
Protein-ligand docking study: diterpenes from Juniperus brevifolia as anticancer and antimicrobial agents

Inês J. Sousa,¹ Miguel X. Fernandes,¹ Ana M. L. Seca²

¹Centro de Química da Madeira, Campus da Penteada, University of Madeira, 9000-390 Funchal, Portugal. ²DCTD, University of Azores, 9501-801 Ponta Delgada, Portugal.

INTRODUCTION:

Several dehydroabietane and sandaracopimarane derivatives, (1-4) isolated from leaves of Juniperus brevifolia, [1] an endemic conifer from Azores, displayed antiproliferative activity against cancer cell lines (HeLa, A-549 and MCF-7) and bactericidal effect against Bacillus cereus at different concentrations tested (Table 1).^[1]

Table 1: Cytotoxic (IC₅₀ μ M) and antimicrobial (μ g/mL) activities of secondary metabolites from *J. brevifolia* leaves.

Comp.	HeLa		MCF-7		A-549		Vero		B. cereus	
	Lag phase	Log phase	Lag phase	Log phase	Lag phase	Log phase	Lag phase	Log phase	MIC	MBC
1	15.7	25.9	31.7	40.4	23.6	44.4	28.0	54.5	2.5 – 5	10 - 20
2	49.0	52.7	>60	>60	46.2	60.0	54.4	>60	-	-
3	46.5	52.1	58.5	>60	53.7	>60	>60	>60	20	20 - 40
4	49.6	>60	>60	>60	>60	>60	nd	nd	-	-

RESULTS:

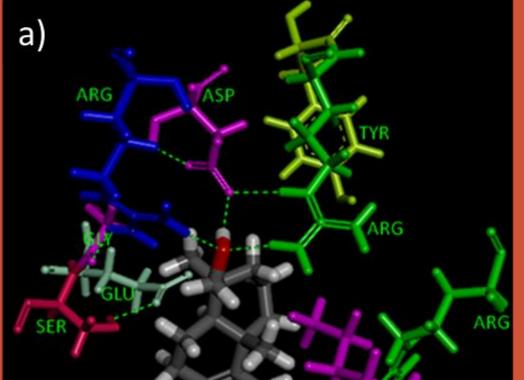
In this work, protein-ligand docking was performed, using the FlexScreen program, in order to pick molecular targets, from a large set of common anticancer (63) and antimicrobial (39) targets, for the selected compounds 1-4.

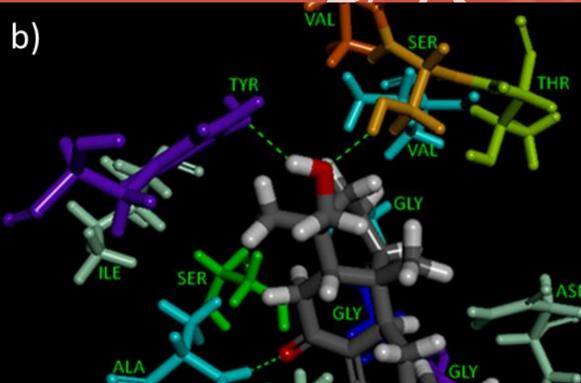
preferred targets for anticancer The and antimicrobial compounds 1-4 and their interaction energies are shown in Tables 2 and 3.

The structural differences between the skeletontype dehydroabietane and sandaracopimarane, do not seem to be relevant in the interaction with the targets

Anticancer targets

* The compounds 1 and 3 interact preferentially with phosphatidylinositol-3,4,5-trisphosphate 5phosphatase 2, (SHIP2), a clinically relevant novel anticancer target. This enzyme has high therapeutic index given its over-expression in cancer and its dispensability for normal cell survival.^[3]


* The hydroxyl groups and their ability to form H-bond, seem to play a significant role in these interactions since the H atom interacts with the carbonyl group of the aspartate residue and the


Table 2: Preferred anticancer targets and interaction energies.

	Anticancer target							
Comp.	Towest	PDB	Energy (arbitra	y (arbitrary units)				
	Target	code	Sample 1	Sample 2				
1	SHIP2	3RN8	-76,512	-76,156				
2	PDF	3G5K	-86,313	-85,542				
3	SHIP2	3RN8	-76,983	-76,831				
4	TUBA	Model	-98,136	-97,943				

Table 3: Preferred antimicrobial targets and interaction energies.

Comp.	Antimicrobial target							
	Target	PDB	Energy (arbitrary units)					
		Code	Sample 1	Sample 2				
1	RNAP	1EIK	-230,447	-212,083				
3	RNAP	1EIK	-234,812	-234,152				
1	PDF	2AIA	-76,970	-76,476				
3	PDF	2AIA	-75,318	-72,259				

CQM

DA MADEIR

oxygen atom interact with H-N of Arginine residue (Fig 1a).

- \star The compound 4 interact preferentially with α -tubulin (Fig 1b), the protein that makes up microtubules, not only by its OH group (H-bond with serine and tyrosine residue), but also by its carbonyl group (H-bond between N-H group of the alanine residue and oxygen atom from carbonyl group).
- * The correlation between experimental and calculated data for anticancer targeta show that the compounds probably inhibited the targets TNKS-1, CDK1 and HIF1A in the assay against cancer cell line Vero. Against cancer cells lines HeLa, MCF-7 and A-59, the compounds probably inhibited PPAR-γ.

Antimicrobial targets

- Compounds 1 and 3 interact, both by H-bond, preferentially with RNA polymerase (RNAP), an enzyme that in bacteria catalyzes the synthesis of mRNA and ncRNA.
- * The hydroxyl group of compound 3 interacts with carbonyl group of aspartate (ASP30) (Fig 2 a). The hydroxyl groups of the compound 1 and 3, also interact with the carbonyl group of lysine residue (LYS27) (Fig 2b).

References

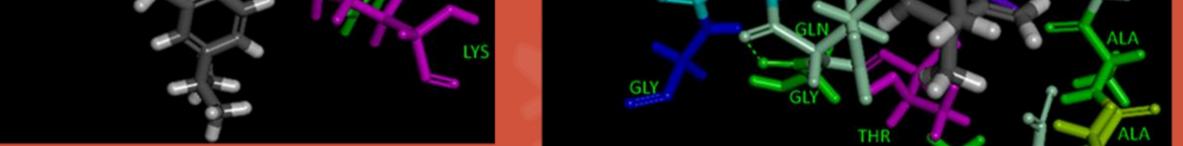
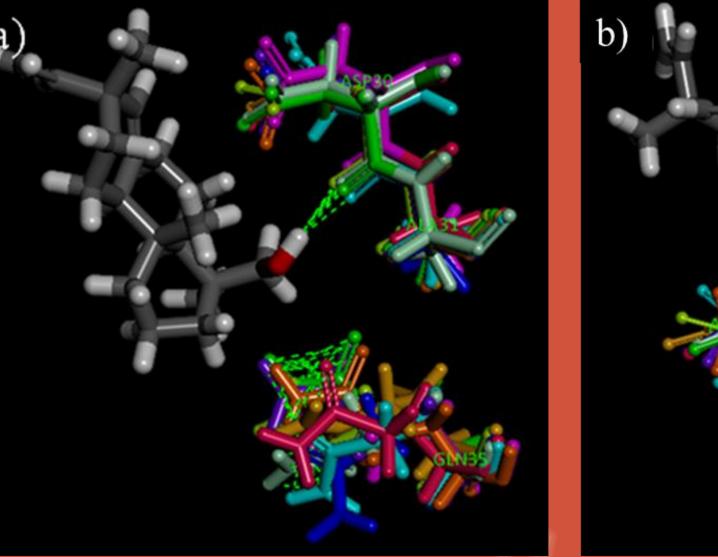



Fig 1. Representation of the obtained interactions between a) compound 1 and target SHIP2 and b) compound 4 and target TUBA.

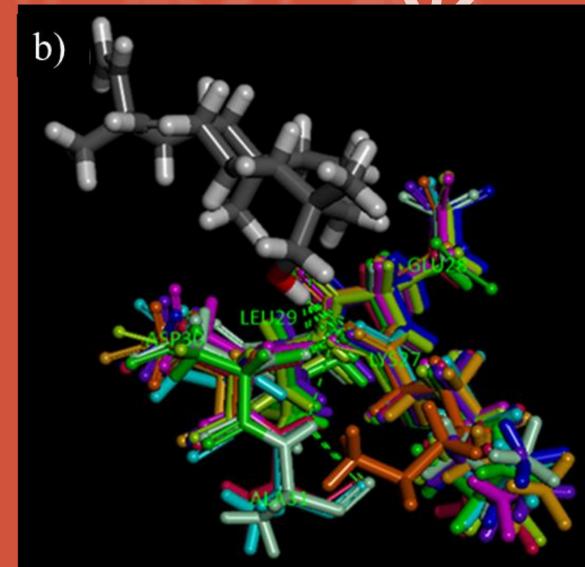


Fig 2. Representation of the obtained interactions between compound 3 and target RNAP a) interactions with ASP30, b) interactions with LYS27.

1. Seca, A. M. L.; Silva, A. M. S.; Bazzocchi, I. L.; Jimenez, I. A. Phytochemistry 2008, 69, 498

2. Moujir, L. M.; Seca, A. M.L.; Araújo, L.; Silva, A. M.S.; Barreto, M. C. Fitoterapia 2011, 82, 225 Thanks are due to the University of Azores, FCT, FEDER, BIOPHARMAC -

MAC/1/C104 and Project PEst-OE/QUI/UI0674/2011.

3. Prasad, N. K.; Tandon, M.; Badve, S.; Snyder, P. W.; Nakshatri, H. Carcinogenesis 2008, 29, 25