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Abstract

Neuropathic pain is caused by nerve injury and involves brain areas such as the central
nucleus of the amygdala (CeA). We developed the first 3-D agent-based model (ABM) of
neuropathic pain-related neurons in the CeA using NetLogo3D. The execution time of a
single ABM simulation using realistic parameters (e.g., 13,000 neurons and 22,000+ neural
connections) is an important factor in the model’s usability. In this paper, we describe our
efforts to improve the computational efficiency of our 3-D ABM, which resulted in a 28%
reduction in execution time on average for a typical simulation. With this upgraded model,
we performed one- and two-parameter sensitivity analyses to study the sensitivity of model
output to variability in several key parameters along the anterior to posterior axis of the CeA.
These results highlight the importance of computational modeling in exploring spatial and
cell-type specific properties of brain regions to inform future wet lab experiments.

Keywords: agent-based model, amygdala, pain, sensitivity analysis, NetLogo

1 Introduction

Neuropathic pain is caused by injury or lesion to either
the peripheral or central neural pathways and is charac-
terized by both spontaneous and evoked pain [9]. Af-
ter long-term injury or inflammation, substantive plastic-
ity occurs in the central nervous system well beyond the
site of injury. A variety of brain structures have been
shown to be activated in this context including classic
somatosensory structures (e.g., thalamus, somatosensory
cortex, prefrontal cortex) as well as deeper limbic struc-
tures including the hypothalamus and amygdala.

The amygdala receives nociceptive information through
several ascending pathways marking it as a central node
in pain processing [3, 2, 16]. This processing includes
modulation of the affective components of pain as well
as behavioral adaptations to noxious sensory input (e.g.,
behavioral avoidance). Within the amygdala, the cen-
tral nucleus of the amygdala (CeA) contains both high
threshold “nociceptive” neurons as well as wide-dynamic
range neurons. These neurons are largely grouped in the
capsular division (CeC) of the CeA although nociceptive
neurons are found in the lateral (CeL) and medial (CeM)
divisions of the CeA as well. Across the CeA, neurons are
heterogeneous in nature with over 20 molecular cell-types
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impacting the CeA’s control of pain [24].
In the last decade, researchers using cell-type specific

techniques coupled with optogenetics and chemogenetics
have started the process of carefully dissecting the func-
tional role of these different cell-types in pain, depres-
sion, fear-conditioning, and stress [3, 26]. In the con-
text of nociception and pain, studies have focused on sev-
eral types of cell populations characterized by expression
of relatively-unique and largely non-overlapping markers.
Two of the most well studied cell populations are the pro-
tein kinase c-δ (PKCδ) and somatostatin (SST) neurons.
These two cell populations are part of the GABAergic

component of the CeA, which itself comprises over 65% of
the neurons in the CeA [22, 13, 18]. PKCδ and SST neu-
rons include both interneuron cells with local projections
as well as those that project to a variety of CeA effer-
ent targets including the bed nucleus of the stria termi-
nalis (BnST), periaquaductal gray (PAG), parabrachial
nucleus (PBn) and over a dozen other targets [11]. PKCδ
neurons are found primarily in the CeC and CeL divisions
of the CeA compared to SST neurons, which are reported
to be more heavily localized to the CeL and CeM divisions
[12]. While the specific areas of expression overlap, there
is little overlap at the individual cell level with most re-
ports suggesting less than 5 percent of all PKCδ and SST
neurons express both cell markers [26, 12].

PKCδ and SST neurons have different impacts on pain-
like behavior in rodents. In the literature, about half of
the studies modulating PKCδ and SST neurons show ev-
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idence that PKCδ is pronociceptive (e.g., increase pain)
and SST is antinociceptive (e.g., decrease pain) [26, 1].
Another set of studies has found contrasting results sug-
gesting that some PKCδ neurons play an antinociceptive
role [7] and some SST neurons play a pronociceptive role
in pain [21]. This discrepancy may be related to the lo-
cation of the PKCδ and SST neurons along the anterior
to posterior (A→P) axis of the CeA.
Pronociceptive PKCδ neurons have been reported to

likely be more anterior [1] while antinociceptive PKCδ is
more posterior [7]. It should be emphasized that these
generalizations for this PKCδ localized function have not
been fully substantiated; this A→P hypothesis does fit
into a broader data set evaluating amygdala function in a
diverse set of behavioral functions including pain [4] and
also appetitive behavior [10] to stress and locomotion [5].
Experimentally, evaluating the potential for A→P func-
tional differences in the amygdala, whether for PKCδ and
SST or other cell types is technically challenging given
the size of the rodent CeA usually studied. Modeling of
the CeA using an agent-based model (ABM) provides a
computational framework to explore these hypotheses.

This paper describes our latest efforts in developing a
realistic ABM of PKCδ and SST neurons to study emer-
gent pain-related output from the CeA. In 2021, we pub-
lished the first ABM describing the behaviours and in-
teractions of PKCδ and SST neurons in the CeA and
their contributions to pain. The ABM describes the fir-
ing rates, connectivity, and interactions of PKCδ and SST
neurons in the left and right CeA and changes in the
firing rates of these neurons attributed to neuropathic
injury [14]. In the ABM, PKCδ and SST neurons are
arranged in a 2-D spatial domain representing the left
and right CeA, respectively, neuron firing rates are up-
dated each time step based on laboratory data, and a net-
work of uni-directional connections simulates the transfer
of inhibitory signals between these two inhibitory neu-
ron populations. Output from the model is a measure
of pain-related output from the CeA based on the pro-
nociceptive properties of the PKCδ neurons and anti-
nociceptive properties of the SST neurons. A sensitivity
analysis of the model showed the ratio of PKCδ to SST
neurons is a key parameter in determining pain-related
output. The model’s predictive capabilities were tested
for a range of different parameter values and output was
validated with data from wet lab experiments.

In 2023, we extended this ABM framework to account
for the 3-D properties of the CeA and the spatial distri-
bution of PKCδ and SST neurons within the CeA [15].
In this latest version of the model, PKCδ and SST neu-
rons are assigned an (x, y, z) location within a 3-D spatial
domain that accurately captures the size and structural
properties of the CeA. The model can be initialized with
a uniform spatial distribution of PKCδ and SST neurons

or a non-uniform spatial distribution based on wet lab
data. The 3-D model was used to explore the impact of
spatial and cell-type heterogeneity on the network prop-
erties and pain-related output from the CeA. The model
also provides a framework for in silico testing and evalu-
ating of spatial and cell-type specific targeting of neurons
to reduce pain.

This paper focuses on improving the computational ef-
ficiency of our 3-D ABM of PKCδ and SST neurons and
using the improved model to study the impact of anterior
to posterior variation in key parameters on model out-
put. In the following sections, we provide a brief overview
of the 3-D ABM and discuss our efforts to reduce the
model’s execution time by eliminating directed links in
the model’s code (written in NetLogo [25]). A sensitivity
analysis is performed on the model by varying key pa-
rameters in different spatial regions along the A→P axis
and calculating the impact on pain-related output from
the CeA.

2 Methods

2.1 Model description

Below we present a brief overview of our published 3-D
agent-based model (ABM) of PKCδ and SST neurons in
the central nucleus of the amygdala (CeA). The model
was coded in NetLogo3D (V6.2.0) [25] and includes a
graphical user interface that allows users to easily setup
and execute the model. A detailed description of the
ABM and its interface can be found in [15]. The Net-
Logo code and input files for simulating the ABM can be
found in an Open Science Framework public repository
(https://osf.io/t37ma/, doi: 10.17605/OSF.IO/T37MA).

2.1.1 Purpose

Our ABM simulates the behaviors and interactions of in-
dividual neurons (agents) from two distinct pain-related
neuron populations in the CeA. Neurons expressing PKCδ
are considered pronociceptive (i.e., increase pain) in
the model while neurons expressing SST are considered
antinociceptive (i.e., decrease pain) in the model. The
purpose of the ABM is to synthesize laboratory data
describing the location, behaviour, and connectivity of
these two neuron populations into a single framework to
study how these neurons work together to modulate pain-
related neural activity within the CeA.

2.1.2 Spatial domain

The model’s spatial domain is a realistic 3-D representa-
tion of the CeA created by exporting 3-D surface coordi-
nates from the Blue Brain Cell Atlas [6] into NetLogo3D.
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Anterior Middle Posterior

CeM

CeC CeL

Figure 1: Spatial domain in NetLogo3D. The model’s
spatial domain replicates the structural properties of the
CeA. Colored patches correspond to the three CeA sub-
nuclei (CeC = red, CeM = green, CeL = blue). The x-
axis denotes the anterior to posterior (A→P) axis of the
brain, which was divided into three subsections (Ante-
rior, Middle, Posterior) of equal length for our sensitivity
analyses.

The spatial domain consists of 43,811 colored patches
(cubes), each of which represents 25µm× 25 µm× 25 µm.
Patch color indicates whether the patch is in the lateral
division (CeL = blue), medial division (CeM = green), or
capsular division (CeC = red) of the CeA (Figure 1). The
x-, y-, and z-axes in the spatial domain correspond to the
anterior to posterior (A→P), dorsal to ventral (D→V),
and lateral to medial (L→M) axes of the brain, respec-
tively.

2.1.3 Initialization of neurons

During the model’s initialization, n = 13,000 agents rep-
resenting individual neurons are created and assigned a
cell type (PKCδ or SST), location within the CeA, and
other variables describing their behavior. The default as-
sumption of n = 13,000 total PKCδ and SST neurons
was estimated from our own laboratory experiments [15].
In Section 2.2, we explore how the total number of neu-
rons (n) impacts the model’s execution time and network
properties.

The default ratio of PKCδ to SST neurons is 60:40,
meaning 60% of the neurons are labeled PKCδ and 40%
are labeled SST. This ratio is consistent with our own
laboratory studies and others’ [15, 8]. In Section 2.3.1, we
perform a sensitivity analysis to determine the sensitivity
of model output to the ratio of PKCδ to SST along the
A→P axis.

The location of each neuron is assigned at initialization
and does not change during a simulation. If the user se-
lects ‘Uniform Distribution’ on the model interface, each
neuron is assigned to a random patch within the CeA,
resulting in a spatial distribution of PKCδ and SST neu-
rons that is proportional to the relative volume of each
CeA division. If the user selects ‘Non-Uniform Distribu-
tion’, each neuron is assigned to a random patch within a
specific division based on wet lab data [12]. Wet lab data
from [12] indicates PKCδ neurons are primarily located
in the CeC and CeL whereas SST neurons are primarily
located in the CeL and CeM. Table 1 displays the per-
centage of PKCδ and SST neurons, respectively, in each
of the three divisions for the uniform and non-uniform
distributions, respectively.

At initialization, each neuron is assigned three variables
describing its behavior. First, each neuron has a firing fre-
quency (Regular Spiking, Late Firing, or Spontaneous).
Second, each neuron has a damage variable (d) track-
ing the neuron’s progress towards sensitization during in-
jury. All neurons start in the unsensitized state (d = 0)
at initialization. During simulation, a neuron’s damage
level increases during periods of injury until it reaches
the maximum value (d = 100), indicating it is fully sensi-
tized. Lastly, each neuron has a firing rate (Fr) measured
in hertz (spikes per second) that is updated each model
time step.

2.1.4 Creation of network

After all neurons have been created, a network of con-
nections is established to simulate the transmission of in-
hibitory signals between neurons. The model published
in [15] uses directed links in NetLogo3D to represent con-
nections between neurons. In Section 2.2, we describe
the process of eliminating links from the model and using
state variables to track neural connections. Both meth-
ods use the same general procedures below to establish
the neural network.

To create the network, the model randomly selects a
neuron (known as the transmitting neuron) and estab-
lishes a connection from this neuron to another randomly
selected neuron (known as the receiving neuron) within
a distance of Distmax patches. This connection allows
the transmitting neuron to send signals to the receiving
neuron but not vice-versa. This process of creating con-
nections between neurons repeats until all transmitting
neurons have been assigned their maximum number of
connections (Outgoingmax) or no more suitable connec-
tions can be made. Parameters describing the maximum
length and number of connections assigned to each trans-
mitting neuron were determined using published connec-
tivity data [1, 8]. These findings show PKCδ neurons have
fewer primary dendrites than SST neurons, but primary
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Table 1: Distribution of PKCδ and SST neurons in the CeC, CeM, and CeL sub-nuclei. Values indicate the percentage
of all PKCδ and SST neurons, respectively, within each sub-nucleus. For the uniform distribution, neurons are
randomly assigned a location within the CeA. For the non-uniform distribution, the percentage of neurons within
each sub-nucleus was determined by laboratory data [12].

PKCδ (%) SST (%)
CeC CeL CeM CeC CeL CeM

Uniform Dist. 37.1 17.3 45.6 37.1 17.3 45.6
Non-Uniform Dist. 49.8 44.5 5.7 6.7 51.3 42.0

dendrites extending from PKCδ neurons are typically
longer than those originating from SST neurons. Con-
sistent with the data in [1], the default parameters in our
model are Outgoingmax = 1 and Distmax = 2.4 patches
(60 µm) for PKCδ neurons and Outgoingmax = 3 and
Distmax = 1.6 patches (40µm) for SST neurons. In Sec-
tion 2.3.2, we explore the sensitivity of model output to
these connectivity parameters.

2.1.5 Model procedures and output

A stimulation history file describing the intensity (mea-
sured in pA) of an external stimulus during each model
time step is selected by the user during initialization. For
all simulations presented here, we use a ramping exter-
nal stimulation in which the stimulation intensity starts
at 120 pA and increases gradually to 220 pA, before re-
turning back to 120 pA at the end of the simulation (see
Figure 3A).

At the start of each time step, the model reads the
stimulation intensity and updates the damage (d) and
firing rate (Fr) of each neuron. Neurons accrue damage
during time steps in which the external stimulus is greater
than or equal to 120 pA. If a neuron’s damage reaches its
maximum value (d = 100), the neuron is considered fully
sensitized. Firing rates of all neurons are updated each
time step using the equation

Fri =
100− di

100
·X +

di
100

· Y (1)

where di is the neuron’s damage level at time step i andX
and Y are type-specific random variables describing the
firing rates of the neuron in an unsensitized state and a
sensitized state, respectively. In other words, equation (1)
is a convex combination of X and Y with weights deter-
mined by the neuron’s damage level. Distributions for
variables X and Y in equation (1) were estimated from
published physiology data [26].

After the firing rates of all PKCδ and SST neurons
are updated, inhibitory signals are transmitted between
neurons via the neural network. The strength of an in-

hibitory signal transmitted through a connection is equal
to the firing rate (Fr) of the transmitting neuron. For
each neuron, if the total strength of its incoming signal(s)
is greater than or equal to 15 Hz ([8]), the neuron is in-
hibited and its firing rate is set to zero (Fri = 0). If the
total strength is less than 15 Hz, the neuron’s firing rate
does not change.

At the end of each time step, a measure of total pain-
related output (i.e., “pain”) from the CeA is calculated.
Pain-related output (Pi) at time i is calculated as

Pi =
∑

type=PKC

di

100 · Fri −
∑

type=SST

Fri (2)

where di is a neuron’s damage and Fri is a neuron’s firing
rate during time step i. In equation (2), we assume PKCδ
neurons are pro-nociceptive (increase pain output) and
SST neurons are anti-nociceptive (decrease pain output).

2.2 Execution time

In our previously published version of the ABM [15], we
used directed links in NetLogo3D to establish the network
of connections between neurons. Links are a special type
of object in NetLogo3D used to represent a relationship
between two agents. Directed links have built-in vari-
ables indicating the source of the link (i.e., transmitting
neuron) and the destination of the link (i.e., receiving
neuron).

A previous study showed that NetLogo models with
a large number of links may be considerably sped up
by replacing the links with state variables [20]. We im-
plemented this strategy by creating two new state vari-
ables for each agent (neuron) in the model to track
the IDs of other neurons to which they were connected.
One state variable (Incoming-Connections-IDs) tracked
the IDs associated with the neurons who were able to
transmit signals to the agent. The second state variable
(Outgoing-Connections-IDs) tracked the IDs associated
with the neurons who were able to receive signals from
the agent. These state variables were established for each
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neuron during the model’s initialization and assigned val-
ues during the creation of the network. During simula-
tion, state variables were used each time step to determine
the strength of a neuron’s incoming signal. Thus, in the
new version of the model, all network connections were
stored in these state variables, eliminating the need for
links.

To determine the impact of replacing links with state
variables on our model’s performance and execution time,
we performed 100 replicate simulations of the model using
the old version with links and another set of 100 replicate
simulations using the new version with state variables. To
ensure no errors were made during the conversions from
links to state variables, we compared emergent output
from both versions. First, the total number of connec-
tions between neurons was compared to ensure the two
different network algorithms resulted in the same network
sizes. Histograms were used to confirm the distributions
of network sizes obtained simulations of the old and new
versions of the model were similar and an unpaired t-
test was applied to test for significant differences in the
means of these distributions. Further, the average pain
output from 100 simulations of the old and new model,
respectively, were plotted and visually inspected to ensure
emergent output was preserved across model versions. Fi-
nally, the execution time of each simulation was recorded
and an unpaired t-test was applied to test for significant
differences in the average execution time between old and
new versions of the model. All analyses and comparisons
were repeated using the Uniform and Non-Uniform distri-
butions of neurons and using n = 7,000, 10,000, 13,000,
and 16,000 total neurons to further study the impact of
the quantity and spatial distribution of agents on network
size and execution time.

All model simulations were performed on the same
desktop computer equipped with an Intel i7 processor
(8 Core, 16M cache, 5.1 Hz) and 16GB memory. Statisti-
cal analyses were performed using R statistical computing
software [19]. In all statistical tests, we assumed p < 0.05
was considered statistically significant.

2.3 Sensitivity analyses

2.3.1 One-parameter sensitivity analysis

A one-parameter sensitivity analysis was performed to
investigate the model’s sensitivity to the ratio of PKCδ
to SST neurons along the A→P axis. We first divided
our model’s CeA spatial domain into ‘Anterior’, ‘Middle’,
and ‘Posterior’ regions (Figure 1). The Anterior region
included CeA patches with x-coordinates ranging from
2 to 25; the Middle region included CeA patches with
x-coordinates ranging from 26 to 47; and the Posterior
region included CeA patches with x-coordinates ranging

between 48 to 70. During model initialization, the per-
centage of total neurons assigned type PKCδ was varied
between 30% and 90% in increments of 5% in each of the
three regions one-at-a-time. The remaining neurons were
assigned type SST. In other words, the PKCδ:SST ratio
in each of the three regions ranged from 30:70 to 90:10
with a default ratio of 60:40.

Figure 2 shows the baseline distribution of neurons
(60:40; C and D in middle row) for both the Uniform
and Non-Uniform distributions and the resulting distri-
butions when the PKCδ:SST ratio is increased to 90:10
in the Middle region only (A and B in top row) and de-
creased to 30:70 in the Middle region only (E and F in
bottom row). When the ratio is altered in one part of the
CeA (e.g., Middle region), there is no change in the other
two regions and the total number of cells for the entire
CeA is constant (i.e., 13,000 agents).

For each ratio explored in the Anterior, Middle, and
Posterior regions, 30 replicate model simulations were ex-
ecuted using n = 13,000 neurons. In each simulation, we
calculated the change in pain output attributed to injury
(∆P ) as

∆P = P145 − P21 (3)

where P145 is the pain output at time t = 145 (during “in-
jury”) and P21 is the pain output at time t = 21 (baseline
pain; “no injury”). The average value of ∆P across the
30 replicate model simulations was plotted as a function
of percent PKCδ for each of the Anterior, Middle, and
Posterior regions and the slope of each was determined.
A larger slope indicates a greater model sensitivity to
the ratio of PKCδ to SST neurons in the respective re-
gion. We compared results from the sensitivity analysis
of the model initialized with a Uniform distribution and
the model initialized with a Non-Uniform distribution of
neurons.

2.3.2 Two-parameter sensitivity analysis

A two-parameter sensitivity analysis was performed to
study the model’s sensitivity to the connectivity of PKCδ
and SST neurons, respectively, along the A→P axis. The
two parameters governing connectivity of a neuron in the
model are the maximum number of connections assigned
to a neuron (Outgoingmax) and the maximum length
of a neural connection (Distmax). Similar to the one-
parameter sensitivity analysis, we explored the sensitivity
of the model’s pain output to changes in these two param-
eters within the Anterior, Middle, and Posterior regions
of the CeA.

To investigate the impact of PKCδ connectivity on
pain-related model output, the Outgoingmax and Distmax

of PKCδ neurons were varied simultaneously within each
of the Anterior, Middle, and Posterior regions, while hold-
ing all other model parameters constant. In particular,
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Figure 2: Variation in the PKCδ:SST ratio during one-parameter sensitivity analysis. To determine the model’s
sensitivity to the ratio of PKCδ to SST neurons along the A→P axis of the CeA, this ratio was varied in increments
of 5% from baseline (60% PKCδ / 40% SST) within each region (Anterior, Middle, Posterior). The middle row shows
the baseline distribution of neurons in the Uniform (C) and Non-Uniform (D) distributions, respectively. The top
row illustrates the impact of increasing the ratio to 90:10 in the Middle region only for the Uniform (A) and Non-
Uniform (B) distributions. Similarly, the bottom row illustrates the impact of decreasing the ratio to 30:70 in the
Middle region only for the Uniform (E) and Non-Uniform (F) distributions.
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the Outgoingmax of PKCδ neurons was varied between 1
and 5 connections in increments of 1, and the Distmax of
PKCδ neurons was varied between 1.4 patches (35 µm)
and 3.4 patches (85µm) in increments of 0.5 patches
(12.5 µm). For each combination of the two parame-
ters, 30 replicate simulations were executed and ∆P , the
change in pain output attributed to injury, was calcu-
lated using equation (3). The average value of ∆P from
the 30 replicate simulations was displayed in a contour
plot as a multivariate function of the Outgoingmax and
Distmax for PKCδ neurons. Plots were visually inspected
to assess the relationship between pain output and the
connectivity of PKCδ neurons in each of the three regions
(Anterior, Middle, and Posterior).

We investigated the impact of SST connectivity on
pain-related output using a similar approach. Using
the same procedures described above, the Outgoingmax

of SST neurons was varied between 1 and 5 connec-
tions in increments of 1 connection, and the Distmax

of SST neurons was varied between 0.6 patches (15µm)
and 2.6 patches (65µm) in increments of 0.5 patches
(12.5 µm). For each parameter combination, 30 replicate
simulations were performed and ∆P was calculated using
equation (3). Contour plots were used to visually assess
the relationship between pain output and the connectivity
of SST neurons in each of the three regions.

All simulations were performed using n = 13,000 neu-
rons and repeated for both the Uniform and Non-Uniform
distributions of neurons. Contour plots were created us-
ing R statistical computing software [19].

3 Results

3.1 Replacement of links with state
variables in network algorithm

The execution times of our previously published model
with directed links [15] showed considerable variation
based on the number of neurons; ranging from 15 sec-
onds (n = 7000 neurons) to one minute or longer (n =
16,000 neurons) for a simple simulation with 385 time
steps. While these times were sufficient for an initial pi-
lot of the model, they were not ideal for performing large
batches of simulations needed for sensitivity analyses. Us-
ing NetLogo’s built-in timer primitive, we determined
that a majority (50% to 70%) of the model’s execution
time during a single time step was spent using the net-
work to send inhibitory signals between neurons. There-
fore, in an attempt to reduce the model’s execution time,
we focused our efforts on redesigning how connections are
established in the neural network. The computational ef-
ficiency of NetLogo models has been previously shown
to improve when links are replaced with state variables

[20]. The results of our study are in accordance with this
finding.

The replacement of links with state variables in our
network algorithm resulted in a significant decrease in ex-
ecution times. Table 2 displays the average (± standard
deviation) execution times (seconds) for both versions of
the model for all eight scenarios. Using the old model with
links, the average execution times ranged from 14.97 sec-
onds (n = 7,000, Uniform) to 45.27 seconds (n = 16,000,
Non-Uniform). Using the new model with state variables,
the average execution time was less than 37 seconds for
all values of n, resulting in a significant decrease in exe-
cution time across all scenarios (p < 0.05). All p-values
are displayed in Supplemental Table S1 (see Appendix for
Supplemental Tables).

Additionally, the process of eliminating links in our
model and using state variables to track neural connec-
tions did not impact the model’s emergent properties.
Table 2 shows the average (± standard deviation) num-
ber of connections in the neural network obtained from
100 replicate simulations of the old and new model ver-
sions, respectively. As expected, as we increased the total
number of neurons (n), the number of connections in the
network increased proportionally for both the Uniform
and Non-Uniform distributions. For each of the eight
scenarios in Table 2, we found no significant difference in
average number of neural connections obtained using the
old version of the model with links and the new version
with state variables (p > 0.05). All p-values are displayed
in Supplemental Table S2. Histograms in Supplemental
Figures S1 and S2 confirm similar distributions of total
number of connections obtained using the old and new
versions of the model across all eight scenarios (see Ap-
pendix for Supplemental Figures).

Similarly, both versions of the model produced the
same pain output. Figure 3 shows the average value of
pain output from 100 replicate simulations of the model
using ramping current (Figure 3A) for both the Uniform
and Non-Uniform spatial distributions of neurons. In Fig-
ure 3B, solid lines represent pain output from the old ver-
sion of the model and dashed lines represent pain output
from the new version. As expected, pain output is neg-
ative initially, representative of baseline conditions (no
pain) prior to injury. As stimulation increases and neu-
rons accrue damage during injury, pain output increases.
Increases in pain output due to increases in stimulation
are representative of evoked pain, while elevated pain
levels that persist when the stimulation is decreased to
120 pA after injury are representative of spontaneous or
chronic pain. For both the Uniform and Non-Uniform
spatial distributions of neurons, we did not observe a dif-
ference in average pain output across the two model ver-
sions.
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Table 2: Comparison of network size and execution time between new and old versions of model. Values indicate the
mean (± standard deviation) of the number of connections in the neural network and the execution time (seconds)
from 100 replicate simulations of the new model version (with state variables) and old model version (with links)
using n = 7,000, 10,000, 13,000, and 16,000 total neurons. All simulations were repeated using the uniform and
non-uniform spatial distributions of neurons. nsIn all scenarios, there was no significant difference in the size of the
neural network between model versions (p ≥ 0.05). ∗In all scenarios, the execution time of the new model version
was significantly less than the old model version (p < 0.05).

Old Version of Model New Version of Model

Number of
Neurons (n)

Spatial
Distribution

Number of
Connections

Execution
Time (s)

Number of
Connections

Execution
Time (s)

Uniform 9853.99 14.97 9850.10ns 10.15∗

7000 (±52.03) (±1.85) (±62.48) (±2.40)
Non-Uniform 10099.48 20.47 10091.78ns 13.29∗

(±51.12) (±4.72) (±47.09) (±3.90)

Uniform 15940.76 21.63 15938.07ns 14.97∗

10000 (±53.44) (±3.06) (±47.01) (±3.34)
Non-Uniform 15414.59 27.52 15410.70ns 18.95∗

(±49.51) (±5.71) (±51.94) (±5.90)

Uniform 22049.25 30.01 22045.73ns 20.17∗

13000 (±40.92) (±4.21) (±41.94) (±4.68)
Non-Uniform 20907.94 36.43 20911.21ns 26.07∗

(±53.57) (±9.12) (±54.06) (±7.55)

Uniform 27958.52 39.41 27966.93ns 27.05∗

16000 (±37.73) (±6.60) (±35.68) (±5.16)
Non-Uniform 26548.19 45.27 26537.59ns 36.17∗

(±53.34) (±11.45) (±50.02) (±10.66)

3.2 Sensitivity of model output to
PKCδ:SST ratio in anterior,
middle, and posterior CeA

Studies have shown considerable evidence for expression
differences in PKCδ to SST neurons along the A→P axis
of the CeA [12, 23, 17]. Using the new model with state
variables, we performed a one-parameter sensitivity anal-
ysis to investigate the model’s sensitivity to the ratio of
PKCδ to SST neurons along the A→P axis of the CeA.
Figure 4 shows the average value of ∆P from 30 replicate
model simulations plotted as a function of percent PKCδ
in the Anterior, Middle, and Posterior regions, respec-
tively. Results obtained from model simulations with the
Uniform spatial distribution of neurons are displayed in
Figure 4A and those from the Non-Uniform distribution
are displayed in Figure 4B. It is important to note here
that, throughout all simulations, the total number of neu-
rons was held constant (n = 13,000), and, consequently,
as the percent PKCδ increased from 30% to 90% within
one of the three regions (Anterior, Middle, or Posterior),
the percent SST decreased within the same region accord-
ingly. Thus, values along the x-axis correspond to the

ratio PKCδ:SST neurons in each region (e.g., 30% PKC
indicates a 30:70 PKCδ:SST ratio).
Due to the pro-nociceptive role of PKCδ neurons in

our model, increases in the percent of PKCδ neurons re-
sulted in increases in ∆P (Figure 4). In all cases, the re-
lationship between percent PKCδ and ∆P is linear with a
positive slope (Table 3). For both the Uniform and Non-
Uniform distributions, the largest slopes (m) correspond
to the Middle region, indicating model output is most sen-
sitive to PKCδ:SST ratio in the middle of the CeA. Simi-
larly, both distributions show low to moderate sensitivity
to the PKCδ:SST ratio in the Anterior region. On the
other hand, the sensitivity of the model to the PKCδ:SST
ratio in the Posterior varies dramatically between the two
spatial distributions. Model output using a Uniform dis-
tribution of neurons is negligibly impacted by the ratio of
PKCδ:SST ratio in the Posterior (m = 110.67) whereas
model output using the Non-Uniform distribution of neu-
rons is moderately sensitive to the ratio of PKCδ:SST ra-
tio in the Posterior CeA (m = 221.39). These differences
highlight the importance of accurate spatial distributions
of PKCδ and SST neurons in the literature and the model.
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Figure 3: Comparison of pain output from the old and new versions of the model. The old model (with links) and
new model (with state variables) were each simulated 100 times using the ramping current (A). Average pain output
obtained from the old model (solid lines) and new model (dashed lines) is plotted in (B). Red lines represent average
pain output from 100 replicate simulations using a Uniform spatial distribution of neurons. Green lines represent
average pain output from 100 replicate simulations with the Non-Uniform spatial distribution of neurons (Table 1).
For both spatial distributions, there is no observable difference in pain output between the old and new versions of
the model.

3.3 Sensitivity of model output to neural
connectivity in anterior, middle,
and posterior CeA

A two-parameter sensitivity analysis was performed using
the new state variable model to investigate the model’s
sensitivity to neural connectivity along the A→P axis.
The two parameters governing the connectivity of a neu-
ron are maximum length of connections and maximum
number of connections. The relationship between pain
output and the connectivity of PKCδ and SST neurons
in each of the three regions (Anterior, Middle, Posterior)
is displayed in Figure 5 (Uniform distribution) and Fig-
ure 6 (Non-Uniform distribution).

Contour lines in both Figure 5 and Figure 6 indicate
that pain output is sensitive to the maximum number of
neural connections and less so to the maximum length
of connections for both SST and PKC neurons. This is

visible in the large pain gradients (e.g., tightly packed
contour lines) that exist in nearly all of the plots as we
increase the maximum number of connections from 1 to
5 along the vertical axis. In Figure 5, we see similar pain
gradients as we increase the max length of SST connec-
tions in the Anterior and Middle regions from 15 µm to
40 µm, but increases beyond 40 µm do not impact pain
output reflected in the constant contour lines moving left-
to-right from 40µm.

Similar to the results of the one-parameter sensitivity
analysis, the spatial distribution of neurons impacts the
model’s sensitivity to the connectivity parameters. Fig-
ure 5 shows the model initialized with a Uniform distri-
bution is most sensitive to changes in SST connectivity in
the Anterior and Middle regions of the model’s CeA. On
the other hand, Figure 6 shows the model initialized with
the Non-Uniform distribution is most sensitive to changes
in PKC connectivity in Middle region.
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Figure 4: Sensitivity of pain output to PKCδ:SST ratio. Plots show the average change in pain attributed to injury
(equation 3) from 30 simulations of the model as the percent of neurons labeled PKCδ was increased from 30% to
90% in each three CeA regions (Anterior, Middle, Posterior). As the percent PKCδ increased, the percent of neurons
labeled SST decreases accordingly. For both the uniform spatial distribution (A) and non-uniform spatial distribution
of neurons (B), the change in pain due to injury increases linearly as percent PKCδ increases (see Table 3).

Table 3: Regression statistics for one-parameter sensitivity analysis. The linear relationship between pain output
and the percentage of neurons labeled PKCδ in each of the three regions (Anterior, Middle, Posterior) is displayed in
Figure 4. For each line of best fit, the slope (m) and coefficient of correlation (R2) is provided below. Higher slopes
indicate increased model sensitivity to the parameter varied.

Regression Statistics
Parameter Range Slope (m) R2

%PKC in Anterior 234.45 0.996
Uniform Dist. %PKC in Middle [0.3, 0.9] 358.06 0.996

%PKC in Posterior 110.67 0.994

%PKC in Anterior 165.28 0.996
Non-Uniform Dist. %PKC in Middle [0.3, 0.9] 320.05 0.996

%PKC in Poster 221.39 0.995
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Figure 5: Sensitivity of pain output to PKCδ and SST connectivity using the Uniform distribution of neurons.
Contour plots show relationship between neural connectivity and the pain output when the model is initialized
with a uniform distribution of neurons. The two parameters governing neural connectivity are maximum length
of connections and maximum number of connections. We varied these two parameters for PKCδ (top row) and
SST (bottom row) neurons in each of the three CeA regions (Anterior, Middle, and Posterior). For each parameter
combination, the model was simulated 30 times and the average change in pain attributed to injury (δP ) was
calculated. Results show the model initialized with a uniform distribution is most sensitive to the connectivity of
SST neurons in the Anterior and Middle regions of the CeA.

4 Discussion

In this paper, we describe our efforts to reduce the execu-
tion time of our 3-D agent-based model (ABM) of PKCδ
and SST neurons in the central nucleus of the amygdala
(CeA). The ABM is a tool for simulating the behav-
iors and interactions of these two neuron populations and
determining their collective contribution to pain-related
output from the CeA. In a recent publication, we demon-
strated the utility of the ABM in assessing the impact of
spatial heterogeneity of neurons within the CeA on pain-
related output and the design of spatially-targeted pain
intervention methods [15]. By focusing our current efforts
on reducing the execution time of the model, we aim to
increase the practicality and accessibility of the model,
especially to neuroscientists interested in using the model
to investigate different hypotheses in silico before com-
mitting time and resources in the wet lab.

Similar to a previous study [20], our results show that
the replacement of links in our NetLogo3D code with state

variables resulted in a statistically significant reduction
in execution time. Prior to implementing this change, we
implemented other strategies to reduce the model’s ex-
ecution time, such as eliminating the re-creation of the
spatial domain (CeA patches) during successive model
initializations and creating global agentsets to save the
IDs of agents (neurons) repeatedly called in procedures.
These strategies had negligible impact on the model’s
execution time. In contrast, by replacing the links in
the network algorithm with state variables tracking IDs
of the connecting neurons, we were able to reduce the
model’s execution time by 28% for a typical simulation of
13,000 PKCδ and SST neurons.

A reduction in the model’s execution time allowed us to
efficiently perform large batches of simulations for a com-
prehensive sensitivity analysis of the model’s parameters.
Studies have shown considerable evidence for expression
differences in PKCδ to SST neurons along the anterior
to posterior (A→P) axis of the CeA [12, 23, 17]. There-
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Figure 6: Sensitivity of pain output to PKCδ and SST connectivity using the Non-Uniform distribution of neurons.
Contour plots show relationship between neural connectivity and the pain output when the model is initialized
with the non-uniform distribution of neurons (Table 1). The two parameters governing neural connectivity are
maximum length of connections and maximum number of connections. We varied these two parameters for PKCδ
(top row) and SST (bottom row) neurons in each of the three CeA regions (Anterior, Middle, and Posterior). For
each parameter combination, the model was simulated 30 times and the average change in pain attributed to injury
(δP ) was calculated. Results show the model initialized with the Non-Uniform distribution is most sensitive to the
connectivity of PKCδ neurons in the Middle region of the CeA.

fore, we focused our analyses on measuring the impact
of small perturbations in key parameters along the A→P
axis on model predictions of pain. Sensitivity analyses
can guide future wet lab studies by highlighting variables
most likely to influence pain-like output in a rodent. For
example, in our one-parameter sensitivity analysis, we
found a significant increase in model sensitivity to the
PKCδ:SST ratio in the Posterior CeA when PKCδ and
SST neurons were distributed non-uniformly in the CeA
using published data compared to a uniform distribution
of neurons.

The one-parameter sensitivity analysis highlighted two
on-going challenges in the wet lab literature. First, all
currently available spatial distributions of PKCδ and SST
neurons in the CeA of rodents are based on a limited sam-
pling of the CeA across the A→P axis. Across the 1.8mm
length of the of the mouse CeA (from anterior to poste-
rior), only six to ten 25µm sections are typically analyzed
in wet lab studies. Thus, our model has to interpolate or

extrapolate parameter values in CeA regions outside of
these sections. As our sensitivity analysis revealed, in-
accurate parameter values in select regions of the CeA
can dramatically impact model output. Second, there is
a fundamental challenge in dividing the CeA into three
sub-regions (whether it be Anterior, Posterior, Middle or
CeC, CeM, CeL) that can ultimately lead to uninten-
tional inaccuracy in published data. Moving forward, our
results highlight the need for wet lab researchers to care-
fully evaluate all of the anterior-to-posterior sections in
the CeA and thoughtfully consider the necessity and ac-
curacy of sub-dividing the CeA into traditional CeC, CeL,
and CeM sub-nuclei.

Our two-parameter sensitivity analysis evaluated the
impact of simultaneously varying the number of connec-
tions and the length of connections for PKCδ and SST
neurons. PKCδ neurons have fewer but longer connec-
tions while SST neurons have more, shorter connections
[1]. The two-parameter sensitivity analysis yielded dif-
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ferent results for the Uniform and Non-uniform distri-
butions, which again highlighted the importance of the
neurons’ spatial distribution on model output. These re-
sults reiterate the need for accurate and consistent es-
timates of cell distributions for future iterations of the
model. For both the Uniform and Non-uniform distribu-
tions, there was little change in model output when the
length or number of connections was varied in the pos-
terior CeA, likely due to the small size of the posterior
CeA compared to the middle or anterior sections. The
biggest qualitative differences between the results of the
two-parameter sensitivity analysis for the Uniform and
Non-uniform distributions was seen in the middle section
of the CeA, which is the largest of the three sections.

The two-parameter sensitivity analysis indicated that
model output is sensitive to both the number of SST con-
nections and the length of SST connections. In nearly
all cases, an increase in the number or increase in the
length of SST connections led to a decrease in pain out-
put. This result reflects the inhibitory nature of SST
neurons on model output. In other words, more connec-
tions that go farther are likely to have a greater inhibitory
effect. The largest variation in pain output from the two-
parameter sensitivity analysis was observed in the Non-
uniform model when the length and number of PKCδ con-
nections in the middle CeA was increased. This reflects
the fact that PKCδ cells in the Non-uniform model are the
predominate cell population (relative to SST) in the mid-
dle region of the CeA. An increase in PKCδ connectivity
in this region will then induce inhibition within the PKCδ
population (i.e., PKCδ cells will inhibit other PKCδ neu-
rons). This result points to the potential for PKCδ to
provide both an anti-nociceptive and pro-nociceptive tone
depending on the location of the cells within the CeA.
This idea is supported by the functional experiments in
the literature [24, 26, 1]. Excitingly, wet lab technolog-
ical improvements with viral targeting now provide op-
portunities to explore such A→P functional differences
in future whole animal experiments.

Data Availability Statement

All NetLogo3D code and supporting files for implement-
ing the ABM are available in a public repository. Readers
may find it at https://osf.io/t37ma/.
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Appendix

Table S1: Comparison of execution time between new and old versions of model. Values indicate the mean (± standard
deviation) of the execution time (seconds) from 100 replicate simulations of the new model version (with state vari-
ables) and old model version (with links) using n = 7,000, 10,000, 13,000, and 16,000 total neurons. All simulations
were repeated using the uniform and non-uniform spatial distributions of neurons. An unpaired t-test was applied
to test for a significant difference in the mean execution time of corresponding simulations from the new and old
versions of the model. The resulting p-values are displayed here. ∗In all scenarios, the execution time of the new
model version was significantly less than the old model version (p < 0.05).

Number of
Neurons (n)

Spatial
Distribution

Old Version
of Model
Execution
Time (s)

New Version
of Model
Execution
Time (s) p-value

Uniform 14.97 10.15∗ 1.68× 10−36

7000 (±1.85) (±2.40)
Non-Uniform 20.47 13.29∗ 2.73× 10−24

(±4.72) (±3.90)

Uniform 21.63 14.97∗ 1.81× 10−33

10000 (±3.06) (±3.34)
Non-Uniform 27.52 18.95∗ 1.28× 10−20

(±5.71) (±5.90)

Uniform 30.01 20.17∗ 2.87× 10−36

13000 (±4.21) (±4.68)
Non-Uniform 36.43 26.07∗ 1.07× 10−15

(±9.12) (±7.55)

Uniform 39.41 27.05∗ 3.49× 10−33

16000 (±6.60) (±5.16)
Non-Uniform 45.27 36.17∗ 2.42× 10−8

(±11.45) (±10.66)
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Table S2: Comparison of network size between new and old versions of model. Values indicate the mean (± standard
deviation) of the number of connections in the neural network from 100 replicate simulations of the new model version
(with state variables) and old model version (with links) using n = 7,000, 10,000, 13,000, and 16,000 total neurons.
All simulations were repeated using the uniform and non-uniform spatial distributions of neurons. An unpaired t-test
was applied to test for a significant difference in the mean network size of corresponding simulations from the new
and old versions of the model. The resulting p-values are displayed here. nsIn all scenarios, there was no significant
difference in the size of the neural network between model versions (p ≥ 0.05).

Number of
Neurons (n)

Spatial
Distribution

Old Version
of Model
Number of
Connections

New Version
of Model
Execution
Time (s) p-value

Uniform 9853.99 9850.10ns 0.63

7000 (±52.03) (±62.48)
Non-Uniform 10099.48 10091.78ns 0.27

(±51.12) (±47.09)

Uniform 15940.76 15938.07ns 0.71

10000 (±53.44) (±47.01)
Non-Uniform 15414.59 15410.70ns 0.59

(±49.51) (±51.94)

Uniform 22049.25 22045.73ns 0.55

13000 (±40.92) (±41.94)
Non-Uniform 20907.94 20911.21ns 0.67

(±53.57) (±54.06)

Uniform 27958.52 27966.93ns 0.11

16000 (±37.73) (±35.68)
Non-Uniform 26548.19 26537.59ns 0.15

(±53.34) (±50.02)
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Figure S1: Comparison of the number of connections generated from old and new versions of the model using a Uni-
form spatial distribution of neurons. Histograms display the total number of connections obtained from 100 replicate
simulations of the model initialized with using n = 7,000, 10,000, 13,000, 16,000 total neurons and a Uniform spatial
distribution of neurons. Distributions obtained from the old version of the model (left column) are similar to those
obtained from the new version of the model (right column). In all scenarios, there is no significant difference in the
average number of connections (x̄) between the two model versions (p > 0.05, Table 2).
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Figure S2: Comparison of the number of connections generated from old and new versions of the model using the
Non-Uniform spatial distribution of neurons. Histograms display the total number of connections obtained from
100 replicate simulations of the model initialized with using n = 7,000, 10,000, 13,000, 16,000 total neurons and the
Non-Uniform spatial distribution of neurons (Table 1). Distributions obtained from the old version of the model (left
column) are similar to those obtained from the new version of the model (right column). In all scenarios, there is no
significant difference in the average number of connections (x̄) between the two model versions (p > 0.05, Table 2).
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