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a b s t r a c t

During summer 2008 and spring 2009, surface oceanographic surveys were carried out around three
islands of the Azores archipelago (Terceira, São Miguel and Santa Maria) to assess the phytoplankton
distribution and associated physico-chemical processes. The Azores archipelago is a major feature in the
biogeochemical North Atlantic Subtropical Gyre (NAST) province although its influence on the produc-
tivity of the surrounding ocean is poorly known. Surface phytoplankton was studied by microscopy and
HPLC (High Precision Liquid Chromatography). The mean values for biomass proxy Chlorophyll a (Chla)
ranged from 0.04 to 0.55 mg L�1 (Chla maximum ¼ 0.86 mg L�1) and coccolithophores were the most
abundant group, followed by small flagellates, Cyanobacteria, diatoms and dinoflagellates being the least
abundant group. The distribution of phytoplankton and coccolithophore species in particular presented
seasonal differences and was consistent with the nearshore influence of warm subtropical waters from
the south Azores current and colder subpolar waters from the north. The satellite-derived circulation
patterns showed southward cold water intrusions off Terceira and northward warm water intrusions off
Santa Maria. The warmer waters signal was confirmed by the subtropical coccolithophore assemblage,
being Discosphaera tubifera a constant presence under these conditions. The regions of enhanced bio-
mass, either resulting from northern cooler waters or from island induced processes, were characterized
by the presence of Emiliania huxleyi. Diatoms and dinoflagellates indicated coastal and regional processes
of nutrient enrichment and areas of physical stability, respectively.

� 2013 Elsevier Ltd. All rights reserved.
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1. Introduction

The Azores archipelago (36�e390 N, 25�e310 W) consists of nine
volcanic islands forming three groups (western, central and east-
ern) located within the North Atlantic Subtropical Gyre bio-
geochemical province (NAST; Longhurst et al., 1995). The
archipelago lies in a transition zone between the North Atlantic
Current (NAC) to the northwest, the Azores Current (AC), a jet-like
current, ca.34� N, to the south, and a region of weak circulation to
the northeast (Juliano and Alves, 2007). Related to the main jet of
the Azores Current there is an important thermohaline front, sep-
arating fresher and colder waters to the north and warmer and
saltier water masses to the south (Gould, 1985). The islands are not
in the direct eastward path of the main jet, but are affected by the
recirculation patterns and eddies that originate from its
, adsilva@fc.ul.pt (A. Silva).

All rights reserved.
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meandering. Due to convergent southward and northward flows
from the NAC and AC, respectively, strong thermal gradients are
typical of the region (Lafon et al., 2004). Topographically-induced
turbulence significantly modifies the physical and biological con-
ditions adjacent to islands, which often result in higher marine
productivity (Bakker et al., 2007; Hasegawa et al., 2008). In the
NAST province, wintertime mixing provides the seasonal replen-
ishment of nutrients to the euphotic zone while in spring, thermal
stratification favours phytoplankton growth, which progressively
leads to surface nutrient depletion by late summer. In the North
Atlantic, blooms and seasonal mass flux of coccolithophores are
known to occur (Holligan et al., 1993; Broerse et al., 2000; Sprengel
et al., 2000) and most of the annual production takes place during
spring (Schiebel et al., 2011).

Coccolithophores are a calcareous nannoplanktonic group
which widespread distribution in the ocean, range from oligo-
trophic subtropical gyres to temperate and high latitude eutrophic
regimes.
s as indicators of surface oceanographic conditions in the vicinity of
org/10.1016/j.ecss.2012.12.010
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The importance and motivation for studying coccolithophore
dynamics, is that according to particular environmental conditions
characteristic assemblages are found,which can be distinguished by
their coccolith types and coccosphere morphology. As the group is
known to be driven by oceanographic changes, reflecting on a fine
scale, ecological patterns, and may be sensitive to climate change
and ocean acidification (Broerse et al., 2000; Tortell et al., 2002; Rost
et al., 2003; Smyth et al., 2004; Andruleit, 2007; Silva et al., 2008;
Tyrrell, 2008) it is always relevant to gather ecological information
on individual species to determine which are capable of providing
key significant responses. In this sense, Emiliania huxleyi is probably
one of the best-studied phytoplankton species that is of relevance in
the ocean. It is the most predominant coccolithophore and blooms
have been reported from different settings of the North Atlantic and
Pacific (Beaufort and Heussner, 2001; Beaufort et al., 2008), under
conditions of high turbulence, during an early stage of the phyto-
plankton succession in spring, as well as during calm and stratified
conditions following the spring bloom. i.e., during MayeJuly in the
North Atlantic (Silva et al., 2008, 2009; Schiebel et al., 2011). On the
other hand, inwarmwaters depleted in nitrate and under very high
light intensities, as off Bermuda (N Atlantic) the coccolithophore
assemblage is different and species such asDiscosphaera tubifera are
observed (Haidar and Thierstein, 2001).

The present work is an output of project CAMAG, character-
ization of coastal water masses in the vicinity of the islands of
Terceira (Central group), São Miguel and Santa Maria (Oriental
group). Our aim is to assess the abundance and diversity of the
phytoplankton assemblage and describe the major physical pat-
terns and regional processes by using coccolithophores as in-
dicators of surface oceanographic changes and seasonal variations.
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2. Methods

2.1. Surveyed area and sampling strategy

During summer 2008 (JulyeAugust) and spring 2009 (Maye
June) three surveys were carried out, covering three islands of the
Azores archipelago, Terceira (TER, Central group), São Miguel (SM,
Fig. 1. Location of the Azores archipelago in the NE Atlantic Ocean context. The islands and st
Group) and Santa Maria (SMA, Oriental Group).

Please cite this article in press as: Silva, A., et al., Coccolithophore specie
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Oriental group) and Santa Maria (SMA, Oriental group) (Fig. 1). As
sampling was defined in the context of CAMAG project (related to
the European Water Framework Directive), 44 samples were col-
lected on board a small vessel, using a Niskin bottle to collect the
surface water layer for phytoplankton microscopy observation and
cell counting, pigment analysis and nutrient concentrations. Details
on the water samples processing for the different analysis are
described below. During summer, five stations were sampled
around Terceira (stations 1,4 and 5 in the south; station 3 in the
north and station 2 in the east), eleven around São Miguel (stations
1e5 and station G in the south and stations 6e10 in the north) and
two in Santa Maria (station 1 and 2, in the south and east, respec-
tively). During spring, four additional sites were sampled around
Terceira (stations I1, P1 andP2 in the south and station I2 in the east),
and two both in São Miguel (stations IN in the north and IS in the
south) and Santa Maria (stations I1 and I2 in the south and east,
respectively) (Fig. 3). Most of the stations were near the coast with
40 m depth, some stations were at ca.100 m depths (I1 at Terceira
and IN and IS at São Miguel, I1 and I2 at Santa Maria) and a few at
depths greater than 200 m (G at São Miguel, P1 and P2 at Terceira).

2.2. Physico-chemical parameters

Surface temperature was determined in situ with a Multi-
parameter Water Quality Portable Meter Hanna HI-9828. Water for
nutrient determination was filtered through a 0.45 mm Millipore
filter and stored at �4 �C for subsequent colorimetric analyses with
a Tecator FIAstar� 5000 Analyser. Nitrite (NO�

2 ) plus nitrate (NO�
3 )

were determined according to Grassoff (1976), phosphate (PO3�
4 )

was determined according to Murphy and Riley (1962) and silicate
(Si(OH)4) according to Fanning and Pilson (1973). The detection
limit for seawater analysis was 0.5 mM for silicate, 0.11 mM for
nitrite þ nitrate and 0.1 mM for phosphate.

2.3. Phytoplankton analysis

The phytoplankton assemblage was identified and counted
through microscopy (Section 2.3.1) and photosynthetic pigments
ations sampled are highlighted: Terceira (TER, Central Group), São Miguel (SM, Oriental

s as indicators of surface oceanographic conditions in the vicinity of
org/10.1016/j.ecss.2012.12.010
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Fig. 2. Satellite-derived SST and surface geostrophic currents averaged: a) during the 2008 observation period (1 Julye31 August 2008); and b) during the 2009 observation period
(13 Maye21 June 2009). Stations are represented by crosses. White arrow point to coastal feature. In the lower left corner of each figure is represented a horizontal reference vector
for a current speed of 10 cm/s.
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were biochemically quantified by HPLC (Section 2.3.2). These
complementary methodologies were fundamental to quantita-
tively evaluate and characterize the phytoplankton community, in
particular the smaller size fraction, known to be present in oceanic
waters and normally underestimated by microscopy. A Principal
Component Analysis (Section 2.3.3) was used to statistically high-
light potential groups of species regarding their temporal and
horizontal distribution in all stations around the three islands.

2.3.1. Microscopy analysis
Phytoplankton samples were preserved with hexamethylene-

tetramine buffered formalin to a final concentration of 2%
(Throndsen, 1978). Phytoplankton species were identified and
enumerated in subsamples of 50 ml by the Utermöhl technique
(Hasle, 1978), using a Zeiss IM35 inverted microscope with phase
contrast and bright field illumination. A magnification of 160� and
400 � was used to analyse the phytoplankton assemblage with
Fig. 3. Distribution of Chla (mg L�1) in São Miguel, Santa Maria and Terceira (from

Please cite this article in press as: Silva, A., et al., Coccolithophore specie
Azores islands, Estuarine, Coastal and Shelf Science (2013), http://dx.doi.
a detection limit of 60 cells L�1 and 3000 cells L�1, respectively at
a 95% confidence level (Bollmann et al., 2002). When possible, the
cells were identified to species level according to Hasle and
Syvertsen (1996), Dodge (1982) and Young et al. (2003). A scan-
ning electron microscope (JEOL-5200) was used to complete the
identifications, in particular for the nannoplanktonic coccolitho-
phores (e.g. holococcolithophores). Cells recognized as coccolitho-
phores but that could not be further identified were included in the
category “Undetermined species”. In addition, it was not possible to
identify several small phytoplankton cells, which are designated
hereafter as small flagellates/others.

2.3.2. HPLC pigment analysis
The biomass and composition of phytoplankton were bio-

chemically determined by HPLC, i.e, through the identification and
quantification of various pigments and carotenoids from the dif-
ferent classes of microalgae. Water samples (1.5 L) were filtered
left to right), during summer 2008 (a,b and c) and spring 2009 (d,e and f). Q3
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ontoWhatman GF/F filters (nominal pore size of 0.7 mm and 25mm
diameter), under vacuum pressure lower than 500 mbar. The filters
were immediately frozen and stored at �80 �C. Phytoplankton
pigments were extracted with 3 mL of 95% cold-buffered methanol
(2% ammonium acetate) for 30 min at �20 �C, in the dark. Samples
were sonicated (Bransonic, model 1210, w: 80, Hz: 47) for 1 min at
the beginning of the extraction period. The samples were then
centrifuged at 1100 g for 15 min, at 4 �C. Extracts were filtered
(Fluoropore PTFE filter membranes, 0.2 mm in pore size) and
immediately injected into the HPLC. Pigment extracts were ana-
lysed using a Shimadzu HPLC comprised of a solvent delivery
module (LC-10ADVP) with system controller (SCL-10AVP), a pho-
todiode array (SPD-M10ADVP), and a fluorescence detector (RF-
10AXL). Chromatographic separation was carried out using a C18
column for reverse phase chromatography (Supelcosil; 25 cm long;
4.6 mm in diameter; 5 mm particles) and a 35 min elution pro-
gramme. The solvent gradient followed Kraay et al. (1992) adapted
by Brotas and Plante-Cuny (1996) with a flow rate of 0.6 mL min�1

and an injection volume of 100 mL. The limit of detection (LOD) and
limit of quantification (LOQ) of this method were calculated and
discussed in Mendes et al. (2007). Pigments were identified from
absorbance spectra plus retention times and concentrations cal-
culated from the signals in the photodiode array detector (Ex.
430 nm; Em. 670 nm). Calibration of the HPLC peaks was performed
using commercial standards, namely, chlorophyll a (Chla) and
chlorophyll b from Sigma, chlorophyll c2, chlorophyll c3, peridinin,
fucoxanthin, diadinoxanthin, diatoxanthin, 190-hexanoyloxyfucox-
anthin, neoxanthin, prasinoxanthin, violaxanthin, alloxanthin, 190-
butanoyloxyfucoxanthin and zeaxanthin from DHI (Institute for
Water and Environment, Denmark).

Some pigments are exclusive of specific phytoplankton groups
and can be used as taxonomic indicators (Jeffrey et al., 1997). For
example, 190-Hexanoyloxyfucoxanthin (Hex-fuco) is exclusive of
Prymnesiophytes and was used in this study as an indicator of
coccolitophores. Coccolithophores cell counts were positively cor-
related with Hex-fuco (r2 ¼ 0.369, p < 0.05), but not with fucox-
anthin (also present in coccolithophores). Whereas fucoxanthin
presented a significant correlation with diatoms cell counts
(r2 ¼ 0.535, p < 0.001). Fucoxanthin was therefore used as a proxy
for diatoms. Peridin is exclusive to dinoflagellates and was used as
their marker, however the inverse is not necessarily the case
(Jeffrey et al., 1997). The presence of this group was not always
coincident with peridin concentration meaning that some di-
noflagellates species found lacked this pigment or had the pigment
in concentrations lower than the HPLC detection limit. Alloxanthin
(biomarker for cryptophytes), prasinoxantin (exclusive for prasi-
nophytes), chlorophyll b (present in clorophytes, prasinophytes and
euglenophytes) and 190-Butanoyloxyfucoxanthin (in crysophytes
and prymnesiophytes) were used as a proxy for flagellates while
zeaxanthin (in clorophytes and cyanobacteria) was used as pro-
karyotes indicator. This decision was based on the observation that
Table 1
Average values for temperature (�C) and nutrients (Nitriteþ Nitrate, Silicate and Phospha
S-South and E-east), (�) means not measured.

São Miguel (SM, Oriental group) Santa Maria (SM

Summer 08 Spring 09 Summer 08

N S N S S E

Temperature (oC) 21.9 21.4 18.5 18.3 e e

Nitrites þ Nitrates (mM) e 0.50 1.06 0.88 e e

Silicates (mM) e 12.90 6.83 7.32 e e

Phosphates (mM) 0.24 0.27 0.66 0.58 e e

Number of stations 5 6 6 7 1 1

Please cite this article in press as: Silva, A., et al., Coccolithophore specie
Azores islands, Estuarine, Coastal and Shelf Science (2013), http://dx.doi.
the source of zeaxanthin presented a distinct temporal and spatial
distribution from the other three pigments, being most probably of
cyanobacteria. Unicellular marine cyanobacteria belong mainly to
two genera, Synechococcus and Prochlorococcus, which differ in
the form of chlorophyll a, monovinyl and divinyl, respectively. The
HPLCmethod used does not allow the separation of these pigments
and therefore were treated as a group, prokaryotes.

2.3.3. Principal component analysis
Principal component analysis (PCA; Hair et al., 1998) was con-

ducted in order to identify potential groups of species regarding
their temporal and spatial distribution in all stations around the
three islands of Azores, during summer and spring (after data
standardization and log þ 1 transformation) using Primer 6 soft-
ware (Clarke and Gorley, 2006). The input variables for the PCA
were cell counts, pigment concentrations and stations (separated
by seasons). The analysis was carried out with the species that
occurred at least in 20% of the samples. PCA axis labels (PC1 asso-
ciated with seasonality and PC2 with nutrient availability) derived
from the interpretation of overall results.

2.4. Satellite derived data

Satellite-derived maps of sea surface temperature (SST) and
surface currents were used to investigate oceanographic conditions
in the region. The SSTmaps were obtained from the “North Atlantic
Regional Sea Surface Temperature” (NAR SST) product, provided by
the EUMETSAT’s Ocean and Sea Ice Satellite Application Facility
(OSI-SAF; CMS, 2009). The NAR SST product consists of four daily
SST maps (approximately 02 h, 10 h, 12 h and 20 h UTC) calculated
from the infra-red (IR) channels of the National Oceanic and At-
mospheric Administration/Advanced Very High Resolution Radio-
meter (NOAA/AVHRR) sensors and re-mapped onto a stereopolar
grid at 2 km resolution. Geostrophic velocity fields were derived
from the delayed time ‘‘Up-to-date’’ global gridded product of sea
level anomalies and produced by Ssalto/Duacs at Collecte Local-
ization Satellites (CLS, 2009). This product is generated every 7 days
at 1/3� resolution andwas obtained from the AVISOwebsite (http://
www.aviso.oceanobs.com/en/data.html). The mean maps of SST
and surface currents were computed by averaging all data between
1 July e 31 August 2008 (Fig. 2a) and 13 May e 21 June 2009
(Fig. 2b), which correspond to the first and last day of the summer
and spring observation periods, respectively.

3. Results

3.1. Physico-chemical data

In situ surface temperatures from summer 2008 ranged from 17�

to 18.5 �C, and were on average w3 �C higher than in spring 2009
(>20 �C) (Table 1). The averaged surface circulation denoted the
te, mM), during summer 2008 and spring 2009 surveys, in the three islands (N-north,

A, Oriental group) Terceira (T, Central group)

Spring 09 Summer 08 Spring 09

S E N S E N S E

18.5 18.1 22.6 20.4 22.0 17.6 17.0 17.4
0.63 0.71 0.00 0.00 0.00 0.54 0.94 1.39
6.41 9.90 5.77 6.11 14.48 6.54 11.40 8.92
0.74 0.66 0.21 0.20 0.22 0.94 0.86 0.85
2 2 1 3 1 1 6 2
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influence of the Azores Current on the southernmost islands, and
the analysis of averaged SST maps during the sampling periods
revealed patches of colder waters in the vicinity of the islands, more
visible at the S-SW Terceira (highlighted by a white arrow in
Fig. 2a). The sum of surface nitrate plus nitrite, mostly determined
during spring recorded the higher concentrations in Terceira and
São Miguel (Table 1). Phosphate concentrations, when determined
during both seasons, were higher during spring and around Ter-
ceira. Silicate was always largely available particularly at the S-SE
sides of the islands, being the higher concentrations determined
during summer south of São Miguel and at the east side of Terceira
(Table 1). The spring concentrations of silicate were at least three
times higher than those recorded during summer.

3.2. Phytoplankton assemblage

Phytoplankton biomass, given by its proxy, Chla concentration,
ranged in average between 0.04 mg L�1 at the east side of Santa
Maria, during summer and 0.55 mg L�1 at the eastern stations of
Terceira, during spring, where the maximum was recorded
(0.86 mg L�1 in # 2 at east Terceira, Fig. 3f).

Coccolithophores, diatoms and dinoflagellates were usually the
dominant groups, accounting for 90% of total counted phyto-
plankton (TF) (Fig. 4, Table 2). The highest abundances (cells L�1)
were observed during spring while during summer the number of
species identified was higher. Coccolithophores overall presented
the greatest abundances, reaching a maximum of 93% of total
phytoplankton counted in Santa Maria, during spring and
Fig. 4. Microscopy observations of phytoplankton groups (� 103 cells L�1) in a) São Miguel,
spring 2009]. Note scales are different.

Please cite this article in press as: Silva, A., et al., Coccolithophore specie
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a minimum of 1% in Terceira, during summer, when the assemblage
was dominated by dinoflagellates and small flagellates (Table 2).
Dinoflagellates were most abundant during summer while diatoms
increased during spring.

The analysis of chromatograms identified a total of 16 pigments
(Table 2). Overall, the pigment signatures obtained by HPLC con-
firmed the distinct cell distribution patterns identified by micro-
scopy but revealed also the presence of a prokaryotes-picoplankton
community, unable to be identified by microscopy (Table 2).
Although almost no zeaxantinwas observed in spring, this pigment
had, in average, relatively high concentrations in summer
(0.07 mg L�1), particularly in Terceira and at the southernmost is-
land of Santa Maria (Oriental group), indicating that the pro-
karyotes community could be significant and probably dominant in
this area, during this period, concomitantly with the lowest total-
cell and Chla values (0.04 mg L�1).

The most diversified pigment’s set was found in the northern
stations of São Miguel, during summer, confirming the microscopy
observations of euglenophyceae cells and small flagellates, and
allowing a further resolution within the small flagellates’ assem-
blage. This community seems to be constituted by cryptophytes
(biomarker alloxanthin), prasinophytes, or prasinophytes plus
chlorophytes (as prasinoxanthin, Chlb, violaxanthin and neo-
xanthin were detected), and probably chrysophytes (its presence,
however, cannot be confirmed, as Chlc3, diadinoxanthin, fucox-
anthin and 19’ButFuco, can be present also in other groups iden-
tified by microscopy as coccolitophores and diatoms). The most
abundant carotenoid was fucoxanthin, especially in Terceira
b) Santa Maria and c) Terceira. [N-north, S-south, E-east, S08-summer 2008 and Sp09-
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Table 2
Average values for phytoplankton cell counts by microscopy (� 103 cells L�1), coccolithophore species % in relation to total coccolithophores (TC) and pigments determined
(mg L�1) during summer 2008 and spring 2009 surveys, by geographical location (N-north, S-South and E-east) per island. (�) means not measured.

(� 103 cells L�1) São Miguel (SM, Oriental group) Santa Maria (SMA, Oriental group) Terceira (T, Central group)

Summer 08 Spring 09 Summer 08 Spring 09 Summer 08 Spring 09

N S N S S E S E N S E N S E

Total phytoplankton (TF) 10.5 7.2 18.9 14.0 5.0 3.9 8.5 4.5 27.4 31.0 31.8 17.4 26.0 28.9
Coccolithophores (TC) 0.6 4.7 11.5 8.9 4.3 3.3 6.9 4.2 0.2 11.0 12.2 5.2 17.7 17.3
Coccolithophores (% TF) 6 65 61 64 86 85 81 93 1 35 38 30 68 60
Diatoms 2.4 1.5 0.6 3.3 0.1 0.1 1.1 0.3 0.1 8.4 2.6 11.9 7.8 10.3
Dinoflagellates 1.7 0.2 0.1 0.2 0.6 0.4 0 0 23.2 9.0 14.5 0.3 0.3 0.3
Chryptophyta þ Prasinophyta þ

small flagellates þ
Cyanobacteria

5.7 0.8 6.8 1.7 0.0 0.1 0.5 0.0 4.0 4.0 2.5 0.0 0.2 1.0

Number of species identified 27 29 19 20 24 16 19 12 27 30 34 32 28 28
Number of stations 5 6 6 7 1 1 2 2 1 3 1 1 6 2

(%TC)
C.leptoporus e 0.5 0.5 0.1 1.4 e 0.4 e 13.3 0.1 0.3 e 0.2 0.3
C.quadriperforatus e 0.2 e e e e e 0.7 e 0.1 e 0.4 0.5 0.7
D.tubifera e 1.0 0.2 0.1 9.8 12.1 1.1 1.2 46.7 0.5 0.2 e e e

E.huxleyi 97.1 66.7 98.0 89.6 e e 87.5 83.9 e 97.1 73.8 96.7 60.7 98.1
H.carteri e 0.2 e e e e e e e e e e e 0.1
Ophiaster sp. e 0.2 0.1 e 2.1 1.8 0.1 0.1 e e e e e e

U.sibogae e 0.6 0.1 0.2 e e 0.2 0.5 e e e 0.6 0.1 0.1
Syracosphaera spp. e 4.0 0.2 0.2 3.3 8.2 0.4 0.6 e e e 1.0 0.1 0.3
Holococcolithophore spp. 2.3 4.9 1.0 2.0 83.0 17.5 10.1 13.0 26.7 2.1 1.1 1.4 38.3 0.4
Undetermined species 0.6 21.7 e 7.9 0.5 60.4 0.2 e 13.3 0.1 24.6 e e e

Pigments (mg L�1) (maximum)
Chlorophyll a (0.86) 0.33 0.27 0.23 0.27 0.07 0.04 0.16 0.12 0.14 0.37 0.15 0.25 0.40 0.55
Chlorophyll b (0.11) 0.09 0.03 0.05 0.03 e e 0.01 e e 0.02 e e 0.02 0.03
Fucoxanthin (0.34) 0.04 0.09 0.02 0.08 e e 0.06 0.05 e 0.15 0.03 0.07 0.18 0.22
Peridinin (0.14) 0.04 e e e e e e e 0.03 0.01 0.02 0.14 0.01 e

190-Hexanoyloxyfucoxanthin
(0.15)

0.03 0.03 0.04 0.05 0.01 0.01 0.01 0.03 0.02 0.05 0.02 0.03 0.07 0.10

190-Butanoyloxyfucoxanthin
(0.06)

0.01 0.01 e 0.02 e e 0.01 0.01 e 0.01 e 0.02 0.03 0.04

Alloxanthin (0.02) 0.01 e 0.01 e e e e e e e e e e e

Zeaxanthin (0.08) 0.06 0.04 e 0.01 0.06 0.07 e e 0.06 0.04 0.07 e e e

Prasinoxanthin (0.03) 0.01 e 0.01 0.01 e e e e e e e e e e

Other pigments detected and respective maximum concentration, (mg L�1), were: Chlorophyll c3 (0.23), Chlorophyll c1 plus c2 (0.19), Diadinoxanthin (0.06), Diatoxanthin
(0.01), Violaxanthin (0.01), Neoxanthin (0.01) and b,b-Caroteno (0.02).
(�) means not observed for % TC and BDL for pigments.
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(0.018e0.022 mg L�1), where diatoms weremore abundant (Table 2,
Fig. 4). The second most abundant was Hex-fuco, always present
(Table 2), which is in accordance with the ubiquitous presence of
coccolithophores, the maximum (0.15 mg L�1) corresponded to the
Fig. 5. Distribution of coccolithophore species by station ina) São Miguel, b) Santa Maria an
represented here, however its contribution to the total coccolithophore assemblage is show

Please cite this article in press as: Silva, A., et al., Coccolithophore specie
Azores islands, Estuarine, Coastal and Shelf Science (2013), http://dx.doi.
highest concentration of E. huxleyi, 35 � 103 cell L�1 at #1, north of
Terceira, in spring (Table 2, Fig. 5). Moreover, the highest concen-
trations of But-fuco and Hex-fuco (characterizing Haptophytes type
6, 7 and 8, Zapata et al., 2004) were coincident, reinforcing the
d c) Terceira (cells L�1). Holococcolithophores and other ‘undetermined species’ are not
n in Table 2. [N-north, S-south, E-east, S08-summer 2008 and Sp09-spring 2009].
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observation of the dominance of coccolithophores in the studied
area.

The analysis of each of the three islands (Table 2, Fig. 4) showed
that around São Miguel (Oriental group), the northern side recor-
ded always higher cell concentrations and the differences in the
phytoplankton assemblage from summer 2008 to spring 2009
were: i) coccolithophore cell counts increased on both sides of the
island, accountingmore than 60% of TF; ii) diatommaxima changed
from N (#6) to S (#5), iii) dinoflagellates declined at the north side,
and iv) the small flagellates assemblage increased and were still
more abundant on the northern side of the island, dominating the
phytoplankton assemblage together with coccolithophores (36%
and 61% of TF, respectively). The southernmost island of the Ori-
ental group, Santa Maria, showed Chla values in average always
extremely low (0.04 mg L�1 in summer and 0.16 mg L�1 in spring),
microscope observations indicated a dominance of coccolitho-
phores (>80% of TF) and the HPLC analysis suggested also the
presence of a strong prokaryote community. From summer to
spring the diatom assemblage increased while dinoflagellates dis-
appeared. On the other hand, the island from the Central group,
Terceira, exhibited the highest Chla concentrations (0.55 mg L�1 at
the east side, average value # 2 and I2, during spring) and cell
counts (31.8 � 103 cells L�1). The composition and distribution of
phytoplankton groups changed spatially around the island, be-
tween summer 2008 and spring 2009 as: i) coccolithophores
increased, especially due to higher concentrations of Emiliania
huxleyi, and were distributed preferably at the south and east sides
of the island, reaching 68% of TF in the south; ii) diatoms increased
at the north (68% of TF) dominating the phytoplankton assemblage,
iii) dinoflagellates clearly decreased (from 46% in the north
to < 2% of TF) and iv) small flagellates decreased to a minor pres-
ence (<4%TF).
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Regarding the distributing of each coccolithophore species
(Fig. 5, Table 2), distinct spatial and temporal maxima were
observed around each island. E. huxleyi, present in most of the
samples, always accounted >60% of the total coccolithophore
assemblage (TC). The species increased in abundance from summer
to spring, except in the south of Terceira. This island and SãoMiguel
recorded the highest concentrations while in Santa Maria, during
summer, this species was absent from surface samples. Other
identified coccolithophores (Fig. 6), less abundant (<47% of TC)
than E. huxleyi, were mostly of a subtropical to temperate origin, as
several species from the genus Syracosphaera (grouped as SUM
Syracosphaera spp.), Discosphaera tubifera, Calcidiscus leptoporus,
Calcidiscus quadriperforatus, Umbilicosphaera sibogae, Helicosphaera
carteri and Ophiaster spp. São Miguel and Santa Maria presented
a greater number of species and an important contribution of the
holoccolithophore fraction (they are produced during the haploid
phase of the life-cycle of a wide range of coccolithophores that bear
heterococcoliths in their diploid life-cycle phase) to the total coc-
colithophore assemblage (e.g.83% of TC in Santa Maria during
summer). The Syracosphaera spp. assemblage could not be analysed
in the perspective of finding markers for hydrological conditions,
since it is composed of several species with a small and random
occurrence.

D. tubifera distribution (Table 2, Fig. 5) was higher during sum-
mer, at the south of Santa Maria and north of Terceira, but absent
during spring conditions around Terceira. The coccolithophores
Calcidiscus leptoporus and Calcidiscus quadriperforatus, occurred
during both seasons in all islands, with the former being most
abundant at the north of Terceira during summer (13.3% TC) and
the latter occurring preferentially during spring around this island
in particular. U. sibogae peaked only at the south of São Miguel
during summer and was distributed preferably during spring
2
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around Santa Maria and Terceira. Ophiaster species were more
abundant during summer in São Miguel and Santa Maria and ab-
sent around Terceira.

Concerning the other phytoplankton groups (Fig. 4), diatoms as
the chain-forming species from the genera Chaetoceros and Pseu-
donitzschiawere themost abundant, while Guinardia, Dactyliosolen,
Leptocylindrus and Thalassiotrix exhibited lower concentrations.
These species were recurrent components of diatoms peaks during
spring in the south of São Miguel and Santa Maria and during
summer in the south of Terceira. The dinoflagellates peaks were
mostly composed by the genus Ceratium, Prorocentrum and Proto-
peridinium as in Terceira during summer (#3). Unidentified di-
noflagellates comprised small thecated as well as naked
dinoflagellates but never as a dominant fraction of this phyto-
plankton component (see Table 3 for all species identified).
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3.3. Principal component analysis

The first three components explained 79.4% of the total variation
in the data and the first two are represented in Fig. 6. The first
component (PC1) explained 38.4% of total variability and separated
the spring and summer conditions. E. huxleyi was strongly asso-
ciated with spring while small flagellates appeared related to
summer, related to the São Miguel northern stations. The second
component (PC2) explained 21.3% of total variability and
separated all stations of São Miguel þ small flagellates and
Terceira þ E. huxleyi from the southernmost island of Santa Maria,
during summer, in turn associated with Discosphaera tubifera.
Table 3
List of the species identified by microscopy.

Bacillariophyta (Diatoms) Dinophyta (Dinoflagellates)
Acnanthes spp. Amphidoma caudatum
Actinophycus senarius Ceratium azoricum
Bacteriastrum hyalinum Ceratium candelabrum
Biddulphia spp. Ceratium falcatum
Chaetoceros spp. Ceratium furca
Cocconeis spp. Ceratium fusus
Cylindrotheca closterium Ceratium massiliense
Dactyliosolen fragilissimus Ceratium minimum
Detonula pumila Ceratium pentagonum
Diploneis spp. Ceratium teres
Ditylum brightwellii Ceratium tripos
Grammatophora spp. Cladopyxis brachiolata
Guinardia cf. delicatula Dinophysis cf. acuminata
Guinardia cf. striata Dinophysis spp.
Guinardia flaccida Diplopsalis spp.
Gyrosigma spp. Gonyaulax polygramma
Hemiaulus hauckii Gonyaulax spinifera
Hemiaulus sinensis Gonyaulax spp.
Lauderia annulata Gymnodinium spp.
Leptocylindrus danicus Gyrodinium fusiforme
Leptocylindrus minimus Gyrodinium spp.
Licmophora spp. Lingulodinium polyedrum
Navicula spp. Noctiluca sintilans
Nitzschia longissima Ornithocercus magnificus
Paralia sulcata Ostreopsis cf. ovata
Planktionella sol Ostreopsis cf. siamensis
Pleurosigma spp. Ostreopsis heptagona
Proboscia alata Oxytoxum laticeps
Pseudo-nitzschia spp. Oxytoxum scolopax
Rhizosolenia setigera Oxytoxum spp.
Rhizosolenia spp. Phalacroma rotundata
Skeletonema costatum Podolampas spp.
Striatella unipunctata Pronoctiluca spinifera
Surirella spp. Prorocentrum compressum
Thalassionema frauenfeldii Prorocentrum gracile
Thalassionema nitzschioides Prorocentrum lima
Thalassiosira spp. Prorocentrum micans
Thalassiotrix sp. Prorocentrum scuttelum

Please cite this article in press as: Silva, A., et al., Coccolithophore specie
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Considering the distinct ecological preferences that these species
are known to have from the literature (see Discussion) as well as
the observations in this study, this axis was interpreted as
a nutrient availability gradient. The third component (PC3, 19.7%),
plot not shown, highlighted a fourth group of species, diatoms
Pseudonitzschia spp. and Chaetoceros spp., related to the south
station of Terceira during summer (#1). All the other species and
pigments plotted, presented an indistinguishable distribution
along axes, with the exception of the two species from the genus
Calcidiscus that were slightly detached towards D. tubifera.
4. Discussion

The complementarity of microscopy observations and HPLC
photosynthetic pigment analysis showed that phytoplankton and
coccolithophores in particular, the most abundant group, presented
temporal differences between summer 2008 and spring 2009, as
well as spatial differences in the surface distribution around the
three islands (Terceira, São Miguel and Santa Maria). Surface spatial
differences between islands appear related to large scale circula-
tion, such as the transport of warm subtropical waters (typically
nutrient poor) from the south and colder subpolar waters from the
north (see Fig. 2), whereas nearshore small scale differences were
associated with the existence of colder water patches representing
most probably the signature of upwelling or mixing processes (S-
SW of Terceira, # 1e2 and E side of São Miguel, # 1, Fig. 2). Using
satellite and field data, Lafon et al. (2004) observed episodes of
lower temperatures and higher chlorophyll concentrations, on the
Prorocentrum spp. Ciliatea
Prorocentrum triestinum Mesodinium rubrum
Protoperidinium bipes
Protoperidinium claudicans
Protoperidinium crassipes
Protoperidinium depressum
Protoperidinium diabolum
Protoperidinium leonis
Protoperidinium ovum
Protoperidinium pellucidum
Protoperidinium pentagonum
Protoperidinium quinquecorne
Protoperidinium spp.
Protoperidinium steinii
Protoperidinium tuba
Pseliodinium vaubani
Scripsiella cf. trochoidea
Prymnesiophyceae (Coccolithophores)
Acanthoica quattrospina
Algirosphaera robusta
Braarudosphaera bigelowii
Calcidiscus leptoporus
Calcidiscus quadriperforatus
Coronosphaera mediterranea
Discosphaera tubifera
Emiliania huxleyi
Gephyrocapsa spp.
Helicosphaera carteri
Ophiaster spp.
Rhabdosphaera clavigera
Syracosphaera prolongata
Syracosphaera pulchra
Syracosphaera spp.
Umbilicosphaera sibogae
Dictyochophyceae (Chrysophyta)
Dictyocha fibula
Prasinophyta
Pterosperma sp.
Pyramimonas spp.
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south coasts of SãoMiguel and SantaMaria islands, than in offshore
waters, proposing the existence of wind-driven upwelling south of
these islands.

The satellite imagery (Fig. 2), physical-chemical in situ data,
pigment results and species distribution, show clearly that Santa
Maria is more strongly influenced by warmer oligotrophic waters
from the AC northward incursions, than Terceira and São Miguel.
Northward intrusions of warm subtropical water directly in the
path of the Santa Maria and São Miguel, and southward intrusions
of cold water near Terceira, combine to form a dipole-like structure
which enhances gradients in the region. These gradients influenced
the distribution of coccolithophore species (Fig. 5, Table 2). Overall
results underlined the effect of island-induced biomass enhance-
ment in oligotrophic oceanic regions and the important con-
tribution of the nanoplankton fraction to the pool of Chla instead
a picoplankton dominated assemblage. This shift is particularly
evident at all islands during spring, when zeaxanthin is absent
(Table 2). The average and standard deviation Chla values obtained
in the present paper were: Terceira: 0.37 � 0.22, São Miguel
0.27 � 0.08 and Santa Maria 0.11 � 0.04 mg l�1. Except for Santa
Maria island, these values are much higher than those reported by
Aiken et al. (2009), in a decadal study for the same latitudes in the
NAST-E region (<0.25 mg l�1), where phytoplankton is dominated
by prokaryotes and picoflagellates. In accordance with the spatial
and temporal pattern for phytoplankton, surface nutrient results
showed enrichment during spring more noticeable around Terceira
(most influenced by colder subpolar waters). The values obtained in
spring are similar to the ones found by Schiebel et al. (2011) for
a NeS transect along 20�W (33�00.0390 N e 46�59.6070 N) in the
North Atlantic. The relative abundance of silicates in relation to the
other nutrients registered in this study was also observed by these
authors. The fact that values reported here are, in some cases,
double might be explained by the vicinity to the coast and the
volcanic nature of these islands.

During summer, the coccolithophore assemblage (Fig. 6, Table 2)
was mainly composed by umbelliform species (k-selected), as Dis-
cosphaera tubifera, in contrast with the dominance of placolith-
bearing species during spring, as Emiliania huxleyi (r-selected).
Young (1994) defined three ecological communities of coccolitho-
phores associated with three distinct environments: i) placolith-
bearing cells such as E. huxleyi, Gephyrocapsa, Calcidiscus, found in
coastal or mid-ocean upwelling regions; ii) umbelliform cells such
as D. tubifera, Rhabdosphaera clavigera and Umbilicosphaera sibogae,
found in more oligotrophic and calm waters and iii) floriform cells,
such as Florisphaera profunda, associated with deep photic-zone
assemblages.

In the present work, the subtropical coccolithophore assem-
blage comprising the umbelliform Discosphaera tubifera, detached
by the PCA analysis, indicates the influence of surface warmer
waters of the Azores current (AC) around the islands, as well as
summer conditions of reduced mixing and low nutrient concen-
tration. This is particularly noticeable during summer, around Santa
Maria (21.9% TC) and at the northern side of Terceira (46.7% TC). The
coastal/upwelling related species Emiliania huxleyiwas absent from
these samples in both islands (Table 2, Fig. 5). D. tubifera has been
associated with warm waters (in this study, 22.6 �C, the highest
temperature) depleted in nitrate and having a preference for very
high light intensities by Haidar and Thierstein (2001) around Ber-
muda. We should emphasize that the highest abundance of
D. tubifera coincided with the absence of nitrates in surface waters.
D. tubifera maximum was also coincident with Calcidiscus lep-
toporus maximum concentration in the north of Terceira during
summer (13.3%TC, 22.6 �C, and absence of nitrates). This coccoli-
thophore is usually observed in oceanic warm stratified and
nutrient depleted conditions in the N Atlantic (e.g. Haidar and
Please cite this article in press as: Silva, A., et al., Coccolithophore specie
Azores islands, Estuarine, Coastal and Shelf Science (2013), http://dx.doi.
Thierstein, 2001; in Bermuda, Renaud et al., 2002; in NABE-48,
Silva et al., 2009; in Lisbon bay). In the genus Calcidiscus, Calci-
discus quadriperforatus presence coincided with higher nitrate and
Chla averages, most evident at the east side of Terceira during
spring (0.7%TC, 17.4 �C), where the highest biomass
(Chla ¼ 0.55 mg L�1) and nitrate (1.39 mM) concentrations were
observed (mean values for stations 2 and I2). This species is con-
sidered to be more opportunistic than C. leptoporus (e.g. Haidar and
Thierstein, 2001; in Bermuda, Renaud et al., 2002; in NABE-48, Silva
et al., 2009; in Lisbon bay). In the genus Calcidiscus, C. quad-
riperforatus is considered to be more suitable to emphasise the
onset of the spring bloom or more productive environments,
opposite to D. tubifera and C. leptoporus.

The larger concentrations of holococcolithophores in Santa
Maria (83% TC in the south) and Terceira (26.7% TC in the north)
during summer, which were mainly due to Discosphaera tubifera
and C. leptoporus, also confirm these species as indicators of warm
oligothophic conditions. Several authors (e.g Kleijne, 1991; Brand,
1994; Renaud and Klaas, 2001; Haidar and Thierstein, 2001)
found more frequently the fragile haploid phase of coccolitho-
phores in oligotrophic waters, higher temperatures and light in-
tensities or associated with the beginning of water stratification
and subsequent nutrients depletion.

Conversely, and as demonstrated by the PCA results, the greater
development of diatoms and placolith-bearing Emiliania huxleyi
during spring suggested a change in the hydrological regime to-
wards more eutrophic conditions. E. huxleyi is considered to have
an opportunistic behaviour usually reported during the early stage
of phytoplankton spring production (Schiebel et al., 2011 for the
North Atlantic, Silva et al., 2008 for Lisbon Bay). During summer the
colder water patches observed (# 1e2 in Terceira, # 1 in São
MIguel) were dominated by E. huxleyi and diatoms (e.g. chain
forming Chaetoceros spp.) illustrating the enhancement effect of
these colder patches on phytoplankton biomass. The boundaries of
these patches were characterized by subtropical coccolithophores,
like Discosphaera tubifera, and dinoflagellates (Fig. 5, Table 2). Di-
noflagellates were in most stations the less abundant phyto-
plankton group with a surface distribution similar to the
subtropical assemblage of coccolithophores, indicating stratified
and intermediate to oligotrophic conditions (Fig. 4, Table 2). The
greater abundances, in the north of Terceira during summer coin-
cided with the higher concentrations of the subtropical D. tubifera.

The present findings seem to indicate that coccolithophore
species could have a role in the study of the surface circulation
patterns and hydrological variability around the Azores archipelago
and that they are an important contribution to the pool of Chla,
especially during spring. This work has contributed to the knowl-
edge on the phytoplankton component of this biogeochemical
ocean province which is still rather limited.

Uncited reference

Jeffrey and Hallegraeff, 1987.

Acknowledgements

Field work was supported by the Projects “Caracterização das
massas de água costeiras (CAMAG) das ilhas do grupo oriental (ORI)
e Terceira (TER)” funded by Direcção Regional do Ordenamento do
Território e Recursos Hídricos. The surveys performed in the pre-
sent study comply with the current laws of Portugal. We thank
Steve Groom, from Plymouth Marine Laboratory, for reading and
commenting the manuscript. This work was partly funded by PEst-
OE/MAR/UI0199/2011 (FCT), Projecto Estratégico e Centro de
Oceanografia (CO/FC/UL) e 2011e2012, and by the ESA CoastColour
s as indicators of surface oceanographic conditions in the vicinity of
org/10.1016/j.ecss.2012.12.010



A. Silva et al. / Estuarine, Coastal and Shelf Science xxx (2013) 1e1010

1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204

1205
1206
1207

YECSS4032_proof ■ 11 January 2013 ■ 10/10
Project. Vanda Brotas had a sabbatical grant from FCT (SFRH/BSAB/
1044/2010). We also thank the anonymous referees who com-
mented the manuscript.
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
References

Aiken, J., Pradhan, Y., Barlow, R., Lavender, S., Poulton, A., Holligan, P., Hardman-
Mountford, N., 2009. Phytoplankton pigments and functional types in the
Atlantic Ocean: a decadal assessment, 1995e2005. Journal of Deep-Sea
Research II 56, 899e917.

Andruleit, H., 2007. Status of the Java upwelling area (Indian Ocean) during the
oligothrophic northern hemisphere winter monsoon season as revealed by
coccolithophores. Marine Micropaleontology 64 (1e2), 36e51.

Bakker, D.C.E., Nielsdóttir, M.C., Morris, P.J., Venables, H.J., Watson, A.J., 2007. The
island mass effect and biological carbon uptake for the subantarctic Crozet
Archipelago. Deep Sea Research II 54, 2174e2190.

Beaufort, L., Heussner, S., 2001. Seasonal dynamics of calcareous nannoplankton on
a West European continental margin: the Bay of Biscay. Marine Micro-
paleontology 43 (1e2), 27e55.

Beaufort, L., Couapel, M., Buchet, N., Claustre, H., Goyet, C., 2008. Calcite production
by coccolithophores in the south east Pacific Ocean. Biogeosciences 5, 1101e
1117. http://dx.doi.org/10.5194/bg-5-1101-2008.

Bollmann, J., Cortés, M.Y., Haidar, A.T., Brabec, B., Close, A., Hofmann, R., Palma, S.,
Tupas, L., Thierstein, H.R., 2002. Techniques for quantitative analyses of calca-
reous marine phytoplankton. Marine Micropaleontology 44, 163e185.

Brand, L.E., 1994. Physiological ecology of marine coccolithophores. In: Winter, A.,
Siesser,W.G. (Eds.), Coccolithophores. Cambridge University Press, UK, pp. 39e49.

Broerse, A.T.C., Ziveri, P., van Hinte, J.E., Honjo, S., 2000. Coccolithophore export
production, species composition, and coccolith-CaCO3 fluxes in the NE Atlantic
(34� N 21� W and 48� N 21� W). Deep-Sea Research II 47, 1877e1905.

Brotas, V., Plante-Cuny, M.R., 1996. Identification et quantification des pigments
chlorophylliens et caroténoïdes des sédiments marins. Choix d�un protocole
d�analyse par HPLC. Oceanologica Acta 19 (6), 623e633.

Clarke, K.R., Gorley, R.N., 2006. PrimerePlymouthRoutines inMultivariateEcological
Research e v6: User Manual/Tutorial. PRIMER-E Ltd, Plymouth, U.K, p. 192.

CLS (Collecte Localisation Satellites), 2009. SSALTO/DUACS User Handbook: (M)SLA
and (M)ADT Near-Real Time and Delayed Time Products. Ref. CLS-DOS-NT-
06.034. Available from: http://www.aviso.oceanobs.com/fileadmin/
documents/data/tools/hdbk_duacs.pdf.

CMS (Centre de Météorologie Spatiale), 2009. Low Earth Orbiter Sea Surface Tem-
perature Product User Manual. Ref. SAF/OSI/CDOP/M-F/TEC/MA/127 Available
from: http://www.osi-saf.org/biblio/docs/ss1_pum_leo_sst_2_1.pdf.

Dodge, J.D., 1982. Marine Dinoflagellates of the British Isles. Her Majesty’s Sta-
tionary Office, London.

Fanning, K.A., Pilson, M.E.Q., 1973. On the spectrophotometric determination of
dissolved silica in natural waters. Analytical Chemistry 45, 136e141.

Gould, W.J., 1985. Physical oceanography of the Azores Front. Progress in Ocean-
ography 14, 167e190.

Grassoff, K., 1976. Methods of Seawater Analysis. Verlag Chimie, New York, 520 p.
Haidar, A.T., Thierstein, H.R., 2001. Coccolithophore dynamics off Bermuda (N.

Atlantic). Deep Sea Research II 48 (8e9), 1925e1956.
Hair Jr., J.F., Anderson, R.E., Tatham, R.L., Black, W.C., 1998. Multivariate Data Anal-

ysis, fifth ed. Prentice Hall, Upper Saddle River, NJ: USA.
Hasegawa, D., Yamazaki, H., Ishimaru, T., Nagashima, H., Koike, Y., 2008. Apparent

phytoplankton bloom due to island mass effect. Journal of Marine Systems 69,
238e246.

Hasle, G.R., 1978. Phytoplankton manual: the inverted microscope method. In:
Sournia, A. (Ed.),Monographs onOceanicMethodology. Unesco, Paris, pp. 88e96.

Hasle, G.R., Syvertsen, E.E., 1996. Marine diatoms. In: Tomas, C.R. (Ed.), Identifying
Marine Diatoms and Dinoflagellates. Academic Press, Inc., London, pp. 5e385.

Holligan, P.M., Fernandez, E., Aiken, J., Balch, W.M., Boyd, P., Burkill, P.H., Finch, M.,
Groom, S.B., Malin, G., Muller, K., Purdie, D.A., Robinson, C., Trees, C.C.,
Turner, S.M., Van der Wal, P., 1993. A biogeochemical study of the coccolitho-
phore, Emiliania-huxleyi, in the North-Atlantic. Global Biogeochemical Cycles 7,
879e900.
Please cite this article in press as: Silva, A., et al., Coccolithophore specie
Azores islands, Estuarine, Coastal and Shelf Science (2013), http://dx.doi.
Jeffrey, S.W., Hallegraeff, G.M., 1987. Phytoplankton pigment, species and light cli-
mate in a complex warm-core eddy of the east Australian Current. Deep Sea
Research I 34 (5e6), 649e673.

Jeffrey, S.W., Mantoura, R.F.C., Bjørnland, T., 1997. Data for the identification of 47
key phytoplankton pigments. In: Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W.
(Eds.), Phytoplankton Pigments in Oceanography: Guidelines to Modern
Methods. Unesco Monographs on Oceanographic Methodology, vol 10. UNESCO,
Paris, pp. 449e559.

Juliano, M.F., Alves, M.L.G.R., 2007. The Atlantic subtropical Front/Current systems of
Azores and St. Helena. Journal of Physical Oceanography 37, 2573e2598.

Kleijne, A., 1991. Holococcolithophores from the Indian ocean, red sea, Mediterra-
nean sea and north Atlantic ocean. Marine Micropaleontology 17, 1e76.

Kraay, G.W., Zapata, M., Veldhuis, M.J., 1992. Separation of chlorophylls c1, c2, and
c3 of marine phytoplankton by reversed-phase-C18-High-Performance Liquid
Chromatography. Journal of Phycology 28, 708e712.

Lafon, V., Martins, A., Bashmachnikov, I., Jose, F., Melo-Rodriguez, M., Figueiredo, M.,
Mendonça, A., Macedo, L., 2004. SST variability in the Azores region using
AVHRR imagery: regional to local scale study. In: Remote Sensing of Ocean and
Sea Ice, Vol. 5569, pp. 130e139. Proceedings of SPIE Vol. 5569, 130e139.

Longhurst, A., Sathyendranat, S., Platt, T., Caverhill, C., 1995. An estimate of global
primary production in the ocean from satellite radiometer data. Journal of
Plankton Research 17, 1245e1271.

Mendes, C.R., Cartaxana, P., Brotas, V., 2007. HPLC determination of phytoplankton
and microphytobenthos pigments: comparing resolution and sensitivity of
a C18 and a C8 method. Limnology Oceanography Methods 5, 363e370.

Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination
of phosphate in natural waters. Analytica Chimica Acta 27, 31e36.

Renaud, S., Klaas, C., 2001. Seasonal variations in the morphology of the coccoli-
thophore Calcidiscus leptoporus off Bermuda (N. Atlantic). Journal of Plankton
Research 23, 779e795.

Renaud, S., Ziveri, P., Broerse, T.C., 2002. Geographical and seasonal differences in
morphology and dynamics of the coccolithophore Calcidiscus leptoporus. Ma-
rine Micropaleontology 46, 363e385.

Rost, B., Riebesel, l, U., Burkhardt, S., Sültemeyer, D., 2003. Carbon acquisition of
bloom forming marine phytoplankton. Limnology and Oceanography 48 (1),
55e67.

Schiebel, R., Brupbacher, U., Schmidtko, S., Nausch, G., Waniek, J.J., Thierstein, H.-R.,
2011. Spring coccolithophore production and dispersion in the temperate
eastern North Atlantic Ocean. Journal of Geophysical Research 116, C08030.
http://dx.doi.org/10.1029/2010JC006841.

Smyth, T.J., Tyrrell, T., Tarrant, B., 2004. Time series of coccolithophore activity in the
Barents Sea from twenty years of satellite imagery. Geophysical Research Let-
ters 31, L11302. http://dx.doi.org/10.1029/2004GL019735.

Silva, A., Palma, S., Moita, M.T., 2008. Coccolithophores in the upwelling waters of
Portugal: four years of weekly distribution in Lisbon Bay. Continental Shelf
Research 28, 2601e2613.

Silva, A., Palma, S., Oliveira, P.B., Moita, M.T., 2009. Calcidiscus quadriperforatus and
Calcidiscus leptoporus as oceanographic tracers in Lisbon bay (Portugal).
Estuarine Coastal and Shelf Science 81, 333e344.

Sprengel, C., Baumann, K.-H., Neuer, S., 2000. Seasonal and interannual variation of
coccolithophore fluxes and species composition in sediment traps north of Gran
Canaria (29oN 15oW). Marine Micropaleontology 39 (1e4), 157e178.

Tortell, P.D., Giocoma, R.D., Sigman, D.M., Morel, F.M.M., 2002. CO2 effects on
taxonomic composition and nutrient utilization in an Equatorial Pacific phy-
toplankton assemblage. Marine Ecology Progress Series 236, 37e43.

Tyrrell, T., 2008. Calcium carbonate cycling in future oceans and its influence on
future climates. Journal of Plankton Research 30 (2), 141e156.

Throndsen, J., 1978. Phytoplankton manual: preservation and storage. In: Sournia, A.
(Ed.), Monographs on Oceanic Methodology. Unesco, Paris, pp. 69e75.

Young, J., Geisen, M., Cros, L., Kleijne, A., Sprengel, C., Probert, I., Ostergaard, J., 2003.
A guide to extant coccolithophore taxonomy (special issue 1). Journal Nanno-
plankton Research, 123.

Young, J., 1994. Function of coccoliths. In: Winter, A., Siesser, W.G. (Eds.), Coccoli-
thophores. Cambridge University Press, Cambridge, pp. 63e82.

Zapata, M., Jeffrey, M., Wright, S.W., Rodríguez, F., Garrido, J.L., Clementson, L., 2004.
Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications
for oceanography and chemotaxonomy. Marine Ecology Progress 270, 83e102.
s as indicators of surface oceanographic conditions in the vicinity of
org/10.1016/j.ecss.2012.12.010

1256
1257
1258

http://dx.doi.org/10.5194/bg-5-1101-2008
http://www.aviso.oceanobs.com/fileadmin/documents/data/tools/hdbk_duacs.pdf
http://www.aviso.oceanobs.com/fileadmin/documents/data/tools/hdbk_duacs.pdf
http://www.osi-saf.org/biblio/docs/ss1_pum_leo_sst_2_1.pdf
http://dx.doi.org/10.1029/2010JC006841
http://dx.doi.org/10.1029/2004GL019735

	Coccolithophore species as indicators of surface oceanographic conditions in the vicinity of Azores islands
	1. Introduction
	2. Methods
	2.1. Surveyed area and sampling strategy
	2.2. Physico-chemical parameters
	2.3. Phytoplankton analysis
	2.3.1. Microscopy analysis
	2.3.2. HPLC pigment analysis
	2.3.3. Principal component analysis

	2.4. Satellite derived data

	3. Results
	3.1. Physico -chemical data
	3.2. Phytoplankton assemblage
	3.3. Principal component analysis

	4. Discussion
	Uncited reference
	Acknowledgements
	References


