JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY ADVANCES

Association between Plasma and Milk Urea on the Insemination Day and Pregnancy Rate in Early Lactation Dairy Cows

Chaveiro A., Andrade M., Borba A. E.S. and Moreira da Silva F.

J Phys Pharm Adv 2011, 1(1): 9-14

Online version is available on: www.grjournals.com

Association between Plasma and Milk Urea on the Insemination Day and Pregnancy Rate in Early Lactation Dairy Cows

^{1,2}Chaveiro A., ¹Andrade M., ^{1,2}Borba A. E.S. and ^{1*1,2}Moreira da Silva F.

¹Animal Reproduction, Department of Agrarian Sciences, University of the Azores, 9701- 851 Angra do Heroísmo, Portugal. ²CITA-A, University of the Azores, 9701- 851 Angra do Heroísmo, Portugal.

Abstract

Lactating dairy cows (n=177) feed with grass and corn silage *ad libitum* kept in pasture, were randomly assigned to evaluate how urea nitrogen in plasma and milk can be related to their pregnancy rate. Blood and milk samples were collected on the artificial insemination (AI) day to evaluate plasma urea nitrogen (PUN) and milk urea nitrogen (MUN) as well as progesterone levels, excluding cows with progesterone higher than 0.5 ng/ml. Cows were considered pregnant if six weeks after artificial insemination, they did not return to estrus. Concentrations of PUN or MUN greater than the average (16 mg/dl) were associated with decreased pregnancy rates (13% and 14%, respectively) (p< 0.05) as compared to the cows with urea levels less than this value on the insemination day. As PUN and MUN increased to greater than 16 mg/dl, the likelihood ratio for pregnancy decreased. There was a high correlation between PUN and MUN concentrations ($r^2 = 0.97$, $p \le 0.001$). The results of this study indicate that an increase in PUN or MUN can exert direct or indirect effects in reproduction, impairing the conception of grazing dairy cows.

Key words: Dairy cattle; pregnancy rate; milk urea nitrogen; plasma urea nitrogen

Corresponding author: jsilva@uac.pt Received on: 11 Nov 2011 Revised on: 20 Nov 2011 Accepted on: 22 Nov 2011 Online Published on: 1 Dec 2011 **9** J. Phys. Pharm. Adv., 2011, 1(1): 9-14

Introduction

Over the last decades, declining fertility among dairy cows has been associated with nutritional strategies to increase milk production. Many studies (Blanchard et al., 1990; Canfield et al., 1990; Elrod and Butler, 1993; Ferguson et al., 1993; Butler et al., 1996), but not all (Howard et al., 1987; Carrol et al., 1988; Barton et al., 1996) have concluded that feeding dairy cows large amounts of degradable protein, in excess of requirements, increases blood urea which can reduce pregnancy rates per insemination. Besides the mechanism by which feeding large amounts of protein affects fertility is not completely known, De Wit et al. (2001) speculated that high concentrations of urea associated with excess feeding of crude protein can disrupt oocyte growth or maturation, fertilization or the further development. Feeding large amounts of protein can also alter the uterine environment by reducing concentrations of magnesium, potassium and phosphorus in uterine secretions (Jordan et al., 1983) and by reducing uterine pH (Elrod and Butler, 1993).

A review published by Ferguson and Chalupa (1989) on protein intake and reproduction in dairy cows has been useful in identifying several mechanisms that underlie the discrepancies in effects on reproductive performance observed among various studies such dietary protein fractions (rumen-degradable protein, RDP and rumen undegradable protein, RUP). Excess RDP may exacerbate negative energy balance during early lactation and, thereby, reduce fertility levels. In relating dietary protein degradability to fertility, Ferguson et al. (1988) and Ferguson et al. (1993) that blood urea nitrogen (BUN) reported concentrations exceeding 20 mg/dl were associated with reduced conception rates in lactating cows. Overall, Ocon and Hansen (2003) showed that the proportion of oocytes that developed to blastocysts was reduced by the addition of 21 mg/dl of urea to maturation conditions.

As in the Azores islands, Portugal, the humidity during whole year is very high (on average 77%) and cows are mostly fed with fresh grass, the amount of nitrogen used to fertilize grasses is always very high. Studies previously developed by Borba (1992) showed that in some periods of the year the amount of nitrogen used to fertilize grass in the region is too high which in some situations can even be the responsible of cattle mortality.

The aim of the present study was to evaluate the correlation between PUN and MUN concentrations immediately after artificial insemination (AI) and the pregnancy rates at first breeding in a commercial dairy herd of Holstein-Friesian cows in the Azores, fed mainly with fresh grass.

Material and Methods

A total of 177 lactating Holstein-Friesian dairy cows were used in the present experiment. On the day of AI, blood samples were taken from the coccygeal vein into heparinised and evacuated tubes for latter analysis of urea and progesterone, also milk samples were taken for sterility cups at the same time. Blood samples for progesterone analysis were centrifuged at 1,200 x g for 15 min. and plasma aliquots were frozen at -20°C until analysis. Milk samples were centrifuged at 1,120 x g for 20 min. The fat layer was aspirated and aliquots of supernatant were frozen at -20°C until time of analysis.

Plasma and milk concentration of urea were determined using an autoanalizer (Cobas Integra; Roche Diagnostics, Rotkreuz, Switzerland) as previously was described by Kenny *et al.* (2002) .The method was based on two reactions: first, the hydrolysis of urea with urease and second, the reaction of the resulting ammonia with 2-oxoglutarate in the presence of glutamate dehydrogenase and NADH to form L-glutamayte and NAD⁺. The amount of NADH oxidized is considered directly proportional to the amount of urea present.

Progesterone levels on the day of AI was determined using an automated quantitative test (VIDAS instruments, BioMérieux, France), by means of the ELFA technique (Enzyme Linked Fluorescent Assay), as previously was described by Sauer *et al.* (1986). Cows were considered pregnant if six weeks after AI, they did not return to estrus.

To relate pregnancy result to PUN and MUN, chi-square analysis (SPSS 14.0 Chicago, Illinois, USA) was used to analyse pregnancy rates for dairy cows with PUN and MUN concentrations greater than and less than the mean of the sample population. To discriminate the relationship between PUN/MUN and fertility rate of a cow data were categorized into incremental ranges (3 mg/dl) for calculation of pregnancy rate likelihood ratios (Ferguson et al., 1993). The likelihood ratio is expressed as the probability of finding in a PUN/MUN group a cow which is pregnant divided by the probability of finding in the same PUN/MUN group a cow which is not pregnant. Mean concentrations of MUN/PUN at AI for pregnant and non pregnant dairy cows were compared with Student's t-test. Cows which progesterone levels were higher than 0.5 ng/ml were not considered.

Results and Discussion

The average PUN concentrations in lactating cows (n=177) was of 15.7 ± 0.35 mg/dl on the day of AI. The pregnancy rate of cows with PUN concentrations greater than the average was less than that for cows with PUN less than the mean (13% different, p<0.05, Figure 1). The relationship between PUN and pregnancy rate was discriminated further with likelihood ratio test based on increments of 3 mg/dl of PUN (Table 1). As PUN increased to greater than 16 mg/dl, the likelihood ratio for pregnancy decreased.

The average MUN concentrations in lactating cows (n=170) was of $15.8 \pm 0.31 \text{ mg/dl}$ (n = 170) on the day of AI. For cows later determined to be pregnant (n=127) and non pregnant (n= 43), MUN concentrations were different (p<0.05, 15.4 ± 0.34 and $16.9 \pm 0.76 \text{ mg/dl}$, respectively). The overall relationship between MUN and pregnancy rate was discriminated using likelihood ratio test based on increments of 3 mg/dl of MUN (Table 2). As MUN increased to greater than 16 mg/dl pregnancy decreased clearly and likewise to the results for PUN. The pregnancy rate of cows with MUN concentrations higher than 16 mg/dl was lower (14% difference, p<0.05) than in cows with less MUN (Figure 2).

High dietary protein intake resulting in high concentrations of urea nitrogen in plasma and milk has been associated with decrease fertility in dairy cattle (Jordan and Swanson, 1979; Kaim *et al.*, 1983; Blanchard *et al.*, 1990; Canfield *et al.*, 1990; Ferguson *et al.*, 1993; Butler *et al.*, 1996).

In the present work, PUN concentrations greater than 16 mg/dl were associated with a decrease of pregnancy rate. The PUN and MUN concentrations measured in the same cows (n=164) were not different and were significantly (p<0.001; r^2 = 0.97) correlated (16.1 ± 0.3 and 15.8 ± 0.3) mg/dl, respectively). The equation describing the relationship between MUN (y) and PUN (x) was: y $= 0.76 (x)^{1} + 6.3$; r² = 0.98, showing that milk is a well-liked target for urea analysis. Our results are in agreement with those previously published by Oltner and Wiktorsson (1983) in which using only 8 cows and sampling blood 3 hours after feeding reported a correlation of 0.98. Nevertheless, our results are substantially higher than those obtained by Roseler et al. (1993) when they characterized the relationship of MUN to PUN using 15 cows sampled for PUN 4 hours after feeding obtaining a $r^2=0.79$ for PUN and MUN. Using data from 35 trials involving 482 cows fed 106 diets over a 15year period, Broderick and Clayton (1997) reported a relationship between PUN and MUN of $(r^2 =$ 0.84). Differences between r^2 can be explained by the time which milk and blood was sampled after feeding. As known significant feed intakes influence urea patterns in body fluids (Gustafsson and Palmquist, 1993, Geerts et al., 2004; Duinkerken et al., 2005)

The observed decrease in fertility may be a consequence of toxic effects of urea on the oocyte or the early embryo (Ferguson and Chalupa, 1989). The precise mechanisms are however unknown. However, it is known that stress due to exposure of preimplantation embryos to excess ammonium may also occur in vivo, particularly in domestic ruminants. This occurs when animals consume excess rapidly degradable nitrogen in the absence of readily fermentable carbohydrate (e.g. as found in spring pasture) or when feed is supplemented with excess urea (McEvoy et al., 1997). Urea is hydrolysed by the urease activity of rumen microorganisms, resulting in the production of ammonium (McDonald et al., 1995). In this case, the rumen microflora cannot maximise microbial protein synthesis from dietary nitrogen, urea or ammonium.

ASSOCIATION BETWEEN PLASMA AND MILK UREA ON THE INSEMINATION DAY AND ...

PUN	Cows,	PR	
(mg/dl)	(n)	(%)	Likelihood ratio ^a
 < 16	100	82	1.08
16 - 18.9	34	75	0.92
19 - 21.9	26	65	0.45
22 - 24.9	12	58	0.33
≥ 25	5	24	0.16

Table 1: Pregnancy rate (PR) likelihood ratios for dairy cows (n=177) categorized by plasma urea nitrogen (PUN) concentration on the day of AI (n=177)

^aPercentage of cows pregnant divided by the percentage of cows not pregnant

Table 2: Pregnancy rate (PR) likelihood ratios for dairy cows (n=170) categorized by milk urea nitrogen (MUN) concentration on the day of artificial insemination (AI)

MUN	Cows	PR	
(mg/dl)	n	(%)	Likelihood ratio ^a
< 16	94	81	1.02
16 - 18.9	40	72	0.64
19 - 21.9	24	67	0.48
22 - 24.9	8	50	0.24
≥ 25	4	50	0.24

^aPercentage of cows pregnant divided by the percentage of cows not pregnant

Fig. 1: The relationship of plasma urea nitrogen (PUN) to pregnancy rate at artificial insemination (AI) in lactating cows (n=177). Pregnancy rate was significantly reduced (p<0.05) in cows with PUN \geq 16 mg/dl. The number of pregnant cows is indicated within each category.

Furthermore, dietary protein may also be deaminated and used as a microbial energy source, thereby, releasing even larger amounts of ammonium into the circulation and increasing the risk of toxicity before it is converted to urea and removed by the kidneys (Papadopoulos *et al.*,

Fig. 2: The relationship of milk urea nitrogen (MUN) to pregnancy rate at artificial insemination (AI) in lactating cows (n=170). Pregnancy rate was significantly reduced (p<0.05) in cows with MUN \geq 16 mg/dl. The number of pregnant cows is indicated within each category.

2001). Effects on fertility are particularly evident when such dietary changes are implemented around the time of mating or insemination (Dawuda *et al.*, 2002). Despite having no effect on ovulation rate (Fahey *et al.*, 2001), elevated systemic urea adversely affects oocytes and/or the follicular

environment, and leads to reduced embryo development and quality in terms of disrupted blastocyst metabolism, possibly through alterations in reproductive tract pH (McEvoy et al., 1997; Hammon et al., 2000; Papadopoulos et al., 2001). This may affect embryos in the long-term through reprogramming during the earliest stages of embryo development (McEvoy et al., 1997; Kwong et al., 2000). The mechanism by which early embryos dispose of ammonium has been little investigated. Partridge and Leese (1996) and Donnay et al. (1999) suggested that pyruvate, after transamination to alanine, may potentially be used as an ammonium sink, thereby preventing the build-up of ammonium ions in the culture medium. Some authors (Jordan et al., 1983; Elrod and Butler, 1993; Rhoads et al., 2004; Rhoads et al., 2006) purposed that greatest changes in the uterine environment occur during the mid-luteal phase, a critical period for early embryo development that ultimately determines long-term embryo survival. In addition, PUN levels appear to influence ovarian follicular development and ovulation, oocyte quality and fertilization, embryo transport and development; maternal recognition of pregnancy (Blanchard et al., 1990). Moreover, some toxic effect related to protein metabolism may interfere at one or more steps to impair fertility. An imbalance in the protein/energy relationship can also lead to a negative energy balance reducing by this way the fertility (Elrod and Butler, 1993; Butler et al., 1996)

Conclusion

The results of the present study demonstrated that urea nitrogen concentrations greater than 16 mg/dl in plasma or milk are associated with decreased pregnancy rate in grazing dairy cattle. Therefore, it may be advantageous to milk producers to monitor urea concentrations in their herds in efforts to maintain or improve reproductive efficiency.

References

- Barton BA, Rosario HA, Anderson GW, Grindle BP, Carroll DJ. 1996. Effects of dietary crude protein, breed, parity, and health status on the fertility of dairy cows. J. Dairy Sci., 79: 2225-2236.
- Blanchard T, Ferguson J, Love L, Takeda T, Henderson B, Hasler J, Chalupa W. 1990. Effect of dietary crude-protein

type on fertilization and embryo quality in dairy cattle. Am. J. Vet. Res., 51: 905-908.

- Borba A 1992. Estudo do valor nutritivo e da qualidade da proteína de algumas forragens açorianas. Department of Agrarian Sciences. Angra do Heroísmo: University of the Azores., 455pp.
- Broderick GA, Clayton MK. 1997. A statistical evaluation of animal and nutritional factors influencing concentrations of milk urea nitrogen. J. Dairy Sci., 80: 2964-2971.
- Butler WR, Calaman JJ, Beam SW. 1996. Plasma and milk urea nitrogen in relation to pregnancy rate in lactating dairy cattle. J. Anim Sci., 74: 858-865.
- Canfield RW, Sniffen CJ, Butler WR. 1990. Effects of excess degradable protein on postpartum reproduction and energy balance in dairy cattle. J. Dairy Sci., 73: 2342.
- Carrol DJ, Barton BA, Anderson GW, Smith RD. 1988. Influence of protein intake and feeding strategy on reproductive performance of dairy cows. J. Dairy Sci., 71: 3470.
- Dawuda PM, Scaramuzzi RJ, Leese HJ, Hall CJ, Peters AR, Drew SB, Wathes DC. 2002. Effect of timing of urea feeding on the yield and quality of embryos in lactating dairy cows. Theriog., 58: 1443-1455.
- De Wit AA, Cesar ML, Kruip TA. 2001. Effect of urea during in vitro maturation on nuclear maturation and embryo development of bovine cumulus-oocyte-complexes. J. Dairy Sci., 84: 1800-1804.
- Donnay I, Partridge RJ, Leese HJ. 1999. Can embryo metabolism be used for selecting bovine embryos before transfer? Reprod. Nutr. Dev., 39: 523-533.
- Duinkerken G, André G, Smits MCJ, Monteny GJ, Šebek LBJ. 2005. Effect of rumen-degradable protein balance and forage type on bulk milk urea concentration and emission of ammonia from dairy cow houses. J. Dairy Sci., 88: 1099-1112.
- Elrod CC, Butler WR. 1993. Reduction of fertility and alteration of uterine pH in heifers fed excess ruminally degradable protein. J. Anim. Sci., 71: 694-701.
- Fahey J, Boland MP, Callaghan DO. 2001. The effects of dietary urea on embryo development in superovulated donor ewes and on early embryo survival and development in recipient ewes. J. Anim. Sci., 72: 395-400.
- Ferguson JD, Blanchard T, Galligan DT, Hoshall DC, Chalupa W. 1988. Infertility in dairy cattle fed a high percentage of protein degradable in the rumen. J. Amer. Vet. Med. Assoc., 192: 659-662.
- Ferguson JD, Chalupa W. 1989. Impact of protein nutrition on reproduction in dairy cows. J. Dairy Sci., 72: 746-766.
- Ferguson JD, Galligan DT, Blanchard T, Reeves M. 1993. Serum urea nitrogen and conception rate: the usefulness of test information. J. Dairy Sci., 76: 3742-3746.
- Geerts NE, De Brabander DL, Vanacker JM, De Boever JL, Botterman SM. 2004. Milk urea concentration as affected by complete diet feeding and protein balance in the rumen of dairy cattle. Livest. Prod. Sci., 85: 263-273.
- Gustafsson AH, Palmquist DL. 1993. Diurnal variation of rumen ammonia, serum urea, and milk urea in dairy cows at high and low yields. J. Dairy Sci., 76: 475-484.

- Hammon HM, Zanker IA, Blum JW. 2000. Delayed colostrum feeding affects IGF-I and insulin plasma concentrations in neonatal calves. J. Dairy Sci., 83: 85-92.
- Howard HJ, Aalseth EP, Adams GD, Bush LJ, McNew RW, Dawson LJ. 1987. Influence of dietary protein on reproductive performance of dairy cows. J. Dairy Sci., 70: 1563-1571.
- Jordan ER, Swanson LV. 1979. Effect of crude protein on reproductive efficiency, serum total protein, and albumin in the high-producing dairy cows. J. Dairy Sci., 62, 58.
- Jordan ER, Chapman TE, Holtan DW, Swanson LV. 1983. Relationship of dietary crude protein to composition of uterine secretions and blood in high-producing postpartum dairy cows. J. Dairy Sci., 66: 1854-1862.
- Kaim M, Folman Y, Neumark H, Kaufmann W. 1983. The effect of protein intake and lactation number on postpartum body weight loss and reproductive performance of dairy cows. Anim. Prod., 37: 229-235.
- Kenny DA, Humpherson PG, Leese HJ, Morris DG, Tomos AD, Diskin MG, Sreenan JM. 2002. Effect of elevated systemic concentrations of ammonia and urea on the metabolite and ionic composition of oviductal fluid in cattle. Biol. Reprod., 66: 1797-1804.
- Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP. 2000. Maternal under nutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Reprod. Nutr. Dev., 127: 4195-4202.
- Rhoads ML., Gilbert RO, Lucy MC, Butler WR. 2004. Effects of urea infusion on the uterine luminal environment of dairy cows, J. Dairy Sci., 87: 2896–2901.
- Rhoads ML, Rhoads RP, Gilbert RO, Toole R, Butler WR. 2006. Detrimental effects of high plasma urea nitrogen levels on viability of embryos from lactating dairy cows. Anim. Reprod. Sci., 91: 1-10.
- McDonald P, Edwards RA, Greenhalgh JFD, Morgan CA. 1995. Protein concentrates, 5th ed. Longman Scientific & Technical, New York.
- McEvoy TG, Robinson JJ, Aitken RP, Findlay PA, Robertson IS. 1997. Dietary excesses of urea influence the viability and metabolism of preimplantation sheep embryos and may affect fetal growth among survivors. Anim. Reprod. Sci., 47: 71-90.
- Ocon OM, Hansen PJ. 2003. Disruption of bovine oocytes and preimplantation embryos by urea and acidic pH. J. Dairy Sci., 86: 1194-1200.
- Oltner R, Wiktorsson H. 1983. Urea concentration in milk and blood as influenced by feeding varying amounts of protein and energy to dairy cows. Livest. Prod. Sci., 10: 457-467.
- Papadopoulos S, Lonergan P, Gath V, Quinn KM, Evans AC, O'Callaghan D, Bolan MP. 2001. Effect of diet quantity and urea supplementation on oocyte and embryo quality in sheep. Theriog., 55: 1059-1069.
- Partridge RJ, Leese HJ. 1996. Consumption of amino acids by bovine preimplantation embryos. Reprod. Fert. Dev., 8: 945-950.
- Roseler DK, Fergunson JD, Sniffen CJ, Herrema J. 1993. Dietary protein degradability effects on plasma and milk

urea nitrogen and milk nonprotein nitrogen in Holstein cows. J. Dairy Sci., 76: 525-534.

Sauer MJ, Foulkes JA, Worsfold A, Morris BA. 1986. Use of progesterone 11-glucuronide-alkaline phosphatase conjugate in a sensitive microtitre-plate enzymeimmunoassay of progesterone in milk and its application to pregnancy testing in dairy cattle. J. Reprod. Fert., 76: 375-391.