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Abstract
Despite their importance in a wide variety of applications, the estimation of ionization cross
sections for large molecules continues to present challenges for both experiment and theory.
Machine learning (ML) algorithms have been shown to be an effective mechanism for estimating
cross section data for atomic targets and a select number of molecular targets. We present an
efficient ML model for predicting ionization cross sections for a broad array of molecular
targets. Our model is a 3-layer neural network that is trained using published experimental
datasets. There is minimal input to the network, making it widely applicable. We show that with
training on as few as 10 molecular datasets, the network is able to predict the experimental cross
sections of additional molecules with an accuracy similar to experimental uncertainties in
existing data. As the number of training molecular datasets increased, the network’s predictions
became more accurate and, in the worst case, were within 30% of accepted experimental values.
In many cases, predictions were within 10% of accepted values. Using a network trained on
datasets for 25 different molecules, we present predictions for an additional 27 molecules,
including alkanes, alkenes, molecules with ring structures, and DNA nucleotide bases.

Keywords: cross section, machine learning, electron-impact ionization

1. Introduction

Atomic and molecular cross sections play a pivotal role in
many areas of applied physics, including plasma physics,
biophysics, and astrophysics. In these fields, cross sections
are essential fundamental inputs for modeling complex prob-
lems. The success of models within these fields to under-
stand fundamental physical processes relies, at least in part, on
the accuracy and availability of the scattering cross sections.
Often, cross sections are required over a wide range of ener-
gies, target species, and collision processes. Databases such
as the NIST electron elastic-scattering cross-section database
[1], LxCat [2], BEAMDB [3], and others [4] have begun to

∗
Author to whom any correspondence should be addressed.

address the need for large amounts of cross section data by
compiling available experimental and theoretical datasets into
openly accessible repositories. There are also computational
methods that have proven to be reliable in predicting cross
sections in various energy regimes, and many of these are
being made publicly available through resources such as the
atomic, molecular, and optical science gateway [5]. Despite
the increasing availability of cross section databases, in many
instances, the necessary data remains inaccessible experiment-
ally or too computationally demanding for ab initio theory. It
is therefore impractical to rely exclusively on experiment or
computation to obtain all of the needed data.

Machine learning (ML) algorithms have proven to be
effective tools in many areas of physics. These algorithms
utilize data from existing experiment and/or simulation to train
a model that is able to accurately predict the data for unknown
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systems. The use of ML algorithms in the physical sciences
has exploded in recent years and is becoming commonplace
in many areas of physics, such as high energy physics [6, 7],
quantum many body problems [8], quantum computing [9],
molecular chemistry and material science [10], and countless
others. However, these techniques have seen only limited use
in atomic and molecular collision physics. Existing applica-
tions in collision physics can be sorted into two broad categor-
ies that predict atomic and molecular cross sections: (1) train-
ing a ML model using measured or calculated cross sections
or (2) using a ML model to solve the inverse swarm problem
and predict the cross sections.

In the first category, one of the earliest applications of ML
techniques for atomic and molecular cross sections was imple-
mented by El-Bakry and El-Bakry in which a feed-forward
neural network was trained on experimental data for the total
cross sections for electron and positron impact collisions with
sodium and potassium [11]. Predictions were made for the
same cross sections for which training was performed. The
neural network predictions showed good agreement with the
measured data, indicating that the networkwas able to success-
fully learn the total cross sections. Since then, several groups
have developed various implementations of ML techniques.
Harris and Darsey trained a neural network to predict proton-
impact ionization double differential cross sections for atoms
and molecules [12] and demonstrated the method’s success
with a limited number of inputs and training sets. El-Bakry
et al developed a model that used the gradient tree boosting
method to predict total electron and positron scattering cross
sections for alkali atoms [13], demonstrating that ML tech-
niques other than neural networks are successful at predict-
ing collision cross sections. Zhong trained a support vector
machine algorithm that was used to predict larger molecule
cross sections from the theoretical binary encounter bethe
(BEB) cross sections of small molecules [14]. While these res-
ults showed good agreement between the ML model and the
BEB model, this approach was limited because it relied on the
approximate calculation of smaller molecule cross sections as
inputs. Effectively, the technique trained a ML algorithm to
replace the BEB model for large molecules, which was lim-
ited to the accuracy of the theoretical model used to create the
input training data. Amaral and Mohallem applied the sure
independence screening and sparsifying operator method to
classify bound and unbound systems in low energy positron-
molecule scattering and made predictions of possible new
bound systems [15]. This is one of the few ML applications
in atomic and molecule collisions that uses the algorithm
for classification of a physical process involved in scatter-
ing, rather than the prediction of cross sections. Jasinksi et al
used Bayesian ML to predict cross sections for inelastic scat-
tering of two diatomic molecules [16]. Their results demon-
strated that these types of algorithms can be used to improve
approximate calculations using only a handful of rigorous
calculations.

In the second category, known cross section data from
available databases and the literature are combined with
numerical solutions of the Boltzmann equation to solve the
inverse swarm problem using ML techniques. The cross

section data is then refined to provide complete and consist-
ent datasets [17–19]. Stokes et al created a complete and self-
consistent set of cross section data for quasielastic momentum
transfer cross sections, dissociative electron attachment cross
sections, and neutral dissociation cross sections for nitric oxide
[18]. They showed that the predicted cross section dataset
has improved agreement with experimental data. Jetly and
Chaudhury compared different ML algorithms, such as arti-
ficial neural networks, convolutional neural networks, and
a densely connected convolutional network to predict cross
sections from swarm data [17]. They demonstrated that the
dense network approach gave more accurate predictions than
the neural network techniques. Stokes et al determined the
elastic momentum transfer and ionization cross sections for
helium and argon [19], and showed agreement with experi-
ment within 4%.

In all of the above examples, the ML algorithms were able
to successfully predict cross section data. However, one of the
challenges with ML approaches is that they often require a
large amount of data for training. In general, the more train-
ing data that is available to train the model, the better the net-
work will predict the desired unknown data. However, it is
exactly the lack of available data that motivates the use of
ML algorithms for collision physics in the first place. Thus,
the development of a ML model that can make accurate pre-
dictions with relatively limited amounts of data is therefore
desirable and one of the goals of the work presented here. In
this work, we focus on the prediction of total ionization cross
sections for molecules of any size and a wide array of shapes
and chemical compositions. We test the effectiveness of the
algorithm with respect to the number of training datasets and
input parameters.

Molecular cross sections were chosen because they present
particular challenges to theory and experiment. Compared to
atomic targets, molecular targets have a much more com-
plex electronic and nuclear structure. From the theoretical per-
spective, multi-electron effects and orientation effects both
influence the ionization cross sections, but remain difficult
to model. Experimentally, molecular targets may be difficult
to produce, have high reactivity, and can be expensive. All
of these factors combined lead to the limited availability of
molecular ionization cross sections.

To help fill these gaps, we have developed a ML-based
model that uses a relatively small number of available exper-
imental cross sections for molecular targets to train a neural
network. Because experimental data is used for training,
our algorithms are independent of any theoretical limitations
inherent in theoretical models. Once trained, the network can
make predictions for additional molecules. We show that even
with limited training input, the network is able to success-
fully predict molecular ionization cross sections to within
30% in the worst case, and often to within less than 10%.
We also provide a database of predicted molecular ioniza-
tion cross sections for 27 additional target molecules. With
the goal of making cross section predictions easily available to
the community, we have made our training algorithm and the
fully trained network (ready to make predictions) available on
Figshare [20].
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2. Methods

The ML algorithm that we use for predicting molecular ioniz-
ation cross sections involves several steps. The first step is the
identification and processing of training data. Step 2 is the cre-
ation of the network for training. Step 3 is the training of the
network, and step 4 is the application of the trained network
to predict new data. Each of these steps is described in detail
in the sections below and all data sets and codes are available
on Figshare [20].

2.1. Training data

All training datasets used here were taken from published liter-
ature (see table 1). We identified experimental data sets for 25
different molecules in the form of electron-impact total ioniz-
ation cross sections as a function of projectile energy. In some
cases, multiple data sets were available for a given molecu-
lar target, in which case, we selected the datasets that lim-
ited the number of independent sources from which the data
was taken, while simultaneously giving preference to newer
datasets. In general, the variability between experimental data-
sets for training molecules was less than 25%. When multiple
datasets were available, the datasets that we selected for train-
ing were in reasonable agreement with theoretical models and
other experimental data. It is important to note that because
our ML algorithm depends on the training data, a different
choice in input datasets could alter the prediction. However,
given that the uncertainty in the input training data is on the
same order as the uncertainty of our predictions and that our
model shows good success in predicting cross sections for a
variety of molecules, a different selection of training sets is
unlikely to produce significantly different predictions. Each
dataset was converted to units of a20 for the cross section values
and electron volts for the electron projectile energies. Because
the energy range and energy grid of the measurements were
not consistent between published data sets, we selected only
data within an energy range common to all data sets (i.e. 25–
100 eV). Each dataset was then linearly interpolated to a fixed
grid of 101 energies.

2.2. Creating the network

To help with terminology, we introduce some definitions. We
define a network as the configuration of the number of nodes,
layers, and their connectivity. All of our networks were 3-layer
feed-forward neural networks, consisting of an input layer, one
hidden layer, and an output layer (see figure 1). The networks
were fully connected, such that every node in one layer is con-
nected to every node in the adjacent layers. The input to a given
node is a weighted sum of the values passed from each of the
upstream nodes plus a bias. From this input, the output of the
node is calculated using a logistic sigmoid activation function.
This output is then passed downstream to the nodes in the next
layer, where it is processed as the input. We define a network
trial as the optimized weights and biases for a network that
was trained with a specific set of training data.

Figure 1. Diagram of network configuration for Net10. The network
has 4 input nodes, corresponding to the number of carbon, hydrogen,
nitrogen, and oxygen atoms in a molecule; 3 hidden nodes, which is
equal to 1/3 of the number of training sets; and 101 output nodes,
corresponding to the ionization cross section (xsec) at each energy
ranging from 25 eV to 100 eV. The network is fully connected with
every node in a layer connected to every node in the adjacent layers.

The following are examples of different networks and net-
work trials. Net10 has 4 input nodes, 3 hidden nodes, and 101
output nodes. In contrast, Net15 has 4 input nodes, 5 hidden
nodes, and 101 output nodes. We define Net10 and Net15 as
different networks. Net15 Trial 1 are the optimized weights
and biases for Net15 that was trained on a given set of 15
input training molecule datasets. Net15 Trial 2 are the optim-
ized weights and biases for Net15 trained on a different set of
15 input training molecule datasets.

Many different networks and trials were created for test-
ing the effectiveness of our ML algorithm. In all networks, the
number of nodes in the hidden layer was equal to one third of
the number of training sets [21]. Because the number of train-
ing sets could vary, this resulted in different networks depend-
ing on the number of training sets. All networks had 101 nodes
in the output layer, corresponding to the value of the cross
section at each of the 101 projectile energies.

In some networks, the input layer consisted of 4 nodes, each
corresponding to the number of carbon, hydrogen, nitrogen,
and oxygen atoms in the molecule (i.e. the molecule’s chem-
ical formula). In other networks, the input layer consisted of
5 nodes, with 4 of the nodes corresponding to the number of
carbon, hydrogen, nitrogen, and oxygen atoms in the molecule
and a fifth node corresponding to the first ionization energy
(ionization potential) of the molecule in eV. The input data
were collectively normalized to a range of values between 0.05
and 0.95 to approximately match the range of the logistic sig-
moid function. The biases and weights were initialized with
pseudorandom values, which were optimized through back-
propagation during the training phase.

3
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Table 1. List of molecules whose ionization cross sections were used as training datasets. Molecules with a single asterisk (∗) were excluded
from the training dataset in partition 1 and made up the testing dataset for partition 1. Molecules with two asterisks (∗∗) were excluded from
the training dataset in partition 2 and made up the testing dataset for partition 2. The first ionization energies values came from [23].

IUPAC molecule name Chemical formula First ionization energy (eV) Experimental data reference

Ethanal∗∗ C2H4O 10.23 [24]
Propanal∗∗ C3H6O 9.96 [24]
Butanal C4H8O 9.82 [24]
2-Methylpropanal∗ C4H8O 9.71 [24]
Ethoxyethane C4H10O 9.51 [24]
Propoxypropane C6H14O 9.3 [24]
2-Isopropxypropane C6H14O 9.2 [24]
Propanone∗ C3H6O 9.7 [24]
Butanone C4H8O 9.52 [24]
Pentan-2-one C5H10O 9.38 [24]
Pentan-3-one C5H10O 9.31 [24]
3-Methylbutan-2-one∗∗ C5H10O 9.31 [24]
Hexan-3-one∗ C6H12O 9.3 [24]
Hexan-2-one C6H12O 9.35 [24]
3,3-Dimethylbutan-2-one∗ C6H12O 9.14 [24]
3-Methylpentan-2-one C6H12O 9.2 [24]
4-Methylpentan-2-one C6H12O 9.3 [24]
Molecular Hydrogen H2 15.43 [25]
Molecular Nitrogen∗∗ N2 15.58 [25]
Carbon Monoxide CO 14.01 [25]
Nitric Oxide NO 9.26 [25]
Molecular Oxygen O2 12.07 [25]
Methanol∗ CH4O 10.84 [26]
Ethanol∗∗ C2H6O 10.48 [26]
Water H2O 12.62 [27]

2.3. Training the ML model

For evaluation and testing of the ML models, the 25 cross
section datasets were randomly sorted into two groups—the
training group and the testing group. The training group con-
tained 20 molecules (80%) and the testing group contained the
remaining 5 molecules (20%). A list of these molecules, their
chemical formula, their first ionization energy, and a reference
to the original data is provided in table 1. A plot of the cross
sections is shown in figure 2. Any training of the network used
only themolecules in the training group. The testing groupwas
set aside to provide a comparison of the network’s prediction
with data that the network had never seen. Two different parti-
tions of the 25 datasets were made, partition 1 and partition 2,
so that results could be evaluated for different testing datasets.
In figure 2, the cross sections for the partition 1 testing data-
set are shown as solid red data points and the cross sections
for the partition 2 testing dataset are shown as solid blue data
points. For partition 1, all datasets except those shown as solid
red data points were included in the testing set, while for parti-
tion 2 all datasets except those shown as solid blue data points
were included in the testing dataset.

During training, the input parameters were fed into the net-
work for a given molecule. These values were propagated
through the network and then a prediction was made for the
cross sections (i.e. the output). This prediction was compared
to the known cross section values, and the weights and biases

of the connections between nodes were adjusted to optim-
ize the agreement between the network’s prediction and the
known cross section values. This process was repeated with
each of the molecules from the training set. After cycling
through all molecules in the training set, the process repeated,
starting again with the first molecule. Each cycle through all
of the training datasets is called an epoch, and we trained each
network for 400 000 epochs. Convergence testing was done
with a few trials training for 200 000 epochs and 1000 000
epochs. No differencewas observed between predictionsmade
with 400 000 and 1000 000 epochs, but differences were found
when only 200 000 epochs were used. Thus, we used 400 000
epochs for all network training.

All codes were written and executed in Mathematica ver-
sion 12.1 [22], and the network was created with the NetChain
command. Training of the network was conducted using the
function NetTrain with the default settings. Details are avail-
able in the open source code at Figshare [20].

2.4. Predictions

Once the network was trained, it was given new inputs that
were propagated through the network tomake a prediction. For
evaluation purposes, the networkwas given inputs correspond-
ing to the 5 testing datasets that were excluded from training.
Then, the network’s prediction was compared with the known,
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Figure 2. Interpolated experimental ionization cross sections used for training in partitions 1 and 2 (only 11 of the 101 data points are
shown for clarity). See text for a description of how published datasets were processed for use in the algorithm. Solid red (blue) data points
denote datasets excluded from training (and included in the testing datasets) in partition 1 (partition 2). References for the experimental
datasets can be found in table 1.

published experimental data. Six networks were used to make
predictions, three that did not include the ionization potential
as an input parameter and three that did include the ionization
potential as an input parameter. Thus, the effect of the ioniz-
ation potential as an additional input on the accuracy of the
networks’ predictions could be tested. In each case, the three
networks corresponded to different numbers of training data-
sets so that the effect of the number of training molecules on
the networks’ predictions could be examined. Lastly, 10 trials
of each network were performed to evaluate how a network’s
predictions depended on the identity of the training molecules.

3. Results

To determine the effect of the number of training sets and the
identity of the training molecules on the algorithm’s ability
to make accurate predictions, we compared predicted cross
sections for three networks. Net10 had 4 input nodes, 3 hidden
nodes, and 101 output nodes, and was trained on cross sections
for 10 different molecules that were randomly selected from
the 20 training datasets. Net15 had 4 input nodes, 5 hidden
nodes, and 101 output nodes, and was trained on cross sections
for 15 different molecules that were randomly selected from
the 20 training datasets. Net20 had 4 input nodes, 6 hidden
nodes, and 101 output nodes and was trained on all 20 train-
ing datasets. For Net10 and Net15, 10 trials were conducted,

each with a different random selection of molecules from the
training datasets. From these 10 trials, an average cross section
and standard deviation were calculated.

Figure 3 shows the predicted cross sections from
Net10, Net15, and Net20. The 5 testing molecules
were 2-Methylpropanal, Propanone, Hexan-3-one, 3,3-
Dimethylbutan-2-one, and Methanol. Each trial’s predicted
cross section is shown as a dashed-dotted line for Net10 and
Net15, and the average of the 10 trials is shown as a solid
blue line. For Net20, only 1 trial was calculated because all 20
training molecules were included in the training set, and this
prediction is shown as a solid blue line. The light blue shaded
region represents the standard deviation of the 10 trials from
the average for Net10 and Net15. The experimental data for
the 5 testing molecules is shown in figure 3 as open circles.

The algorithm’s predictions show the most variation among
the trials when only 10 datasets were used for training (i.e.
Net10). The deviation of the prediction varied with projectile
energy, and in theworst case (Methanol at 100 eV), the average
of the trial predictions is 17.0 a.u. with a standard deviation of
0.63 a.u.When 15 training datasets were used (i.e. Net15), less
variation among the trials was observed, indicating that with
more training molecules, the identity of the training molecules
had a decreased importance.

For all 5 testing molecules, the use of 20 training datasets
yielded excellent predictions of the cross sections. For all of
the molecules, the maximum percent difference between the

5
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Figure 3. Predicted ionization cross sections as a function of projectile energy using three different networks (Net10—column 1,
Net15—column 2, Net20—column 3) with training data taken from partition 1. The ionization potential was not included as an input
parameter. The testing molecules are labeled in the figure for each row. Dash-dotted lines (columns 1 and 2) are predictions from the 10
different trials of the networks. The solid blue line is the average of the predictions of the 10 trials, and the shaded blue area is the standard
deviation of the predictions of the 10 trials. Interpolated experimental data are open circles (see table 1 and figure 2 for references and
details).
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Table 2. Maximum percent difference between the Net20 and Net20Ip cross section predictions and the experimental data for the datasets
in the testing groups.

Partition 1

Molecule Net20 maximum % difference Net20Ip maximum % difference

Propanone 14 16
2-Methylpropanal 4 5
Hexan-3-one 7 7
3,3-Dimethylbutan-2-one 5 6
Methanol 12 9

Partition 2

Molecule Net20 maximum % difference Net20Ip maximum % difference

Ethanal 13 14
Ethanol 26 23
Propanal 6 8
3-Methylbutan-2-one 13 12
Molecular Nitrogen 30 1940

Net20 predictions and the known experimental values was less
than 14% (Propanone at 35 eV), and most percent differences
were in the single digits. The maximum percent differences
between the Net20 prediction and the experimental data is
given in table 2 for each of the molecules. It is interesting to
note that the prediction of Net20 was nearly identical to the
averages of the predictions from the trials using Net10 and
Net15. This indicates that the variation in prediction caused
by different molecules in the training dataset was averaged
out when multiple trials were conducted. For practical applic-
ations of our algorithm, one would ideally include all avail-
able datasets for training, thus eliminating the possibility of
averaging over trials. However, based on the results shown in
figure 3, accurate predictions can be achieved with as few as
10 training sets.

For Net10, Net15, and Net20, 4 inputs were used, corres-
ponding to the number of carbon, hydrogen, nitrogen, and
oxygen atoms in the molecule. The good agreement between
the network predictions and experimental data for the 5 test-
ing molecules in figure 3 demonstrated that the molecular
ionization cross sections were strongly correlated with the
chemical formula of the molecule. However, some discrep-
ancies remain, particularly for the smaller molecules, such as
Methanol and Propanone. Also, the agreement between pre-
diction and experiment becomes slightly worse as the pro-
jectile energy increases. To test whether these discrepancies
could be resolved with an additional input parameter, specific-
ally the molecule’s ionization potential, we created 3 new net-
works that included the ionization potential as an input. We
refer to these networks as Net10Ip, Net15Ip, and Net20Ip.
Their network configuration is identical to Net10, Net15, and
Net20, except that they have an additional input node corres-
ponding to the ionization potential. We repeated the process
described above for these 3 new networks. For Net10Ip and
Net15Ip, 10 trials were performed with different randomly
selected training datasets and the average and standard devi-
ation of the predictions was calculated.

Figure 4 shows the averages and standard deviations for
Net10, Net15, and Net 20 in blue and for Net10Ip, Net15Ip,
and Net20Ip in red. For clarity, no individual trial predictions
are shown in figure 4. Surprisingly, the inclusion of the ion-
ization potential as an additional input parameter for the net-
works yielded greater variation among the trials and generally
worse agreement with experiment. The agreement between
predictions and experiment only improved for Methanol with
Net20Ip and Hexan-3-one with all networks when the ion-
ization potential was included. This indicated that there was
not a strong or useful correlation between ionization potential
and cross section. In addition, because the standard deviation
was larger for the predictions of Net10Ip and Net15Ip than
for Net10 and Net15, more training data sets were required to
achieve accurate predictions when the ionization potential was
used as an input parameter.

To further test the role of the training molecule identities
on the algorithm’s ability to accurately predict cross sections,
we repeated the above training and predictions using a differ-
ent partition of the 25 datasets into 20 training datasets and 5
testing datasets. In partition 2, the 5 testing datasets were for
Ethanal, Ethanol, Propanal, 3-Methylbutan-2-one, Molecular
Nitrogen. Figure 5 shows the predicted cross sections from
Net10, Net15, Net20, Net10Ip, Net15Ip, and Net20Ip for the
5 testing datasets in partition 2. As before, 10 trials were
performed for Net10, Net15, Net10Ip, and Net15Ip and an
average and standard deviation of the cross sections was
calculated.

Some similar trends were observed in partition 2 com-
pared to partition 1. The variation among trials was larger
for the networks that included the ionization potential as an
input, and this variation decreasedwhenmore training datasets
were used. Agreement between the algorithm’s predictions
was worse for some molecules when the ionization poten-
tial was included (Ethanal, Propanal, Molecular Nitrogen) and
better for others (Ethanol, 3-Methylbutan-2-one), with the best
agreement at low energy. Notably, for Molecular Nitrogen,
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Figure 4. Same as figure 3, but includes ionization cross section predictions from Net10Ip, Net15Ip, and Net20Ip in which the ionization
potential of each molecule was included as an additional input parameter to the network. The red solid line is the average of the predictions
for 10 trials for networks that include the ionization potential as an input parameter and the red shaded area is the standard deviation for
these predictions.
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Figure 5. Same as figure 4, but using the training and testing datasets from partition 2.
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Figure 6. Predictions for ionization cross sections for new molecules using a network trained on all 25 input datasets listed in table 1. (a)
Alkanes, (b) alkenes, (c) molecules with a ring structure, (d) nucleotide bases. Comparison is made with (a) BEB model data from [31] and
experiment from [30], (c) experiment from [28, 29], and (d) experiment from [32–35]. Vertical lines on the experimental data indicate
uncertainty.

only the networks that did not include the ionization potential
were able to reasonably predict the experimental data. This
is likely due to a combination of factors. First, only 1 train-
ing dataset for a molecule with a nitrogen atom was included
in partition 2 (Nitric Oxide). Second, the cross sections for
diatomic molecules are at least an order of magnitude smal-
ler than those for the larger hydrocarbons. Third, the ioniza-
tion potential of Molecular Nitrogen is larger than most of the
other molecules included in the training dataset (see table 1).
All of these factors likely combined to make it more difficult
for the algorithm to predict the cross sections for Molecular
Nitrogen. We note that despite the much smaller magnitude of
the Molecular Nitrogen cross sections, the networks without
the ionization potential do a remarkable job of accurately pre-
dicting these cross sections.

Overall, for the molecules in partition 2, the agreement
between the algorithm’s predictions and the experimental data
is generally worse than for partition 1. In particular, the pre-
dictions for the testing molecules in partition 2 underestim-
ate the high energy cross sections for Ethanal, Propanal, and
3-Methylbutan-2-one, while the prediction for Ethanol over-
estimates the high energy cross section. The overestimation
for ethanol is likely due to the different shape of this exper-
imental cross section relative to the molecules included in
the training set. Figure 1 shows that only the Ethanol exper-
imental cross section has a maximum (around 60 eV) and
then a decreasing cross section for higher energy (greater
than 60 eV). Because the networks in partition 2 had no
training data with a local maximum, it was not possible for
the prediction to exhibit a local maximum. One possible
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Table 3. List of molecules and their chemical formula for which predictions were made from a network trained with the 25 datasets from
table 1 without the ionization potential as an input parameter.

IUPAC molecule name Chemical formula

Methane CH4

Ethane C2H6

Propane C3H8

Butane C4H10

Pentane C5H12

Hexane C6H14

Heptane C7H16

Octane C8H18

Ethene C2H4

Prop-1-ene C3H6

But-1-ene C4H8

Pent-1-ene C5H12

Hex-1-ene C6H14

Hept-1-ene C7H16

Oct-1-ene C8H18

Benzene C6H6

Cyclopropane C3H6

Cyclobutane C4H8

Cyclopentane C5H10

4-Hydroxy-3-Methoxybenzaldehyde (Vanillin) C8H8O3

Napthalene C10H8

Pyridine C5H5N
Pyrimidine C4H4N2

7H-purin-6-amine (Adenine) C5H5N5

5-methyl-1H-pyrimidine-2,4-dione (Thymine) C5H6N2O2

6-amino-1H-pyrimidin-2-one (Cytosine) C4H5N3O
2-amino-1,7-dihydropurin-6-one (Guanine) C5H5N5O

explanation for the underestimation of the 3-Methylbutan-2-
one and Propanal cross sections is that the training datasets
included cross sections for isoforms of these molecules, which
have smaller cross sections, thus leading to an underestimation
in the prediction. In the case of Ethanal, the most similar train-
ing molecule was Methanol, which has a smaller cross section
and likely led to the Ethanal prediction underestimating the
experimental data.

The predictions from partitions 1 and 2 imply that while the
identity of training molecules within a given partition does not
significantly alter the network’s prediction, the partition of the
training datasets can influence the network’s prediction accur-
acy. We note, however, that the partitioning of datasets was
done purely for testing purposes to evaluate the algorithm’s
accuracy in predicting cross sections. Any applications of
the algorithm would use all available datasets. Based on the
worst case of the Net20 predictions (partition 2, Molecular
Nitrogen), the algorithm very accurately predicted the cross
section for energies less than 40 eV, and at 100 eV differed
from the experimental data by 30%. Because the algorithm’s
predictions improve with more training datasets, we expect
that predictions from a Net25 network including all 25 avail-
able datasets would have an error of less than 30%. This is
acceptable and similar to experimental datasets, which can
have an error of around 20% [26, 28, 29].

Given the success of our algorithm for predicting molecu-
lar ionization cross sections, we present in figure 6 predictions
for additional molecules of interest. To produce these predic-
tions, the network was trained on all 25 experimental data-
sets listed in table 1 for 400 000 epochs, and the ionization
potential was not included as an input parameter. The trained
network was then given input values corresponding to each
new molecule’s chemical formula. The predictions for several
classes of molecules are shown in figure 6, including alkanes,
alkenes, molecules with a ring structure, and DNA nucleotide
bases. For comparison, our algorithm’s prediction is compared
to published experimental data or BEB model predictions in a
select few cases. The chemical formulae of the molecules are
listed in table 3.

For both the alkanes and alkenes, the predicted cross
sections increased with the size of the molecule, a trend
that was also observed in experimental cross section data
for the molecules Ethanal, Propanal, and Butanal; Methanol
and Ethanol; and Propanone and Butanone (see figure 1). For
Methane, Ethane, and Butane, our model’s predictions agree
quite well with published experiment [30] and the BEB model
predictions [31]. For Butane, the ML model’s prediction is
well within the error bars of the experimental data and the
ML and BEB models predict nearly identical cross sections
for Ethane. Comparing the predicted cross sections for the
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alkanes to the alkenes shows that either the double bond or
the reduced number of hydrogen atoms in the molecule in the
alkenes lowers the cross sections relative to the alkanes.

For molecules with a ring structure, the predicted cross
sections again increase in magnitude as the number of atoms
in the molecule increases. Comparison with experimental data
for Pyrimidine [29] shows that the ML model’s predictions
are again within the uncertainty of the experimental data of
20%. However, for Pyridine, theMLmodel underestimates the
experimental data [28] and is not within the 20% experimental
uncertainty.

For the nucleotide bases, the cross section predictions for
Adenine and Thymine are nearly identical, which is unex-
pected given the differences in the chemical formulae. Since
Adenine is the only molecule without an oxygen atom, one
might expect that its cross section would differ from the other
nucleotide bases. There are two experimental datasets avail-
able for each of the nucleotide bases, which differ by as much
as 50% [32–35]. Several theoretical predictions are also avail-
able that vary by up to 25% (see [32] figure 3 for a nice sum-
mary), including a BEBmodel that agrees well with the data of
[32]. For adenine and guanine, our model’s predictions under-
estimate the cross section data of [32, 33], while for thymine
and cytosine, our model underestimates the cross sections of
[32] and overestimates the cross sections of [34, 35]. Overall,
our model predictions tend toward lower magnitudes of the
nucleotide base ionization cross sections.

4. Conclusions

Due to their nuclear and electronic complexity, the calculation
or measurement of collision cross sections for molecular tar-
gets remains a challenging task for theory and experiment. We
have introduced a ML model capable of predicting ionization
cross sections for a wide array of molecular targets with lim-
ited training data and input parameters. We used 3-layer feed-
forward neural networks with inputs of the number of carbon,
hydrogen, nitrogen, and oxygen atoms in the molecule, as well
as the ionization potential, and outputs of the molecular cross
section at projectile energies between 25 and 100 eV. The net-
works were trained using published experimental data, mak-
ing them independent of any approximations required in the-
oretical models and ensuring that all physics captured in the
experiment is included in the trained network.

Overall, our results showed that networks that used the
chemical formula of the molecule as inputs, but not the first
ionization energy, resulted in more accurate predictions for the
cross sections, with the prediction differing from the known
experimental result by at most 30% and frequently less than
10%. This indicated that there is a strong correlation between
the chemical formula of the molecule and its cross section,
but a weak correlation between the ionization potential and
the cross section. The strong correlation of cross section with
chemical formula is something that has been exploited for

many decades when trying to predict molecular ionization
cross sections. For example, one of the simplest models for
predicting the cross sections is the Bragg additivity rule, in
which the molecular cross section is estimated as the sum of
the atomic cross sections for all the atoms in the molecule. A
number of variations of this additivity rule have been intro-
duced, including using a weighted sum of cross sections for
atomic orbitals [36], the screening corrected additivity rule
that accounts for some geometric overlap between the con-
stituent atoms [37], and the pixel counting method [38] that
includes molecular orientation and atomic overlap effects. All
of these methods are based on the idea that the molecular cross
section can be expressed as some function of the atomic cross
sections, and our ML model exploits a similar relationship.

The weak correlation between the first ionization energy
and the cross section was unexpected since ionization is an
energy-dependent process and conservation of energy neces-
sarily dictates that the kinetic energy of the final state frag-
ments depends on the ionization potential. In the BEB model
[39], reasonably accurate ionization cross sections are pre-
dicted by using the ionization energies for many molecular
orbitals as inputs. Since these parameters have already been
shown to be relevant for the BEB model, there is reason to
expect that the inclusion of molecular orbital information and
more ionization energies as inputs to our algorithm could also
provide improved predictions.

Expectedly, networks that included more training data yiel-
ded more accurate predictions. However, even with as few as
10 training datasets, the network was able to predict the cross
section to within a reasonable degree of accuracy. The iden-
tity of the molecules included in the training set had an effect
on the success of the predictions, but this variation was again
within acceptable limits. The uncertainty in our model predic-
tions was typically similar to experimental uncertainties.

By using a network trained on 25 publishedmolecular cross
section datasets, we made predictions for a wide variety of
molecules, including alkanes, alkenes, molecules with ring
structures, and DNA nucleotide bases. These predicted cross
sections exhibited the trends that molecules with more atoms
had a larger cross section and molecules with similar chem-
ical formulae yielded similar cross sections. These trends were
consistent with published experimental data.

Prior ML models for predicting cross sections have so far
either been limited to a small number of target molecules
or relied on theoretical models to provide training data.
The algorithm introduced here is broadly applicable to any
molecule whose constituent atoms are carbon, hydrogen,
nitrogen, or oxygen and is not limited by theoretical approxim-
ations. Training of a given network required less than 10 min
on a laptop computer and predictions from a fully trained net-
work require only a fraction of a second. Thus, our trained net-
work offers fast and accurate predictions of molecular ioniza-
tion cross sections. We have also made the algorithm available
open access so that other researchers may use it for molecular
targets beyond those we have examined.
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It is possible that further improvements to the algorithm
could be made by changing the network structure, using a
different ML technique, including additional input paramet-
ers such as more ionization energies or polarizability, expand-
ing the applicable energy range, or increasing the possible
constituent atoms. However, these investigations are left to
future studies. The success demonstrated by the current model
provides additional evidence to a growing body of work that
demonstrates the value of ML models for estimating colli-
sion cross sections. These techniques will hopefully continue
to provide a quick and accurate source of approximate cross
section data for use in many applications.
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[3] Jevremović Det al 2009 The project of Serbian Virtual
Observatory and data for stellar atmosphere modeling New
Astron. Rev. 53 222–6

[4] Dubernet M L et al 2016 The virtual atomic and molecular
data centre (VAMDC) consortium J. Phys. B: At. Mol. Opt.
Phys. 49 074003

[5] Schneider B I 2020 Science gateway for atomic and molecular
Physics (arXiv:2001.02286)

[6] Guest D, Cranmer K and Whiteson D 2018 Deep learning and
its application to LHC physics Annu. Rev. Nucl. Part. Sci.
68 161

[7] Radovic A, Williams M, Rousseau D, Kagan M, Bonacorsi D,
Himmel A, Aurisano A, Terao K and Wongjirad T 2018
Machine learning at the energy and intensity frontiers of
particle physics Nature 560 7716

[8] Carleo G and Troyer M 2017 Solving the quantum many-body
problem with artificial neural networks Science 355 602

[9] Dunjko V and Briegel H J 2018 Machine learning & artificial
intelligence in the quantum domain: a review of recent
progress Rep. Prog. Phys. 81 074001

[10] Butler K T, Davies D W, Cartwright H, Isayev O and Walsh A
2018 Machine learning for molecular and materials science
Nature 559 7715

[11] Salah Yaseen El-Bakry and Mahmoud Yaseen El-Bakry 2004
Neural network representation for electron and positron
collisions with sodium and potassium atoms Indian J. Phys.
78 1313

[12] Harris A L and Darsey J A 2013 Applications of artificial
neural networks to proton-impact ionization double
differential cross sections Eur. Phys. J. D 67 130

[13] El-Bakry S Y, El-Dahshan E-S and El-Bakry M Y 2011 Total
cross section prediction of the collisions of positrons and
electrons with alkali atoms using gradient tree boosting
Indian J. Phys. 85 1405

[14] Zhong L 2019 Fast prediction of electron-impact ionization
cross sections of large molecules via machine learning J.
Appl. Phys. 125 183302

[15] Amaral P H R and Mohallem J R 2020 Machine-learning
predictions of positron binding to molecules Phys. Rev. A
102 052808

[16] Jasinski A, Montaner J, Forrey R C, Yang B H, Stancil P C,
Balakrishnan N, Dai J, Vargas-Hernández R A and
Krems R V 2020 Machine learning corrected quantum
dynamics calculations Phys. Rev. Res. 2 032051

[17] Jetly V and Chaudhury B 2021 Extracting electron scattering
cross sections from swarm data using deep neural networks
Mach. Learn.: Sci. Technol. 2 035025

[18] Stokes P W, White R D, Campbell L and Brunger M J 2021
Toward a complete and comprehensive cross section
database for electron scattering from no using machine
learning J. Chem. Phys. 155 084305

[19] Stokes P W, Cocks D G, Brunger M J and White R D 2020
Determining cross sections from transport coefficients
using deep neural networks Plasma Sources Sci. Technol.
29 055009

[20] Harris A L and Nepomuceno J 2023 Predict Molecular Cross
Sections (Pmx.Nb) (https://doi.org/10.6084/m9.figshare.
24082035)

[21] Fausett L 1994 Fundamentals of Neural Networks:
Architectures, Algorithms, and Applications (Prentice Hall,
Englewood Cliffs)

[22] Wolfram Research, Inc. Version 12.1 2022 (Wolfram
Research, Inc.) Mathematica

[23] Lias S G , Bartmess J E , Liebman J F , Holmes J L ,
Levin R D and Gary W Mallard in NIST Chemistry
WebBook NIST Standard Reference Database Number 69,
ed P J Linstrom and W G Mallard (National Institute of
Standards and Technology) (https://doi.org/10.18434/
T4D303) (Accessed 18 August 2023)

[24] Bull J N and Harland P W 2008 Absolute electron impact
ionization cross-sections and polarisability volumes for C2
to C4 aldehydes, C4 and C6 symmetric ethers and C3 to C6
ketones Int. J. Mass Spectrom. 273 53

[25] Rapp D and Englander-Golden P 1965 Total cross sections for
ionization and attachment in gases by electron impact. I.
positive ionization J. Chem. Phys. 43 1464

[26] Nixon K L, Pires W A D, Neves R F C, Duque H V,
Jones D B, Brunger M J and Lopes M C A 2016 Electron
impact ionisation and fragmentation of methanol and
ethanol Int. J. Mass Spectrom. 404 48

[27] Terrissol M, Bordage M C, Caudrelier V and Segur P 1989
Cross-sections for 0.025 eV-1 keV electrons and 10 eV-1
keV photons Atomic and Molecular Data for Radiotherapy
(IAEA-TECDOC-506) (IAEA) p 218

[28] Jiao C Q, DeJoseph C A, Lee R and Garscadden A 2006
Kinetics of electron impact ionization and ion-
molecule reactions of pyridine Int. J. Mass Spectrom.
257 34

[29] Linert I, Dampc M, Mielewska B and Zubek M 2012 Cross
sections for ionization and ionic fragmentation of
pyrimidine molecules by electron collisions Eur. Phys. J. D
66 20

13

https://orcid.org/0000-0003-2689-982X
https://orcid.org/0000-0003-2689-982X
https://srdata.nist.gov/srd64/
https://doi.org/10.1016/j.newar.2009.09.002
https://doi.org/10.1016/j.newar.2009.09.002
https://doi.org/10.1088/0953-4075/49/7/074003
https://doi.org/10.1088/0953-4075/49/7/074003
https://arxiv.org/abs/2001.02286
https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1038/s41586-018-0361-2
https://doi.org/10.1038/s41586-018-0361-2
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1088/1361-6633/aab406
https://doi.org/10.1088/1361-6633/aab406
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1140/epjd/e2013-40111-9
https://doi.org/10.1140/epjd/e2013-40111-9
https://doi.org/10.1007/s12648-011-0162-z
https://doi.org/10.1007/s12648-011-0162-z
https://doi.org/10.1063/1.5094500
https://doi.org/10.1063/1.5094500
https://doi.org/10.1103/PhysRevA.102.052808
https://doi.org/10.1103/PhysRevA.102.052808
https://doi.org/10.1103/PhysRevResearch.2.032051
https://doi.org/10.1103/PhysRevResearch.2.032051
https://doi.org/10.1088/2632-2153/abf15a
https://doi.org/10.1088/2632-2153/abf15a
https://doi.org/10.1063/5.0064376
https://doi.org/10.1063/5.0064376
https://doi.org/10.1088/1361-6595/ab85b6
https://doi.org/10.1088/1361-6595/ab85b6
https://doi.org/10.6084/m9.figshare.24082035
https://doi.org/10.6084/m9.figshare.24082035
https://doi.org/10.18434/T4D303
https://doi.org/10.18434/T4D303
https://doi.org/10.1016/j.ijms.2008.03.003
https://doi.org/10.1016/j.ijms.2008.03.003
https://doi.org/10.1063/1.1696957
https://doi.org/10.1063/1.1696957
https://doi.org/10.1016/j.ijms.2016.05.006
https://doi.org/10.1016/j.ijms.2016.05.006
https://doi.org/10.1016/j.ijms.2006.06.007
https://doi.org/10.1016/j.ijms.2006.06.007
https://doi.org/10.1140/epjd/e2011-20648-3
https://doi.org/10.1140/epjd/e2011-20648-3


J. Phys. B: At. Mol. Opt. Phys. 57 (2024) 025201 A L Harris and J Nepomuceno

[30] Jiao C Q, DeJoseph C A and Garscadden A 2007 Electron
impact ionization and ion reactions in N-Butane J. Phys. D:
Appl. Phys. 40 409

[31] Hwang W, Kim Y-K and Rudd M E 1996 New model for
electron-impact ionization cross sections of molecules J.
Chem. Phys. 104 2956

[32] Rahman M A and Krishnakumar E 2016 Communication:
electron ionization of DNA bases J. Chem. Phys.
144 161102

[33] Minaev B F, Shafranyosh M I, Svida Y Y, Sukhoviya M I,
Shafranyosh I I, Baryshnikov G V and Minaeva V A 2014
Fragmentation of the adenine and guanine molecules
induced by electron collisions J. Chem. Phys. 140 175101

[34] van der Burgt P J M 2014 Electron impact fragmentation of
cytosine: partial ionization cross sections for positive
fragments Eur. Phys. J. D 68 135

[35] van der Burgt P J M, Mahon F, Barrett G and Gradziel M L
2014 Electron impact fragmentation of thymine: partial

ionization cross sections for positive fragments Eur. Phys. J.
D 68 151

[36] Champion C, Lekadir H, Galassi M E, Fojón O, Rivarola R D
and Hanssen J 2010 Theoretical predictions for ionization
cross sections of DNA nucleobases impacted by light ions
Phys. Med. Biol. 55 6053

[37] Blanco F and Garcı́a G 2003 Screening corrections for
calculation of electron scattering from polyatomic
molecules Phys. Lett. A 317 458

[38] Lüdde H J, Achenbach A, Kalkbrenner T, Jankowiak H-C
and Kirchner T 2016 An independent-atom-
model description of ion-molecule collisions including
geometric screening corrections Eur. Phys. J. D
70 82

[39] Kim Y-K, Hwang W, Weinberger N M, Ali M A and
Rudd M E 1997 Electron-impact ionization cross
sections of atmospheric molecules J. Chem. Phys.
106 1026

14

https://doi.org/10.1088/0022-3727/40/2/018
https://doi.org/10.1088/0022-3727/40/2/018
https://doi.org/10.1063/1.471116
https://doi.org/10.1063/1.471116
https://doi.org/10.1063/1.4948412
https://doi.org/10.1063/1.4948412
https://doi.org/10.1063/1.4871881
https://doi.org/10.1063/1.4871881
https://doi.org/10.1140/epjd/e2014-40818-y
https://doi.org/10.1140/epjd/e2014-40818-y
https://doi.org/10.1140/epjd/e2014-40699-0
https://doi.org/10.1140/epjd/e2014-40699-0
https://doi.org/10.1088/0031-9155/55/20/002
https://doi.org/10.1088/0031-9155/55/20/002
https://doi.org/10.1016/j.physleta.2003.09.016
https://doi.org/10.1016/j.physleta.2003.09.016
https://doi.org/10.1140/epjd/e2016-70097-5
https://doi.org/10.1140/epjd/e2016-70097-5
https://doi.org/10.1063/1.473186
https://doi.org/10.1063/1.473186

	A Data-Driven Machine Learning Approach for Electron-Molecule Ionization Cross Sections
	Recommended Citation

	A data-driven machine learning approach for electron-molecule ionization cross sections
	1. Introduction
	2. Methods
	2.1. Training data
	2.2. Creating the network
	2.3. Training the ML model
	2.4. Predictions

	3. Results
	4. Conclusions
	References


