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Abstract. 1. The aim of this paper was to investigate the arthropod colonisation of
a recently erupted volcano in the framework of a general model of colonisation
kinetics.

2. We analysed the diversity of arthropod communities at three locations on Faial
Island (Azores) using a well-defined disturbance gradient: (i) a site that is new land
added by the eruption of Capelinhos Volcano of 1957; (ii) a site moderately affected
by this eruption; and (iii) a pristine site not affected. We calculated the recolonisation
times at the disturbed sites using species richness at the undisturbed site as an equilib-
rium value (last erupted 900-1000 years ago).

3. Species with different distributional ranges (endemic, native non-endemic and
introduced) have different colonisation kinetics. Introduced exotic species were par-
ticularly rapid in colonising the erupted volcano, reaching a number of species
greater than that observed in the undisturbed area. By contrast, native non-endemic
species had more difficulty in recolonising the erupted area, and no endemic has
reached it. The volcano community is dominated by a few species with high abun-
dance and shows low richness and strong dominance in comparison with the undis-
turbed community. The moderately disturbed site supports a rich and well-balanced
arthropod community.

4. Although the erupted volcano has a species richness even slightly higher than
the undisturbed site, this is a consequence of the high colonisation ability of intro-
duced species, and its arthropod community is strongly disharmonic.

Key words. Azorean Islands, community ecology, ecological succession, equilib-
rium theory, recolonisation, volcanic eruption.

Introduction

Each archipelago has its own colonisation and evolutionary his-
tories that filter species both arriving at long-distance dispersal
and brought accidentally by man (Ricklefs, 2008). Classical
models of island biogeography postulate that insular species
assemblages are random samples drawn from a pool of potential
colonists and that species richness increases with time to an equi-
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librium value, corresponding to the saturation of available
niches (see Whittaker & Fernandez-Palacios, 2007). Earlier evi-
dence of saturation in animal assemblages was reported for
island birds in the Caribbean (Terborgh & Faaborgh, 1980) and
fish assemblages in lakes (Tonn et al., 1990), but many more
examples can be listed (reviewed by Srivastava, 1999). More
recently, Winkler and Kampichler (2000), Soares et al. (2001)
and Borges and Brown (2004) found saturation patterns at a
local scale, respectively, in grassland Collembola, litter ant com-
munities and pasture spiders. However, this could indicate
pseudo-saturation (i.e. the appearance of saturation by an unsat-
urated community) owing to small-scale effects and uncertainty
in local species richness estimates (Caley & Schluter, 1997), and
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recent studies on local-regional processes show that most local
communities are not saturated (see Loreau, 2000). For example,
there is evidence that isolated oceanic islands may be not satu-
rated with species, especially the recent ones, if there was not suf-
ficient time for a complete colonisation (Borges & Brown, 1999;
Borges & Hortal, 2009), the empty niche space being filled in his-
torical times by recently introduced species (see e.g., Schaefer
et al., 2011, showing that introduced plant species are more
likely to become invasive in the absence of closely related species
in the native flora of the Azores).

As a consequence of the dispersal difficulties imposed by the
isolation of many remote volcanic archipelagos, as well as the
destructive influence of volcanic activity and, more recently, of
human activities, most islands are probably in a non-equilibrium
condition (see Whittaker, 1995). Therefore, regional processes
are critical to local community assembly (Ricklefs, 2008), and
the rate of saturation will vary according to the characteristics of
the system under study (dispersal ability of the species, isolation,
habitat diversity, etc.).

In a recent paper, Fattorini (2010) used the approach devel-
oped by Diamond (1972) in the framework of the equilibrium
theory of island biogeography of MacArthur and Wilson (1967)
to investigate the recolonisation kinetics of island and mainland
volcanoes. The main critical point in that paper was the estima-
tion of the equilibrial value of species richness, i.e. the expected
value of species richness for the erupted volcano at the end of
the recolonisation process, when ecosystems will be completely
restored and equilibrium reached. Studies on volcanic eruptions
are retrospective in nature, because data on plant and animal
communities on the volcanic area before the eruption are lack-
ing, and in case of volcanoes emerged from the sea, it is obvious
that there were no communities before eruption. Thus, to esti-
mate characteristics of communities at equilibrium, one must
refer to a pristine (undisturbed) site which is considered an equi-
librium counterpart of the erupted volcano (see Thornton,
2007). For island volcanoes, i.e., volcanic islands that were
almost completely devastated by recent eruption, Fattorini
(2010) used species richness from adjacent islands of similar area
not affected by recent eruptions, while for a mainland volcano,
he calculated the expected value at equilibrium from sites of dif-
ferent size and locations using a species—area relationship. These
estimates are subject to several possible source of errors: (i)
incompleteness of faunal inventories of the reference sites; (ii)
problems attached to the use of parameters of the species—area
function to account for differences in area size among sites; and
(iii) differences in the ecological settings of the areas used as equi-
librium reference because of their distance from the study site
(e.g. differences in altitude, climate, etc.). These problems (which
are typical of most studies on volcano recolonisation) were dis-
cussed in Fattorini’s paper, showing the limits to current data
and demonstrating how precise the data will have to be to fully
and convincingly document the processes postulated. We believe
that at a time when research on island biogeography is flowering
(Stuessy, 2007; Whittaker & Fernandez-Palacios, 2007; Gillespie
& Clague, 2009; Losos & Ricklefs, 2009) and when interest in
volcanic islands is especially high (Whittaker ez al., 2008, 2009;
Borges & Hortal, 2009; Cardoso et al., 2010; Meijer et al.,
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2011), studies based on more robust data may be particularly
useful to elucidate (re)colonisation processes.

In this paper, we take advantage of recent standardised sam-
pling on the Azorean Islands (see, e.g., Borges et al., 2005, 2006)
to investigate the arthropod colonisation of a recently erupted
volcano. We will address some of the shortcomings of previous
works and add further momentum to the development of a gen-
eral model of colonisation kinetics. Because of the lack of abun-
dance data, all conclusions drawn by Fattorini were based only
on species richness. Here, we also used abundance data to test
his predictions on the evolution of community structure during
colonisation.

Materials and methods
Study sites

We analysed the arthropod recolonisation of Capelinhos Vol-
cano, on the Azorean island of Faial. Faial is a young island
(0.7 Ma) of small size (172 km?) dominated by a central large
caldera (1043 m above sea level — ‘Caldeira do Faial’) and
located in the Azorean microplate. Several cinder cones are
located on the sides of the Caldeira do Faial. Capelinhos Vol-
cano is the most recent volcano from the Azores (1957-1958),
exploding dramatically in 1957 with a devastating underwater
eruption. The volcano had two main phases, one explosive
(phreatomagmatic) and the second Strombolian, i.e., an activity
with low explosivity and affecting only the area closest to the
volcano (see Forjaz, 2007 for details). As a result of these erup-
tions, a large amount of ashes of the first phase covered the wes-
tern part of Faial and a total of 2.5 km? of new land was added
to the island (Machado et al., 1962).

The Capelinhos Volcano is a relatively small volcano within
an island. From this respect, it differs considerably from the two
main types of volcanoes discussed by Fattorini (2010): volcanoes
on mainlands, and island volcanoes, i.c., islands that are entirely
constituted by a large volcano and which are virtually sterilised
by volcanic eruptions. In the case of Capelinhos Volcano, the
volcanic eruption had some major impact in the western part of
the island of Faial, but other places remained more or less undis-
turbed. This particular condition allowed us to eliminate some
possible confounding factors that affected previous research.
The use of an undisturbed site on the same island of Faial as a
reference for the equilibrium conditions avoided problems
owing to differences in ecological settings which can affect com-
parisons between distant sites. Thus, in our ‘natural experiment,’
we can assume that all differences between Capelinhos Volcano
(treated site) and the undisturbed (control) site can unambigu-
ously be attributed to the ‘treatment’ (i.e., the eruption). Another
advantage of our study system is that the volcano is placed on
an island, so we can be confident that the species pool of the con-
trol site is the actual source of species for recolonisation, because
colonisation from other islands or the mainland is definitively
less probable in the timescale in evaluation. The only limitation
of our study is the fact that the undisturbed (control) site is
located at a different altitude, but we also selected a nearby site
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with intermediate disturbance and located at lower altitude,
which allows an improved comparison.

To compare the fauna of Capelinhos Volcano with that of an
undisturbed site, we selected a patch of native vegetation in the
protected area of Caldeira do Faial, which is placed at about
10 km from the Capelinhos Volcano and which has not been
particularly affected by Capelinhos eruption (Forjaz, 2007). The
last eruption in this old volcano was about 900—1000 years ago.
We have also considered a third site, Cabego do Fogo, placed
between Capelinhos and Caldeira do Faial. This site is also the
result of a historical eruption of Strombolian type affecting
mainly the surrounding area (1672-1673) and was moderately
affected by the more recent Capelinhos eruption. Thus, it can be
considered a ‘spatial’ representation of what is expected, from a
‘temporal’ point of view, at an intermediate stage of recolonisa-
tion. In fact, all the terrain in Cabego do Fogo is covered with
ashes from the Capelinhos Volcano, and the vegetation is sec-
ondary composed of both native and exotic plants.

Sampling procedure

In all three sites, sampling was conducted using a standar-
dised protocol. In summary, at each site, we laid out two inde-
pendent and randomly located 150-m-long, 5-m-wide
transects. We sampled the epigean arthropod fauna using pit-
fall traps set in the ground for at least a 2-week period during
summer months. The traps consisted of plastic cups with a
top diameter of 42 and 78 mm deep, dug into the ground, so
the lip was flush with the soil surface. Half of the traps
(n = 15) were filled with approximately 60 ml of a non-attrac-
tive solution (antifreeze liquid) with a small proportion of eth-
ylene glycol and the other half (» = 15) with the same volume
of a general attractive solution (Turquin mixture), which was
made of dark beer and some preservatives. In both kinds of
traps, a few drops of a liquid detergent were added to reduce
surface tension. Traps were spaced 5 m from one another,
starting with a Turquin trap and alternating with the ethylene
traps. We used both Turquin traps and ethylene glycol traps
not only to survey the relative abundance of each species sam-
pled (with non-attractive traps) but also to capture the maxi-
mum number of species (with attractive traps). Use of pitfall
traps (especially if baited) is particularly efficient in recovering
a high proportion of total species richness even in a short sam-
pling period and represents thus an excellent way for a rapid
biodiversity assessment (see Biaggini er al, 2007; Fattorini,
2009; and estimates of sampled richness reported below). For
more details on this survey, see studies of Borges et al. (2005)
and Gaspar et al. (2008). For the current purpose, we selected
the two available transects from the Capelinhos Volcano and
for comparison two of the four available transects of Cabeco
do Fogo and Caldeira do Faial fragments.

All Araneae, Opiliones, Pseudoscorpiones and insects
(excluding Collembola, Diplura, Diptera and Hymenoptera)
were initially sorted into morphospecies by a team of trained
persons and later identified to species (with few exceptions) by
expert taxonomists. On the basis of their geographical distribu-
tion, species were sorted into the following three categories: (i)

endemic (species restricted to the Azorean Islands); (ii) native
non-endemic (species whose occurrence on the Azorean Islands
cannot be associated with human activities and that are also
known from other regions); and (iii) introduced (those proved to
have arrived to the Azorean Islands as a result of human activi-
ties and which generally have a cosmopolitan distribution). This
categorisation reflects species ecological plasticity and colonisa-
tion abilities, increasing from endemic to introduced ones. Pri-
mary data are given as Appendix S1.

Analyses

To evaluate the completeness of species inventories used here,
we applied two procedures. First, we calculated the estimated
richness at each site using Chaol estimator and then calculated
completeness as the observed to estimated richness ratio. The
obtained values suggest that a large fraction (0.71-0.93) of esti-
mated total richness was sampled. For each sampling site, we
also constructed an accumulation curve (not shown). All curves
were sample-based and rescaled to individuals as suggested by
Gotelli and Colwell (2001), using a total of 1000 randomisations.
The final slopes of the curves were calculated as in the study of
Cardoso et al. (2008):

Slope = 1/(ns —ns_1)

where ng = final number of individuals for each curve (corre-
sponding to the total richness value S) and ng_; = number of
individuals corresponding to the point in the curve where the
final single species was added (corresponding to a richness value
of S—1) (Cardoso et al., 2008).

The results showed high values of sampling intensity and
negative slopes for the final part of the Chao 1 curves: Cape-
linhos Volcano: —0.04; Cabego do Fogo: —0.0006; and Caldei-
ra do Faial: —0.06, which means that we attained a saturation.
These results indicate that species were adequately sampled
and allow direct comparisons of richness and abundance
between sites.

To test whether the proportion of endemic, native and intro-
duced species varied among the three sites, we used G-tests.

For each site, we also calculated five indexes of diversity.
Because no single diversity index encompasses all the character-
istics of an ideal index (Magurran, 1988; Krebs, 1999), a combi-
nation of them that reflects richness, dominance and evenness
was used. Thus, the following community parameters were cal-
culated for each taxon to compare communities of the three
sites:

e Simpson dominance index: C=73 (%)zwhere n; is
number of individuals of taxon i. C varies from 0 (all
taxa are equally present) to 1 (One taxon dominates
the community completely).

e Shannon index (entropy): H = —) “In(%).H ranges
from 0 (one taxon dominates the community com-
pletely) to high values for communities with many
taxa, each with few individuals.

e Buzas and Gibson’s evenness: e’/S (where S is the
number of species).

© 2011 The Authors

Insect Conservation and Diversity © 2011 The Royal Entomological Society, Inusect Conservation and Diversity, 5, 358-366



e Simpson diversity index: D = 1-C. D measures the
‘evenness’ of the community from 0 to 1.
e Pielou’s equitability (evenness): J = H/InS.

Properties of these indexes are discussed by Legendre and
Legendre (1998), Magurran (1988, 2004) and Hayek and Buzas
(2010).

To compare diversity indexes of the three sites in pairwise
combinations, we applied two different randomisation proce-
dures: bootstrapping and permutation. In the bootstrapping,
the two samples A and B were initially pooled. Then, 1000
random pairs of samples (A,, B;) were taken from this pool,
and a diversity index was calculated for each replicate pair
with the same numbers of individuals as in the original two
samples. In the permutation procedure, 1000 random matri-
ces with two columns (samples) were generated, each with
the same row and column totals as in the original data
matrix. In both cases, the probability of obtaining the
observed difference by random sampling from a unique
parental population was calculated as the number of times
that the absolute difference of the indexes of a replicate pair
exceeded or equalled that of the original samples. A
P(equal) < 0.05 was assumed to indicate a significant differ-
ence in diversity index between the two samples under test.
Because the two procedures gave virtually identical probabil-
ity values, we will not discuss further this point. Calculations
were made using PAST (Hammer et al., 2001).

To estimate recolonisation times, we used the model devel-
oped by Diamond (1972) and recently applied to mainland and
island volcanoes by Fattorini (2010). If a fauna is completely
destroyed by a volcanic eruption, the relaxation time (z,), i.e. the
length of time required to reach 36.8% of the equilibrium value
after the perturbation, can be easily calculated from the follow-
ing equation:

tr = —t/loge[l = (S(1)/Seq)] ()

S(7) 1s species number at time 7 from the volcanic eruption and
Seq 1s the number of species at equilibrium. Relaxation is 90%
complete after 2.303 relaxation times (see Fattorini, 2010; for
details). It is important to note that this particular sense of the
expression ‘relaxation time’ is not restricted to differential species
extinction but has a more general application, also including
recolonisation rate after perturbation (Diamond, 1972).

To calculate recolonisation times of Capelinhos Volcano, we
used species richness of Caldeira do Faial as equilibrium value.
We conducted all analyses for the entire arthropod data set,
because most taxa were represented by too few species for more
detailed analyses.

Finally, we have performed similarity analyses between sites
to investigate the effect of volcanic explosion on species compo-
sition. Between-site similarity was calculated using several simi-
larity indexes among the most commonly applied in community
ecology and biogeography, such as Jaccard, Dice and Kulczyn-
ski 2 (for a discussion see Shi, 1993; Hausdorf & Hennig, 2005).
All these indices produced virtually identical results, so we will
show only those obtained with Jaccard index, which is the most
known and easiest to understand. We conducted separate analy-
ses for native non-endemic and introduced species, but not for
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endemics because no endemic species was found on the erupted
volcano.

Results

The number of species of the erupted volcano was slightly
greater than that recorded for the undisturbed site (Table 1).
The moderately disturbed site had the highest value of species
richness (Table 1).

Proportions of endemic, native and introduced species varied
considerably among the three sites (Fig. 1). The erupted volcano
had the highest proportion of introduced species and had no
endemic species, showing significant differences when compared
with the moderately disturbed site (G-test = 6.767, P < 0.05)
and with the undisturbed site (G-test = 7.126, P < 0.05). By

Table 1. Values of the structural parameters of the arthropod
communities in three sampling sites with different degrees of
volcanic disturbance on the Faial Island (Azores).

Erupted Moderately Undisturbed

Parameter volcano disturbed site site

N 26 44 24

C 0.336 0.341 0.162

H 1.794 1.586 2.350
efss 0.231 0.111 0.437

D 0.664 0.659 0.838

J 0.551 0.419 0.739

S, species richness; C, Simpson dominance index; H, Shannon
index; ¢/S, Buzas and Gibson’s evenness; D, Simpson diversity
index; J, Pielou equitability.

G-test =7.126, P<0.05

G-test = 6.767, P < 0.05 G-test = 5.991, P=0.802
T r 1

100% 1
80% -
60%
40% 1
20%
0% L T 1
Volcano Moderately Undisturbed
disturbed
M Endemic M Native " Introduced

Fig. 1. Percentages of introduced, native and endemic arthropod
species in the three investigated sites on Faial Island (Azores),
with results of G-tests.
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contrast, no significant difference was found between the moder-
ately disturbed and the undisturbed sites (G-test = 5.991,
P = 0.802).

All diversity indexes had significantly different values between
the erupted volcano and the undisturbed site (P < 0.001 in all
cases) (Table 1). Significant differences were also found for all
indexes between the moderately disturbed site and the undis-
turbed site (P < 0.001 in all cases) (Table 1). By contrast, no
index showed a significant difference between the volcano and
the moderately disturbed site (0.05 < P < 0.843). In particu-
lar, the two disturbed sites showed significantly lower values of
diversity and evenness (H, /S, D and J) when compared with
the undisturbed site, which had, in contrast, a significantly lower
value of dominance (C) (Table 1).

Because the volcano and the undisturbed site had similar total
species richness, we could not apply equation 1. However, this
was mostly due to the high incidence of introduced taxa in the
faunal composition of the volcano community. If introduced
species are removed, the current arthropod fauna of the erupted
volcano includes seven species, whereas 12 species are found in
the undisturbed site. Substitution of 1 = 43 (years from the
eruption) into equation 1 yielded a relaxation time of about
49 years, with 90% recolonisation completed in 113 years. A
separate analysis for the native non-endemic species gave a relax-
ation time of <21 years, with 90% recolonisation completed in
some 50 years. Calculations were not applicable to the endemic
species because none of them was found on the erupted volcano.
Overall, these results indicate that recolonisation kinetics was
very different between the three categories. The introduced spe-
cies are the most able to colonise the erupted volcano, reaching a
higher richness than in the undisturbed site. The native species
need some 50 years for a complete recolonisation, but endemics
seems to be unable to recolonise.

Results of similarity analysis are reported in Fig. 2. Similarity
between undisturbed and moderately disturbed sites showed a
similar value (about 25%) for all three categories (total, intro-
duced and native species). When the volcano community was
compared with undisturbed site, similarity was very low, with a
similar value (about 7%) for all categories. The three categories,
however, showed important differences for the similarity
between volcano and moderately disturbed sites. In this compar-
ison, introduced species showed a similarity of about 24%,
whereas native species had a similarity of <10%.

Discussion

The epigean arthropod fauna of Faial Island represents an excel-
lent opportunity for investigating the recolonisation time in
recently formed land. It is reasonable to assume that the fre-
quency with which epigean arthropods colonise new land
recently created in an island is in large part determined by the
resources becoming available in the new terrain, but also by the
intrinsic characteristics of species such as their dispersal ability
and life history characteristics. The pool of species we considered
here (equilibrium site) is located in the most pristine sector of the
island inside a volcanic caldera. The intermediate disturbed site
is located at mid-altitude and was heavily impacted by the ashes

30 - - -4 - Total species
—{@— Native species
25 A Introduced species
20 4
Pl
E 1
E 07
(%]
X
°7 10 4
5
0 T T 1
Undisturbed vs.  Moderately Undisturbed vs.
Moderately Disturbed vs. Volcano
Disturbed Volcano

Fig. 2. Percentage similarities (Jaccard index) for total, intro-
duced and native non-endemic arthropod species between the
three investigated sites on Faial Island (Azores).

of the coastal Capelinhos Volcano. The group of taxa investi-
gated includes arachnids, millipedes, centipedes and insects with
very different life histories. Thus, the selection of these three
areas is satisfying two criteria: (i) they provide a good span of
biotope ages and disturbance; and (ii) a standardised survey is
available for a wide range of arthropod taxa. However, limita-
tions of this data set are as follows: (i) the biological data are a
snapshot in time; and (ii) the three areas have very different habi-
tats and vegetation cover. However, we are limiting the effect of
habitat differences based on the fact that at least the data are
comparable in terms of sampling intensity and in using only soil
epigean fauna. Moreover, both the pristine and intermediate dis-
turbed sites are dominated by native vegetation (see Gaspar
et al., 2008).

The arthropods of Capelinhos Volcano seem to have a quite
short recolonisation time (expressed as the length of time that a
given animal group requires for returning to equilibrium value),
compared with that calculated for various arthropod groups on
island and mainland volcanoes (Fattorini, 2010). However, this
is a consequence of striking differences in the pool of species
available for recolonisation and accessibility of the erupted area.
Capelinhos is a volcano within an island, which has important
implications. First, the source pool of species available for recol-
onisation is mostly restricted to that of the undisturbed adjacent
sectors of the island, because immigrations from undisturbed
sites within the islands are much more probable than immigra-
tions from adjacent islands or mainlands. In fact, we found, in
the disturbed site, more species than in our control site. This is
attributable to the arrival of non-indigenous species, absent from
the control site, but present in other locations of the islands,
namely man-made habitats (exotic plantations, agricultural
fields, semi-natural pastures, intensive pastures) and native habi-
tats (secondary Erica azorica/ Piccconia azorica habitats; mixed
secondary forests).
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Second, species occurring on oceanic islands are filtered
among the mainland taxa showing the highest dispersal ability.
In this respect, the arthropod fauna of the undisturbed areas
which represents the baseline communities for the recolonisation
of the erupted volcano will be essentially represented by those
species that were able to colonise the island, and which are there-
fore particularly able to colonise empty areas. In fact, there is a
high similarity between the control undisturbed site and the
moderately disturbed site, showing that after more than
300 years, many native and endemic species already colonised
the old mid-aged volcano. Actually, island endemics, which usu-
ally do not show such characteristics, did not yet colonise the
erupted volcano.

Third, because of their high isolation, the Azorean Islands
are particularly poor in species, when compared with other
archipelagos (Borges & Hortal, 2009; Cardoso et al., 2010).
In previous works on island recolonisation, calculations
involved volcanoes that were not a part of an island, but that
formed the entire island, and richness of other islands was
used as equilibrium values (see Fattorini, 2010). Obviously,
assuming as species richness the entire fauna of another
island implies a much larger baseline than that of the species
richness of a sampling plot. Thus, previous works on island
volcanoes were addressed to study recolonisation of entire
island biotas, whereas we are faced with a recolonisation of a
small volcanic area within an island. Recolonisation of
erupted islands requires new arrivals from adjacent islands or
the nearest mainland, which is much more difficult than
recolonisation of a site from an adjacent one within the same
island. From this respect, Capelinhos Volcano parallels the
case of a mainland volcano; however, recolonisation of main-
land volcanoes involve a very large number of species
because there are no strong isolation effects (Fattorini, 2010).
Thus, a combination of a small number of species in the pool
and a great accessibility for recolonisation may explain the
short recolonisation time for the Capelinhos arthropod fauna.

Recolonisation of Capelinhos Volcano indicates that species
with different distributional ranges (endemic, native and intro-
duced) have different colonisation kinetics. Arthropod intro-
duced species common in the surrounding man-made habitats
(such as intensive pastures and exotic forests, especially of Pittos-
porum undulatum and Cryptomeria japonica) were particularly
fast in colonising the erupted volcano, and, in <50 years, they
reached a number of species superior than that observed in the
undisturbed area. This conforms to the high ecological plasticity
of these species. By contrast, native non-endemic species have
more difficulty in recolonising the erupted area, and no endemic
has reached it. Thus, although the erupted volcano has a species
richness even slightly higher than that of the undisturbed site,
this is a consequence of the high colonisation ability of intro-
duced species common elsewhere in the island. Here, we should
refer to the fact that one endemic lavicolous species, the Azorean
stone beetle Gietella faialensis (Coleoptera, Gietellidae), is
known to be endemic from Capelinhos Volcano (see Menier &
Constantin, 1989), but we were unable to sample it in our stan-
dardised samples. However, this is a case of a lavicolous species
pre-adapted to the volcanic terrain and therefore could not
occur in the two other studied control sites.
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These results agree with Fattorini’s (2010) conclusions that
species with highest dispersal power and colonisation ability are
the first to reconstruct their communities, whereas species with
low dispersal ability, or that require conditions of mature ecosys-
tems, have long times of recolonisation.

Our study added further momentum to the study of commu-
nity development during colonisation, providing abundance
data. We found that the reconstituted arthropod community of
the erupted volcano is very different from that of the undis-
turbed site also in terms of species abundance distribution. The
volcano community is largely dominated by a few species with
high abundance and shows depressed values of diversity and
evenness in comparison with the undisturbed community. This
indicates that it is a strongly dominated (uneven) community,
showing a state of affairs typical of pioneer communities.

These results are in agreement with the general model for vol-
cano recolonisation recently proposed by Fattorini (2010). Com-
parisons with a moderately disturbed site are particularly
instructive. Here, species richness is particularly high, and com-
munity parameters do not differ from those of the pristine site.
These results indicate that we are faced with a well-structured
community with more species than expected on the basis of the
undisturbed site. This paradoxical result can be explained with
reference to the supersaturation phase postulated by Wilson
(1969) and evoked by Fattorini (2010), but for which there was
little support in the literature. According to Wilson’s multi-phase
model, in a first phase of colonisation (non-interactive species
equilibrium), which occurs soon after colonisation has started,
ecological space is unsaturated, and competition, predation and
other interactions are limited by low population density. This
allows rather fast growth in species richness until a maximum
number of species is reached, which may exceed the species rich-
ness at a more advanced phase (supersaturation). As population
densities increase and biotic interactions within and across tro-
phic levels become more important, the system enters a second
phase (interactive species equilibrium). In this second phase, the
expected number of species will be lowered, but some species will
be very abundant and others very rare. In a third phase (‘assorta-
tive species equilibrium’), combinations of longer-lived species
accumulate, and if the community persists for a long enough
period of time, in the last phase (the evolutionary equilibrium),
speciation/extinction processes will regulate species richness.
This model, which has been postulated for colonisation of entire
island biotas (see Fattorini, 2010), may be partially applied —at a
smaller scale — to an erupted volcano within an island. Our data
suggest that Capelinhos Volcano is in the first phase, as shown
by its higher species richness and still low population density.
The moderately disturbed site supports the presence of an over-
saturation peak and can give an idea of what is expected at the
peak of this first phase, with a very large number of species
(compared with the undisturbed pristine site), but with some
species that have became very abundant and other very scarce.
However, the high diversity attained at the ‘intermediate dis-
turbed site’ (Cabego do Fogo) is mainly due to the accumulation
of exotic species.

The impact of volcanic eruption was to transform substan-
tially species composition, even in the moderately disturbed site,
with only 25% of species retained. Comparisons between the
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erupted volcano and the moderately disturbed site showed that
most of the decrease in similarity from the initial condition was
attributable to the lost of native species, with only 7% of shared
species between moderately and severely disturbed sites. By con-
trast, the percentage of similarity of introduced species shared
between the moderately and the severely disturbed sites was sim-
ilar to that observed between moderately disturbed and undis-
turbed sites, thus confirming that introduced species are much
less sensitive to an increase in the general effects of volcanic
activity.

Capelinhos Volcano is a protected area that faces two kinds
of threats: (i) the advance of exotic aggressive plant species, a
pattern common to all protected areas in Azores (Borges et al.,
2005, 2006; Cardoso et al., 2009); and (ii) the build-up of an epi-
gean arthropod community dominated by widespread exotic
species. All the native and endemic species require usually at
least secondary native vegetation and are able to colonise recent
biotopes only in very particular conditions like proximity to
source areas and low management intensity (see Meijer et al.,
2011). Most of the fauna found in Capelinhos is made up of typ-
ical pioneer aeronauts (e.g. spiders, beetles), and the communi-
ties are mainly dependent on the biological fallout for feeding
(see Ashmole et al., 1992, 1996; Ashmole & Ashmole, 1997).
Many of the populations may not persist or are continuously
rescued by immigrants (source-sink dynamics) (Ashmole et al.,
1992). Some of the endemic species found in both the pristine
and intermediated disturbed sites are particularly common in
many habitats in the Azores, such as the spider (Lycosidae)
Pardosa acoreensis (see Borges & Wunderlich, 2008) and the bee-
tle (Elateridae) Heteroderes azoricus (see Cardoso et al., 2009;
Meijer et al., 2011). Therefore, we expect that those two endem-
ics will be successful colonisers of Capelinhos in the future.

Our study indicates the following:

1 Introduced species are the most successful colonisers;
because future changes in the composition of source
pools (expected because of man induced extinction of
endemic and native species) will probably increase the
proportion of introduced species as available colonis-
ers, newly reconstituted communities will be domi-
nated by these introduced species, not by those which
constituted the original community before the pertur-
bation.

2 There is a link between endemicity, low dispersal abil-
ity and specialisation: most endemics are virtually
unable to recolonise a disturbed site (but see excep-
tions above), because they move very slowly and are
strictly associated with native mature ecosystems.

3 The Capelinhos Volcano needs a long-term manage-
ment of invasive plants to allow the opportunity for
recolonisation by the endemic and native vegetation
and consequently increasing the probability of coloni-
sation by indigenous invertebrates.

New volcanic terrain in islands offers a unique opportunity to
study the built of invertebrate communities. The study of arthro-
pod colonisation dynamics in island newly formed habitats
should continue to be explored in detail in the future.
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