sieve pore; D) RV ♂; E) Muscel scars; F) Inner view RV 

♂; G) Inner view LV ♂. 

 

 

 

H-L) Cyprideis torosa (Jones, 1850); 

 

H) Dorsal View; I) LV ♂; J) sieve pore; K) LV ♂; L) RV ♂. 
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PLATE 7 
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PLATE 8 

 

 

A-F) Callistocythere insularis Meireles & Keyser n. sp.; 

 

A) LV ♂; B) RV ♂; C) sieve pore; D) Inner view RV ♂; E) Inner view LV ♂; F) RV ♂. 

 

 

 

G-J) Semicytherura brandoni Meireles & Keyser n. sp.; 

 

G) LV ♂; H) RV ♂; I) Inner view RV ♂; J) Inner view LV ♂. 

 

 

 

K) Semicytherura cf. cornuta; 

 

K) RV ♂. 

 

 

 

L-N) Carinocythereis whitei (Baird, 1850); 

 

L) LV ♂; M) LV ♂; N) RV ♂. 
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PLATE 8 
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Plate 9 - Callistocythere insularis Meireles & Keyser n. sp. A) Internal view; B) P1 and 

P2; C) Copulatory organ; D) Antennule; E) Antenna.  
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Plate 10 - Semicytherura brandoni Meireles & Keyser n. sp. A) Internal view; B) 

Antenna; C) Copulatory organ; D) P1; E) Antennula.  
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Plate 11 - Lanceostoma simplex Meireles & Keyser n. sp. A) Internal view; B) 

Copulatory organ; C) Antennula; D) P1 and P2. 
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CHECKLIST OF THE SHALLOW-WATER MARINE OSTRACODS OF THE 

AZORES ARCHIPELAGO 

 

CLASS Ostracoda Latreille, 1802 

ORDER Podocopida Müller, 1894 

Family Bairdiidae Sars, 1888 

Genus Neonesidea Maddocks, 1969 

Neonesidea longisetosa (Brady 1902) 

 

Family Leptocytheridae Hanai, 1957 

Genus Leptocythere Müller, 1927 

Leptocythere pellucida (Baird, 1850) 

Genus Callistocythere Ruggieri, 1953 

Callistocythere insularis Meireles & Keyser n. sp. 

 

Family Cytherideidae Sars, 1925 

Genus Cyprideis Jones, 1856 

Cyprideis torosa (Jones, 1850) 

 

Family Trachyleberididae Sylvester-Bradley, 1948 

Genus Carinocythereis Ruggieri, 1956 

Carinocythereis whitei (Baird, 1850) 

 

Family Hemicytheridae Puri, 1953 

Genus Aurila Porkorný, 1955 

Aurila convexa (Baird, 1850) 

Aurila woutersi Horne, 1986 

Aurila prasina Barbeito-Gonzalez, 1971 

Genus Heterocythereis Elofson, 1941 

Heterocythereis albomaculata (Baird, 1938) 

Genus Urocythereis Ruggieri, 1950 

Urocythereis britannica Athersuch, 1977 

 



 
 

136 
 

Family Loxoconchidae Sars, 1925 

Genus Loxoconcha Sars, 1866 

Loxoconcha rhomboidea (Fischer, 1855) 

Loxoconcha cf. ochlockoneensis Puri, 1960 

 

Family Cytheruridae Müller, 1894 

Genus Semicytherura Wagner, 1957 

Semicytherura brandoni Meireles & Keyser n. sp. 

Semicytherura cf. cornuta (Brady, 1868) 

 

Family Xestoleberididae Sars, 1928 

Genus Xestoleberis Sars, 1866 

Xestoleberis rubens Whittaker, 1978 

Xestoleberis cf. depressa Sars, 1866 

Xestoleberis sp. 

 

Family Bythocytheridae Sars, 1866 

Genus Sclerochilus Sars, 1866 

Sclerochilus hicksi Athersuch & Horne 1987 

 

Family Paradoxostomatidae Brady & Norman, 1889 

Genus Lanceostoma Schornikov & Keyser, 2004 

Lanceostoma simplex Meireles & Keyser n. sp. 

 

ORDER Myodocopida Sars, 1866 

Family Cylindroleberididae Müller, 1906 

Genus Cylindroleberis Brady, 1867 

Cylindroleberis sp. 

 

  



 
 

137 
 

 

 

 

CHAPTER 6 

 

 
THE SHALLOW MARINE OSTRACOD COMMUNITIES OF THE AZORES 

(MID-NORTH ATLANTIC): TAPHONOMY AND PALAEOECOLOGY 

 

 

Ricardo Piazza Meireles; Dietmar Keyser; Paulo A. Borges; Luís Silva; António M. de 

Frias Martins; Sérgio P. Ávila
 

 

 

 

 

Manuscript submitted to Geologica Acta. 

  



 
 

138 
 

ABSTRACT 

This is the first palaeoecological and taphonomical study of the Holocene to Recent 

ostracods from the Azores. The aims of this work were to address the following 

questions: 1) to establish the typical ostracod assemblages from the shallow marine 

depths of the Azores; 2) to determine the bathymetric ranges for each ostracod species; 

3) to investigate the time span and depth in which significant transport occurs; 4) to 

quantify the amount of out of habitat transport between sandy beaches, tidal pools and 

the infralittoral; 5) to determine distinctive taphonomic features that can be used to 

recognize the amount of temporal resolution in ostracod assemblages. Fifteen species 

were recovered, representing 8 families and 12 genera genera (Loxoconcha, 

Neonesidea, Xestoleberis, Aurila, Urocythereis, Heterocythereis, Carinocythereis, 

Callistocythere, Leptocythere, Semicytherura, Lanceostoma and Cylindroleberis). The 

Recent assemblages are dominated by specimens of the Loxoconchidae family, whereas 

the Holocene assemblages are dominated by specimens of the families Loxoconchidae, 

Hemicytheridae and Bairdiidae. The shift from life-dominated assemblages in the 

shallower depths to death assemblages at greater depths is a consequence of significant 

transport downwards. In both Recent and Holocene samples, the abundance of ostracods 

is higher in the first 10 m depth, especially in fine to medium sandy substrates. 

Considerable differences among islands were supported by the Bayesian model, as a 

consequence of the factors (e.g., depth, type of sediment, physiognomy of the coast line, 

geographical location, and hydrodynamic local conditions) that differently affect each 

of the Azorean islands. Large-scale (sea-surface currents, Holocene relative sea-level, 

storms) and small-scale processes (geographical location, coastal fragmentation into 

dynamic cells with impermeable lateral boundaries, physiognomy of the coast line, 

seafloor stability of the sediments) are responsible for shaping the Azorean Holocene to 

Recent ostracods communities. 

 

Keywords: Ostracods; Holocene; Recent; Taphonomic process; Palaeoecology, Bayesian model. 

.  
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INTRODUCTION 

Ostracods are small crustaceans characterized by a bivalved carapace that totally 

encloses the body and appendages. Their bodies show reduced trunk segmentation and 

5-8 pairs of limbs, which are protruded from the gaping valves for locomotion. They are 

typically 0.5-2.0 mm long in the adult stage (Horne et al., 2002). Ostracod are one of 

the most diverse groups of living crustaceans, with over 20,000 estimated living species, 

of which, approximately 8,000 have been described (Morin & Cohen, 1991). Ostracods 

species are particularly sensitive to environmental changes and are, thus, very useful in 

palaeoenvironmental interpretations (Whatley, 1983; Cronin et al., 2002, Holmes & 

Chivas, 2002). 

Ostracoda fauna differ in the number of families and species around the world, 

usually, with more species in continental margins than around insular habitats. Due to 

their high level of isolation, far-away oceanic islands are a perfect place for the study of 

evolutionary processes, patterns of dispersion, colonization and speciation (e.g. 

Schornikov & Keyser, 2004; Wilson, 2007; Ávila et al., 2012). As truly volcanic 

oceanic islands, the Azores have been the subject of several studies with a 

biogeographical perspective: molluscs (Ávila, 2000, 2005), sponges (Xavier & van 

Soest, 2012), algae (Tittley & Neto, 1995). There are no published studies on the 

Ostracoda of the Azores; therefore the shallow marine ostracods from these islands can 

add an important contribution to the present biogeographic puzzle of this region of the 

Northern Atlantic. This study provides important elements for deciphering the 

relationships between different populations and how the environmental stress can 

determinate the biocenosis (living population), thanatocoenosis (fossils preserved in 

situ) and allochthonous assemblages (taphocoenosis). 

In this work we focused on the Holocene to Recent shallow marine ostracod 

diversity and its distribution around the archipelago of the Azores. We can relate this 

assemblages with several factors including physical (like: orientation/exposure, depth, 

tidal range, waves), ecological (habitat type, assemblage) and sedimentological to the 

ostracods communities. A comprehensive characterization of the study area from the 

taphonomic, ecological, and sedimentological point of view was done in order to 

evaluate the influence of the environment and the effect of the depositional processes in 

shallow-water areas. Specifically, we wished to address the following questions: 1) Is 

there a typical ostracod assemblage from the shallow marine depths of the Azores? 2) 

Which are the bathymetric ranges for each ostracod species? 3) What is the time span 
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and depth in which significant transport occurs? 4) When transport occurs, is there a 

difference in the amount of out of habitat transport between sandy beaches, tidal pools 

and the infralittoral? 5) Do ostracods assemblages bear distinctive taphonomic features 

that can be used to recognize the amount of temporal resolution in other deposits? 

 

Study area 

The Azores archipelago – located in the mid-North Atlantic (Fig. 1) (25° – 32° 

W and 37° - 40° N), about 1.500 km from the shores of mainland Portugal – is a group 

of young oceanic islands. The easternmost Santa Maria Island is much older than the 

remaining in the archipelago, having emerged during the Late Miocene (Abdel-Monem 

et al., 1968, 1975; Féraud et al., 1980, 1981) and is very rich in Neogene fossiliferous 

sediments, including Late Miocene marine Ostracods (Meireles et al., 2012). 

 

 

Figure 1. Geographical location of the Azores Archipelago (Western, Central and Eastern Groups), and 

the Azores Current (approximate position for the 30.6 meters depth and temperature; modified from 

Johnson & Stevens, 2000) around the archipelago. Detail, main oceanic currents of the North Atlantic 

Ocean; SF = Subpolar Front, NAC = North Atlantic Current, AC = Azores Current, AFZ = Azores 

Frontal Zone (adapted from Rogerson et al., 2004; Storz et al., 2009). The bathymetry of the Azores 

archipelago is from IOC IHO & BODC (2003). 
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Today, generally the coastline of these islands has a NW-SE to WNW-ESE 

orientation, coincident with the major tectonic trends of each of the islands (Borges, 

2003). The climate is temperate, with a low thermal amplitude, high precipitation, and 

high air humidity and persistent wind (Calado et al., 2011). Annual average sea-surface 

temperature is about 19ºC, ranging from 14ºC in winter to 24ºC in the summer period 

(Whissak et al., 2010). The pattern of the sea-surface currents in the North Atlantic is 

dominated by the Gulf Stream that flows from West to the East, that is, from the 

American coasts to Europe. One of the branches of the Gulf Stream, the Azores Current, 

is a meandering jet across the Atlantic at around latitude 38
o
N, just south of the Azores 

islands (Johnson & Stevens, 2000; Rogerson et al., 2004) (Fig. 1). 

The long fetch that characterizes the Azores results in a high-energy wave 

climate where both sea and swell are relevant sources of coastal energy, with the 

northern-facing shore of each island in general being more exposed (Borges et al., 

2002). The steep submarine slopes and absence of large shallow shelves (Ávila et al., 

2008; Quartau et al., 2012) produce localized patterns of wave shoaling, refraction and 

diffraction which, especially during storms, occur just before they break. This leads to 

coastal fragmentation into a number of dynamic cells, limited in terms of longshore 

sediment movement by virtually impermeable lateral boundaries (Borges et al., 2002). 

The Azores littoral is microtidal to low mesotidal with tides and tidal currents being 

minor contributors to coastal morphology and sediment dynamics. These are 

semidiurnal with a yearly average and maximum spring tidal range of 0.75 to 1 m and 

1.3 m respectively; the storm events are frequent and variable from year to year 

(Borges, 2003). 

The transport processes of the coastal sediments are controlled by four main 

factors, namely: i) steep submarine slopes and absence of large shallow shelves; ii) 

coastal storms; iii) local sediment supply; and iv) littoral drift currents induced by the 

Atlantic surface waters. Coastal drift currents are residual, although influenced by the 

North Atlantic circulation, and have a small effect on the sediment redistribution of the 

Azorean littoral, being this role attributed mainly to stormy waves that have the 

capability of disturbing the dynamic cells already mentioned (Borges, 2003). 

The Azores coast has diverse forms, ranging from low rocky coasts to bluffs, 

plunging cliffs, pocket beaches, dunes, lagoons and tidal pools. Sandy beaches are rare 

and small, and do not occur in all islands. Since coastal cliffs are usually plunging cliffs, 

the intertidal zone is also vertical in large areas of the shore, with a reduced area 



 
 

142 
 

available for the settlement of the intertidal organisms. On the subtidal zone, basaltic 

rocky shores covered by algae dominate. Unconsolidated sediments of different sizes 

are also common, ranging from boulders and pebble gravel to sand environments, 

covering the marine rocky substrate. 

 

MATERIALS AND METHODS 

Collection and examination of specimens 

Three field campaigns were done for this study. The first one was aimed to know 

reveal the characterization and distribution of the beach surface sediments. A total of 

600 samples were collected from 1994 to 1999, which allowed to establish a general 

sedimentary composition, as well as charts of grain-sized fractions and carbonate 

contents (Borges, 2003). The second campaign collected 20 samples (with a Van Veen 

grab) in inner shelf of the islands of the Central and Western groups, between 20 and 86 

m depth. For the sedimentary samples (first and second campaigns), a subsample of 100 

g of material was retrieved from each sample and was washed and sieved (250 µm, 120 

µm, 63 µm) in the laboratory, split and sorted. The campaigns to collect sediments were 

carried out by the authors in collaboration with the Department of Geosciences, and the 

Department of Oceanography and Fisheries of the University of the Azores. 

The third campaign collected 27 samples, containing living ostracods. All 

biotopes sampled (coastal rocky shore habitats such as intertidal pools, sedimentary 

traps, in the intertidal coastal rocky platforms and lava caves) were shallow, with 

maximum depths lower than 15 meters depth. A 180 µm mesh hand dredge net was 

used. The hand dredge was dragged over the bottom surface to a depth of 3–5 cm. The 

sample was washed through a set of sieves with a mesh width of 1.0 and 0.25 mm. All 

taxa from the same fraction were sorted, washed in fresh water and fixed in 70% alcohol 

in separate tubes. 

Of the 640 samples collected, 60 were screened, and ostracods were found in 45 

samples (Table 1). Although sandy sediments were also sampled on the northern shores 

of the islands, no ostracods were found there. A total of 2,950 ostracods were 

handpicked, included Holocene and living ostracods. Specimens picked from the 

samples were placed on standard micropalaeontological cavity slides for further 

examination and counting. Only the autochthonous ostracods were identified (Plate 1). 

The taxonomy and classification adopted follows Horne et al. (2002) (see complete list 

of species in Appendix A). A detailed taxonomic description of the ostracod species is 
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out of the scope of this paper and will be dealt with separately (Meireles et al, Chapter 

5). The figured specimens (SEM) are held in the collections of the Department of 

Biology, University of the Azores, Section of Ostracoda, under prefix “DB/OS no.”. 

Other abbreviations used: RV=right valve, LV=left valve. 

 

 

PLATE 1. 1) Loxoconcha rhomboidea (Fischer, 1855). DB/OS 0144. LV; 2) Loxoconcha cf. 

ochlockoneensis Brady, 1868. DB/OS 0001. LV; 3) Xestoleberis rubens Whittaker, 1978. DB/OS 0118. 

LV; 4) Xestoleberis cf. depressa Sars, 1866. DB/OS 0181. LV; 5) Aurila convexa (Baird, 1850). DB/OS 

0039. LV; 6) Aurila woutersi Horne, 1986. DB/OS 0120. LV; 7) Heterocythereis albomaculata (Baird, 

1838). DB/OS 0113. LV; 8) Urocythereis britannica Athersuch, 1971. DB/OS 0017. LV; 9) Neonesidea 

schulzi (Hartmann, 1964). DB/OS 0133. LV; 10) Carinocythereis whitei. DB/OS 0054. LV; 11) 

Callistocythere sp. DB/OS 0148. LV; 12) Semicytherura sp. DB/OS 0123. LV; 13) Lanceostoma sp. 

DB/OS 0117. LV; 14) Leptocythere pellucida (Baird, 1850). DB/OS 0057. RV; 15) Cylindroleberis sp. 

DB/OS 0180. RV. 

 

 

Statistical analysis 

Several indices were calculated to describe the diversity of the ostracods 

assemblages, namely abundance (number of individuals), species richness, Shannon-

Wiener diversity, Equitability, Dominance, and alpha of Fisher. All ostracod 

species/specimens were used in the statistical analysis (including autochthonous and 

allochthonous). 
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Data were analyzed using a Bayesian inference with the application WinBUGS 

(Spiegelhalter et al., 2003), since it was shown to be an adequate tool for data analysis 

in ecology, allowing studying a wide range of models (McCarthy, 2007; Kéry, 2010; 

King et al., 2010). This methodology permits building different models, in order to 

determine the possible differences in parameter estimates for different communities. We 

opted to use Bayesian inference, since all parameters are considered as random 

variables, thus uncertainty is included at all components of the models (Gelman et al., 

1995) which seemed as highly adequate to the type of available data. The best models 

were selected based on their complexity and fit and also included, as derived quantities, 

comparisons between community types. They allowed a more comprehensive and easily 

interpretable approach than more traditional analysis which usually imply sequential 

interpretation of multivariate, univariate, and post-hoc tests (Zuur et al., 2007). We used 

the normal distribution as a prior for Shannon-Wiener diversity and for equitability, and 

the Poisson distribution for total abundance and species richness (Gelman et al., 1995; 

McCarthy, 2007; King et al., 2010). The following models were calculated: i) island 

effect model, allowing different parameters for each of the islands; ii) habitat model, 

allowing different parameters for each habitat type (beach, infralittoral, tidal pool); iii) 

depth model, allowing different parameters for each depth class (≤10 m, <30 m, ≥30 m); 

iv) geographical location model, allowing different parameters for location class (South, 

Southeast, North, East); and v) sediment model, allowing different parameters for 

sediment types (fine, fine to medium, medium, medium to coarse). Besides estimating 

the different probability distributions for each community type (group.meani), we also 

calculated, as derived quantities, the differences in estimates (di) among islands, habitats 

types, depth classes, location classes and sediment types. In all cases we used three 

Markov chains and updated the model the required number of times to be clearly 

sufficient to reach convergence, by using normally accepted criteria (King et al., 2010), 

including analysis of trace plots, the Brooks-Gelman-Rubin diagnostic, and the 

magnitude of Monte Carlo error, as provided by WinBUGS. To estimate model 

parameters we only considered the estimates obtained after convergence. We used 

Deviance Information Criteria (DIC) as a measure of model complexity and fit 

(Spiegelhalter et al., 2002) (Table 2). In general, we found that updating the model 

100,000 times and using the last 30,000 updates to estimate model parameters and DIC 

was clearly sufficient to assure chain convergence. 
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Table 2. Evaluation of four Bayesian models assessing the effect of five different 

factors (Location, Island, Depth, Habitat, Sediment) on the diversity (Eveness, Shannon 

Diversity, Total Abundance, Species Richness) of Holocene Ostracoda assemblage in 

Azores Archipelago. DIC values obtained after convergence (75,000 model updates). 

Diversity measures 

DIC 

Geographical 

location 

Island 

effect Depth Habitat Sediment 

Eveness 17.0 16.4 16.6 16.8 17.4 

Shannon diversity 65.5 59.6 65.8 65.0 64.5 

Total abundance 3396.2 2431.2 3354.3 3301.4 3238.5 

Species richness 191.6 187.6 192.6 189.9 191.8 

Total 3670.4 2694.8 3629.3 3573.2 3512.2 

 

 

In order to have a global vision of the effect of habitat type (beach, infralittoral, 

tidal pools) on community composition and diversity, we applied a discriminant 

analysis to a data set including species abundances, total abundance and species 

richness (all log transformed), and Shannon-Wiener and Equitability diversity indices. 

The classification module of SPSS v.18 was used. 

We used the R package indicspecies, available through Cran (http://cran.r-

project.org/web/packages/indicspecies/), to determine indicator species among the 

different habitat types sampled in this study. The package was written by De Cáceres et 

al. (2010) as a refinement of the IndVal method originally developed by Dufreen & 

Legendre (1997). The algorithm determines both fidelity (restriction to a site or group 

of sites) and consistency (consistent species occurrence among sites within site groups) 

and provides a statistic (IndVal) and an associated p-value. Only species significant at 

the p<0.05 level were selected as indicator species. 

 

 

RESULTS 

Recent Ostracoda assemblages 

Around the island of São Miguel, eight families were found: Loxoconchidae is 

the dominant family, comprising 46% of all specimens recovered, followed by 

Hemicytheridae (18%), Bairdiidae (13%), Xestoleberididae and Trachyleberididae (both 
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9%), Leptocytheridae and Paradoxostomatidae (both 2%) and Leptocytheridae (1%). 

Fourteen living species were found: Loxoconcha rhomboidea (Fischer, 1855); 

Loxoconcha cf. ochlockoneensis Puri, 1960; Neonesidea schulzi (Hartmann, 1964); 

Aurila convexa (Baird, 1850); A. woutersi Horne, 1986; Xestoleberis rubens Whittaker, 

1978; Heterocythereis albomaculata (Baird, 1838); Urocythereis britannica Athersuch, 

1977; Leptocythere pellucida (Baird,1850); Carinocythereis whitei (Baird, 1850); 

Callistocythere sp.; Semicytherura sp.; Lanceostoma sp., and Cylindroleberis sp. (Fig. 2 

and Plate 1). Living shallow marine ostracod species occur in tidal pools and 

infralittoral (inner shelf) zones, between 1 and ~20 meters depth, in fine to medium 

sands, usually in association with algae and sponges. Loxoconcha rhomboidea was the 

most abundant species, occurring in all Recent samples, with a bathymetric range from 

0 to 20 meters depth (including Holocene sediments) (Fig. 2). In general, four species 

were found living together: Loxoconcha rhomboidea; Neonesidea schulzi, Xestoleberis 

rubens and Heterocythereis albomaculata. The highest concentrations were found on 

the southern shores of São Miguel Island, at depths ranging from 1 to 15 m. Species 

with more ornamentation like Callistocythere sp. Semicytherura sp.; Urocythereis 

britannica and Carinocythereis whitei seem to be restricted to the South shores. 

Comparisons of the total number of specimens (both live and dead) along a 

bathymetric sampling at all sites in São Miguel Island indicate that there is not a direct 

relationship between abundance and depth (between 0 at 20 meters depth) (Fig. 3A). 

Nevertheless, in both Recent and Holocene samples, the abundance of ostracods is 

higher in the first 10 m depth. 
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Figure 2. Distribution of living ostracods faunal and autochthonous Holocene ostracods around São 

Miguel Island. 

 

 

 

Figure 3. Total of number of specimens for water depth classes. A) number of Recent specimens, and B) 

number of autochthonous Holocene specimens. 
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Holocene Ostracoda assemblages 

The Holocene ostracods are relatively diverse and represented by different 

ontogenetic stages (instars). It comprises 8 families, and 12 genera. The autochthonous 

fossil assemblages are dominated by specimens belonging to Loxoconchidae (32%), 

Hemicytheridae (25%), Bairdiidae (21%), Xestoleberididae (11%) and 

Trachyleberididae (5%) (Figs 2, 4 and Table 3). 

The sediments with a higher ostracod abundance and diversity come from depths 

between 0 and 54 m, where fine to medium sand predominates. The highest ostracod 

concentration by sample occurs at different depths and places: two samples between 0 

and 23 m depth in the South and the East coast of Terceira Island; four samples between 

0 and 20 m depth, all in the South coast of São Miguel Island (in this case, two of them 

were at the same area, around the sewage treatment system of Ponta Delgada); two 

samples between 10 and 30 meters depth in the Southeast coast of Faial; and finally, 

two samples between 1 and 54 meters depth, both in the Southeast coast of Pico Island 

(Figs 2 and 4). 

The model based on depth only showed differences among depth classes for 

total abundance (total number of dead ostracods found), with the intermediate depth 

class (class 2: from 10 to 30 meters depth) showing the highest abundance (Fig. 5A). 

Regarding habitat type, the highest abundance was found for communities located at the 

infralittoral (Fig. 5B) and the lowest number of species was found in the samples 

collected at beaches (Fig. 5C), where not a single specimen was found alive. 

Ostracods’ Holocene species richness is higher in fine-to-medium to medium 

grain size, whereas total abundance was found to be higher in medium to coarse 

sediments (Fig. 6). Fine to medium sand are mostly located at depths lower than 30 m 

depth, where low depositional energy predominates. At higher depths, coarse to granule 

sands are dominant and the faunal autochthonous association is typically composed by 

species of the genus Loxoconcha, Neonesidea, Aurila, Urocythereis and Xestoleberis 

(Fig. 7). 
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Figure 4. Distribution of autochthonous Holocene ostracods faunal around Azores archipelago. A) 

Terceira; B) Santa Maria, C) Faial, D) Pico; E) Graciosa, F) Flores Island and G) Formigas islet. 
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Figure 5. Effect of environmental factors on the abundance and diversity of Holocene ostracod 

communities in the Azores Archipelago (35 samples). Evaluation of Bayesian models assessing the effect 

of: A) Depth class on total abundance (depth classes: 1, < 10 m; 2, 10 - 30 m; 3, > 30 m); B) Habitat type 

on total abundance (beach; infralittoral; and tidal pool); and C) Habitat type on species richness (beach; 

infralittoral, and tidal pool). Bars represent mean + standard error. The posterior distributions of the 

parameters were obtained after convergence (100000 model updates). Different letters indicate that the 

posterior distribution of the difference between the means does not include zero (based on the analysis of 

the 95% credibility interval). 
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Figure 6. Effect of environmental factors on the abundance and diversity of Holocene ostracods 

communities in the Azores Archipelago (35 samples). Evaluation of a Bayesian model assessing the 

effect of sediment type on: A) total abundance; B) species richness. The posterior distributions of the 

parameters were obtained after convergence (100000 model updates). Different letters indicate that the 

posterior distribution of the difference between the means does not include zero (based on the analysis of 

the 95% credibility interval). 

 

 

According to the DIC values (Table 2), the more informative Bayesian model 

(lowest DIC) incorporated island effect, particularly due to a better adjustment to the 

possible differences in total abundance between islands. The model based on geographic 

location did not show any significant differences, while the model based on depth only 

showed differences among depth classes for total abundance, with the intermediate 

depth class (between 10 and 30 m depth) showing the highest abundance (cf. Fig. 5A). 

As regards to the maximum bathymetric range for species around the Azores 

insular shelf, Aurila woutersi, Loxoconcha cf. ochlockoneensis, Xestoleberis cf. 

depressa, Carinocythereis whitei, Callistocythere sp. and Lanceostoma sp. are shallow-

water species, occurring in waters less than 30 m depth; Aurila convexa, Xestoleberis 

rubens, Loxoconcha rhomboidea and Heterocythereis albomaculata occur between 30 

and 55 m depth; and Neonesidea schulzi and Urocythereis britannica may occur as deep 

as ~90 m depth (Fig. 8). 
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Figure 7. Distribution of ostracods, depth and grain size as a function of depositional energy (Azores 

archipelago). Fine-sand: low energy; medium sand: medium energy; coarse sand and granule: high energy 

(cf. Table 3). 

 

 

DISCUSSION 

Taphonomic approach 

If one were to estimate grain size, water depth and environmental depositional 

energy, samples could be plotted onto a schematic representation, reflecting the 

taphonomic fidelity of each deposit. These plots can be considered as taphonomically-

controlled facies and can serve as predictive tool for estimating how much time-

averaging is likely to affect a deposit (see Park et al., 2003 for an overview) (Fig. 7). 

The Azores shores are considered as a high energy environment, with the exception of a 

few protected sites. In these oceanic islands, dynamic cells make long shore currents to 

be negligible in comparison with downwelling shore oblique currents, which transport 

the sediments, moving them from the exposed beach to the underwater beach (cf. Fig. 8) 

(Meireles et al., Chapter 5). In these high energy environments, the diversity of 

ostracods is higher in depth ranges of 0-20 m (Fig. 5B), in fine- to medium-sandy 

substrates (Fig. 6B), with inferred lower energy (cf. Fig. 7). 
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Figure 8. Cross-insular shelf profile showed the distribution of the Recent to Holocene autochthonous 

ostracods in relationship of depth and sediments preferred. Maximum bathymetric range of the ostracods 

founded on Azores shallow marine environment. 

 

 

The analyses of the distribution of the remains of dead organisms in Recent 

sediments are strongly influenced by the method used to establish and report abundance. 

Comparisons of abundance from Recent and ancient strata are affected by the 

composition of the sediment, its history, and the type of sample upon which these 

counts are based (Kornicker, 1959). 

Kontrovitz et al. (1998) made one equation to discriminate if some taphonomic 

processes were important in altering an assemblage of ostracods. They showed that such 

assemblages may be sampled and the width, thickness, and MPS (maximum projection 

sphericity) of the shells determined as a function of each species. The amount of 

pressure required to crush each ostracods could then be estimated by using the equation 

for that species. If within the assemblage the pressure that would be required to crush 

the samples varies greatly, then one could conclude that the assemblage is unlikely to 

have been altered by pressure. Otherwise, the weaker ostracods shells probably would 

have been crushed. If, however, the only ostracods present are found to require large 

pressures to be crushed or all require about the same pressure, then one might suspect 
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that the assemblage may have lost shells due to forces exerted by the overlying 

sediments. Under the latter conditions, the investigator could misinterpret 

palaeoenvironmental conditions, if wrongly assuming the presence of a nearly complete 

and useful assemblage for such a purpose (Kontrovitz et al., 1998). In addition to this, 

ecologic models based only upon death assemblages will be always less resolving than 

those models based upon live assemblages (Park et al., 2003). Our samples include a 

mixture of fragile and resistant shells, the latest being predominant (cf. Fig. 2). Fragile 

shells (e.g., Lanceostoma sp.) are better represented in the Recent samples. Thus, 

transport becomes important when ostracods are used as proxy indicators for 

biodiversity and conservation practices in shallow, steep gradient coasts such as those 

around the Azores islands, and should be considered in any model developed (cf. Fig. 

8). 

Other important components that were present in the taphonomic studies are the 

synecology indices (i.e. describing associations in relation to environmental 

parameters), which are based on the quantitative analysis of the assemblages and that 

may shed light on the stability of the environment. Low diversity assemblages with few 

or single dominating species point to stressed, unstable conditions (Frenzel & Boomer, 

2005). For instance, high sedimentation rates, recorded for areas of the Baltic Sea, 

showed low diversity and abundance (Rosenfeld, 1977). The number of autochthonous 

dead specimens decreases with depth, suggesting a shift from life-dominated 

assemblages in the shallower depths to death assemblages at greater depths (Fig. 3B). 

This trend is expected when significant transport occurs and is in agreement with Park 

et al. (2003) and Machado et al. (2005). 

The abundance of the Holocene Azorean ostracod species’ presents a zonation in 

relation to both depth (Figs 3, 5 and 7), and grain size (Figs 6 and 7), as well as with 

geographical coast location, with a preference towards southern and eastern shores. 

Probably this is a result of a relatively higher stability of the bottom sediments, as the 

mean wave height in the northern coasts exceeds up to 20% the value of the southern 

coasts (cf. Borges, 2003). We cannot, however, exclude that these deposits and their 

faunas have undergone transport, particularly in areas with higher-energy conditions, by 

downwelling shore oblique currents. 

Comparison of live and dead assemblages from similar depths and substrates 

around the archipelago, indicate that there are some distribution oddities. For example, 

all Holocene species occurred at Terceira Island with the exception of Lanceostoma sp. 
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However, this species also occurs at Graciosa Island, just ~60 km distance. Santa Maria 

Island and Formigas Islet have similar species composition, except for Neonesidea 

schulzi that is not present at Santa Maria (cf. Fig. 4). 

The standard of length classes’ distribution present in one taphocoenosis can be 

used to describe how the death of the animals occurred (Shipman, 1981). We identified 

two different types of death: 1) non-selective death (catastrophic) or 2) selective death 

(natural); in both cases we can add fast or slow burial. Using this method plus 

ontogenetic structure of the populations (after Whatley, 1988) the samples present in 

most cases a selective death (natural) with the exception of assemblages nos. 6, 7, 9, 25 

and 32 (cf. Table 3, as these five present a non-selective death [catastrophic] with slow 

burial). All other assemblages present a selective death (natural). The North Faial 

assemblage (no. 28) and North Pico assemblage (no. 23) present a selective death 

(natural) with slow burial rate, which we interpret as the result of high wave-energy and 

sea-currents which are stronger on the North shores of these islands (Fig. 4). In general, 

the samples collected in protected sites or on the South shores of the islands present a 

selective death (natural) with fast burial (e.g., assemblages nos. 4, 8, 10, 12, 19, 20 21, 

29, 31; cf. Figs. 2 and 4; Table 3). These areas present a reduced hydrodinamism and 

high sedimentation rates. Based on these findings and the characteristics of the present-

day taxa we were able to develop a model of how assemblages occur on these settings, 

relating these items with the bathymetric range of the ostracod species (Fig. 8). 

Considering the substrate, depth, marine environment (tidal pool, beach and 

infralittoral) and the main sea-surface currents, we were able to display the distribution 

of the autochthonous ostracods on the insular Azorean shelf (see complete list of the 

typical association of species in Table 3). 

 

Ecological setting 

In terms of abundance, we found considerable variation between samples, a 

situation that is in agreement with previous studies (Figs 5 and 6). Allison & Holden 

(1971) described differences in abundance, depending on the depth, with relatively 

lower values closer to the surface. Hull (1997) reported that abundances differ over the 

years, and also along the year, and gave abundance values (50 to 150 specimens) that 

are within the range found in our study. In Brazil, species abundance was even higher, 

with some species with more than 2,000 specimens, but also with the already noted 

variation between samples (Machado et al., 2005). Cabral et al. (2006) reported 
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abundances between 10 to 100 specimens, depending on the area, for the Holocene of 

mainland Portugal. Athersuch (1979) found similar abundance values for the littoral of 

Cyprus, with some species with more than 100 specimens. For the Basque shelf, 

abundances were also similar, ranging from 11 to 156 specimens (Pascual et al., 2008). 

If we consider ostracods as a sand grain, the zonation displayed on Fig. 8 suites 

well with the coastal fragmentation into dynamic cells, limited in terms of longshore 

sediment movement by virtually impermeable lateral boundaries where the dynamics of 

the beaches are essentially transverse (cf. Borges et al., 2002), and with a 

morphodynamic continuum between two extreme situations, the profile of high energy 

(storm or winter profile) and the profile of low energy (swell or summer profile) with 

the sandy sediments moving from the exposed beach to the underwater beach and vice-

versa, respectively (see Short, 1999 for an overview). 

Ostracod species richness estimates are impacted by time-averaging because 

transport of dead valve material occurs at higher percentages in the shallow depths and 

on the infralittoral, suggesting that the ostracods death assemblages in these sensitive 

areas will be a mirror of the life assemblages. The beach areas are sensitive for the 

ostracods too, but will not necessarily be reflective of the life assemblages, as all species 

are considered to be allochthonous. We found differences in diversity and abundance 

between habitat types, depth classes, sediment types, and between different islands (cf. 

Figs 2, 4, 5 and 6). Several environmental factors affect the distribution and abundance 

of ostracods, in particular, the textural characteristics of the bottom substrate. Benson & 

Maddocks (1964), Puri (1966), Montenegro et al. (1998) and Coimbra et al. (1999) 

reported that grain size is one of the significant factors controlling the population 

structure, density and distribution of ostracod species, fine-grained sands with a high 

percentage of silt and clay being favoured (Machado et al., 2005). However, it should 

be noted that silt and clays are uncommon around the Azores archipelago. High algal 

concentrations and seasonal changes can also influence the presence of ostracods (Hull, 

1997). Furthermore, other factors like depth also affect ostracods richness. For instance, 

Ascoli (1964) found that the most favourable environmental conditions for a high 

number of ostracod species was a depth between 50 and 250 m, on a muddy and clayey 

bottom; towards either littoral or bathyal environments, the number of species 

decreased. This is in agreement with our observations, which showed more species at 

the infralittoral than at the beaches (Fig. 8). However, tidal pools in shallow waters 

seem to be an exception, deserving further studies. Besides sediment type and water 
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depth, the physiognomy of the coast line might also be important; for example, living 

ostracods in Kuwait Bay were abundant except in the tidal flat areas and the central 

channel (Al-Abdul-Razzaq et al., 1983). 

With all these factors affecting ostracods occurrence, it is not surprising that 

considerable differences among islands have been found, since all those factors might 

interact differently at each Azorean island, as demonstrated by the more informative 

Bayesian model: Island effect (cf. DIC values in Table 2). Also, habitat types, by 

differently combining several of the above mentioned factors (e.g. depth, type of 

sediment, physiognomy of the coast line) were clearly discriminated in this study. Thus, 

in regards to the shaping of the Azorean Holocene to Recent ostracods communities, we 

might be in the presence of large-scale (sea-surface currents, Holocene relative sea-

level, storms) and small-scale processes (geographical location, coastal fragmentation 

into dynamic cells with impermeable lateral boundaries, physiognomy of the coast line, 

seafloor stability of the sediments). 

 

CONCLUSIONS 

This is the first palaeoecological study of the Holocene to Recent ostracods from 

the Azores. So far, only two species had been reported: Loxoconcha rhomboidea and 

Heterocythereis albomaculata (Costa, 2010). This work increases the number of benthic 

shallow-water marine ostracods from this archipelago to 15 species, representing 8 

families and 12 genera (Loxoconcha, Neonesidea, Xestoleberis, Aurila, Urocythereis, 

Heterocythereis, Carinocythereis, Callistocythere, Leptocythere, Semicytherura, 

Lanceostoma and Cylindroleberis). 

The Recent assemblages are dominated by specimens of the Loxoconchidae 

family, whereas the Holocene assemblages are dominated by specimens of the families 

Loxoconchidae, Hemicytheridae and Bairdiidae. The most abundant species, 

Loxoconcha rhomboidea, occurred in both Recent (0-20 m depth) and Holocene 

sediments and together with Neonesidea schulzi, Xestoleberis rubens and 

Heterocythereis albomaculata outlines an assemblage of species that are usually found 

together in the Recent samples. The shift from life-dominated assemblages in the 

shallower depths to death assemblages at greater depths is a consequence of significant 

transport downwards. In both Recent and Holocene samples, the abundance of ostracods 

is higher in the first 10 m depth, especially in fine to medium sandy substrates. 

Interestingly, no living specimens were found in the samples collected at beaches, thus 
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reinforcing the interpretations of Ávila et al. (2008) and Ávila (in press) who advocate 

that sandy beaches in oceanic islands located at temperate latitudes are almost devoid of 

life due to historical reasons related with the sea-level drop associated to cyclic glacial 

episodes. 

The new information herein provided by the marine ostracods of the Azores and 

the sustained development of this new research line, for which the present work is a first 

contribution, will most likely bring novel palaeoecological and taphonomic ideas to the 

global understanding of the Azorean shallow marine biota, both Recent and fossil. 
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Table 1. Characterization of the sampling stations. 

Nº Island Code Lat. (N) Long. (W) Depth (m) Habitat Location Grain size 

1 Santa Maria SMA_BE_S_5 36.930066 -25.024709 0 Beach South Fs to Ms 

2 Santa Maria SMA_BE_S_9 36.949994 -25.094447 0 Beach South Fs to Ms 

3 Santa Maria SMA_BE_S_10 36.949994 -25.094447 0 Beach 
South Fs 

4 Santa Maria SMA_SU_S_13 36.941454 -25.170836 -18 Sublittoral 
South Ms 

5 Santa Maria SMA_TP_S_71 36.941454 -25.170836 -4 
Tidal pool South Fs to Ms 

6 Formigas 
FOR_SU_S_3 

37.269408 -24.781723 -20 Sublittoral 
South Ms to Cs 

7 São Miguel SMG_BE_S_20 37.712072 -25.495147 0 Beach 
South Ms 

8 São Miguel SMG_SU_S_50 37.741653 -25.648505 0 Sublittoral 
South Ms to Cs 

9 São Miguel SMG_SU_S_24 37.795745 -25.795512 -10 Sublittoral 
South Ms 

10 São Miguel SMG_SU_S_14 37.823819 -25.864477 -10 
Sublittoral South Fs 

11 São Miguel SMG_SU_S_8 37.746506 -25.625782 -20 
Sublittoral South Fs 

12 São Miguel SMG_SU_S_47 37.741653 -25.648505 -20 
Sublittoral South Fs to Ms 

13 São Miguel SMG_TP_S_57 37.750036 -25.629902 -1 
Tidal pool South Fs to Ms 

14 São Miguel SMG_TP_S_59 37.744614 -25.640019 -1 
Tidal pool South Fs to Ms 

15 São Miguel SMG_TP_S_60 37.707412 -25.508177 -2.5 
Tidal pool South 

Fs to Ms with 

Ag 

16 São Miguel SMG_TP_S_66 37.749984 -25.630073 -1 
Tidal pool South Fs to Ms 
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17 São Miguel SMG_SU_S_68 37.741942 -25.647754 -15 
Sublittoral South Fs to Ms 

18 São Miguel SMG_SU_S_69 37.741942 -25.647754 -9 
Sublittoral South Fs to Ms 

19 Terceira TER_BE_S_7 38.654952 -27.237167 0 Beach 
South Ms 

20 Terceira TER_BE_S_6 38.718599 -27.054176 -3 Beach 
East Ms 

21 Terceira TER_SU_E_4 38.631891 -27.146873 -23 Sublittoral 
South Cs 

22 Pico PIC_TP_SE_1 38.389975 -28.251514 -1 Tidal pool South-East Ms to Cs 

23 Pico PIC_SU_SE_42 38.413920 -28.012561 -46 
Sublittoral 

South-East Ms to Cs 

24 Pico PIC_SU_SE_45 38.412710 -28.015480 -54 
Sublittoral 

South-East Ms to Cs 

25 Pico PIC_SU_SE_55 38.525070 -28.562736 -69 
Sublittoral 

South-East Cs to G 

26 Pico PIC_SU_SE_56 38.496056 -28.219070 -65 
Sublittoral 

South-East Cs to G 

27 Faial FAI_BE_SE_16 38.524935 -28.627281 0 Beach South-East Fs 

28 Faial FAI_SU_SE_46 38.573567 -28.596550 -30 
Sublittoral 

South-East Fs to Ms 

29 Faial FAI_SU_SE_40 38.524197 -28.627624 -10 
Sublittoral 

South-East Fs 

30 Faial FAI_SU_SE_41 38.560117 -28.765517 -30 
Sublittoral 

South-East Cs 

31 Faial FAI_SU_SE_54 38.556800 -28.596533 -30 
Sublittoral 

South-East Fs to Ms 

32 Faial FAI_SU_SE_43 38.658437 -28.712081 -85 
Sublittoral 

South-East Ms 

33 Graciosa GRA_BE_S_22 39.013531 -27.953134 0 Beach 
South Ms 

34 Graciosa GRA_TP_S_52 39.012523 -27.958853 -1 
Tidal pool South 

Fs to Ms with 

Ag 
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Fs: Fine sand; Ms: Medium sand; Cs: Coarse sand; G: Granule; Ag: Algae; Sp: Sponge (sedimentological grain-size by Wentworth, 1922). 

 

  

35 Graciosa GRA_TP_S_12 39.012523 -27.958853 -1 
Tidal pool South 

Fs to Ms with 

Ag 

36 Graciosa GRA_TP_S_51 39.012523 -27.958853 -1 
Tidal pool South 

Fs to Ms with 

Ag 

37 Flores FLO_SU_E_2 39.462919 -31.127994 -20 
Sublittoral 

East 
Fs to Ms with 

Ag 

38 Flores FLO_TP_E_48 39.461643 -31.118602 -3 Tidal pool East Fs 

39 São Miguel SMG_TP_SW_64 37.893415 -25.825939 -1 
Tidal pool SouthWest Ag 

40 São Miguel SMG_TP_SW_85 37.795745 -25.795512 -19 
Sublittoral South Ms with Sp 

41 São Miguel SMG_TP_SW_86 37.849103 -25.685005 -7 
Sublittoral South Ms with Sp 

42 São Miguel SMG_TP_SW_87 37.836903 -25.664405 -10 
Sublittoral North Ms with Sp 

43 São Miguel SMG_TP_SW_88 37.842054 -25.480728 -7 
Sublittoral North Ms with Sp 

44 São Miguel SMG_TP_SW_89 37.707412 -25.508177 -4 
Sublittoral South Ms with Sp 

45 São Miguel SMG_TP_SW_90 37.750036 -25.629902 -11 
Sublittoral South Ms with Sp 
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Table 3. Occurrences of Autochthonous Ostracods and Associated faunal (include allochthonous ostracods) examined in this study. The 

classification of the environmental energy for each sample was done using two different methods: 1) the analysis of the instars (population 

structure), based on Whatley (1988); and 2) the classification according to the direct sediment analysis of the grain-size (fine-sand: low energy; 

medium sand: medium energy; coarse sand and granule: high energy) (cf. Fig. 7). 

Nº Autochthonous Ostracods Associated Faunal 

Environmental Energy 

(ostracods’ instars; Whatley, 

1988) 

Environmental 

Energy (sediment 

grain-size) 

1 
---- 

Loxoconcha rhomboidea (1 valve), Carinocythereis 

whitei (1 valve). Foraminifera and Bryozoa 

fragments). 

High energy ---- 

2 
---- 

Urocythereis britannica (1 valve). Bryozoa 

fragments. 
High energy ---- 

3 
---- ?Xestoleberis rubens (1 carapace). Foraminifera. High energy ---- 

4 
Loxoconcha rhomboidea, Loxoconcha cf. 

ochlockoneensis, Xestoleberis rubens, Xestoleberis cf. 

depressa. 

Neonesidea schulzi (1 carapace and 6 valves), 

Semicytherura sp. (1 valve), Heterocythereis 

albomaculata (1 valve), Callistocythere sp. (1 

valve). Foraminifera and Bryozoa fragments (genus 

Crisia and Scrupocellaria). 

Low energy Medium energy 

5 Xestoleberis rubens, Loxoconcha rhomboidea, 

Lanceostoma sp. 
---- High energy Medium energy 
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6 
Loxoconcha rhomboidea, Loxoconcha cf. 

ochlockoneensis, Xestoleberis rubens, Lanceostoma 

sp., Neonesidea schulzi. 

Xestoleberis cf. depressa (3 carapaces and 1 valve), 

Aurila convexa (4 valves), Lanceostoma sp. (2 

valves), Semicytherura sp. (1 valve). Foraminifera, 

Echinoidea and Bryozoa fragments (genus: Crisia, 

Scrupocellaria, Celleporina, Schizomavella). 

High energy High energy 

7 Neonesidea schulzi, Loxoconcha rhomboidea, 

Heterocythereis albomaculata. 

Aurila woutersi (1 carapace and 2 valves), 

Urocythereis britannica (3 carapaces). 

Foraminifera and Bryozoa fragments (genus Crisia, 

Scrupocellaria, Disporella). 

Medium energy Medium energy 

8 
Carinocythereis whitei, Loxoconcha rhomboidea, 

Aurila woutersi, Neonesidea schulzi, Heterocythereis 

albomaculata, Urocythereis britannica. 

Foraminifera and Bryozoa fragments (genus Crisia, 

Scrupocellaria). 
Medium energy High energy 

9 
Neonesidea schulzi. 

Loxoconcha rhomboidea (5 valves), Aurila convexa 

(2 carapaces), Urocythereis britannica (1 valve). 

Foraminifera and Bryozoa fragments (genus: 

Crisia, Scrupocellaria, family: Tubuliporidae). 

Medium energy Medium energy 

10 
Neonesidea schulzi, Loxoconcha rhomboidea, 

Xestoleberis rubens, Aurila woutersi, Heterocythereis 

albomaculata. 

Urocythereis britannica (4 valves), Xestoleberis cf. 

depressa (3 carapaces and 1 valve). Foraminifera 

and Bryozoa fragments (genus Crisia and 

Scrupocellaria). 

Low energy Low energy 

11 
---- 

Leptocythere pellucida (2 valves), Callistocythere 

sp. (1 carapace). Foraminifera, Echinoidea and 

Bryozoa fragments. 

High energy ---- 

12 Carinocythereis whitei, Loxoconcha rhomboidea, 

Aurila woutersi, Neonesidea schulzi. 

Xestoleberis rubens (6 valves), Urocythereis 

britannica (4 valves),. Leptocythere pellucida (3 

valves), Heterocythereis albomaculata (1 carapace 

and 6 valves), Carinocythereis whitei (1 valva). 

High energy Medium energy 
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Foraminifera and Bryozoa fragments (genus Crisia, 

Scrupocellaria). 

13 
---- 

Heterocythereis albomaculata (1 carapace and 2 

valves). Loxoconcha rhomboidea (1 valve), Aurila 

woutersi (1 valve). Bryozoa fragments (genus 

Crisia, and family: Tubuliporidae). 

High energy ---- 

14 

Heterocythereis albomaculata, Xestoleberis rubens, 

Loxoconcha rhomboidea, Neonesidea schulzi, 

Semicytherura sp., Lanceostoma sp., Aurila convexa, 

Callistocythere sp., Carinocythereis whitei, 

Leptocythere pellucida. 

---- Low energy Medium energy 

15 

Heterocythereis albomaculata, Lanceostoma sp., 

Loxoconcha rhomboidea, Xestoleberis rubens, 

Semicytherura sp., Neonesidea schulzi, Aurila 

convexa. 

---- Low energy Low energy 

16 

Heterocythereis albomaculata, Neonesidea schulzi, 

Loxoconcha rhomboidea, Xestoleberis rubens, 

Loxoconcha cf. ochlockoneensis, Urocythereis 

britannica, Lanceostoma sp., Callistocythere sp. 

---- Low energy Medium energy 

17 

Loxoconcha rhomboidea, Xestoleberis rubens, 

Callistocythere sp., Lanceostoma sp., Aurila convexa, 

Heterocythereis albomaculata, Neonesidea schulzi, 

Loxoconcha cf. ochlockoneensis. 

---- Medium energy Medium energy 

18 
Xestoleberis rubens, Loxoconcha rhomboidea. 

Aurila convexa (5 valves), Semicytherura sp. (2 

valves). 
High energy Medium energy 
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19 

Loxoconcha rhomboidea, Neonesidea schulzi, Aurila 

convexa, Aurila woutersi, Heterocythereis 

albomaculata, Urocythereis britannica, Xestoleberis 

rubens. 

Aurila prasina (8 valves), Carinocythereis whitei (1 

carapace), Xestoleberis sp. (1 carapace). Bryozoa 

fragments (genus Crisia, Scrupocellaria). 

Low energy Medium energy 

20 Heterocythereis albomaculata, Callistocythere sp., 

Loxoconcha cf. ochlockoneensis, Neonesidea schulzi. 

Xestoleberis rubens (3 valves), Xestoleberis cf. 

depressa (3 carapaces and 1 valve), Loxoconcha 

rhomboidea (2 valves), Aurila convexa (4 valves), 

Cyprideis torosa (1 carapace and 3 valves), 

Urocythereis britannica (1 carapace and 1 valve), 

Aurila woutersi (1 valve), Callistocythere sp. (1 

valve), Xestoleberis sp. (1 valve). Foraminifera, 

Echinoidea and Bryozoa fragments (genus Crisia, 

Scrupocellaria). 

Low energy Medium energy 

21 

Loxoconcha rhomboidea, Loxoconcha cf. 

ochlockoneensis, Xestoleberis rubens, Xestoleberis cf. 

depressa, Aurila convexa, Neonesidea schulzi, 

Callistocythere sp. 

Aurila woutersi (1 valve), Lanceostoma sp. (4 

valves). Foraminifera and Bryozoa fragments 

(genus Crisia, Scrupocellaria). 

Medium energy High energy 

22 Loxoconcha cf. ochlockoneensis, Xestoleberis rubens, 

Xestoleberis cf. depressa e Urocythereis britannica. 

Neonesidea schulzi (1 carapace and 1 valve), 

Callistocythere sp. (1 carapace and 1 valve) and 

Semicytherura sp. (1 valve). Foraminifera and 

Bryozoa fragments (genus Crisia and family: 

Tubuliporidae). 

Low energy Medium energy 

23 
Neonesidea schulzi, Aurila convexa. 

Loxoconcha rhomboidea (2 carapaces and 2 

valves), Urocythereis britannica (1 carapace and 2 

valves). Foraminifera and Bryozoa fragments 

(genus Crisia, Scrupocellaria and family: 

Tubuliporidae). 

High energy High energy 
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24 Neonesidea schulzi, Loxoconcha rhomboidea, 

Xestoleberis rubens, Aurila convexa. 

Heterocythereis albomaculata (7 valves), 

Urocythereis britannica (2 valves), Carinocythereis 

whitei (2 valves), Loxoconcha cf. ochlockoneensis 

(4 valves), Lanceostoma sp. (2 valves), 

Callistocythere sp. (1 carapace). Foraminifera, 

Echinoids and Bryozoa fragments (genus Crisia, 

Schizomavella and family: Tubuliporidae). 

High energy High energy 

25 
Urocythereis britannica, Neonesidea schulzi. 

Aurila convexa (2 carapaces and 1 valve), 

Loxoconcha rhomboidea (2 carapaces), 

Heterocythereis albomaculata (1 carapace and 1 

valve). Foraminifera and Bryozoa fragments (genus 

Crisia, Scrupocellaria, Reteporella, Disporella, 

Schizomavella and family: Tubuliporidae). 

High energy High energy 

26 
---- 

Loxoconcha rhomboidea (2 valves). Foraminifera 

and Bryozoa fragments (genus Crisia, 

Scrupocellaria). 

High energy ---- 

27 
---- 

Neonesidea schulzi (1 valve), Loxoconcha 

rhomboidea (1 valve). Foraminifera and Bryozoa 

fragments (genus Crisia). 

High energy ---- 

28 Neonesidea schulzi, Urocythereis britannica, 

Loxoconcha rhomboidea. 

Heterocythereis albomaculata (1 carapace and 4 

valves), Aurila convexa (1 carapace and 3 valves), 

Carinocythereis whitei (1 carapace), Leptocythere 

pellucida (1 carapace). Foraminifera, Echinoids and 

Bryozoa fragments (genus Crisia, Scrupocellaria, 

Bugulla, Schizomavella and family: 

Tubuliporidae). 

Low energy Medium energy 
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29 Heterocythereis albomaculata, Loxoconcha 

rhomboidea. 

Aurila convexa (4 carapaces and 1 valve), 

Leptocythere pellucida (4 valves), Xestoleberis 

rubens (1 carapace and 3 valves), Lanceostoma sp. 

(2 valves), Urocythereis britannica (2 valves), 

Neonesidea schulzi (1 valve), Carinocythereis 

whitei (1 valve). Foraminifera, Mollusca and 

Bryozoa fragments (genus: Crisia, Scrupocellaria, 

Bugulla). 

Low energy Low energy 

30 
---- 

Neonesidea schulzi (1 carapace and 7 valves), 

Aurila convexa (1 carapace), Heterocythereis 

albomaculata (2 valves), Urocythereis britannica 

(3 carapaces and 2 valves). Foraminifera and 

Bryozoa fragments (genus Crisia, Scrupocellaria 

and family: Tubuliporidae). 

High energy ---- 

31 Neonesidea schulzi, Loxoconcha rhomboidea, Aurila 

convexa, Heterocythereis albomaculata. 

Urocythereis britannica (2 carapaces and 5 valves), 

Carinocythereis whitei (1 carapace). Foraminifera 

and Bryozoa fragments (genus Crisia, 

Scrupocellaria, Reteporella and family: 

Tubuliporidae). 

Low energy Low energy 

32 
Neonesidea schulzi, Urocythereis britannica. 

Aurila convexa (3 carapaces), Leptocythere 

pellucida (1 carapace). Foraminifera and Bryozoa 

fragments (genus Crisia, Scrupocellaria, 

Disporella, Schizomavella and family: 

Tubuliporidae). 

High energy Medium energy 

33 
---- 

Neonesidea schulzi (1 carapace and 2 valves), 

Loxoconcha rhomboidea (2 carapaces and 1 valve). 

Foraminifera and Bryozoa fragments (genus Crisia, 

Scrupocellaria and Celleporina). 

High energy ---- 
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34 
---- 

Xestoleberis rubens (4 carapaces). Bryozoa 

fragments (genus Crisia, Bugulla). 
High energy ---- 

35 Loxoconcha rhomboidea; Heterocythereis 

albomaculata; Lanceostoma sp.; Xestoleberis rubens. 

Loxoconcha cf. ochlockoneensis (4 valves); 

Xestoleberis cf. depressa (3 carapaces); 

Neonesidea schulzi (1 valve); Aurila convexa (1 

valve). Foraminifera and Bryozoa fragments (genus 

Crisia, Scrupocellaria and Schizomavella). 

Medium energy Low energy 

36 
---- 

Xestoleberis rubens (3 carapaces and 2 valves). 

Foraminifera and Bryozoa fragments (genus Crisia, 

Scrupocellaria, Bugulla, Schizomavella and family: 

Tubuliporidae). 

High energy ---- 

37 Loxoconcha rhomboidea; Loxoconcha cf. 

ochlockoneensis; Xestoleberis rubens. 

Foraminifera and Bryozoa fragments (genus: 

Crisia, Scrupocellaria; family: Tubuliporidae). 
Medium energy Low energy 

38 
---- 

Loxoconcha rhomboidea (4 valves); Neonesidea 

schulzi (1 valve); Aurila convexa (1 valve). 

Bryozoa fragments (genus Crisia, Scrupocellaria, 

Bugulla and family: Tubuliporidae). 

High energy ---- 

39 
Loxoconcha rhomboidea; Loxoconcha cf. 

ochlockoneensis; Xestoleberis rubens; Semicytherura 

sp.; Lanceostoma sp. 

---- Low energy Low energy 

40 
Loxoconcha rhomboidea; Xestoleberis rubens. Sponge High energy Medium energy 

41 Loxoconcha rhomboidea; Neonesidea schulzi; 

Xestoleberis rubens; Heterocythereis albomaculata. 
Sponge High energy Medium energy 
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42 Loxoconcha rhomboidea; Neonesidea schulzi; 

Xestoleberis rubens. 
Sponge High energy Medium energy 

43 Loxoconcha rhomboidea; Xestoleberis rubens; 

Heterocythereis albomaculata. 
Sponge High energy Medium energy 

44 Loxoconcha rhomboidea; Xestoleberis rubens; 

Heterocythereis albomaculata; Aurila convexa. 
Sponge Medium energy Medium energy 

45 Loxoconcha rhomboidea; Neonesidea schulzi; 

Xestoleberis rubens. 
Sponge High energy Medium energy 
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Appendix A. Autochthonous Ostracods examined in this study. 

 

Class Ostracoda Latreille, 1802 

Order Podocopida Müller, 1894 

Family Loxoconchidae Sars, 1925 

Genus Loxoconcha Sars, 1866 

Loxoconcha rhomboidea (Fischer, 1855) 

Loxoconcha cf. ochlockoneensis Puri, 1960 

Family Bairdiidae Sars, 1888 

Genus Neonesidea Maddocks, 1969 

Neonesidea schulzi (Hartmann, 1964) 

Family Xestoleberididae Sars, 1928 

Genus Xestoleberis Sars, 1866 

Xestoleberis rubens Whittaker, 1978 

Xestoleberis cf. depressa Sars, 1866 

Family Hemicytheridae Puri, 1953 

Genus Aurila Porkorný, 1955 

Aurila convexa (Baird, 1850) 

Aurila woutersi Horne, 1986 

Genus Urocythereis Ruggieri, 1950 

Urocythereis britannica Athersuch, 1971 

Genus Heterocythereis Elofson, 1941 

Heterocythereis albomaculata (Baird, 1838) 

Family Trachyleberididae Sylvester-Bradley, 1948 

Genus Carinocythereis Ruggieri, 1956 

Carinocythereis whitei (Baird, 1850) 

Family Leptocytheridae Hanai, 1957 

Genus Callistocythere Ruggieri, 1953 

Callistocythere sp. 

Genus Leptocythere Sars, 1922 

Leptocythere pellucida (Baird, 1850) 

Genus Semicytherura Wagner, 1957 

Semicytherura sp. 

Family Paradoxostomatidae Brady & Norman, 1889 
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Genus Lanceostoma Schornikov & Keyser, 2004 

Lanceostoma sp. 

 

Order Myodocopida Sars, 1866 

Family Cylindroleberididae Müller, 1906 

Genus Cylindroleberis Brady, 1867 

Cylindroleberis sp. 
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ABSTRACT 

Oceanic islands - such as the Azores in the mid-North Atlantic - are periodically 

exposed to large storms that often remobilize and transport marine sediments along 

coastlines, and into deeper environments. Such disruptive events create deposits - 

denominated tempestites - whose characteristics reflect the highly dynamic environment 

in which they were formed. Tempestites from oceanic islands, however, are seldom 

described in the literature and little is known about storm-related sediment dynamics 

affecting oceanic island shelves. Therefore, the geological record of tempestite deposits 

at oceanic islands can provide invaluable information on the processes of sediment 

remobilization, transport and deposition taking place on insular shelves during and after 

major storms. In Santa Maria Island (Azores), a sequence of Neogene tempestite 

deposits was incorporated in the island edifice by the on-going volcanic activity (thus 

preserved) and later exposed through uplift and erosion. Since it was overlain by a 

contemporary coastal lava delta, the water depth at the time of deposition could be 

inferred, constituting an excellent case-study to gain insight on the still enigmatic 

processes of insular shelf deposition. Sedimentological, palaeontological, petrographic 

and palaeo-water depth information, allowed the reconstruction of the depositional 

environment of these sediments. The sequence typifies the characteristics of a 

tempestite (or successive tempestites) formed at ~50 m depth, in a steep, energetic open 

insular shelf, and with evidence for massive sediment remobilization from the nearshore 

to the middle or outer shelf. We claim that cross-shelf transport induced by storm events 

is the main process of sediment deposition acting on steep and narrow shelves subjected 

to high energetic environments such as the insular shelves of open-sea volcanic islands. 

 

 

Keywords Tempestite; storm-induced flows; sediment transport; insular shelf; depositional model; 

palaeo-water depth. 
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INTRODUCTION 

 Oceanic islands are, by nature, exposed to open sea conditions and thus affected 

by severe coastal erosion. Their coasts are continually being cut back by the sea, 

producing large amounts of sediments, but clastic depositional coasts are rarely seen on 

these islands. There is also a clear lack of knowledge concerning sedimentation 

processes on rocky shoreline environments such as those of volcanic islands (Felton, 

2002). The few published studies are restricted to nearshore settings in mixed 

siliciclastic-carbonate systems (Schneidermann et al., 1976; Morelock et al., 1983; 

Schwab et al., 1996; Harney et al., 2000; Calhoun et al., 2002; Harney & Fletcher, 

2003; Ogston et al., 2004; Storlazzi et al., 2004; Conger et al., 2009; Ryan-Mishkin et 

al., 2009). Unfortunately, these studies focused mainly on sediment characterization 

rather than on processes of deposition. Based on their observations, Tsutsui et al. 

(1987), Chiocci and Romagnoli (2004) and Quartau et al. (2012) suggested that bottom 

downwelling currents, generated during storms, transport nearshore sediments 

perpendicular to the coast onto the shelf and slope environments, building sandy 

deposits offshore. However, this model is controversial because, although the geological 

record of storm deposits confirms this hypothesis, modern oceanographers find it 

difficult to explain how purely unidirectional flows can cross the entire shelf. Therefore, 

models of tempestite deposition are still under debate, with scientists describing density 

induced flows, wave oscillation flows, geostrophic currents and combinations between 

these three (Myrow & Southard, 1996; Myrow, 2005) as possible transport processes. 

Thus, the key to understand the mechanisms behind island shelf sedimentation is to look 

back into the geological record as we did in this study. 

 The Azores Archipelago – located in the mid-North Atlantic –is often struck by 

violent storms (Borges, 2003; Andrade et al., 2008) associated with remarkable wave 

energy (Quartau et al., 2012; Rusu & Guedes Soares, 2012). This archipelago is a group 

of very young oceanic islands, featuring youthful volcanic landforms that are generally 

devoid of exposed marine volcanic and sedimentary sequences. The easternmost island 

of Santa Maria, however, is an exception to this scenario. The island is much older than 

the remaining – having emerged during the Late Miocene (Abdel Monem et al., 1968, 

1975; Féraud et al., 1980, 1981) – and is rich in Neogene submarine volcanic sequences 

and fossiliferous marine sediments, due to a combination of coastal erosion and uplift 

during the Plio-Quaternary (Serralheiro et al., 1987; Serralheiro & Madeira, 1990; 

Serralheiro, 2003; Ávila et al. 2012). Santa Maria is, thus, a prime locality to study 
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tempestite deposits allowing insight into sediment dynamics taking place on exposed 

oceanic island shelves. In this work we focused on the sedimentary outcrops at Ponta do 

Castelo, in SE Santa Maria, because the overlying volcanic sequence – a lava delta – 

allow us to accurately infer the palaeo-water depth for the top of the sedimentary 

package. A comprehensive characterization of the outcrop from volcanostratigraphic, 

sedimentological, palaeontological and petrographical points of view allowed us to 

reconstruct the palaeo-environment of deposition. In this work, we provide supporting 

evidence that storm-induced downwelling currents have transported sediments from the 

nearshore to deeper offshore environments. We further suggest that this is the main 

process of deposition on steep, narrow and high-energetic shelves, such as those found 

on oceanic islands. 

 

Geological setting 

 The Azores archipelago is a group of nine islands located in the North Atlantic 

(25° – 32° W; 37° - 40° N), in a complex tectonic setting. Two of the Azorean islands - 

Flores and Corvo - rise from the western flank of the mid-Atlantic Ridge, whilst the 

remaining seven islands - including Santa Maria – are located to the east of this feature 

along the western segment of the Eurasia-Nubia boundary (Fig. 1A). 

 Santa Maria is the easternmost island of the Archipelago and was, supposedly, 

the first to have emerged during the Late Miocene, sometime before 8.1 Ma (Abdel-

Monem et al., 1975; Serralheiro & Madeira, 1990; Serralheiro, 2003). The general 

volcanostratigraphic sequence of Santa Maria, as defined by Serralheiro et al. (1987), 

basically reflects (see Serralheiro & Madeira, 1990; Serralheiro, 2003; Ávila et al. 

2012): 1) the emergence of a volcanic edifice during the Late Miocene (Cabrestantes 

and Porto Formations); 2) the construction of a basaltic shield volcano during the Late 

Miocene (Anjos Complex); 3) subsequent erosion and probable total immersion of the 

shield volcano, sedimentation of marine and terrestrial sediments, with synchronous 

submarine volcanic activity on the eastern side of the island, during the Late 

Miocene/Early Pliocene (Touril Complex); 4) increase in volcanic activity – initially 

exclusively submarine and later subaerial with the formation of lava deltas along coeval 

coastlines – and re-emergence of the edifice during the Early Pliocene (Facho - Pico 

Alto Complex); 5) erosion followed by low volume volcanic activity, forming a set of 

monogenetic magmatic and hydromagmatic cones, during the Late Pliocene (Feteiras 

Formation); uplift and erosion of the edifice from Late Pliocene to the present. 
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Figure 1. Location maps: (A) of Santa Maria, within the Azores Archipelago, MAR – Mid-Atlantic 

Ridge, AM – American Plate, EU- European Plate, AF – African Plate; (B) of Ponta do Castelo on south-

east Santa Maria ('1' Rocha Alta); (C) detailed image of the outcrop area (‘1′ Ponta do Castelo; ‘2′ Pedra-

que-pica). 

 

 

 Ponta do Castelo is a tall prominent headland forming the southeasternmost tip 

of the island (see Figs 1B and 1C). In this place the sequence comprises (Fig. 2), from 

the base to the top: a) fossiliferous marine sediments with high volcaniclastic content; b) 

a typical lava delta sequence constituted by a steeply dipping foreset unit of basaltic 

pillow-lavas and hyaloclastites, and a topset unit of flat-lying subaerial lava flows; and 

c) basaltic pillow-lavas (where the lighthouse stands), part of another lava delta 

sequence stacked on top of the first and whose topset unit has been locally removed by 
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erosion. The  foresets of pillow-lavas and hyaloclastites of the main lava delta sequence 

dip 25° - 35° to the E, suggesting a coeval coastal progradation to this direction, under 

moderate extrusion rates, and over a shelf where the sediments rested. The continuous 

exposure along the coast towards the W shows that the sediments at Ponta do Castelo 

partially correspond to the remobilization of tuffs and water-settled tuffites from the 

surtseyan cone whose remains can still be seen farther west at Rocha Alta. The overall 

sequence is attributed to the Facho – Pico Alto Complex to which an Early Pliocene age 

was suggested (Serralheiro et al., 1987). Effectively, the underlying sediments at Pedra-

que-Pica (a nearby sedimentary outcrop 800 m to the west; see Fig. 1C) yielded an 

isotopic age around 5.5 Ma (Kirby et al. 2007), thus supporting this age estimate. 

 

 

Figure 2. General cross-section of Ponta do Castelo volcano-sedimentary sequence, showing the 

volcanostratigraphic setting of the basal sedimentary sequence (tempestite deposit), and location of the 

passage zone between subaerial and submarine flows (representing coeval sea-level) within the overlying 

lava delta sequence; d represents the contemporaneous palaeo-water depth for the top of the sediments, as 

inferred from the overlying lava delta structure; apsl = above present sea-level. 

 

 

METHODS 

Sedimentological and palaeontological characterization 

 The outcrop at Ponta do Castelo was studied in detail to reconstruct the overall 

structure, geometry and field relationships between the sedimentary deposit and the 

underlying/overlying volcanic sequences. Two cross-sections were made along the 
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south side of Ponta do Castelo: a general section of the sequence (Fig. 2); and a detailed 

composite section (Fig. 3) showing the arrangement, internal structures and erosional 

contacts of the tempestite deposit. Strip logs for stratigraphic sections (Fig. 4) represent 

the variability and facies succession found at this outcrop. Special care was taken to 

record the geometry and dimensions of the observed sedimentary structures, the lateral 

and vertical continuity of facies, and the position and taphonomical aspects of the fossil 

content. Macrofossil content was verified in situ, carefully recorded and classified to the 

genus and species level, whenever possible. Thin sections, representative of the main 

subunits within the deposit were studied under polarizing microscopy to infer structures, 

micro-textures, mineralogy and microfossil content. All fossil specimens collected in 

this work are housed in the Fossil Collection of the Department of Biology of the 

University of Azores (DBUA-F). 

 

Figure 3. Sedimentary/tempestite deposit at Ponta do Castelo, SE Santa Maria. (A) Photograph of the 

main outcrop (western portion of the outcrop), with people for scale (ca 1 8 m tall), and main erosional 

contacts marked as dashed lines. Location of strip logs are labelled in the picture; Log 3 was performed to 

the E of this picture, behind the fallen boulders. (B) Simplified cross-section of the studied sediments, 

representing main lithologies, sedimentary structures, contacts, fossiliferous content and the location of 

strip logs. Main erosional unconformities are represented by thicker solid black lines and numbering 

corresponds to the described depositional units. 
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Figure 4. Strip logs along the locations identified in Fig. 3. Labels #1,2,6 represent sampling location for 

thin sections, of which pictures of the 4 most representative lithologies are shown in Fig. 6. 

 

 

Palaeo-water depth estimations using the volcanic structure 

 Coastal lava deltas constitute excellent sea-level tracers because the passage 

zone between the topset unit (composed by flat-lying subaerial lava flows) and the 

foreset unit (composed by prograding foresets of submarine lavas) marks very 

accurately the position of coeval relative sea-level (Jones & Nelson, 1970; Porebski & 

Gradzinski, 1990; Smellie, 2000; Immenhauser, 2009; Ramalho 2011). Therefore, the 

vertical distance between the base of a foreset and the passage zone at its top can be 

used to estimate very accurately the water depth at the time of extrusion (see Fig. 2). If 

pillow-lavas from the foreset unit cast load marks on the underlying sediments, it means 

that these sediments were still soft when they were covered by the effusive sequence. 

Thus, one can reasonably assume that the palaeo-water depth inferred for the base of the 

volcanic sequence corresponds to the water depth contemporaneous to the top of the 

underlying sediments. Furthermore, if sedimentation rates were high and sea-level did 
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not change during deposition, palaeo-water depth information may be transposed into 

the sediments below. In this study, vertical distances were measured with an Impulse 

200LR laser distance meter produced by Laser Technologies, Inc. (LTI), with a range 

up to 500 m. 

 

4. RESULTS 

 The studied sequence is outstanding for its characteristics, even within the island 

context. Some of its most striking features are the mega-ripples (hummocks) that can be 

seen in the basal sediments and the very clear lava delta structure overlying the 

sediments (see Figs 2, 3, 4 and 5). The outcrops are partially truncated by a Late 

Pleistocene shore platform, beach and former cliff, with an age that probably 

corresponds to the last interglacial (Marine Isotopic Stage 5e, ~115-135 ka) (Ávila et 

al., 2008); these were later covered by slope deposits (constituting the talus/colluvial 

fan where the former whaling station is located). The geometry of the sedimentary body 

seems to be sigmoidal or wedge-like, with the top dipping about 15° to the ENE and 

located at a maximum elevation of ~9 m above present sea-level (apsl). The base of the 

sequence is buried by the modern beach; however, nearby outcrops of underlying lavas 

and the sequence’s geometry suggests it is not far from the surface. The overlying lava 

delta exhibits a passage zone at ~55 m apsl, suggesting a palaeo-water depth of 45-55 m 

for this deposit (d in Fig. 2). 

 The sedimentary sequence is entirely composed of fossiliferous sandstones that 

resulted from the remobilization of hydromagmatic tuffs. Grain composition is, hence, 

dominated by angular or poorly-rounded, glassy, non-vesicular and palagonitized 

volcanic clasts (~58%), with a reduced amount of mineral clasts (olivine, pyroxene, 

plagioclase, tiny cubic oxides, and calcite), fossil shell fragments (amounting to ~20% 

and comprising gastropods, bivalves, rhodoliths, echinoids, bryozoans, corals, and 

balanids), and microfossils (foraminifera and ostracoda), all cemented by calcite 

(sparite) – see Fig. 6. However, despite the homogeneous lithology, the deposit shows 

large lateral and vertical variations in the sedimentary structure. 
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Figure 5. Photographs of detailed aspects of the outcrop, fossils and existing sedimentary structures. A – 

view of the outcrop, showing the erosional unconformity between unit 4a and an underlying crest 

comprising units 1, 2 and 3. Location of strip log 1; B – detail of the erosional contact between the 

massive tempestite unit 4a (exhibiting preserved swales and hummocks) and the underlying sequence 

comprising units 1, 2 and 3. Location of strip log 2; C – detail of the erosional unconformity between unit 

2 and 3, showing the palaeo-channel and large rip-up clast of unit 2 floating in unit 3; D – detail of one 

the sides of the palaeo-channel, showing flame and fluid escape structures of bioclastic-rich sediment of 

unit 2 onto unit 3. Side of rip-up clast is also visible in upper right section of photograph; E – contact 

between top of the sedimentary sequence and the overlying submarine lavas (pillow lavas and 

hyaloclastites); F – detail of imbrication of bivalvia shell in fossiliferous sandstone; G – examples of 

allochthonous fossil gastropods found at the outcrop: Alvania sleursi (top), Anachis avaroides (base) 

typical of shallow marine water conditions (common size 2-4 mm). 
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The exposed lower part of the sequence (henceforth called “unit 1”) is composed by 

coarse- to medium-grained sandstones up to 1 m thick, almost devoid of macrofossils, 

and showing a wide, large-scale cross stratification with centimetre- to decimetre-thick 

slightly wavy sets, forming low but wide swales and possibly hummocks (see Figs 3; 

5A and 5B). There is some weak normal grading within individual beds. The base of the 

deposit is not exposed and the small extent of the outcrop precludes any solid large-

scale geometric reconstruction. However, it is possible that the observed features are 

actually part of a larger hummocky or swaley cross-stratified structure. Petrographic 

investigation revealed it to be composed mainly of rounded to angular glassy shards 

with a few subrounded lava lithics. Loose mineral clasts and fossils are rare (Fig. 6A). 

 

Figure 6. Photographs of thin sections, according to sample locations marked in Fig. 4. A – 

microphotograph showing the structure and lithological composition of a sample from the unit 1. Good 

sorting and a reduced amount of fossils and loose crystals characterize this sample; B – microphotograph 

of a medium-grained sandstone from unit 2. A sharp reduction in abundance of glassy shards and the 

presence of palagonite clasts are the main characteristics of this sample.; C – two kinds of sparite cement 

are well evident in this picture of a sample of unit 2; D – massive (unsorted) structure of a sandstone of 

unit 3. Palagonite clasts are present in large amounts. 
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 Above the previous sediments, sits a wedge-shaped sedimentary package 

(henceforth called “unit 2”) that gradually loses thickness towards the ENE (i.e., from 

about 1.20 m to about 50 cm) and exhibits a pronounced vertical variation in 

sedimentary structures and in grain size (see Fig. 3). This unit is bounded by erosional 

unconformities: the lower unconformity is irregular, forming a centimetre- to decimetre-

high palaeo-topography, while the upper unconformity is more regular and parallel to 

bedding, with the exception of a shallow but wide palaeo-channel (see Fig. 5C). Unit 2 

gradually grades from micro-conglomerates/coarse sandstones at the base, into coarse- 

to medium-grained sandstones (Fig. 6B) with chaotic/diffuse bedding in the middle 

(both very rich in shell debris), then into medium- to fine-grained sandstones with 

plane-parallel bedding/lamination at the top, composed by alternating bioclastic-rich 

and volcaniclastic-rich laminae. Two species of ostracoda were found within bioclastic-

rich laminae: Pachycaudites aff armilla Ciampo, 1986 and Neonesidea rochae 

Nascimento, 1989. Small-scale bioturbation (Diplocraterion isp.) interrupt the topmost 

beds/laminae. The mid subunit (with chaotic/diffuse bedding) increases in thickness 

towards the WSW and the upper subunit (with plane-parallel bedding/lamination) is 

absent towards this direction – probably removed by the subsequent erosion that created 

the upper unconformity. Thin-section observations show that constituents are somewhat 

different from those present in Unit 1. Glassy shards of volcanic origin are less 

abundant than the lava lithics, but very large (up to 0.5 cm across) palagonite clasts are 

present. Lithics are represented by small rounded vesicular and porphyritic pyroclasts. 

Loose mineral clasts and fossils are also more abundant. It is evident the presence of a 

first thin sparite rim around all clasts, and a second sparite cement filling all the pores, 

suggesting the occurrence of two events of cement deposition characterized by different 

levels of kinetic energy (Fig. 6C). 

 The following unit (henceforth called “unit 3”) comprises a medium-grained 

fossiliferous sandstone, poorly-sorted and with chaotic/diffuse bedding, and reaching up 

to 1.5 m in thickness (see Figs 3 and 4). It lies unconformably on the previous unit and 

infill the referred palaeo-channel; in one of the edges of this palaeo-channel, flame 

structures and tails of entrained sediment from the previous sequence and a large 

intraclast (rip-up clast) are present (see Figs 5C and 5D), suggesting strong erosion and 

rapid settling. In a similar fashion, remains of rock-encrusting bryozoan colonies that 

were ripped from their hard-substrate are found “floating” within the sandstones (Björn 

Berning, pers. comm.) - probably corresponding to Ellisina sp., Onychocella sp., 



 

184 
 

Hemicyclopora sp. and Reteporella sp. - as well as remains of isolated corals. Fossils 

and shell debris are generally dispersed in random/chaotic positions. It is not possible to 

confidently match units observed along the western portion of the outcrop with its 

eastern portion (see Figs 3 and 4); however, it seems that the sediments at the base of 

Log 3 may be etheropic with the above-described unit. If that is the case, there is a 

lateral variation from chaotic/diffuse stratification in the western portion of the outcrop, 

to a faint cross-stratification towards the E. The petrographic analysis shows that the 

constituents are represented mostly by palagonite fragments and a reduced amount of 

lithics (small rounded vesicular pyroclasts and angular lava fragments), all randomly 

arranged and with a very heterogeneous grain size (Fig. 6D). The presence of two 

sparite cement types is also confirmed here. 

 The next event produced a profound erosive unconformity that cuts through all 

the previous units, forming an irregular palaeo-topography with abrupt troughs, up to 3-

4 m deep and about as wide as they are deep (see Figs 3, 5A and 5B). This palaeo-

topography was, in turn, filled by a 4-5 m thick unit (henceforth called “unit 4a”) of 

fossiliferous, medium-grained sandstones exhibiting a distinctive metre-scale 

hummocky structure. This stratification is generally characterized by 1-3 m wide, 0.3-

1.5 m high slightly asymmetric hummocks and swales that coarsely follow the 

underlying topography and exhibit onlapping contacts along the steep channel/trough 

sides; beds typically fan out from conformable almost-parallel fine beds, internal 

truncation surfaces are rare, and hummocks are almost ubiquitously preserved (see Figs 

3 and 5B). The small extension of the outcrop and the lack of a proper 3D view 

unfortunately preclude the observation of a preferred dip direction in the third 

dimension, i.e. making it very difficult to verify if the existing stratification is isotropic 

or anisotropic. The sediments are generally poorly sorted, although some layers of 

slightly coarser grain size help defining the overall bedding structure, and typically 

stand in positive relief along the outcrop face as a result of differential erosion. 

Sediments tend to be coarser and richer in shell debris at the bottom of the troughs, or at 

the base of deeper swales. Gradually, towards the top, bedding becomes almost plane-

parallel, with occasional smaller-scale ripples. In the western portion of the outcrop, the 

sedimentary sequence is incomplete since it was truncated atop by the later (MIS 5e) 

shore platform, located ~4.5 m apsl and contemporary of other known MIS 5e features 

found around the island and at similar elevations (Callapez & Soares, 2000; Ávila et al., 

2009). In the eastern side, however, the sequence is complete and the top can be 
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observed, albeit the poor accessibility and a more intense weathering. Fossil content 

comprises allochthonous components of a shallow fauna. Specifically, the presence of 

extant microgastropods such as Anachis avaroides Nordsieck, 1975 and Alvania sleursi 

Amati, 1987 (living respectively at around 3-6 m and 10-20 m apsl, Ávila, 2003) (Fig. 

5G), together with the shallow extinct balanid Zullobalanus santamariaensis and 

various sublittoral echinoids – e.g., spines and fragments of Eucidaris tribuloides 

(Lamarck, 1816), complete tests of Echinoneus cf. cyclostomus Leske, 1778 and 

Echinocyamus pusillus (Müller, 1776) (Madeira et al., 2011) - as well as rock-

encrusting bryozoan colonies that were ripped from their rocky substrate at intertidal to 

subtidal levels, once again confirms the energetic removal and transport of 

sediment/organisms from shallow littoral zones to deeper settings. This is also 

supported by the presence of other fossil debris resulting from shored epipelagic species 

such as Janthina typica (Brönn, 1861) and typical littoral faunas (e.g. Arca noae 

Linnaeus, 1758, Crassadoma multistriata (Poli, 1795), Gari depressa (Pennant, 1777) 

[=Psammobia aequilateralis]) that can be found mixed within the sediment. Complete 

fossil organisms and shell fragments are generally dispersed within the sediment and in 

random/chaotic positions; in fact, shells are often found (single, disarticulated valves) in 

nearly vertical positions. The remainder part of the sequence is only seen in the eastern 

portion of the outcrop. 

 Above the previous sediments (only visible in log 3), and bounded by two faint 

erosive surfaces of minor importance, it follows a thin layer (about 0.5 m thick, 

henceforth called “unit 4b”) of fossil-rich, medium- to coarse-grained sandstone, with 

no apparent bedding structures. This layer is very rich in microgastropods, bivalves, 

fragments of Zullobalanus santamariaensis Buckeridge & Winkelmann, 2010 

(Winkelmann et al., 2010), several bryozoan species, echinoids and rhodoliths. Shell 

debris are randomly/chaotically distributed within this layer, with no preferential 

geometric arrangement. 

 Finally, the sedimentary sequence ends with a massive sandstone unit 

(henceforth called “unit 4c”), amounting to ~3.7 m in total thickness (see Figs 3 and 4). 

Unit 4c is fossil-bearing and shows normal graded bedding. The first ~1.2 m correspond 

to medium-grained sandstones exhibiting a faint cross-stratification, and with some 

minor bioturbation (burrows) towards the top. These grade from medium- to fine-

grained sandstones; the transition is conformable, gradual and only marked by the 

presence of bioturbation and the change from faint cross-stratification to an almost 
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imperceptible plane-parallel sparse stratification. Bioclastic debris decrease in 

abundance towards the top of the sequence, where few sparse valves showing some 

slight downslope imbrication occur (see Fig. 5F). The uppermost ~1.5 m of this 

sequence is intensely bioturbated by burrowing organisms (Diplocraterion isp., 

Thalassinoides isp., Ophiomorpha isp., Rhizocorallium isp. and Crossopodia isp.), 

leading to destruction of the original sedimentary structures. Basaltic pillow lavas of the 

overlying lava delta cap the sequence, imprinting load casts in the once soft sediments 

and showing without any doubt that the volcanic sequence is penecontemporaneous of 

the underlying sediments (see Fig. 5E). 

 

DISCUSSION 

Sedimentological and palaeontological evidence 

 Marine sedimentary bodies exhibiting hummocky and swaley cross-stratification 

has been related to storm events that transport sediment under the influence of wave 

oscillation conditions and/or combined wave oscillation and unidirectional flows from 

coastlines onto the shelf (Myrow & Southard, 1996; Myrow, 2005; Dumas & Arnott, 

2006).  On the other hand, turbidity-like deposits are thought to be deposited below 

storm-wave base because they miss the characteristics of the deposits formed under 

bidirectional flows. In our opinion, the sedimentary sequence at Ponta do Castelo 

represents a rapid succession of 4 or 5 different events, each involving voluminous 

sediment transport from shallow waters to greater depths followed by rapid deposition 

by the action of storm-related unidirectional and/or combined flows: 

 

Unit 1 

 The first event is partially exposed since its base lies below present-day beach 

sediments. It is inferred, however, that the observed stratification is part of a much 

larger structure of hummocks and swales, and thus interpreted as a tempestite formed 

under wave oscillations (or combined flows) above or close to storm wave base. 

 

Unit 2 

 The next event with turbidite-like features was most likely generated by a 

density-induced flow that brought sediments from shallower levels (as suggested by the 

presence of allochthonous littoral faunas), initially eroding the sea-bed and eventually 

settling as it gradually lost energy. In our opinion, since the shelves in other Azorean 
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islands can be quite steep (average 2
o
-3

o
, but can reach locally much more) (Mitchell et 

al., 2012; Quartau et al., 2010), it is not that peculiar to have storm-related turbidites. 

The sequence is probably not complete, as it lacks the rippled facies that are normally 

found atop similar sequences. It was probably eroded by the following event, as 

indicated by the presence of the upper unconformity. Nevertheless, it was not strong 

enough to remove entirely the bioturbation towards the top of this sequence that shows 

at least a period of fair weather between events, allowing biological colonization of the 

top of the deposit. 

 

Unit 3 

 The third event is sandy, rich in shell debris, some of them in random positions, 

and exhibits chaotic/diffuse bedding that eventually grades into cross-bedding. The 

sequence infilled the palaeo-channel carved in the previous unit and the presence of rip-

up clasts (intraclasts) suggests that erosion and sedimentation (under very rapid 

aggradation rates) were violent and almost instantaneous. The existence of well-

preserved bryozoan colonies that were ripped from their shallow-water rocky substrate 

and that are now mixed in the sediment, attests the vigorous energy of the event and the 

transport of shallow-water/littoral material to greater depths. This unit is thus 

interpreted as another tempestite deposit, although the missing distinctive sedimentary 

structures precludes unequivocal inferences concerning the type of mechanism involved 

in the deposition. 

 

Unit 4 

 In contrast, the massive deposit that follows – unit 4a, representing the fourth 

event - is outstanding and crucial to understand the sedimentary dynamics occurring 

here. First, the deposit overlies a deeply irregular palaeo-topography – with 3-4 m deep 

troughs cutting deep into the previous sequences – attesting the vigorous erosion 

necessarily associated to very strong seafloor currents. Secondly, but no less important, 

it exhibits a distinct mega-hummocky stratification, with preserved metric, slightly 

asymmetrical hummocks with rare internal truncations, suggesting a deposition under 

extremely high aggradation rates – perhaps corresponding to a deposition time of just a 

few hours - as a result of combined flow conditions above or at storm wave base (see 

Dumas & Arnott, 2006). Sedimentation under extremely high aggradation rates is also 

supported by the presence of the following features: bedding coarsely parallel to the 
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underlying topography; beds with onlapping contacts on the sides of the 

troughs/channels but with lateral continuity outside/above these depressions; the 

absence of internal truncations inside the channels; the presence of tails of sediment 

eroded from the previous sequence and entrained in the infilling sediments; and fossils 

chaotically distributed and in random positions (including vertical positions). Similarly 

to other units, it contains fossils that lived in shallow littoral settings and were 

transported downslope. 

 Above the previous package lies a 0.5 m debris flow deposit (unit 4b) that might 

have been associated with the same event or, less likely, occurred during a different 

event. The latter brought more organisms/sediments from littoral (intertidal to 

sublittoral) zones, as its fossil content suggests. 

 Finally, the last sedimentary unit – unit 4c - in our opinion represents the 

transition to the fair-weather suite. The cross-stratification at the base still represents 

wave oscillation influence but with a gradual passage to less energetic conditions (as 

attested to by the fining upwards graded bedding); the intense bioturbation present 

towards the top of the sequence is probably related to the very rapid, opportunistic 

biological colonization that typically occurs after a storm event, in such revolved “new” 

bottom environments. Sedimentation cycle was subsequently interrupted by rapid 

progradation of a costal lava-fed delta sustained by an eruption on land, and the 

sedimentary structures/deposits preserved. 

 In summary, the sedimentary features described above suggest that the 

deposition occurred under very high levels of seafloor flow energy. The mega-

hummocky stratification, the erosive unconformities, sedimentary structures, poor 

selection of grain-size, deposition of elongated bioclasts in vertical position, local 

accumulations of shells in chaotic positions are all a clear evidence of storm-wave and 

storm-current imprint onto the seafloor (Dumas & Arnott, 2006; Kidwell & Bosence, 

1991; Mount & Kidder, 1993; Myrow & Southard, 1996; Myrow, 2005; Vierek, 2010). 

Therefore, we believe that the sedimentary deposits at Ponta do Castelo were created by 

a sequence of storm events, each one deposited in a single storm and partially eroded by 

subsequent events. 
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Present-day oceanographic and sedimentological evidences of tempestite 

deposition in the Azorean insular shelves 

 We believe that the full sedimentary sequence was deposited very rapidly, 

during a few tens or hundreds of years, and preservation was only possible due to 

ongoing volcanic activity. This assumption is fairly confident because present-day rates 

of sedimentation are very high in insular shelves of the Azores archipelago. 

Sedimentary deposits around the Faial insular shelf that can reach up to 50 m in 

thickness are believed to have formed during the last 6.5 ka based on estimations from 

coastal and subaerial erosion and explosive volcanism (Quartau et al., 2012). This 

implies modern sedimentation rates around 8 mm/year or even more because there is 

evidence of sediments crossing the shelf break to the slope of the island. Thus, if the 

whole tempestite sequence at Ponta do Castelo corresponds to the sedimentation of 

several season/storm events that occurred in a short time interval (due to the very short 

recurrence period of storms in the Azores), as we believe, then the top of the deposit is 

penecontemporaneous with its base and the palaeo-water depth inferred through the 

overlying volcanic structure (~45 m) could be extended to the underlying tempestite 

deposit, with important implications. One is that storm wave base in such environments 

reaches down to depths of 50-60 m and the other is that storm-induced downwelling 

currents are responsible for bringing large amounts of littoral sediments to those depths. 

This is not surprising since the nearshore part of the insular shelves surrounding Faial 

and Pico islands are mostly rocky and sedimentary deposits develop mostly on the 

middle to the outer shelf (Mitchell et al., 2012; Quartau et al., 2012), most likely 

transported by storm-induced downwelling currents as observed in other energetic 

environments (Field & Roy, 1984; Nittrouer & Wright, 1994; Hernández-Molina et al., 

2000; Chiocci et al., 2004). 

 The estimation of fair and storm-wave base in the Azores shows that sediments 

can react to wave action at water depths of 50 m and below. Wave base is defined as the 

water depth beyond which wave action ceases to stir the sediment bed (Cowell et al., 

1999). Conventionally, this limit is taken to be where the water depth (hLS) is half the 

deep-water wavelength (L0) -Equation 1 - which corresponds to the deep-water 

transition to intermediate- water waves. 

 
2

0L
hLS   (1) 
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 The general expression for wavelength according to linear Airy wave theory is 

(Dean & Dalrymple, 1991): 

 
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 And for the special case of deep-water waves,   1/2tanh L , so that wave length 

simply becomes: 
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where L0 is the deep-water wavelength, Ts is the period and g the acceleration due to 

gravity (9.81 m/s
2
). The calculations are made using a 14-year period (1989-2002) of 

wave hindcast data from Carvalho (2003). Average and maximum peak wave period 

(Tp) are respectively 9.9 and 19.8 s. By converting to average and maximum significant 

wave period (Ts) using Tucker’s (1991) relationships between Tp and Ts, we obtain 

respectively 8.3 and 16.5 s. By replacing these values in equation 3 we see that average 

waves are able to remobilise sediments to around 50 m water depth and the strongest 

storm recorded in the considered period is able to do it to 213 m. 

Lastly, the analysis of a current meter deployed at around 20 m water depth 

during 8 months in the southern coast of Faial Island provides evidence for extremely 

strong bottom currents. Most of them (80%) were related to storm surges (Youssef, 

2005) and the highest bottom velocity recorded was 2 m/s during a period in which the 

significant wave height reached 5.12 m. It is likely to expect even higher bottom 

velocities since the maximum significant wave height attained during the 14-year period 

analysed reached 16.7 m (Carvalho, 2003). We are, assuming however, that despite the 

warmer climate inferred for the Neogene, storm conditions did not differ considerably 

from modern ones. Our assumption is supported by the field evidence at Ponta do 

Castelo that could only be formed by storms as strong or even stronger than today. 

 

 

Depositional model of sedimentation in the insular shelves of ocean volcanic islands 

Based on the current work and the oceanographic and sedimentological 

characteristics of the Azores, we were able to develop a model of how sedimentation 

occurs on settings similar to these. Although alongshore sedimentation might occur 

during storms, the prevailing one appears to be directed offshore. 
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Storms, in favourable conditions (e.g. depending on wind direction to the 

shoreline and morphology of the coastline and shelf), may cause coastal setup and 

develop storm surge ebb-currents normal to the shore. In the case of the Faial shelf, 

around 50% of the currents measured had angles higher than 45° to the shore (Youssef, 

2005). Moreover, the data showed a positive relationship between wave height and 

storm surge current speed. The balance of forces involved during storms, however, can 

explain this. According to Myrow & Southard (1996), offshore transport is aided by 

high-pressure gradient, high excess weight and low Coriolis force (or stronger friction 

force). High-pressure gradient is easily attained during big storms in the Azores as 

storm surges produce high coastal setups which need to be compensated by opposite 

strong ebb or downwelling currents. On the other hand, turbulence added by high waves 

maintains particles in suspension creating high excess weight. The magnitude of this 

force is a function of the downslope component of the excess weight (per unit volume) 

of a sediment-rich dispersion relative to the clear water and of the bottom gradient. 

Therefore, offshore gravity driven transport to the middle and outer insular shelf is 

promoted by strong ebb-currents (high pressure gradient) and high excess weight (high 

concentrations of suspended sediment and high shelf gradients). The Coriolis force 

would normally deflect these currents towards the alongshore direction, however the 

sum of the three forces plus the high friction force (bottom friction, acting opposite to 

the direction of the currents) generated during the event, attenuates Coriolis force 

allowing currents to maintain high angles to the shore (Fig. 7A; Duke, 1990; Myrow & 

Southard, 1996). Therefore, in shallow waters (above storm wave base), strong 

oscillatory fluid motion coupled with unidirectional currents transport sediments from 

the near-shore and form hummocky cross-stratifications and wave ripples whilst at 

greater depths (below storm wave-base), the unidirectional flows dominate and 

turbiditic sequences form. During the ensuing fair-weather conditions (Fig. 7B) the new 

sea-bottom sedimentary cover is rapidly colonized by endobenthonic organisms 

producing bioturbation of the upper part of the deposit. We believe that this study may 

help to resolve the conflict between the commonly oceanographical observations of 

shore-parallel geostrophic storm flows and the geological observations which outcrop 

data suggests mostly cross-shelf transport mechanisms. Most researchers believe that 

the mobilization of large quantities of sand towards offshore would happen very rarely, 

with recurrence intervals of tens of thousands of years (Myrow & Southard, 1996). 

However, according to Tsutui et al. (1987), hurricane Iwa in Oahu, Hawaii that 
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produced significant wave heights of about 5 m, a maximum wave height of 

approximately 9 m, and sustained winds of 30-35 knots, was able to transport coarse 

sands and gravels from sediment bodies located on the shallow shelf onto the slopes of 

the island. In the Azores the returning period of maximum wave heights of 12 m is 5 

years (Carvalho, 2003), which supports our claim of high recurrence storm deposition. 

Therefore, the studied outcrop coupled with our knowledge of the present-day 

sedimentary processes in these islands shows that in wave- to storm-dominated island 

shelves, as these are, it is possible to have significant cross-shelf transport of sediments 

and that storms are the main process of deposition on these settings. We believe that 

these conclusions can be extended to a much wider range of environments such as those 

on narrow and steep continental shelves with a suitable wave energy regime. Modelling 

(Cookman & Flemings, 2001; Quiquerez et al., 2004) and observations (Amos et al., 

1996; Cacchione et al., 1994; Gagan et al., 1990; Li et al., 1997) suggest that winter 

storms are the main agent causing sediment dispersal on the worldwide continental 

shelves. Therefore, on narrow, steep and wave- to storm-dominated shelves, cross-shore 

sediment transport is apparently the main mechanism of deposition (e.g. Chiocci et al., 

2004; Field & Roy, 1984). This model could even be applied to wide continental 

shelves during low stands of sea level. 

 

 

Figure 7. Cross-insular shelf profile: A - Storm conditions. Storm coastal setup is balanced by strong 

downwelling shore oblique currents (DC). These result from the sum (red arrow) of strong high pressure 

gradient, excess weight (P/E), strong friction force (F) and low Coriolis force (C) (see text for 

explanation). B – Fair-weather conditions. Nearshore sediment was transported basinward and deposited 

below 50 m water depth. Above and below storm-wave base, respectively, hummocky cross-

stratifications and turbidite deposits are found. 
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CONCLUSIONS 

This study, combined with the current knowledge of the modern oceanographic 

and sedimentological characteristics of the Azorean shelves provided important clues to 

unveil the main process responsible for the transport and deposition of sediments 

around open-sea volcanic islands: 

1) The sedimentary deposits of the sequence at Ponta do Castelo are interpreted 

as tempestites and thus storms were the main agent of transport and deposition on the 

insular shelf of Santa Maria during the Neogene. 

2) The described sedimentary sequence was probably deposited very rapidly, 

during decades or centuries and was only preserved because it was covered by a lava 

delta, hence protected, and afterward exposed subaerially by uplift and erosion. 

3) The inferred rapid deposition of the sedimentary sequence and the lava delta 

on top of it were used to estimate very accurately the water depth at which the 

deposition occurred, around 50 m, which is not that peculiar given the modern examples 

in the literature (e.g. Tsutui et al., 1987). 

4) Storms are very frequent in the Azores, with very high waves and strong 

winds that produce storm surges. High-pressure gradients against the coastline are 

balanced by offshore-directed ebb-currents. Thus, nearshore sediments are easily 

entrained and maintained in suspension by storm-waves and currents. The combination 

of high excess-weight of the suspended sediments, relatively high gradients of the shelf 

and the strong-storm surge ebb-currents provides the mechanism to transport sandy 

sediments down to depths of 50 m and more. 

5) We claim that the main processes of transport and deposition on insular 

shelves are strong ebb-return currents that are formed during storm events. The 

hummocky stratification and ripples found within the sequence are deposited above the 

storm wave-base and the turbidite-like beds are deposited below storm wave-base. 

We hope that this work will increase the debate on the mechanisms of tempestite 

deposition. Further research on other uplifted volcanic islands is needed to contribute to 

a better understanding of the sedimentary processes acting on the insular shelves of 

these islands. We also consider that this model could be applied to other environments 

such as narrow and steep continental shelves or even to wide continental shelves during 

sea-level lowstands as long as remarkable wave energy is present. 
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The results presented in this thesis suggest that the privileged location gave to 

this archipelago one important insular characteristic and absolutely marine indication of 

ocean migration pathways. Bryozoa & Ostracoda groups living in association around 

the Azores. Almost few cases showed the relationship these both organisms in 

Azoreans’ marine shallow water  and fossil (Chapter 4 – fig. 2; Chapter 6 – fig. 8; 

Chapter 7 – figs 3 and 4). 

During all works we verified the presence of Bryozoa and Ostracoda in the 

samples (see outcrops and schematics figures in Chapters 4, 6 and 7). As new species 

continue to be discovered, it is likely that the Azores and the maritime Portugal 

Economic Zone have many species still waiting to be described. The checklist of these 

species provides important data for the bathymetric distribution and help ecological and 

depositional processes discussions about these species in the Azores archipelago 

(Tables 1 and 2). 

The deep water (below 300 meters) ostracods, also occurring in association with 

Bryozoans, should contribute to the comprehension of the survey and its biological 

caracters and ecological context. Unpublished data confirms that the ostracod fauna 

found in water depths greater than 300 m occur in conjunction with bryozoans, but the 

number of records is low. More efforts in collecting and detailing of these samples 

should be done (Fig. 1). 

The material figured in Figure 1, is listed in the reference collection of the 

Department of Biology (DB/OS/0155 to DB/OS/0176) and its inventory is in this thesis 

database. 

Field work on the fossiliferous outcrops of Santa Maria Island should continue 

in the next years, in order to better establish the palaeobiogeographical relationships of 

the fossils and to compare these results with the neobiogeographical relationships of the 

Azores. 

This study increases to 128 the number of Recent bryozoan species and to 34 the 

number of Recent ostracod species reported from the Azores (Chapter 3: Tables 1 and 

2). The fossil Bryozoa are being presently revised by other researchers of the MPB 

group. 
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Figure 1. A) DB/OS 0171. RV; B) DB/OS 0163. RV; C) DB/OS 0172. RV; D) DB/OS 0160. RV; E) 

DB/OS 0166. LV; F) DB/OS 0166. LV. 

 

 

The degree of endemism of the Azorean Bryozoa and Ostracoda species (both 

Recent and fossil) needs to be checked in the near future, as more material becomes 

available for study. The MPB-Marine PalaeoBiogeography working group of the 

University of the Azores should continue these studies in order to provide additional 

tools for identifying the more conspicuous species from the Azores and so, to better 

support governments’ decisions. This benthos database can be a helpful tool for future 

actions in Conservation and Science. The installation/composition/support/ conservation 

of these Natural collection require attention and more support. The next step “The 

Micropalaeontological Collection” started on Department of Biology/University of 

Azores will need a proper cabinet (e.g. Fig. 3). Additionally, a website database should 
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be done, as in other museums. The creation of Manuals and Field identification guides 

of the species of the Azores archipelago should be reinforced (Figs. 4 and 5). 

 

 

Figure 3. Example of an Ostracoda Collection; A) Zoological Museum/University of Hamburg 

(Germany); B) Natural History Museum (London); C) micropalaeontological slides used to held all 

handpicked material; D) individual micropalaeontological slide used to held only one specimen (Holotype 

for example). 

 

 

Figure 4. Exemple of the layout of the Bryozoa field identification guide. 
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Figure 5. Exemple of the layout of the Ostracoda field identification guide. 

 

 

FUTURE PROSPECTS 

For future work we will develop: 

1. The taxonomy about two new Bryozoa species: Scrupocellaria sp. and 

Reteporella sp.;  

2. Further studies are required on  the genus Bugulla, Crisia, Celleporina, 

Disporella, Onicocella, Reteporella, Schizomavella, Scrupocellaria and on the 

family Tubuliporidae, all of them important ecological groups in the sandy 

substrates of the Azores (Chapter 6: Tables 3). 

3. The taphonomic studies of the benthic organisms (with a special emphasis on 

the Ostracoda and Bryozoa) should be continued, as they provide an important 

perspective for palaeo-environmental interpretations; 

4. The curatorial work of the natural collections housed at the Department of 

Biology (including, of course, the Micropalaeontological collection) should be a 

priority for the University of the Azores (Chapter 3: Tables 1, 2, 3 and 4). 

5. A Field guide about the most common marine species of the Azores could be 

done (e.g. Figs. 4 and 5). 
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For the shallow-water Bryozoa & Ostracoda, we developed the data about the 

bathymetric and geographical distribution (Tables 1 and 2). This data will support new 

research about these organisms in the Azorean Insular Shelf. 

 

 

Table 1. Bathymetry and geographical distribution of the Azorean Bryozoa shallow-

water species. 

Bryozoa Depth Geographical Distribution 

Aetea anguina (Linnaeus, 1758) 5 – 6 m Azores 

Aplousina capriensis (Waters, 1898) shelf Azores 

Aplousina filum (Jullien & Calvet, 1903) 130 m Azores 

Amphiblestrum auritum (Hincks, 1877) 130 m Azores 

Chaperiopsis hirsuta Reverter, Souto & 

Pulpeiro, 2009 
shelf Azores 

Gregarinidra gregaria (Heller, 1867) shelf Azores 

Bugula dentata (Lamouroux, 1816) shelf Azores 

Bugula neritina Linnaeus, 1758 shelf Azores 

Bugula simplex Hincks, 1886 shelf Azores 

Bugula stolonifera Ryland, 1960 shelf Azores 

Bicellariella ciliata (Linnaeus, 1758) shelf Azores 

Beania cylindrica (Hincks, 1886) shelf Azores 

Beania mirabilis Johnston, 1840 130 m Azores 

Scrupocellaria maderensis Busk, 1860 shelf Azores 

Scrupocellaria incurvata Waters, 1896 shelf Azores 

Scrupocellaria scrupea Busk, 1852 130 m Azores 

Scrupocellaria  hirsuta Jullien & Calvet, 

1903 
27 - 130 m Azores 

Scrupocellaria scruposa (Linnaeus, 

1758) 
52 – 550 m Azores and Cape Verde 

Scrupocellaria reptans (Linnaeus, 1758) 27 m Azores 

Notoplites marsupiatus (Jullien, 1882) 65 – 1250 m Azores and NW Spain 

Caberea boryi (Audouin, 1826) 130 m Azores 

Micropora coriacea (Johnston, 1847) 130 m Azores 

Cellaria salicornioides Lamouroux, 

1816 
shelf Azores 
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Puellina orientalis azorensis (Harmelin, 

1988) 
10 – 300 m Azores, Canary 

Puellina radiata (Moll, 1803) 98 – 930 m 

Azores, Madeira, Canarias; Atlantic oriental 

(France, Spain, Maroc), Mediterranean, Tristan da 

Cunha, Florida and Pacific (Australia, China, 
Philippines, Bornèo, etc.) 

Puellina sp. 1 shelf Azores 

Membraniporella alice Jullien, 1903 130 m Azores 

Membraniporella neptuni Jullien, 1903 130 m Azores 

Figularia figularis (Johnston, 1847) 130 m Azores 

Umbonula verrucosa (Esper, 1790) 5 – 318 m Azores 

Smittina ensifera Jullien & Calvet, 1903 130 m Azores 

Smittoidea ophidiana (Waters, 1878) 69 – 540 m Azores and Canarias 

Metroperiella lepralioides (Calvet, 

1903) 
130 m Azores 

Schizomavella cuspidata (Hincks, 1880) shelf Azores 

Schizomavella auriculata (Hassall, 

1842) 
95 – 130 m Azores 

Schizomavella triaviculata (Calvet, 

1903) 
98 – 550 m Azores 

Stephanotheca richardi (Calvet, 1903) 130 m Azores 

Stephanotheca fayalensis (Calvet in 

Jullien & Calvet, 1903) 
130 m Azores 

Watersipora complanata (Norman, 

1864) 
shelf Azores 

Watersipora subtorquata (d'Orbigny, 

1852) 

Tidal - 130 – 318 

m 
Azores 

Watersipora cucullata (Busk, 1854) 0 – 219 m Azores; Gibraltar; Cape Verde 

Schizoporella dunkeri (Reuss,1848) shelf Azores 

Schizoporella guttata Jullien & Calvet, 

1903 
130 m Azores 

Schizoporella jullieni Jullien & Calvet, 

1903 
130 m Azores 

Escharina vulgaris (Moll, 1803) 130 m Azores 

Escharina protecta Zabala, Maluquer, 

Harmelin, 1993 
6 – 130 m 

Azores, Madeira, Mediterranean, Red 

Sea, ?Pacific Ocean 

Microporella ciliata (Pallas, 1766) 130 m Azores 

Microporella hastigera (Busk, 1884) 130 m Azores 

Buskea dichotoma (Hincks, 1862) 98 - 2170 m Azores; Canaries; Coast of Bretagne 

Celleporina decipiens Hayward, 1976 shelf Azores 

Celleporina hassallii (Johnston, 1847) shelf Azores 

Celleporina costazii (Audouin, 1826) 0 - 550 m Azores 

Galeopsis pentagonus (d'Orbigny, 1842) 130 m Azores 
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Lagenipora socialis Hincks, 1877 130 m Azores 

Stephanollona armata (Hincks, 1862) shelf Azores 

Schizotheca carmenae Reverter-Gil & 

Pulpeiro, 2007 
45 – 148 m Azores and SW Portugal (Sagres) 

Reteporella septentrionalis (Harmer, 

1933) 
20 – 1300 m Azores 

Reteporella sp. shelf Azores 

Reteporella sp. 1 shelf Azores 

Reptadeonella violacea (Johnston, 1847) shelf Azores 

Reptadeonella insidiosa (Jullien, 1903) 52 – 219 m 
Azores; Cape Verde, Marrocos, 

Guernesey, Hasting, Gulf of Gascogne 

Adeonellopsis distoma (Busk, 1858) 98 – 1262 m 

Azores; Madeira, Canaries, 

Mediterranean occidental and Indian 

Ocean 

Hippothoa divaricata Lamouroux, 1821 130 m Azores 

Hippothoa flagellum Manzoni, 1870 130 m Azores 

Hippothoa amoena Jullien & Calvet, 

1903 
130 - 318 m Azores 

Haplopoma bimucronatum (Moll, 1803) shelf Azores 

Pherusella tubulosa (Solander, 1786) 91 – 318 m 

Mediterranean, Atlantic Ocean 

(Dominique, Brazil, Azores, Cape verde) 

and Chile 

Amathia lendigera (Linnaeus, 1758) 5 – 6 m Azores 

Zoobotryon verticillatum (Delle Chiaje, 

1822) 
shelf Azores 

Idmidronea atlantica (Forbes in 

Johnston, 1847) 
5 - 318 m Azores 

Idmidronea contorta (Busk, 1875) 95 m Azores 

Disporella fimbriata (Busk, 1875) 52 – 219 m 

Antartic and subantartic Atlantic to 

Pacific; Azores, Cape Verde, Cile and 

Gulf of Gascogne 

Crisia eburnea (Linnaeus, 1758) shelf - 736 m Azores 

Crisia denticulata (Lamarck, 1816) tidal Azores 

Crisia ramosa Harmer, 1891 27 – 69 m Azores, Mediterranean, Monaco 
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Table 2. Bathymetry and geographical distribution of the Azorean Ostracoda species. 

Ostracods Depth Geographic 

Neonesidea longisetosa 1 and 85 m Azores; Caribbean; Florida 

Leptocythere pellucida 1 to 50 m 
Azores; North Sea, Atlantic Coast of France and 

Britain, southern Norway and the western Baltic 

Callistocythere insularis n. sp. 1 to 23 m Azores 

Cyprideis torosa 
freshwater to 

littoral 

Azores; Widespread throughout Europe and as 

far north as Iceland, W and Central Asia, and N 

Africa.Also found in lakes in Central Africa. 

Carinocythereis whitei 1 to 20 m 
Azores; British Isles, the Atlantic coast of 

France and the Mediterranean 

Aurila convexa 1 to 54 m 
Azores; North Sea, France, Portugal, the 

Mediterranean and Britain 

Aurila woutersi 1 to 20 m Azores; Southern British Isles 

Aurila prasina 1 to 20 m 
Azores; Lecce and S. Maria di Leuca, in 

Adriatic Sea and in Naxos, Greece 

Heterocythereis albomaculata 1 to 20 m Azores; North Sea and Atlantic 

Urocythereis britannica 1 to 69 m 
Azores; Atlantic, the North Sea and probably in 

the Mediterranean 

Loxoconcha rhomboidea 1 to 70 m 
Azores; Europe, from N Norway to Madeira and 

Canary Islands, off N Africa. Mediterranean 

Loxoconcha ochlockoneensis 1 to 20 m Azores; West coast of Florida and the Bermudas 

Semicytherura brandoni n. sp. littoral Azores 

Semicytherura cf. cornuta littoral (~18 m) Azores; Atlantic coast of France and S Norway 

Xestoleberis rubens 1 to 45 m 
Azores; North Sea and the Atlantic coast of 

France 

Xestoleberis cf depressa littoral 
Azores; North Sea, Scandinavia and also in the 

Western part of the Baltic 

Xestoleberis sp. littoral Azores 

Sclerochilus hicksi littoral Azores; NE England 

Lanceostoma simplex n. sp. 1 to 20 m Azores 

Cylindroleberis sp. littoral Azores 
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SUMMARY 

This thesis shows published and unpliblished data and is divided in 7 Chapters. 

Most of the work was developed at the University of the Azores (Portugal) and funding 

was provided by FCT-Portugal (grant. SFRH/BD/60518/2009). 

Chapters 1 and 2 show a general introduction and describe and discuss the 

diverse methodologies used to study the Azorean fossil and Recent Bryozoa and 

Ostracoda. Chapter 3 discusses the importance of proper natural collections for 

biodiversity and biogeographical studies and emphasizes the role of the fossil and 

Recent collections that are housed at the University of the Azores and provide the 

biggest checklist of the bryozoa and ostracoda species from the Azores archipelago. 

Chapter 4 presents the first report on the fossil ostracods from the Azores. 

Thirteen species were found, representing 7 families and 12 genera (Xestoleberis, 

Loxoconcha, Callistocythere, Leptocythere, Dameriacella, Aurila, Heliocythere, 

Pachycaudites, Neonesidea, Cyamocytheridea, ?Quadracythere and Paracypris). 

Among the identified species, one new species, Leptocythere azorica n. sp., is 

described. Loxoconcha (2 species) was the most diversified genus. The collected species 

are mainly ornamented and typical of warm waters and epi-neritic habitats (~10–50 m 

of depth). 

Chapter 5 reports about the systematics and the biogeography of the Azorean 

Holocene to Recent shallow marine ostracods (between 1 to 100m depth). Twenty 

species were found, representing 10 families and 14 genera (Neonesidea, Leptocythere, 

Callistocythere, Cyprideis, Carinocythereis, Aurila, Heterocythereis, Urocythereis, 

Loxoconcha, Semicytherura, Xestoleberis, Sclerochilus, Lanceostoma and 

Cylindroleberis), with eight new records for the Azores: 5 new records – the species 

Neonesidea longisetosa (Brady 1902), Cyprideis torosa (Jones, 1850), Neocytherideis 

sp., Aurila prasina Barbeito-Gonzalez, 1971 and Sclerochilus hicksi Athersuch & Horne 

1987 – and 3 new species to Science, Callistocythere insularis n. sp. Semicytherura 

brandoni n. sp. and Lanceostoma simplex n. sp.Chapter 6 reports the first 

palaeoecological and taphonomical study of the Holocene to Recent ostracods from the 

Azores. The shift from life-dominated assemblages in the shallower depths to death 

assemblages at greater depths is a consequence of significant transport downwards. In 

both Recent and Holocene samples, the abundance of ostracods is higher in the first 10 
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m depth, especially in fine to medium sandy substrates, as a consequence of depth, type 

of sediment, physiognomy of the coast line, geographical location, and hydrodynamic 

local conditions that differently affect each of the Azorean islands. Large-scale (sea-

surface currents, Holocene relative sea-level, storms) and small-scale processes 

(geographical location, coastal fragmentation into dynamic cells with impermeable 

lateral boundaries, physiognomy of the coast line, seafloor stability of the sediments) 

are responsible for shaping the Azorean Holocene to Recent ostracods communities. 

Chapter 7 describes a study about a fossiliferous outcrop of Santa Maria Island 

and a sequence of Neogene tempestite deposit that was incorporated in the island edifice 

by the on-going volcanic activity (and thus preserved) and later exposed through uplift 

and erosion. The sequence typifies the characteristics of a tempestite (or successive 

tempestites) formed at ~50 m depth, in a steep, energetic open insular shelf, and with 

evidence for massive sediment remobilization from the nearshore to the middle or outer 

shelf. Cross-shelf transport induced by storm events is the main process of sediment 

deposition acting on steep and narrow shelves subjected to high energetic environments 

such as the insular shelves of open-sea volcanic islands. 
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RESUMO DA TESE 

O presente trabalho apresenta os resultados de pesquisa, desenvolvidos no âmbito da 

tese de doutoramento do autor (bolseiro FCT - SFRH/BD/60518/2009). São aqui 

apresentados dados inéditos e publicações, em jornais internacionais indexados com 

fator de impacto, que ampliam, revisam e abrem novas perspectivas para os trabalhos 

científicos desenvolvidos na Universidade dos Açores – Portugal. 

A tese é composta por 7 capítulos, divididos por publicações. Os 1º e o 2º capítulos 

abordam de maneira geral o tema e os métodos de coleta utilizados no desenvolvimento 

dos trabalhos. O 3º capítulo ilustra o trabalho de montagem da coleção de referência dos 

Briozoários e Ostracodes, bem como o trabalho de curadoria destas coleções. 

O 4º capítulo traz uma abordagem taxonômica, paleoecologica e paleobiogeográfica dos 

ostracodes do Mioceno da ilha de Santa Maria – Açores. O 5º capítulo aborda a 

taxonomia, ecologia e biogeografia dos ostracodes marinhos costeiros, do Holoceno ao 

Recente, dos Açores, com descrições detalhadas das espécies, incluindo novos taxa. 

Pela primeira vez são descritos os ostracodes fósseis dos Açores. 

O 6º capítulo descreve aos trabalhos de tafonomia e paleoecologia dos ostracodes 

marinhos de águas rasas dos Açores, traz uma abordagem bastante detalhada de como 

esses organismos se distribuem ao longo das ilhas do arquipélago e infere prováveis 

fatores e processos deposicionais. 

Para finalisar o conteúdo científico de caráter único, é apresentado o 7º capítulo, que 

descreve e propõe um novo método para o estudo de depósitos sedimentares de 

tempestade em ilhas oceânicas, esse trabalho inovador desenvolvido por uma equipe de 

cientistas, teve grande impacto e forte aceitação por parte dos editores e revisores da 

Sedimentology. Apresenta de forma clara e consistente, resultados de campo e 

discussões sobre os processos sedimentares envolvidos em plataformar insulares, com 

impacto global. 
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