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Species abundance distributions are an essential tool in describing the biodiversity of ecological communities. We now 
know that their shape changes as a function of the size of area sampled. Here we analyze the scaling properties of species 
abundance distributions by using the moments of the logarithmically transformed number of individuals. We find that the 
moments as a function of area size are well fitted by power laws and we use this pattern to estimate the species abundance 
distribution for areas larger than those sampled. To reconstruct the species abundance distribution from its moments, we 
use discrete Tchebichef polynomials. We exemplify the method with data on tree and shrub species from a 50 ha plot of 
tropical rain forest on Barro Colorado Island, Panama. We test the method within the 50 ha plot, and then we extrapolate 
the species abundance distribution for areas up to 5 km2. Our results project that for areas above 50 ha the species abun-
dance distributions have a bimodal shape with a local maximum occurring for the singleton classes and that this maximum 
increases with sampled area size.

Understanding the processes that determine the relative 
abundance of species in a community is a central task in ecol-
ogy (Brown 1995, Lawton 2000, Hubbell 2001). Usually, 
the information on species relative abundances is conveyed 
through the histogram of the number of species with a given 
number of individuals, the species abundance distribution 
(hereafter SAD). Not surprisingly, SADs have played a major 
role in the development of theories of biodiversity and bio-
geography (McGill et al. 2007).

There have been several approaches to the study of SADs. 
Some authors have put the emphasis on which probability 
density function best fits the SAD at one given spatial scale 
(McGill 2003a, Volkov et al. 2003, Williamson and Gaston 
2005). Others, stemming from the original work by Fisher 
et al. (1943), have looked at SADs at different scales by con-
sidering that an observed SAD is a sample from the SAD of 
a larger regional pool of species. For example, Fisher arrived 
at his well known logseries distribution by assuming that the 
observed abundance distribution of Lepidoptera species in 
light traps resulted from Poisson sampling from a gamma 
distribution. Later, Preston (1948, 1962) questioned the 
generality of Fisher’s logseries arguing that it was an artifact 
of small sample size, and that when more data were gath-
ered the lognormal distribution gave a better fit. Preston 
described the evolution of the logseries to the lognormal as 
the shift to the left of the distribution of a veil line that pro-
gressively reveals more (rarer) species as sample size increases. 
In an important paper, Dewdney (1998) reassessed Preston’s  
suggestions and showed that the veil line is not an appropri-

ate explanation for the shape of sampled distributions from 
lognormals. In the same vein, McGill (2003b) studied the 
shape of sampled distributions and concluded that their 
shapes and, in particular, the degree of (left-)skewness, was 
a function of sample size, in accordance with previous work 
by Gregory (1994, 2000). Recently, Alonso and McKane 
(2004) and Etienne and Alonso (2005) have studied the 
characteristics of sampled SADs under the framework of 
Hubbell’s neutral theory, the former assuming random sam-
pling and the later dispersal limitation. Dispersal limitation 
is a possible cause, but not the only one, for species aggrega-
tion. Recognizing the importance of aggregation, Green and 
Plotkin (2007) introduced a general framework to describe 
SADs assuming spatially aggregated species or, equivalently, 
heterogeneity in the sampling scheme. The framework of 
Green and Plotkin generalized the work by Dewdney (1998) 
who had considered only random sampling.

An important result that has emerged from these collected 
works (Dewdney 1998, Alonso and McKane 2004, Etienne 
and Alonso 2005, Green and Plotkin 2007) is that under 
random sampling the shape of the sampled (local) SADs is 
like that of the regional SAD, but that for nonrandom sam-
pling or spatially aggregated species one expects the local 
SADs to exhibit often highly variable shapes. Studying the 
effects of spatial aggregation is warranted because there is 
good evidence that almost all species are clumped in distribu-
tion in nature (Condit et al. 2000). Empirical data, simula-
tions, and theoretical developments reveal that SADs change 
their shapes when sample size changes. For example, consider 
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changes in the SAD for trees and shrubs in the 50 ha plot on 
Barro Colorado Island. The SAD for areas between 1 and 50 
ha, plotted on a logarithmic scale of the number of individu-
als, changes from a monotonically decreasing function to a 
distribution with a maximum for intermediate abundance 
classes (Fig. 1). Using simulations based on the assumptions 
of the neutral theory and modeling different levels of aggre-
gation, Borda-de-Água et al. (2007) obtained similar find-
ings for small spatial scales, and, in addition, they showed 
that for very large scales the SAD is again a monotonically 
decreasing function. This result was predicted analytically by 
Hubbell’s neutral theory (Hubbell 2001), which shows that 
Fisher’s logseries describes the SADs of metacommunities 
(all trophically similar individuals in a biogeographic region, 
such as the Amazon basin (Hubbell et al. 2008)) and that 
the zero sum multinomial, a distribution with a shape similar 
to that of the lognormal, describes SADs of local communi-
ties (a subset of a metacommunity at scales where individu-
als interact). However, an important difference between the 
zero-sum multinomial and the lognormal distribution is that 
the former allows for a larger number of species in the low 
abundance classes. In fact, a large number of data sets show 
an excess of singletons when compared to those predicted by 
the lognormal (e.g. Fig. 1, and Volkov et al. 2003). As we will 
discuss, singletons play an important role in determining the 
shape of the SADs: monotonically decreasing or bimodal.

Beyond understanding the shape of sampled distributions, 
ecologists are also interested in the inverse problem, that is, 
how to predict the SAD at large scales based on samples from 
smaller scales. In an interesting set of papers, Šizling et al. 

(2009a, b), and Kůrka et al. (2010) have shown that under 
general conditions the SADs converge to a specific distribu-
tion, and the convergence and final shape of the distribu-
tion is given by the Jaccard index–area relationship and the 
spatial autocorrelation of the abundances–area relationship. 
Their results stem from a generalization of the Central Limit 
theorem (Šizling et al. 2009a) and they have shown how 
the SAD of a given area can be obtained from the SADs of 
subplots (Šizling et al. 2009b). Zillio and He (2010) also 
addressed this problem using a Bayesian approach, and Harte 
et al. (2009) using maximum entropy methods, but the lat-
ter assuming only logseries SADs. Here we also introduce a 
method to extrapolate SADs to larger spatial scales but using 
a very different approach based on the scaling properties of 
the moments of SADs.

The premise of this paper is that there is not an inherent 
scale at which the SAD should be measured or described. We 
argue, instead, that attention should shift to the scaling prop-
erties of the distribution as a function of area. To understand 
and describe the scaling properties is important for at least 
two reasons. First, it may reveal intrinsic biological charac-
teristics of the system and, second, it may allow extrapola-
tion of the SAD to larger areas. This paper deals with the 
latter aspect with a view to providing tools for estimating the 
relative abundance of species at large spatial scales.

In order to study the scaling characteristics of SADs, we 
use the moments of the logarithmically transformed number 
of individuals. The choice of the moments to characterize 
the distribution and its scaling properties was motivated by 
the paper by Borda-de-Água et al. (2002). However, as we 
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Figure 1. The species abundance distribution for 4 different sizes of area within the BCI 50 ha plot. Bins are centered on the logarithms of 
the powers of 2 and delimited by log(2n  0.5).
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explain in the Methods section, the direct application of 
the moments to reconstruct the distribution function is not 
efficient, therefore, we use a method based on Tchebichef 
moments and polynomials (Mukundan et al. 2001).

An important prediction arising from this work is that 
the number of the rarest species (singletons, doubletons, etc.) 
increases with sample sizes in such a way that the distribution 
becomes clearly bimodal, with one of the maxima occurring 
for the singleton class and the other for intermediate abun-
dance classes. This shape is compatible with SADs reported 
in other works (Magurran and Henderson 2003) and it is 
important because it quantifies the role of rarity, in particular 
that of the singletons, in the diversity of tree rainforest com-
munities (Rabinowitz 1981, Pitman et al. 1999).

Methods

Using moments to reconstruct the probability 
density function

We use the moments of the distribution of the logarithmically 
transformed number of individuals to characterize the scal-
ing behavior of the SAD and to extrapolate and reconstruct 
it at larger spatial scales. This is possible because the charac-
teristic function connects the moments of a distribution to 
the probability density function; the moments are the terms 
of the Maclaurin expansion of the characteristic function 
which, in turn, is the Fourier transform of the probability 
density function (Feller 1971). However, such a procedure 
is rarely practical, as we explain below and, instead, we use 
a method based on discrete scaled orthogonal Tchebichef 
polynomials and moments introduced by Mukundan et al. 
(2001). We now formalize this discussion.

Given a community composed of S species, of which the 
jth species has Xj individuals, we estimate the moment of 
order n, Mn, of the species abundance distribution of the log2 
transformed number of individuals, xj  log2(Xj), by using 
the relationship
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from where M0  1. Knowing the moments, we can, in prin-
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the moments are the coefficients of the Maclaurin expansion 
of the characteristic function, jX(t) (Hu 1962, Feller 1971), 
that is,

jX

p

pt M itM
it

M
it

M
it
p

M( )
( )

2!

( )

3!
...

( )

!
...0 1

2

2

3

3      

where i is the imaginary number. Since the characteristic 
function is the Fourier transform of the probability density 
function, f (x), the latter can be recovered by applying the 
inverse Fourier transform to jX(t). However, the above pro-
cedure is not useful because it requires a very large number 
of moments (Teague 1980). For example, in our numerical 
experiments to reproduce a normal distribution with mean 10 
and standard deviation 2, we estimated about 40 moments. 
This, compounded with the need to extrapolate moments, as 
we explain later, led us to explore other methods.

Here we use a method based on the scaled discrete ortho
gonal Tchebichef polynomials and moments introduced by 
Mukundan et al. (2001). The basic idea of the method is to 
fit a given discrete function f (x) defined in N points with the 
sum of scaled discrete orthonormal Tchebichef polynomials, 
t~n(x), weighted by the Tchebichef moments, Tn, that is,
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and the following inequalities apply: 0  n  N1 and 
0  x  N1. We provide the formulas to calculate t~n(x) and 
Tn in Supplementary material Appendix 1.

Although we could estimate the Tchebichef moments 
directly from the data (Mukundan et al. 2001), such proce-
dure would not be useful for our purposes because the scaling 
properties that are useful to extrapolate the SAD are observed 
for the moments, Mn, and not the Tchebichef moments, Tn. 
Fortunately, one can relate the Tchebichef moments, Tn, to 
the moments, Mn (Supplementary material Appendix 1, Eq. 
A1). In summary, the method to approximate a distribution 
using the Tchebichef moments and polynomials consists of 
the following steps: 1) estimate the moments using Eq. (1), 
2) calculate the Tchebichef moments (Supplementary mate-
rial Appendix 1, Eq. A1) and polynomials (Supplementary 
material Appendix 1, Eq. A2), and 3) approximate the prob-
ability density function using Eq. (2).

Data

We illustrate the application of the previous method using data 
on mapped populations of woody plant species (except lianas) 
from a 50 ha (500  1000 m) plot of old-growth tropical moist 
forest on Barro Colorado Island (BCI), Panama (Condit 1998, 
Hubbell et al. 1999, 2005). The data set contains information on 
the species and spatial location of all individuals with stem diam-
eters   1 cm dbh (diameter at breast height). Here, however, we 
limit our analysis to stems with dbh   10 cm because if the BCI  
50 ha plot will be expanded in the near future it is likely to be 
only for stems with dbh  10 cm, hence, it is the predictions 
using the dbh  10 cm class stems that are more likely to be 
tested. (For completeness, we show in Supplementary mate-
rial Appendix 3 the results for all stems in the BCI data set, 
dbh  1 cm.)

Moments estimation and scaling

We estimate the moments as follows. First, for a given area 
smaller than 50 ha, we choose randomly the location of m 
(typically 20) subplots. Because the subplots are located ran-
domly this means that some may overlap, and this is more 
likely to occur when the size of the subplots increase. We then 
log transform (using base 2) the number of individuals of each 
species, calculate for each subplot the moments up to a given 
order using Eq. (1), and calculate the average of the moments 
obtained from all subplots. In order to obtain the scaling 
properties of the moments as a function of area, we repeat this 
procedure for different subplot sizes (see Supplementary mate-
rial Appendix 2 for details on the statistics of the moments as 
a function of the size of the subplot sampled).
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to areas above 8 ha. Above this threshold the residuals have an 
oscillatory behavior, but note that the amplitude of the oscil-
lations is very small compared to the values of the moments 
and that they tend to decrease for higher order moments. The 
breakdown of the power law relationship for small areas is 
similar to the one observed for the species area relationship 
for small areas (Hubbell 2001). For instance, Condit et al. 
(1996) reported for these data that below 1 ha the species area 
relationship is not well fitted by a power law.

Because the distribution we obtain after the application 
of the Tchebichef method is a probability density function, 
hence with bin densities adding to 1, in order to extrapolate 
the SAD, we first need to extrapolate the number of species, 
which we do by assuming a power law species area relation-
ship. Figure 2d shows the log-log plot of the species area 
relationship, and the dashed line corresponds to the fit with 
log(S)  log(c)  z log(A). In addition, when extrapolating 
the SAD with the Tchebichef moments, we also need to have 
an estimation of the number of individuals of the most abun-
dant species so that we know the number of bins required. 
Interestingly, we found that the logarithm of the number 
of individuals of the most abundant species, log2Nmax, also 
increases as a function of area in a way that is well approxi-
mated by a power law, log(log2Nmax)  log(c’)  z’ log(A), as 
shown in Fig. 2e.

We now extrapolate the SAD to 50 ha using the estimates 
of all moments obtained from linear regressions using scal-
ing regions ranging from 8 ha to 10, 15, 20 and 25 ha. We 
obtained the best results when we limited the number of 
moments used in the projection to six because the projections 
were very sensitive to slight variations in the values of higher 
moments. This result is to be expected because the higher 
moments are raised to higher powers (Mukundan 2004). We 
show the predicted SADs in Fig. 3 and the distributions of 
the parameters of the regression in Supplementary material 
Appendix 2. In all 4 cases the predicted species abundance 
distribution for 50 ha has a bell shape with the maximum 
for intermediate classes. Observe that the shape of the SADs 
for the areas used to make the predictions can be consid-
erably different from that of 50 ha, especially for the areas 
equal to 10 and 15 ha. As expected, when the size of the scal-
ing region increases the quality of the fit increases as well, as 
can be seen visually or by calculating the difference between 
the predicted, fi, and observed values, fiˆ, as e

Ÿ
 Σ| |,fi if  

which decreases as e  109.8, 93.1, 61.1 and 40.38 when 
we increase the upper limit of the scaling region from 10 to  
25 ha. Notice, as well, that the predicted SADs are able to 
track the large number of singletons.

We now extrapolate the species abundance distribution 
for areas hitherto not sampled using the data from the 50 ha 
plot up to 500 ha (Fig. 4), assuming that the moments retain 
their power law behavior. We use the scaling region from 8 to 
50 ha, as shown in Fig. 2 and, based on our previous results, 
we use only moments up to order 5 (see the distributions of 
the parameters of the regression in Supplementary material 
Appendix 2). As before, we need to extrapolate the number 
of species and the number of individuals of the most abun-
dant species, which we assume both cases to follow power 
laws, as shown in Fig. 2d and e. As expected, we can see from 
Fig.  4 that the maximum for intermediate classes moves 
towards more abundant classes when area increases. Notice, 

To assess the scaling characteristics of the moments we 
use log10-log10 plots of the moments versus the area, A. As 
we will see, in these plots, and above a certain value of A, the 
moments are almost straight lines: therefore, it is reasonable 
to model their behavior as a set of relations of the form

log( ( )) log( ),M A a b An n n  � (3)

i.e. M A An
a bn n( ) 10 . We can then use Eq. (3) to extrapo-

late the value of the moments for larger areas. The above 
procedure allows the determination of a single set of values 
(an, bn) from where we can extrapolate the moments, and 
then estimate the Tchebichef moments and obtain the SAD. 
In order to obtain a final predicted SAD that corresponds to 
an average value and its associated confidence intervals, we 
repeat the above steps 100 times.

Binning method

For the low abundance classes, how species are ‘binned’ into 
log2 abundance classes, the binning method, affects con-
siderably the shape of the histogram at the low abundance 
end of the distribution. We use the method suggested by 
Williamson and Gaston (2005) in which the bins are cen-
tered on the logarithms of the powers of two, that is, 0, 1, 2, 
et seq. (or in a linear scale, 1, 2, 4, et seq.) and with boundar-
ies at log(2n  0.5), that is, at 0.5, 1.5, 2.5, et seq. (or in a lin-
ear scale 1.414, 2.828, 5.656, et seq.). Hence, if Sn represents 
the number of species with n individuals, the first bin reports 
S1, the second S2, the third S3 to S5, and so on. By using this 
scheme we make sure that the boundaries of the bins precisely 
double, and ensure that no number of individuals ever falls 
exactly on the boundaries of adjacent bins (Williamson and 
Gaston 2005). We also considered the binning schemes used 
by Hubbell (2001), where bins are for counts S1, S2 to S3, S4 
to S7, et seq., and by Preston, where bins are for counts S1/2, 
S1/2  S2/2, S2/2  S3  S4/2, S4/2  S5  S6  S7  S8/2, et 
seq., but the results did not change qualitatively.

Results

We first consider the extrapolation of the SAD from areas 
smaller than 50 ha up to 50 ha. Figure 2a shows the log
arithm of the moments from order 1 to 11 as a function 
of the logarithm of the area; there are 12 bins in the histo-
gram, hence the maximum number of Tchebichef moments 
is 12, from order 0 to 11 (Supplementary material Appendix 
1), and recall that M0(A)  1 (see Supplementary material 
Appendix 2 for the numerical values and statistics of the 
linear regressions). Figure 2b and c show the residuals for 
the moments of order 1 and 5, respectively; we show the 
residuals of the 5th moment because, as we will see, this is 
the highest order moment used in the extrapolations. Visual 
inspection reveals that the logarithm of the moments has a 
linear behavior as a function of the logarithm of the area. 
Nevertheless, closer inspection of the residuals obtained by 
least squares shows that the residuals have a clear downward 
trend for small areas. Therefore we restrict, conservatively, the 
region to estimate the slope and intercept, the scaling region, 



553

1 2 5 10 20 50

1e+00

1e+03

1e+06

1e+09

(a)

Area [ha]

M
om

en
ts

10 20 30 40 50

180

200

220

(d)

Area [ha]

S

z = 0.167
c = 124.4
R2=0.995

-0.010

0.000

(b)

Area [ha]

R
es

id
ua

ls
 1

st
 m

om
en

t

10 20 30 40 50

10 20 30 40 50

–0.020

–0.005

0.010

(c)

Area [ha]
R

es
id

ua
ls

 5
th

 m
om

en
t

10 20 30 40 50

8.5

9.5

10.5

(e)

Area [ha]

M
ax

(lo
g 2(in

di
vi

du
al

s)
)

slope = 0.141
intercept = 0.803
R2=0.994

Figure 2. Plot (a) shows the logarithm of moments from 1 up to order 11 as a function of the logarithm of areas between 1 and 50 ha using 
data for stems with dbh   10 cm. The order of the moments increases when we go from the bottom to the top lines. The dashed lines added 
to the each moment are the curves of best fit obtained from linear regressions of the logarithm of the moments versus the logarithm of the 
area between 8 and 50 ha. Plots (b) and (c) show the residuals from the linear regression of the logarithm of the moments of order 1 and 5 
(the largest used in the reconstruction of SADs). Plot (d) is the species area relationship and the dashed line corresponds to fit obtained with 
least squares assuming a power law relationship, S  cAz. Plot (e) shows the logarithm of the number of individuals of the most abundant 
species as a function of the logarithm of the area, and the dashed line was obtained by least squares assuming a power law relationship.

however, that the extrapolated distributions reveal an inter-
esting shape characterized by a pronounced dip in the lower 
abundance classes, the bottom of which shifts to higher 
abundance classes for larger areas. The increase in the num-
ber of singletons also occurred when we imposed a curvature 
in the log-log evolution of the moments (Supplementary 
material Appendix 1 for details). Noticed that such a trend is 
already apparent in the SADs for subplots of the 50 ha plot, 
as can be observed in Fig. 1, and it reveals that the number 
of very rare species, in particular singletons, tend to increase 
when the size of the area sampled increases.

Discussion

In this paper we use the pattern exhibited by the scaling of 
moments of the SAD to predict how the SAD will change 
across a range of spatial scales. The straightforward method 

of relating the moments of a distribution with the probabil-
ity density function is not practical (Teague 1980), there-
fore we use discrete orthogonal Tchebichef polynomials 
and moments (Mukundan et al. 2001). We illustrated the 
application of the method with data on tree and shrub spe-
cies from a 50 ha plot in a tropical forest, and predicted the 
species abundance distribution for areas ranging from 100 to 
500 ha. As far as we know, a similar attempt has only been 
carried before by Zillio and He (2010), but using a com-
pletely different approach.

Zillio and He based their method on Bayes’ theorem in 
order to upscale the SAD up from smaller samples. In con-
trast, our method uses the observed properties of the moments 
in order to extrapolate them and predict SADs for larger area 
sizes. Both methods are non-parametric because they do not 
assume any specific function for the SAD. Although some 
implicit assumptions are the same for the two methods of 
extrapolating the SAD, such as that the surrounding forest 
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Figure 3. In all plots the histograms correspond to the species abundance distribution for all stems with dbh   10 cm in the BCI 50 ha 
plot. The squared dots and dashed lines show the SAD at the original scale: plots (a, b, c, d)  10, 15, 20, 25 ha, respectively. The continu-
ous line is the distribution obtained with the method of Tchebichef polynomials using only the first 6 moments (orders 0 to 5) and the 
error bars represent  2 standard deviations obtained with 100 repetitions (see main text for details).

habitat has the same scaling of the species spatial distribu-
tion above 50 ha as it has within the 50 ha plot, others differ.  
For instance, Zillio and He describe the aggregation of the 
species using a negative binomial distribution and assume 

that the clustering parameter is the same for all the species. 
This assumes that all species obey similar rules that govern 
their spatial dispersion, which they demonstrate is a reason-
able first approximation. In contrast, our method does not 
assume any characteristics for the species; the present meth-
ods resides solely on the pattern exhibited by the moments, 
that we have modeled here as power laws. We did it because 
power laws gave a good fit to the spatial scales analyzed, how-
ever, if in the future, after sampling larger areas, we find that 
other expressions give a much better fit, then we can extrap-
olate the moments using these other expressions. Further 
improvements of our method will likely come from a better 
understanding of the scaling behavior of the moments and 
from exploring other methods for reconstructing the species 
abundance distribution from the moments. Along theses 
lines, in addition to Tchebichef moments, we also explored 
Legendre moments (Teague 1980), but we found that the 
method of Tchebichef moments had two advantages. First, it 
does not require normalization of the data (in the Legendre 
method one must normalize the data to the interval from 1 
to 1) and, second, and more importantly, it gave a better fit 
to the data, especially for the number of species in the classes 
of the least abundant species (see Supplementary material 
Appendix 1, and Mukundan et al. (2001) for other advan-
tages of the Tchebichef moments).

An interesting result of our extrapolations for areas above 
50 ha is the dip observed in the SAD among the least abun-
dant classes. Specifically, this result predicts that the number 
of the rarest species increases when sampling effort increases, 
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than those observed in BCI, therefore only establishing occa-
sionally and being present for short periods, but possibly 
being abundant elsewhere (Pulliam 1988). Alternatively, 
these may be species sparsely distributed and, hence, rare 
everywhere (Pitman et al. 1999). In any case, it remains to 
be seen if indeed the SAD of Barro Colorado evolves to a 
clearly bimodal distribution with the number of singletons 
increasing as sampled area sizes increase.

We still know very little about the general behavior of the 
moments of SADs. According to our predictions for the SAD 
up to 500 ha (and also according to Zillio and He (2010)) 
it is has a hump for intermediate abundance classes. On the 
other hand, neutral theory, predicts that for very large scales 
(the metacommunity) and under point mutation the SAD 
is a monotonically decreasing function given by Fisher’s 
logseries. The difference between these results is likely to be 
due to the spatial scales involved. Indeed, we conjecture that 
the moments of the species abundance distribution exhibit 
multiple scaling regions, such as it is found for the triphasic 
behavior of the species area–relationship (Rosenzweig 1995, 
Hubbell 2001). The problem of how the moments of the 
SADs scale is complex and likely to be related to that of the 
species area–relationship. However, as explored in this paper, 
analyses of the moments of the species abundance distribu-
tion can be useful in practical applications, and we predict 
that further studies on the moments of SAD will bring 
insights on the assembly of ecological communities.
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