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A B S T R A C T   

This work introduces CyTRACK (Cyclone TRACKing framework), a new open-source, comprehensive and user- 
friendly Python toolbox for detecting and tracking cyclones in model and reanalysis datasets. The kernel of 
CyTRACK is based on detecting critical cyclone centres in the mean sea level pressure field at a single time slice, 
which are then filtered following several threshold parameters. This paper also compares ten years of CyTRACK 
outputs forced with the ERA5 reanalysis against best-track archives and available cyclones track datasets. The 
results reveal that CyTRACK can capture the inter-annual (year to year) and intra annual (seasonal cycle) 
variability of cyclone frequency, life cycle characteristics and spatial distribution of track densities. Largest 
differences were observed in the annual and seasonal frequency. In summary, CyTRACK provides a user-friendly 
framework for sensitivity analysis of several free parameters used to perform the tracking, and it is useful for case 
or climatological studies of cyclone features.   

1. Introduction 

Atmospheric studies are increasingly based on improved numerical 
simulations concerning spatial and temporal resolution, initialization 
inputs, and complex environmental interactions. Climatological assess-
ments, as well as specific events of cyclonic systems have been thor-
oughly studied by the scientific community due to their impacts on 
people’s life. This widespread interest includes subtropical (SCs), trop-
ical (TCs) and extratropical (ECs) cyclones, as their occurrence modu-
lates regional and local weather regimes (Bevacqua et al., 2020; da 
Rocha et al., 2019; Flaounas et al., 2022; Hawcroft et al., 2012; Hof-
steenge et al., 2022; Quinting et al., 2018). Additionally, they are 
involved in the exchange and redistribution of physical and thermody-
namical properties (Albert et al., 2023; Munsi et al., 2022; Sinclair and 
Dacre, 2019; Shen and Zhang, 2022; Uotila et al., 2013; Yang et al., 
2023), as well as in significant aspects of humankind’s evolution in its 
quest for adaptation and resilience in the face of frequent extreme events 
(Baker et al., 2019; Lai et al., 2021; Pérez-Alarcón et al., 2023a; 
Yamaguchi et al., 2020). In recent decades there have been various 

efforts to detect the centres and establish the trajectories of these sys-
tems on reanalysis and modelling output datasets (see Neu et al., 2013; 
Ullrich and Zarzycki, 2017, and references therein). Accurately detect-
ing and tracking in a gridded dataset largely depends on the threshold 
parameters that best describe cyclones, and there is no constraint 
framework for it. 

Best-track databases could be a reasonable benchmark for automated 
cyclone detection and tracking methods (CDTMs) in model outputs, for 
both weather forecast and climate modeling. However, these databases 
have been largely developed for TCs (Knapp et al., 2010; Landsea and 
Franklin, 2013; Lu et al., 2021; Ying et al., 2014). For extratropical 
cyclones, the best-track methodologies can become more complex due to 
the wide range of EC’s properties to be considered, i.e., shape symmetry, 
size, distinguishable centres, translation velocities, genesis precursors, 
and split/merge of features (Neu et al., 2013). Hence, benchmarking the 
performance of CDTMs remains difficult. Nevertheless, 
inter-comparison is a practice to determine the biases in the extra-
tropical climatologies obtained through CDTMs, both in reanalysis data 
and high-resolution modelling. Recently, Flaounas et al. (2023) 
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produced high-confidence datasets for the Mediterranean cyclones 
(MCs) based on the recent ERA5 reanalysis (Hersbach et al., 2020) by 
combining overlapping tracks from ten different CDTMs. 

From the similarities and differences between CDTMs, the optimal 
algorithm selection mostly relies on the specific investigation goals. In 
this sense, previous authors documented consistent/discrepancies in 
applying different algorithms to the same input data (e.g., Horn et al., 
2014; Neu et al., 2013; Raible et al., 2008) or one algorithm to different 
datasets (e.g., Bourdin et al., 2022; Gramcianinov et al., 2020; Malakar 
et al., 2020; Tilinina et al., 2013; Wang et al., 2016). Neu et al. (2013) 
noted that consistency between methods increased for well-developed 
cyclones, while the most considerable discrepancies were found for 
the detection and cyclone frequencies of weak systems. Similarly, when 
comparing three distinct algorithms, Raible et al. (2008) found differ-
ences in the number of cyclones, despite the consensus on inter-annual 
variability. Tracking methods differences between the datasets exhibi-
ted decreasing divergences when comparing recent periods (Gramcia-
ninov et al., 2020; Bié and de Camargo, 2023), probably due to the 
amount and quality of assimilated observations (Wang et al., 2016). For 
both TCs and ECs, the authors agree that the errors in track in reanalysis 
datasets reduce with the system’s intensification. In addition, Malakar 
et al. (2020) concluded that high-resolution downscaling is essential for 
inner core structure representation and description of the TC intensifi-
cation process. Several annotations from research focused on tracking 
cyclonic systems in high-resolution data (e.g., Cattiaux et al., 2020; 
Marchok, 2021; Raavi and Walsh, 2020; Rohrer et al., 2020; Zarzycki 
et al., 2021) remark that Eulerian tracking methods are robust to 
changes in resolution, while Lagrangian tracking algorithms are largely 
dependent on it. 

The objective and automatic Lagrangian CDTMs tools (so-called 
trackers) have streamlined this critical step for research purposes and 
forecasting services. One of their advantages relies on key characteristics 
such as “variable used” (Tory et al., 2013a; Walsh et al., 2007). The 
trackers generally split the problem into two stages: searcher 
cyclones-indicatives and pairing across time steps. In addition, imple-
mentation can vary across the computation of anomalies in a data field, 
identification of local extrema, and determination of closed contours or 
thresholds around a particular point (Ullrich and Zarzycki, 2017). 
Internally, a succession of rules and parameters are declared (as well as 
the criteria hierarchy) to discard false positives; at this point, the 
detection criteria and thresholds are suitable for the tracker. This flex-
ibility, in combination with minor adjustments, permits that occasion-
ally a tracker based on an algorithm for ECs (e.g. TRACK, Hodges, 1994, 
1995, 1999) is adapted and used in tropical systems (e.g. Hodges et al., 
2017; Roberts et al., 2020). Other software tools reach versatility when 
achieving robust applicability by avoiding issues associated with un-
structured grids, split/merge features, small-scale noise or data singu-
larity at the poles (e.g., “esd’’ R-package, Benestad and Chen, 2006; 
CycloTRACK, Flaounas et al., 2014; TRI_TRACKER, Massey, 2016; 
TempestExtremes, Ullrich et al., 2021; TITAM, Pravia-Sarabia et al., 
2020). Tracker kernel optimization is critical to the confidence level of 
the derived data (Bourdin et al., 2022). 

Accordingly, it is fair to state that cyclone track software develop-
ment is still an ongoing task. The variety of these methods will be as 
great as the evolution in the capacity of algorithms to capture the life 
cycle of systems and the emerging advances in the infrastructure of 
applications. It is also important to remark that the explosion of machine 
learning methods will likely further expand the number of fast and 
reliable cyclone tracking algorithms (Kumler-Bonfanti et al., 2020; 
Giffard-Roisin et al., 2020; Accarino et al., 2023). Despite the large 
number of methodologies to detect and track cyclones (see Neu et al., 
2013; Ullrich and Zarzycki, 2017; Murata et al., 2019; Flaounas et al., 
2023, and references therein), to the best of our knowledge, there is a 
limited number of tracker implementation or free availability codes for 
the scientific community. For example, the Centre for Earth Observation 
Science/National Snow and Ice Data Center Extratropical Cyclone 

Tracking (CNECT; Crawford and Serreze, 2016; Crawford et al., 2021), 
Stormtracks (https://github.com/markmuetz/stormtracks) and the Na-
tional Oceanic and Atmospheric Administration/Geophysical Fluid Dy-
namics Laboratory Tropical Cyclone tracker analysis tool (TCtracker; 
Vitart and Stockdale, 2001) are open-source tools. The former was 
developed for tracking ECs and the other for TCs, although Stormtracks 
can only read input data from the C20 Reanalysis Project. In addition, 
while TempestExtremes and Obuko-Weiss-Zeta (OWZ; Tory et al., 
2013b) are open-source codes and easily parallelizable using MPI, 
TRACK is a non-open source, its parallelization is limited on a year to 
year basis (Bourdin et al., 2022), and it needs to run globally due to the 
application of spectral filtering during the critical stage of cyclone 
centres detection. Similarly, the tracker from the Centre National de 
Recherches Météorologiques (CNRM, Chauvin et al., 2006) is another 
non-open access code which does not have any parallelization imple-
mented (Bourdin et al., 2022). Likewise, CycloTRACK is non-open ac-
cess, although it can be obtained from the corresponding author upon 
request. 

The output information provided to the user is also a point for 
improvement as quite often these available methods do not provide all 
the necessary output information to users. In this context, we are 
confident that a tracker product that includes ample physical diagnostic 
information about the phenomenon represents a huge benefit compared 
to publicly available tracking methods, given the inevitable computa-
tional and time cost that those methods require in post-processing steps. 
In fact, previous works have often needed to post-processed tracker 
outputs, i.e., determining the cyclone three-dimensional thermal struc-
ture by applying the cyclone phase space (CPS) proposed by Hart 
(2003), temperature anomaly or a geopotential thickness, to filter TCs 
(Roberts et al., 2020), SCs (de Jesus et al., 2022; Gozzo et al., 2014) or 
tropical-like cyclones (TLCs) in the Mediterranean region (Zhang et al., 
2020). 

Therefore, this work aims to introduce CyTRACK (Cyclone 
TRACKing framework), a new open-source, comprehensive and user- 
friendly Python toolbox for detecting and tracking cyclones in model 
and reanalysis datasets. The remainder of the paper is organized as 
follows: Section 2 describes the algorithms and kernel of CyTRACK 
framework. Datasets and validation methods are presented in Section 3. 
The performance of CyTRACK for tracking TCs and ECs in the North 
Atlantic basin (NATL), SCs in South Atlantic Ocean (SATL) and MCs in 
the Mediterranean region are then provided in Section 4, followed by 
Conclusions and future improvements in Section 5. The default input 
parameters for tracking TCs, MCs, ECs and SCs are provided in Sup-
plementary Material. 

2. CyTRACK algorithms and kernel 

The wide cyclone tracking literature available includes many algo-
rithms to identify cyclone centres and the corresponding trajectories in 
reanalysis datasets and numerical weather prediction model outputs 
(see Neu et al., 2013; Ullrich and Zarzycki, 2017; Murata et al., 2019; 
Flaounas et al., 2023, and references therein). Although the geopotential 
height at 1000 hPa and the vorticity at 850 hPa have been used to track 
cyclones, most previous studies employed the mean sea level pressure 
(MSLP). Therefore, CyTRACK detects and tracks cyclones also using the 
MSLP. Like most algorithmic Lagrangian trackers, the procedure for 
detecting cyclones is divided into two parts: (i) critical centres detection 
and (ii) pairing centres in continuous time steps. These procedures are 
described below. 

2.1. Detecting critical centres 

Critical centres are detected as mean sea level pressure (MSLP) 
minima and must satisfy the following conditions: 
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i. The MSLP value is lower than a specified MSLP threshold 
(min_slp_threshold).  

ii. The MSLP anomaly computed as the difference between the 
MSLP at time t0 and the mean MSLP in the previous N days 
(prev_days) is lower than a critical value (mslp_anomaly_threshold).  

iii. The MSLP increases (dmslp_great_circle_distance) over a specified 
distance (great_circle_distance) from the candidate point.  

iv. The maximum wind speed (max_wind_speed_threshold) around the 
critical centre (radius_for_msw) is higher than a predefined value.  

v. The surface relative vorticity (vorticity_threshold) is greater than a 
critical threshold.  

vi. The mean radial distance to the last closed isobar is higher than a 
critical value (critical_outer_radius). The radial distance to the last 
closed isobar is computed following the procedure developed by 
Rudeva and Gulev (2007). 

vii. When several centres exist in a critical radial distance (filter_-
center_threshold), the centre that has the lowest MSLP is retained. 

Additionally, CyTRACK allows discarding centres positioned over 
terrain higher than a critical high (terrain_filter). It is important to 
remark that CyTRACK is sufficiently robust and flexible. Therefore, users 
can choose and change these threshold parameters without code 
modification. 

2.2. Paring cyclone centres in continuous time steps 

Storm centres are linked together if they reoccur in the next time step 
(t=t0 + dt) within a critical distance (dist_threshold) from the previous 
low-pressure centre detected at time t0. If there are multiple identified 
centres within the critical distance, then the point with the lowest MSLP 
is chosen as the cyclone centre at the second time step. CyTRACK also 
allows a one-time step gap. If no centre is detected at time t0+dt, 
CyTRACK searches for a candidate point at time t0+2dt. If at least one 
point is found at t0+2dt within a radial distance of two times dis-
t_threshold from the cyclone centre at time t0, then the cyclone centre at 
time t0+dt is computed as the average latitude and longitude at time t0 
and t0+2dt. To account for the “natural evolution” of the cyclone tra-
jectory, the angle between the lines formed by the centres at time t0 and 
t0+dt and t0+dt and t0+2dt must be less than 10◦. If the last condition is 
satisfied, the algorithm continues searching for the next centre at time 
t0+3dt; otherwise, the track ends at time t0. At this point, CyTRACK 
evaluates the lifetime (dt_lifetime) of the cyclone, the minimum distance 
travelled (minimum_distance_travelled) from genesis to dissipation, the 
maximum intensity (intensity_threshold) in terms of the maximum wind 
speed along the track. Additionally, if checking_upper_levels_parameters is 
set to “yes” in the configuration file, CyTRACK classifies the cyclone core 
based on the thermal wind and thermal asymmetry according to the 
CPS. 

2.3. Utilities 

2.3.1. Estimating cyclone outer radius based on the mean sea level pressure 
CyTRACK applies the Rudeva and Gulev (2007) approach to estimate 

the outer radius of cyclones. This method maps the MSLP field onto a 
polar coordinate system centred in the cyclone. The number of radial 
legs and the radial length of those legs depends on the d_ang and rout 
parameters in the configuration file. It first searches along each radial 
leg for the location where the first radial derivative of MSLP computed at 
a defined radial spatial step (dr_res) tends to zero. The MSLP in this 
location is considered a critical MSLP value for a given radius. It is 
important to remark that if the previous condition is not satisfied for any 
radial distance, the first guess radius for that direction was set equal to 
the rout with the MSLP in this location set to the critical value. After that, 
the lowest critical MSLP value is considered the MSLP of the outermost 
closed isobar and then interpolated to each radial leg. Finally, the 
interpolated points mark the cyclone geometry, which area is considered 

equal to the area of a virtual circumference centred in the cyclone. Then, 
the radius of that circumference is assumed as an effective measure of 
the cyclone’s outer radius. This approach has been previously applied to 
estimate the size of TLCs (Coll-Hidalgo et al., 2022a) and ECs (Coll-Hi-
dalgo et al., 2022b; Pérez-Alarcón et al., 2023b). 

2.3.2. Estimating cyclone size based on the wind speed 
Cyclone size based on the wind speed is defined, following Schenkel 

et al. (2017), as the radial distance from the cyclone centre at which the 
azimuthal-mean 10-m azimuthal wind equal to a critical wind speed 
threshold (outer_wind_speed_threshold). Previous studies (Chavas and 
Emanuel, 2010; Knaff et al., 2014; Chavas et al., 2015; Pérez-Alarcón 
et al., 2021) have used 2, 4, 6, 8, 10, and 12 m/s as wind speed 
thresholds to estimate TC size. First, CyTRACK projects the winds vec-
tors onto the cyclone centre polar coordinates used for calculating the 
cyclone outer radius applying the MSLP approach; second, it computes 
the azimuthal wind field; third, it extracts the approximate cyclone size 
at each radial leg; and finally, it averages the cyclone size of all 
directions. 

2.3.3. Cyclone thermal structure 
As mentioned earlier, after CyTRACK determines the pathway of the 

cyclones, if the checking_upper_levels_parameters parameter is set to “yes” 
in the configuration file, it applies the CPS from Hart (2003) to classify 
the cyclone according to its thermal structure at each track position. The 
CPS provides three parameters: thermal symmetry of cyclone thickness 
(B), low-level thermal wind (-VTL) and upper-level thermal wind 
(-VTU). Parameter B informs about cyclone thermal symmetry, while 
-VTL and -VTU provide information on whether the cyclone has an 
associated cold or warm core. According to Hart (2003), |B| = 10 m is a 
convenient threshold for distinguishing frontal from non-frontal struc-
tures. Meanwhile, for warm-core (cold-core) cyclones, -VTL and -VTU 
are positive (negative). Therefore, based on the CPS, CyTRACK classifies 
the core of the cyclone following Table 1. 

Hart (2003) noted that a linear regression fit to the vertical profile of 
changes in geopotential high (ΔZ) favours an unambiguous magnitude 
and sign of -VTU and -VTL. Therefore, CyTRACK allows the estimation 
of these magnitudes using a vertical increment of 50 hPa to more 
accurately calculate the vertical profile of ΔZ, in agreement with Hart 
(2003), by setting the vtl_vtu_lr parameter in the configuration file equal 
to “yes”. Otherwise, -VTU and -VTL will be estimated using the geo-
potential high at the bottom and top of the tropospheric layers 900–600 
hPa and 600–300 hPa. Additionally, if the users aim to filter cyclones by 
type (i.e., TC, EC, MC, TLC, SC) using the CPS, they must define the -VTU 
(VTU_threshold), -VTL (VTL_threshold) and B (Bhart_threshold) thresholds 
in the configuration file. Likewise, they must provide the number of time 
steps (core_criteria_length) in which the cyclone satisfies these critical 
values. 

2.4. Description of CyTRACK input parameters 

Table 2 provides a brief description of specific parameters of 
CyTRACK for tracking cyclones. It is worth noting that the default 

Table 1 
Classification of cyclone core according to the cyclone phase space (CPS) pro-
posed by Hart (2003).  

|B| -VTL -VTU Cyclone Core 

<10 >0 >0 Symmetric deep warm core (SDWC) 
<10 <0 <0 Symmetric deep col core (SDCC) 
<10 >0 >0 Symmetric low warm core (SLWC) 
<10 <0 >0 Symmetric low cold core (SLCC) 
>10 >0 >0 Asymmetric deep warm core (ADWC) 
>10 <0 <0 Asymmetric deep cold core (ADCC) 
>10 >0 >0 Asymmetric low warm core (ALWC) 
>10 <0 >0 Asymmetric low cold core (ALCC)  

A. Pérez-Alarcón et al.                                                                                                                                                                                                                         



Environmental Modelling and Software 176 (2024) 106027

4

threshold values used in CyTRACK were mostly obtained from the 
literature review. Supplementary Tables S1–S5 show these default pa-
rameters and the corresponding reference in the literature. In addition, 
users should read CyTRACK documentation in the GitHub repository for 
details on the default threshold parameters for tracking ECs, TCs, MCs 
and SCs. Nonetheless, for more specific studies, we recommend that 
users perform a sensitive analysis of CyTRACK to threshold parameters. 

2.5. Input data 

CyTRACK can detect and track cyclones in the European Centre for 
Medium-Range Weather Forecasts (ECMWF) reanalysis datasets. In 
particular, if the ERA5 reanalysis (Hersbach et al., 2020) is used as input 
data and missing files are found during the checking input files step, it 
automatically downloads them from the Copernicus Climate Data Store 
(CDS). It is worth noting that the successful download of files depends on 
the user’s configuration to use the CDS Application Program Interface 

(cdsapi Python package). It also can process input data from the Weather 
and Research Forecasting (WRF) model simulations. Likewise, it can 
read data from other sources such as several climate and weather 
datasets. 

2.6. CyTRACK outputs 

CyTRACK output has a comma-delimited text format following a 
similar structure to the HURDAT2 (Landsea and Franklin, 2013) dataset 
provided by the US National Hurricane Center for TCs. Below we illus-
trate an example of the CyTRACK output. 

CyAL00012005, 41, 
20051018, 00, 15.75, -80.00, 998.378, 52.92, 483.005, 1006.91, 

509.687, SDWC, 50, 32, -4.0, 
20051018, 06, 16.0, -80.25, 998.481, 57.49, 558.127, 1009.12, 

726.721, SDWC, 70, 21, -1.0, 
20051018, 12, 16.5, -80.50, 995.320, 65.33, 453.859, 1008.70, 

658.487, SDWC, 72, 58, -2.0, 
The CyTRACK output file contains two types of lines, the first is the 

heading, and the second type informs about the cyclone along its track. 
The first type has the following format: 

CyAL00012005, 41, 
The first two characters (“Cy”) correspond to CyTRACK identifica-

tion, and characters 3–4 inform about the search region (AL: North 
Atlantic Ocean for tracking TCs, NA: North Atlantic for tracking ECs, 
MS: Mediterranean Sea, SA: South Atlantic Ocean). It is important to 
remark that the search region identifier depends on the search_region 
parameter in the configuration file. Characters after the search region 
identifier (and before the last four characters) indicate the automated 
cyclone number (“0001”) during the tracking period, while the last four 
characters show the genesis year (“2005”). Likewise, the characters after 
the first comma (“41”) refer to the cyclone entry number in the database. 
The rest of the lines contain the data information for each cyclone using 
the following format: 

20051018, 00, 15.75, -80.0, 998.378, 52.92, 483.005, 1006.91, 
509.687, SDWC, 50, 32, -4.0, 

The first column represents the date in the YYYYMMDD 
(“20051018”) format, while the second column shows the UTC hour of 
the entry in the HH (“00”) format. The third and fourth columns provide 
the latitude (“15.75”) and longitude (“-80.0”) of the centre. Latitude 
(longitude) is negative when the cyclone is in the southern (western) 
hemisphere. The fifth and sixth columns inform about the minimum 
central pressure in the centre in hPa (“998.378”) and the maximum 
surface wind speed in km/h (“52.92”). The size of the cyclone in km 
(“483.005”) estimated based on the wind speed (Section 2.3.2) is shown 
in seventh column, while columns eight and nine give the MSLP in hPa 
(“1006.91”) of the outermost closed isobar and the size of the cyclone in 
km (“509.687”) computed using the MSLP field (Section 2.3.1). Column 
10 shows the cyclone core type (SDWC) according to the description 
displayed in Table 1. Meanwhile, columns 11, 12 and 13 provide the 
-VTU (“50”), -VTL (“32”) and B (“-4.0”) parameters of the CPS. Missing 
values and undefined core type are given by −99999 and UDCC, 
respectively. 

2.7. Parallelization considerations 

CyTRACK fits well into a general framework known as MapReduce 
(Dean and Ghemawat, 2008). As such, it implements a simple paralle-
lization strategy via MPI to detect critical cyclone centres in individual 
time steps in the Map() part. Meanwhile, it connects candidate points 
across time to construct cyclone tracks in the Reduce() part. Supple-
mentary Table S6 provides an overview of the computational demand-
s/processing time for one year of simulations for CyTRACK tracking TCs 
and ECs in the NATL basin, SC in SATL and MCs and TLCs in the Med-
iterranean region using the 6-hourly ERA5 reanalysis data on a 0.25◦ ×

0.25◦ horizontal resolution as input. These experiments were performed 

Table 2 
Description of specific parameters of CyTRACK for tracking cyclones.  

Input parameter Description 

checking_upper_levels_parameters To evaluate or not the cyclone thermal 
structure using the CPS 

vtl_vtu_lr To compute -VTL and -VTU using a linear 
regression 

max_dist Radial distance (km) from the cyclone centre to 
compute the CPS parameters 

dt_h Temporal resolution of input data 
max_wind_speed_threshold Maximum wind speed (m/s) within a critical 

distance from the cyclone centre 
radius_for_msw Radial distance (km) to compute maximum 

wind speed around the critical cyclone centre 
outer_wind_speed_threshold Wind speed (m/s) to compute the cyclone size 

(see Section 2.3.2) 
filter_center_threshold Minimum distance (km) between two critical 

centres 
critical_outer_radius Minimum radial distance (km) to the outermost 

closed isobar 
rout External search radius (km) to compute cyclone 

size 
dr_res Spatial resolution (km) to compute the first 

radial derivative of MSLP 
d_ang Angular resolution (degrees) to construct the 

polar coordinates centred in the cyclone centre 
to compute the cyclone size 

terrain_filter Critical value (m) to discard centres over high 
terrain 

vorticity_threshold Surface relative vorticity (1/s) threshold 
min_slp_threshold Maximum value of MSLP (hPa) to consider a 

grid point as a critical centre 
dist_threshold Maximum distance (km) between centres in 

continuous time steps 
great_circle_distance Radial distance (degrees) for checking the 

MSLP increase 
dmslp_great_circle_distance Minimum increase of MSLP (Pa) from the 

cyclone centre to the great circle distance 
prev_days Number of previous days (days) to compute the 

MSLP anomaly 
mslp_anomaly_threshold Mean sea level pressure anomaly (hPa) 

threshold 
intensity_threshold Maximum intensity (m/s) along the cyclone 

track 
dt_lifetime Minimum lifetime (hours) of cyclones tracks 
minimum_distance_travelled Minimum distance travelled (km) by the 

cyclone 
VTL_threshold -VTL threshold to classify cyclone according to 

the CPS 
VTU_threshold -VTU threshold to classify cyclone according to 

the CPS 
Bhart_threshold B threshold to classify cyclone according to the 

CPS 
core_criteria_length Number of time steps (no necessary 

consecutive) in which the cyclone satisfies the 
CPS criteria  
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on the Finis Terrae III cluster at the Galician Supercomputing Centre 
(CESGA, Spanish acronym) using 1, 24, 48 and 96 tasks. Overall, 
computing time ranged from 5 to 7 min (using 96 tasks) to 1.4 h (using 
one task). However, it notably increases up to 20 min (41 min) for TLCs, 
33 min (54 min) for SCs, 2 h (2.5 h) for TCs, 54 min (1.6 h) for MCs, and 
5.4 h (7.3 h) for ECs when CyTRACK applied the CPS using 96 (one) 
tasks to classify cyclones according to their thermal structure. As the CPS 
analysis is performed in the Reduce() part, the computing time tends to 
be less dependent on the number of tasks when CyTRACK uses the 
parallelization strategy via MPI. Based on these results, we suggest users 
to use parallel runs of CyTRACK during the Map() part, depending on 
their computing resources, to gain efficiency in reading and processing 
the input data. It is also important to remark that computing time de-
pends on the search region area, the horizontal resolution of the input 
dataset and the number of identified cyclones. Future works on the 
optimal strategies for CyTRACK parallelization are forthcoming. 

3. Datasets and validation method 

To validate the ability of CyTRACK to detect and track TCs and ECs in 
the NATL basin, MCs in the Mediterranean region and SCs in the SATL 
basin, we used as input data the 6-hourly ERA5 reanalysis at a spatial 
resolution of 0.25◦ × 0.25◦ in latitude and longitude and considering the 
four different search regions depicted in Fig. 1, for each cyclone type. 
Overall, the domain extends from 0 to 55◦N and 110◦W-5◦E for TCs (red 
box), from 25 to 75◦N and 115◦W-25◦E for ECs (black box), from 25 to 
50◦N and 10◦W-40◦E for MCs (blue box) and 15–45◦S and 10–60◦W for 
SCs (green box). Although the validation task is performed for cyclones 
in the Atlantic Ocean and Mediterranean Sea due to data availability for 
comparison, we are confident that the flexibility of CyTRACK allows a 
good performance in detecting and tracking cyclones in the Indian and 
Pacific Oceans. For example, the global probability density of extra-
tropical (Supplementary Fig. S1) and tropical cyclone (Supplementary 
Fig. S2) trajectories for the 2020 and 2018 seasons, respectively, cap-
tures the regions with high cyclone activity at a global scale, in agree-
ment with previous works (e.g., Neu et al., 2013; Gramcianinov et al., 
2020; Ullrich et al., 2021). 

3.1. Validation datasets 

According to Flaounas et al. (2023), a critical step for assessing the 
ability of CDTMs to detect and track cyclones (i.e., ECs, MCs) is the 
absence of reference datasets for benchmarking. Unlike TCs, which are 
continuously monitored and recorded in each basin, no historical 
best-track records based on observations exist for ECs, MCs or SCs. 
Therefore, we used the available datasets from CDTMs to evaluate the 

performance of CyTRACK. These databases are briefly described below. 

3.1.1. Tropical cyclones 
We extracted the best-track records of TCs from the HURDAT2 

dataset (Landsea and Franklin, 2013) for TCs, which is known as a 
high-quality database for the North Atlantic basin. We also compared 
CyTRACK outputs with TC tracks (without any modification) obtained 
by Bourdin et al. (2022) using four tracker algorithms fed by the ERA5 
reanalysis on a grid spacing of 0.25◦ and 6 h temporal resolution. 
Bourdin et al. (2022) applied the UZ kernel implemented in the Tem-
pestExtremes framework (Ullrich and Zarzycki, 2017), OWZ, CNRM and 
TRACK trackers. While UZ and CNRM are based on detecting critical 
centres in the MSLP field, OWZ evaluates the eponymous 
Obuko-Weiss-Zeta quantity, and TRACK uses the 850 hPa relative 
vorticity. For comparison, we used the last ten overlapping years 
(2009–2018) between all databases to assess CyTRACK performance. 
Additionally, as we imposed a minimum TC lifetime threshold of 36 h in 
CyTRACK, we retained from these previous datasets all TCs that existed 
for at least 36 h. Likewise, we performed the analysis using those TCs 
formed from May to November. 

3.1.2. Extratropical cyclones 
Neu et al. (2013) evaluated 15 different cyclone tracking approaches 

within the community project Intercomparison of Mid Latitude Storm 
Diagnostics (IMILAST). These 15 tracking algorithms used the 
ERA-Interim reanalysis (Dee et al., 2011) from ECMWF at 1.5◦ × 1.5◦

horizontal grid spacing and 6 h of temporal resolution as input data. 
Meanwhile, Gramcianinov et al. (2020) recently applied TRACK to the 
hourly ERA5 reanalysis data to identify ECs in the North Atlantic basin. 
To assess CyTRACK for tracking ECs, the analysis was restricted to the 
following nine available datasets (Table 3), with a common ten over-
lapping years (2000–2009). 

CyTRACK also discards cyclones with a lifetime shorter than 48 h, so 
we removed all cyclones from the databases with a track length shorter 
than this lifetime threshold. Also note that, in this work, the search re-
gion of CyTRACK for tracking ECs is limited (black box in Fig. 1). 
Therefore, we only retained cyclones within the CyTRACK search region 
during at least the first nine time steps. 

3.1.3. Mediterranean cyclones 
Flaounas et al. (2023) applied ten well-established CDTMS (see 

Table 4 for references) to hourly ERA5 reanalysis fields with a regular 
grid spacing of 0.25◦ × 0.25◦ in longitude and latitude from 1979 to 
2020. By overlapping cyclones pathways, they produced MCs composite 
tracks using different confidence levels (CLs) within a broader Medi-
terranean region (20◦N-50◦N and 20◦W-45◦E). The CL is defined by the 

Fig. 1. CyTRACK search region for tracking tropical cyclones (TCs; red box) 
and extratropical cyclones (ECs; black box) in the North Atlantic Ocean, Med-
iterranean cyclones (MCs; blue box) in the Mediterranean region and subtrop-
ical cyclones (SCs; green box) in the South Atlantic Ocean. 

Table 3 
Extratropical cyclones datasets. The database code is the same as in Neu et al. 
(2013), while G20 is referring to Gramcianinov et al. (2020). MSLP: mean sea 
level pressure; VORT850: vorticity at 850 hPa, and terrain filtering means that 
cyclones positioned over terrain higher than terrain high threshold are 
eliminated.  

Database Variable 
used 

Terrain 
filtering 

References to tracking method 

M02 MSLP >1500 m Simmonds and Murray (1991).; Pinto 
et al. (2005) 

M07 VORT850 None Flaounas et al. (2014) 
M08 MSLP None Trigo (2006) 
M09 MSLP None Serreze (1995); Wang et al. (2006) 
M15 MSLP >1000 m Blender et al. (1997); Raible et al. 

(2008) 
M20 MSLP >1500 m Wernli and Schwierz (2006) 
M21 VORT850 None Inatsu (2009) 
M22 MSLP None Bardin and Polonsky (2005); Akperov 

et al. (2007) 
G20 VORT850 None Hodges (1994, 1995, 1999)  
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number of CDTMs that captured the same system, i.e., a CL of 5 (CL5) 
indicates that cyclones were detected by at least five CDTMs, so the CL 
ranges from 2 to 10. Similarly to Flaounas et al. (2023), CyTRACK dis-
carded tracks lasting less than 24 h to exclude short-lived cyclonic 
patterns; however, the search region by Flaounas et al. (2023) is slightly 
larger than in this work. Therefore, to objectively evaluate the ability of 
CyTRACK to capture MCs, we only considered cyclones from Flaounas 
et al. (2023) within the blue box in Fig. 1. Likewise, we focused on the 
last ten years with data availability (2011–2020) 

3.1.4. Subtropical cyclones 
To the best of our knowledge, there are no public datasets of SCs in 

the SATL basin. Therefore, to assess the performance of CyTRACK in 
detecting and tracking SCs in SATL, we compared CyTRACK outputs 
from 2006 to 2015 with previous climatologies (e.g. Gozzo et al., 2017; 
de Jesus et al., 2022). Additionally, as an example, we extracted from 
Reboita et al. (2019) the pathways of three SC formed on the south-
eastern Brazilian coast and compared them with the corresponding 
tracks in CyTRACK. Reboita et al. (2019) tracked these storms using the 
relative vorticity at 925 hPa from ERA5 reanalysis. 

3.2. Cyclone track-to-track comparison 

When CTDMs are applied to reanalysis or modelling datasets, iden-
tified tracks can be associated with observed or reference tracks (Mur-
akami, 2014; Hodges et al., 2017; Ullrich et al., 2021; Bourdin et al., 
2022). In this work, we evaluated the correspondence between indi-
vidual cyclone tracks in CyTRACK with pathways in the benchmarking 
datasets by applying the track-to-track comparison method proposed by 
Hodges et al. (2003). We first identified track points in CyTRACK that 
overlap in time with track points in the reference dataset. If the number 
of overlapping points is equal to or higher than 60% of the mean number 
of points between the two tracks, a matching in time is found. Then, if 
the mean distance between the overlapping points is less than 300 km, a 
pair of matching tracks is detected. It is important to remark that more 
than one track in CyTRACK can satisfy the temporal matching threshold. 
Therefore, the one with the lowest mean distance from the reference 
track is considered a matching track. Previous studies (e.g. Xia et al., 
2012; Di Luca et al., 2014; Bourdin et al., 2022; Dulac et al., 2024; 
Flaounas et al., 2023) have used 300 km as a threshold for the mean 
separation between overlapping points. 

After the matching track procedure is completed, we computed the 
track agreement as the percentage between matching tracks and the 
lower number of tracks between CyTRACK and the benchmarking 
dataset. For the case of TCs, as we applied the track-to-track comparison 
method to the best-track database (HURDAT2), we also computed the 
false alarm rate (FAR) as the relationship between False Alarms and the 

sum of matching and missing tracks. 

4. Results and discussion 

4.1. Tropical cyclones 

Fig. 2 shows the annual (from 2009 to 2018) and monthly frequency 
of TCs in the NATL basin, as well as the track duration and the track 
agreement between CyTRACK and the benchmarking datasets. Overall, 
the annual (Fig. 2a) and monthly (Fig. 2b) TC number detected by 
CyTRACK agree particularly well with the temporal distribution from 
the HURDAT2 dataset. However, although CyTRACK exhibits an annual 
and seasonal evolution similar to TRACK, CNRM, UZ and OWZ, it is 
characterized, similarly to HARDUT2, by a higher number of detected 
TCs. This behaviour could be related to the post-treatment method by 
Bourdin et al. (2022) to filter TCs from the total number of cyclone 
tracks yielded by the four trackers. 

The average lifetime of TCs detected with CyTRACK (~7.4 days) is 
similar to the observed in HURDAT2 (~7.6 days) and UZ (~7.7 days) 
but lower than CNRM (~8.0 days), OWZ (~11.1 days) and TRACK 
(~13.2 days). Indeed, substantial differences in the distribution of track 
duration can be observed among methods (Fig. 2c), with peaks at ~5 
days for CyTRACK, HURDAT2, UZ and CNRM, and significantly longer it 
peaks at 9 and 12 days for OWZ and TRACK. Previously, Bourdin et al. 
(2022) found that the peak of track duration distributions for UZ, CNRM, 
OWZ, and TRACK were 5, 6, 8, and 12 days, respectively, but including 
all basins with TC activity. Hodges et al. (2017) documented longer 
track duration using TRACK fed by other reanalysis datasets. In partic-
ular, tracking methods based on relative vorticity tend to capture longer 
cyclone tracks as they are more capable of identifying and tracking 
small-scale features (Hoskins and Hodges, 2002; Neu et al., 2013; 
Hodges et al., 2017; Grieger et al., 2018), such as precursor stages (e.g. 
wave disturbances) or persistent disturbances after landfall (Bié and de 
Camargo, 2023). 

Fig. 2d displays the track agreement between CyTRACK and 
benchmarking datasets. CyTRACK detected ~73–79% of TCs in the 
reference databases. In particular, the track agreement between 
CyTRACK and HURDAT2 accounts for ~74%. Bourdin et al. (2022) 
found that UZ, CNRM, TRACK and OWZ matched, respectively, 58% 
(74%), 62% (74%), 63% (84%), 67% (76%) of observed TCs in the NATL 
(global) basin from 1979 to 2019. Meanwhile, Ullrich et al. (2021), 
applying the TempestExtremes, found a global hit rate of 78%. Recently, 
Dulac et al. (2024) assessed the representation of TCs in ERA5 reanalysis 
with the CNRM tracker and found a track agreement of ~57%. Likewise, 
the FAR of CyTRACK is about 25%, which is lower (higher) than that 
found by Bourdin et al. (2022) for TRACK and CNRM (UZ and OWZ) for 
the NATL basin. As CyTRACK tracked all TC categories, the track 
agreement with HURDAT2 is highly biased by weaker storms and per-
turbations observed and included in HURDAT2, which are not strong 
enough to exceed the detection thresholds criteria, in agreement with 
Hodges et al. (2017) and Bourdin et al. (2022). At this point, it is 
important to note that track agreement and FAR differences between 
CyTRACK and previous works using other trackers can also be influ-
enced by the track-to-track comparison method. Nonetheless, these re-
sults suggest that CyTRACK shows similar skills to other trackers to 
detect and track TCs. 

Further insight into the analysis of TCs frequencies is obtained by 
examining the spatial distribution of cyclone track density. The spatial 
distribution of TC tracks has critical importance due to the regionalized 
nature of TC impacts (Vecchi et al., 2014). Fig. 3 shows that the patterns 
of TC track density, especially local maxima, are comparable between 
the trackers and HURDAT2. Indeed, it is clear all trackers yield 
reasonable distributions of TC occurrence when compared to HURDAT2 
(Fig. 3e), although subtle differences appear upon closer analysis. 
Overall, the four trackers, in agreement with HURDAT2, highlight the 
tropical NATL region spanning from the western African coast to the 

Table 4 
Cyclone tracking algorithms applied by Flaounas et al. (2023) to produce 
composite tracks of Mediterranean cyclones (MCs). MSLP: mean sea level 
pressure; VORT850: vorticity at 850 hPa, Z1000: geopotential high at 1000 hPa. 
The asterisk indicates algorithms specifically developed for detecting and 
tracking MCs.  

Database Variable used References to tracking method 

A01* Z1000 Aragão and Porcù (2022) 
A02* MSLP Flaounas et al. (2014) adapted to use MSLP 
A03* MSLP Ziv et al. (2015) 
A04* MSLP; 

VORT850 
Sanchez-Gomez and Somot (2018) 

A05* MSLP Ragone et al. (2018) 
A06* MSLP Picornell et al. (2001); Campins et al. (2006) 
A07 VORT850 Hodges (1994, 1995, 1999) following Priestley et al. 

(2020) 
A08* MSLP Lionello et al. (2002); Reale and Lionello (2013) 
A09 MSLP Ullrich and Zarzycki (2017); Ullrich et al. (2021) 
A10 MSLP Wernli and Schwierz (2006); Sprenger et al. (2017)  
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Lesser Antilles Arc, the western NATL northeastern of the Bahamas Ar-
chipelago and the Gulf of Mexico as the most TC active areas in the NATL 
basin. However, TRACK detected a high track density extending from 
the Gulf of Mexico to the Caribbean Sea and missed the secondary 
maximum of TC tracks, observed in all other datasets, oriented eastward 
towards the Azores. The UZ tracker merged the tropical and western 
NATL in a wider local maximum. The differences in the spatial distri-
bution of the track density can be related with differences in TC lifetimes 
(Fig. 2c). Nonetheless, we also found highly statistically significant 
scores by computing the Pearson correlation between CyTRACK and 
benchmarking datasets. The correlation coefficient ranged from 0.82 to 
0.96, with the lowest achieved by comparing with TRACK and the 

highest with HURDAT2. A previous study by Zarzycki et al. (2021) 
found similar Pearson correlation coefficients by comparing Tempest-
Extremes applied to different reanalyses with observations. 

We also investigated the ability of CyTRACK to reproduce the wind- 
pressure relationship detected by the four trackers (Fig. 4). This rela-
tionship is often used in studies of TCs to assess the ability of models and 
reanalyses to represent the intensity of TCs by comparing it with the 
observed relationship (Roberts et al., 2015; Hodges et al., 2017). 
Overall, both CyTRACK and the four trackers tend to reproduce TCs with 
less intense maximum wind speed concerning their central pressure, in 
agreement with previous studies (Hodges et al., 2017; Bell et al., 2018; 
Bourdin et al., 2022; Bié and de Camargo, 2023). This mismatch reflects 

Fig. 2. (a) Annual and (b) monthly frequency of TCs in the North Atlantic basin, (c) distribution of the duration of TCs and (d) track agreement (%) between 
CyTRACK and benchmarking datasets. The analysis period ranges from 2009 to 2018. 

Fig. 3. Probability density of tropical cyclones trajectories from (a) TRACK, (b) CNRM, (c) UZ, (d) OWZ, (e) HURDAT2 and (f) CyTRACK.  
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Fig. 4. Wind–pressure relationships for (a) TRACK, (b) UZ, (c) CNRM, (d) OWZ, and (e) CyTRACK compared against the HURDAT2 dataset. The x-axis and y-axis 
ticks show the TC intensity category boundaries based on the Saffir-Simpson wind scale and Klotzbach et al. (2020), respectively. 

Fig. 5. (a) Annual and (b) monthly frequency of ECs in the North Atlantic basin, (c) distribution of the duration of ECs and (d) track agreement (%) between 
CyTRACK and bencmarking datasets. The analysis period ranges from 2000 to 2009. 
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the underestimation of the intensity of TCs, particularly for the most 
intense systems. 

4.2. Extratropical cyclones 

Neu et al. (2013) shows that CTDMs produce a wide range of results 
for EC frequency in the Northern and Southern Hemispheres. Consistent 
with these hemispheric results, the total count of ECs in the NATL basin 
from 2000 to 2009 exhibits a large difference between tracking methods, 
as shown in Fig. 5a. In terms of annual frequency, CyTRACK yields 
~354.9 ± 14 (one standard deviation) ECs per year, being quite similar 
to M22 (353.5 ± 14), M08 (344.9 ± 12) and G20 (332.1 ± 14). Mean-
while, M02 (617.4 ± 16) and M09 (535.5 ± 16) detected the largest 
number of tracks and M21 (310.6 ± 11) the lowest. It is worth noting 
here that CyTRACK, M22 and M08 are based on MSLP, while G20 is 
based on relative vorticity at 850 hPa (VORT850). Similarly, M21 and 
M09 produce EC tracks based on MSLP, and M21 on VORT850. These 
significant differences confirm that the annual count of ECs depends 
more on the threshold criteria used in the tracking method than on the 
variable used, in agreement with Grieger et al. (2018). 

The monthly frequency of ECs shows a wide range of annual cycle 
behaviour. Thus while M02 presents the highest number of tracks in 
winter months, M09 and M20 peak in summer (Fig. 5b). Meanwhile, the 
remaining trackers, including CyTRACK, exhibit a lesser marked sea-
sonal variability. Again, CyTRACK performs similar to M08 and M22. 
Despite differences in the annual and seasonal frequencies, the average 
ECs lifetime ranged from 3.1 to 5.0 days. The M21 (~3.1 days) and M07 
(~3.5 days) produce the most short-living cyclones, while G20 (~4.9 

days) and CyTRACK (~5.0 days) produce the long-living ECs. Previously 
Neu et al. (2013) highlighted the tendency of M21 to produce 
short-living cyclones, while Gramcianinov et al. (2020) estimated a 
mean lifetime of 4.4 days of ECs in NATL from 1979 to 2019. By 
comparing the distribution of the track duration of ECs per year, M09 
and M21 peak at 2 days, while most of the remaining trackers peak on 
3.5 days. Interestingly, although G20 and CyTRACK detect and track 
cyclones using different approaches, they exhibit a similar distribution 
in the cyclone tracks per year. 

The track-to-track comparison method between CyTRACK and the 
benchmarking datasets shown in Fig. 5d reveals an overall track 
agreement ranging from 30% to 57%. Contrary to what we can expect 
from the previous analysis, the lowest track agreement was detected by 
comparing CyTRACK with M21. The highest agreement of CyTRACK 
was achieved with M02 (57%) and M09 (53.8%), while also matched 
47.2% of tracks in G20. Similar track agreements were found by Wang 
et al. (2016) by comparing the cyclone tracks produced by an improved 
version of M09 (Wang et al., 2013) using different reanalysis datasets. 
Likewise, the track agreement between methods in Neu et al. (2013) 
ranged from roughly 50%–70%. According to Neu et al. (2013), differ-
ences between trackers are more likely a consequence of different ap-
proaches, use of MSLP vs. vorticity, threshold parameters and thresholds 
criteria applied to those parameters. From Fig. 5, the best match was 
generally with trackers that produced the highest number of cyclones, as 
in M02 and M09. 

We also compared the trajectory densities from all trackers from 
2000 to 2009. Although CyTRACK exhibits a lesser intense track density, 
Fig. 6 shows an overall agreement between methods in terms of NATL 

Fig. 6. Probability density of extratropical cyclones trajectories from (a) M02, (b) M07, (c) M08, (d) M09, (e) M15, (f) M20, (g) M21, (h) M22, (i) G20 and 
(j) CyTRACK. 
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storm track, extending northeastward from the eastern North American 
coast to Greenland and North Europe. There are, in contrast, noteworthy 
differences in the Mediterranean region attributed to threshold criteria 
and the small size of Mediterranean cyclones. Note that the track density 
presented here is not directly comparable to the track frequencies shown 
in Fig. 5 because each track consists of a different track duration, in 
agreement with Grieger et al. (2018). The Pearson correlation scores 
reflect the differences in the track density patterns. Although visually, 
the track density from CyTRACK is quite similar to M09 and M20, the 
highest Pearson correlation coefficients were found for M22 (0.89) and 
M08 (0.88), suggesting a high agreement between CyTRACK and M22 
and M08 in the location of track density maxima. This result supports 
the previous analysis. 

Overall, the differences between CyTRACK and benchmarking 
datasets can be generally attributed to the variable used for tracking, the 
threshold criteria (e.g., lifetime, intensity, terrain filtering), and the 
horizontal and temporal resolution of the data used. While all methods 
from Neu et al. (2013) used 6-hourly ERA-Interim, G20 used hourly 
ERA5 and CyTRACK 6-hourly ERA5. 

4.3. Mediterranean cyclones 

Based on the composite tracks from Flaounas et al. (2023), we 
assessed the ability of CyTRACK to identify and track MCs. Fig. 7a shows 
the annual number of MC tracks from CyTRACK and reference datasets. 
In this case, the differences in track counts are attributed to the gradual 
decrease of MC numbers with confidence level increases, in agreement 
with Flaounas et al. (2023). On average, the annual number of cyclones 
from CTDMs in Flaounas et al. (2023) varied from 100 to 120 (A04, A08, 
A10) to 500 (A03), and the composite tracks ranged from 4 in the 
confidence level 10 (CL10; the number of CDTMs that captured the same 
system) to 171 in CL2. Meanwhile, CyTRACK produces 184 ± 8 tracks 
per year. 

The monthly distributions of MC frequency mostly peak in April and 
May (Fig. 7b, except for CL2 and CL3). Previous works detected a similar 
seasonal variability (e.g. Campins et al., 2011; Lionello et al., 2016; 
Kotsias et al., 2023). For example, Kotsias et al. (2023), by applying A08 
to ERA5 reanalysis, attributed the high frequency of MC in April to 
cyclone activity over the land due to the intense land warming and the 
upper air disturbances. Nonetheless, Flaounas et al. (2023) noted that 
CTDMs agree on the seasonal cycle of well-developed intense MCs than 
on shallow MCs. Overall. CyTRACK tends to capture well the monthly 

distribution of MCs considering that the most intense MCs often occur in 
winter and spring (Flaounas et al., 2015, 2022) and the direct linkage 
between MC seasonal frequency and intensity (Flaounas et al., 2023). 

MCs typically present shorter lifetimes than cyclones that form over 
open oceans (Flaounas et al., 2014, 2022). The mean lifetime of MCs in 
the benchmarking datasets increases as a function of the confidence 
level from 46 h (CL2) to 85 h (CL10). However, according to Flaounas 
et al. (2023), the lifetimes for the high confidence level datasets are 
exceptionally long by comparison with tracks from individual CDTMs, 
which lasted, on average, from 24 to 48 h. The mean MC lifetime from 
CyTRACK is 44 h. The differences in the MC lasting time are reflected in 
the distribution of track duration in terms of cyclones per year, shown in 
Fig. 7c. While the distribution of MC duration from CyTRACK peaks at 
approximately 30 h, the peak from the composite track datasets in-
creases from 30 to 66 h as the confidence level increases. 

Fig. 7d shows the track agreement between CyTRACK and the 
composite tracks from Flaounas et al. (2023). The track agreement score 
ranges from 50% (CL2) to 97.5% (CL10). The performance of CyTRACK 
suggests that it is skillful to capture most of the objectively tracked cy-
clones using other tracking methods. For example, the composite track 
of confidence level 2 (CL2) indicates that two CTDMs identified the same 
MC, and therefore, CyTRACK probably matches at least 50% of indi-
vidual tracks from individual CTDMs. Indeed, the track-to-track com-
parison performed by Flaounas et al. (2023) yielded track agreement 
scores between individual CTDMs ranging from 20 to 67%. Likewise, the 
increasing tracking scores from low to high confidence levels in the 
benchmarking datasets was also achieved by Flaounas et al. (2023). 

The spatial distributions of MCs track density for CyTRACK and 
benchmarking datasets from 2 to 6 confidence levels are depicted in 
Fig. 8. Overall, CyTRACK agrees on the local maxima track density 
detected by composite tracks with higher densities being located over 
maritime areas, close to the Gulf of Genoa in the northwest Mediterra-
nean Sea. Other local maxima of track density are also commonly found 
over northwestern Africa, the Turkish coasts, the Black Sea and the 
Adriatic and Ionian seas. These areas have been identified in previous 
studies (Lionello et al., 2016; Flaounas et al., 2018; Reale et al., 2022; 
Aragão and Porcù, 2022). Flaounas et al. (2023) obtained similar pat-
terns of MC track densities from the ten CTDMs used to generate the 
composite tracks. These results are reflected by the statistically signifi-
cant Pearson correlation coefficients between CyTRACK and reference 
datasets, ranging from 0.74 (CL10) to 0.90 (CL3). 

Fig. 7. (a) Annual and (b) monthly frequency of MCs in the Mediterranean region, (c) distribution of the duration of MCs and (d) track agreement (%) between 
CyTRACK and benchmarking datasets. The analysis period ranges from 2011 to 2020. 
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4.3.1. The special case of medicanes 
The Mediterranean region is also characterised by the development 

of cyclones that exhibit noticeable similarity to their tropical counter-
parts for their dynamical and thermodynamic features and for their 
appearance in satellite images (Miglietta and Rotunno, 2019; Flaounas 
et al., 2023). These storms are known as TLCs or MEDIterranean hur-
riCANES (medicanes). TLCs are generally detected using CTDMs if the 
cyclone shows vertical symmetry and a warm-core structure for more 
than 10 % of the track or more than 6 h (Cavicchia et al., 2014; Zhang 

et al., 2020). Here we show the results obtained with CyTRACK when 
the CPS is applied along the trajectory of all MCs to detect TLCs. During 
the study period (2011–2020), CyTRACK found ~6.7 ± 1.4 TLC per year 
distributed throughout the year (Fig. 9a and b). The annual number of 
TCLs detected here noticeably differs from previous climatologies. For 
example, Romero and Emanuel (2013) reported 1.5 ± 0.9 TLCs/year, 
Cavicchia et al. (2014) also found low TLC frequency values of 1.57 ±
1.30 per year, Nastos et al. (2018) found ~1.4 ± 1.3 TLCs/year and 
Zhang et al. (2020) detected ~1.5 TLCs/year. These differences are 

Fig. 8. Probability density of Mediterranean cyclones trajectories from (a) CL2, (b) CL3, (c) CL4, (d) CL5, (e) CL6 and (f) CyTRACK.  

Fig. 9. (a) Annual and (b) monthly frequency of TLCs in the Mediterranean region. The gray bars denote the TLC activity using the intensity threshold of 17 m/s. (c) 
Probability density of TLC genesis and (d) trajectories. Panels (c) and (d) are from the resulting tracks using an intensity threshold of 10 m/s. 
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attributable to the maximum intensity threshold imposed in these pre-
vious works. Indeed, Gaertner et al. (2018) highlighted that TLC iden-
tification is sensitive to the intensity threshold criteria. Zhang et al. 
(2020) varying the threshold criteria for MSLP, maximum wind speed, 
and warm core detected a climatological frequency of TLCs ranging from 
0.9 to 2.9. Similar behaviour occurs in the monthly distribution. While 
CyTRACK detected TLCs in every month of the calendar, with the 
highest frequency in January, April and June (Fig. 9b), previous studies 
(Cavicchia et al., 2014; de la Vara et al., 2021; Zhang et al., 2020) found 
the highest number of TLCs in winter (from December to February) and 
no development in summer (from June to August). However, by 
changing the intensity threshold in CyTRACK from 10 m/s to 17 m/s, the 
annual frequency of TLCs decreased to 1.1 ± 0.8 cyclones per year, and 
the winter season achieved the highest TLC frequency, in agreement 
with the previous studies. 

Despite to the differences in the annual and monthly distribution of 
TLCs, the genesis (Fig. 9c) and trajectory (Fig. 9d) probability densities 
from CyTRACK agree with previous climatological studies (Romero and 
Emanuel, 2013; Cavicchia et al., 2014; Tous et al., 2016; Flaounas et al., 
2018). Fig. 9c shows that the genesis of TLCs more frequently occurs in 
the western Mediterranean Sea, followed by the Ionian Sea between 
Sicily and Greece. Similarly, the highest track densities (Fig. 9d) extend 
from the western to central Mediterranean Sea. 

4.4. Subtropical cyclones 

From 2006 to 2015, CyTRACK detected 99 SCs in the South Atlantic 
ocean domain (green box in Fig. 1), representing an annual value of 
~9.9 ± 4.2 SCs per year (Fig. 10a), with the monthly distribution 
peaking from November to March and notably decreasing from June to 
August (Fig. 10b). Gozzo et al. (2017) and Cardoso et al. (2022) 

previously detected 7.2 ± 2.88 SCs per year (using ERA-Interim from 
1979 to 2015), and de Jesus et al. (2022) found 8.0 ± 2.5 cyclones per 
year (using ERA-Interim from 1979 to 2005) with a similar seasonal 
frequency. Our analysis also shows that the mean lifetime of SC is 
approximately 4.2 days, and its distribution peaks at ~3 days (Fig. 10c), 
in agreement with Gozzo et al. (2014) and de Jesus et al. (2022). 

Furthermore, regarding the genesis area, CyTRACK and previous 
climatologies (Gozzo et al., 2014, 2017; de Jesus et al., 2022) present a 
similar spatial pattern of mean subtropical cyclogenesis density 
(Fig. 10d), with the main development region close to the southeastern 
coast of Brazil. Nevertheless, in terms of the track density, while these 
previous studies found the core close to the Brazilian coast, the trajec-
tories from CyTRACK exhibit the peak of track density southeastward 
shifted (Fig. 10e). Overall, the differences between CyTRACK and these 
previous climatologies can be mostly attributed to the fact that some SCs 
in the searching region do not exhibit a closed contour pattern in the 
MSLP field (Gozzo et al., 2014), and the intensity threshold based on 
10m wind speed and MSLP used in CyTRACK. 

In order to provide an example of the ability of CyTRACK to detect 
and track SCs, Fig. 11 displays the trajectories of three named SCs 
extracted from Reboita et al. (2019) and CyTRACK. Note that, despite 
the slight separation between the tracks, there is an overall agreement in 
the genesis regions and pathways. Again, the differences are attributable 
to differences in tracking methods. While CyTRACK tracked this storm 
using the MSLP field, Reboita et al. (2019) used the relative vorticity in 
925-hPa. 

5. Conclusions 

Automated cyclone detection and tracking methods (CDTMs) have 
been widely applied to detect and track cyclones in reanalysis and 

Fig. 10. (a) Annual and (b) monthly frequency of SCs in the South Atlantic Ocean. (c) distribution of the duration of SCs. (d) Probability density of SC genesis and 
(e) trajectories. The black box in panel (d) represents the main cyclogenesis region (30.58–21.8◦S and 49.58–35.58◦W) of SCs in the South Atlantic Ocean found by 
Gozzo et al. (2014). The analysis period ranges from 2006 to 2015. 
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modelling datasets. CDTMs are an important tool for extracting relevant 
information on cyclone activity from climate models to understand how 
global warming will impact genesis locations, storm tracks, and intensity 
of future cyclones. This work outlined CyTRACK (Cyclone TRACKing 
framework), a new open-source, comprehensive and user-friendly Py-
thon toolbox for detecting and tracking cyclones in reanalysis and 
observational datasets and climate model simulations, exposing the 
characteristics of the detection and tracking algorithm and the suite of 
input parameters. CyTRACK is sufficiently flexible and robust, allowing 
users to change the threshold criteria without code modifications and 
also by classifying cyclones based on their thermal structure during the 
tracking and pairing centres steps. Additionally, it is useful for 
computing optimal threshold values for detecting pointwise features in 
different temporal and spatial resolution datasets and also for sensitive 
studies to test the threshold values of the CPS for classifying cyclones. 

The evaluation of CyTRACK outputs for ten years against best-track 
archives and available datasets from other tracking algorithms showed 
its ability to detect and track cyclones. Nonetheless, the evaluation 
presented here was not global but focused on tropical and extratropical 
cyclones in four specific domains including the North Atlantic basin, 
Mediterranean cyclones and subtropical cyclones in the South Atlantic 
Ocean. In general, differences between databases are noticeable con-
cerning the overall number of cyclones, in particular, influenced by the 
tracks of weak cyclones. However, there is a substantial agreement on 
the annual and monthly variability of cyclone frequency, life cycle 
characteristics and spatial distribution of track densities. Our analysis 
also confirms that different CDTMs applied to the same dataset or a 
single CDTM applied to several datasets produce slightly different 
results. 

It is well-known that CDTMs follow different understandings of the 
cyclone features, and choosing a particular tool should follow the study 
goals. Although CyTRACK is easily adaptable to specific user objectives 
through flexibility in modifying critical parameters in the configuration 
file, it has some limitations. Detecting and tracking cyclones in 
CyTRACK depends on the correct choice of threshold parameters, which 
should represent the characteristics of the cyclones under study. In 
particular, one should note that the use of more restrictive parameters 
tends to eliminate weak systems, while opting for more relaxed ones 
may lead to increasing false alarms. In addition, validating CDTMs is 
problematic because, except for TCs, there is no universally agreed set of 
historical storm tracks for comparison. Likewise, the limitations of the 
reanalyses in resolving cyclone scale processes and representing the 
cyclone surrounding environment is another source of uncertainties. 

We acknowledge that even when CyTRACK appears successful in 
detecting and tracking cyclones, there will always be scope for further 

improvement. On this basis, the ongoing development of CyTRACK in-
cludes other widely used meteorological fields to detect critical cyclone 
centres, such as relative vorticity. Future works will also focus on 
improving the parallelization strategies to reduce the computing time. 
Likewise, we will continue to work on maximizing the robustness of 
CyTRACK across all data sets to ensure it is useful for comparative an-
alyses across models, multi-model ensembles and reanalysis products. 
CyTRACK is implemented in Python, and its source code is freely 
available from the GitHub repository at https://github.com/apalarcon/ 
CyTRACK. 

Software and data availability 

Software name: CyTRACK 
Developer: Albenis Pérez-Alarcón, Co-developers: Patricia Coll- 
Hidalgo, Ricardo M. Trigo, Raquel Nieto, and Luis Gimeno 
Contact information: albenis.perez.alarcon@uvigo.es 
Year first available: 2024 
Hardware requirements: PC, HPC 
System requirements: Linux, Windows 
Program language: Python 
Program size: 2.5 MB 
Availability: https://github.com/apalarcon/CyTRACK 
License: GNU Public License (GPLv3) 
Documentation: README in the Github repository. 
Data Availability: ERA5 data are available on the Copernicus 
Climate Change Service Climate Data Store (CDS, https://cds.cli 
mate.copernicus.eu/. This work also uses several datasets to eval-
uate the ability of CyTRACK to detect and track cyclones in the North 
and South Atlantic Ocean and the Mediterranean region. The HUR-
DAT2 database can be obtained from https://www.nhc.noaa.gov/d 
ata/hurdat/hurdat2-1851-2022-050423.txt. The UZ, OWZ, CNRM 
and TRACK outputs from Bourdin et al. (2022) are available at 
https://doi.org/10.5281/zenodo.6424432. The CTDMs outputs 
from Neu et al. (2013) can be obtained from the Intercomparison of 
Mid-Latitude Storm Diagnostics (IMILAST) project at https://p 
roclim.scnat.ch/en/activities/project_imilast/data_download. 
Meanwhile, the composite tracks of Mediterranean cyclones from 
Flaounas et al. (2023) is available at https://doi.org/10.5281/zenod 
o.7378600. 
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A. Pérez-Alarcón et al.                                                                                                                                                                                                                         

https://doi.org/10.5194/gmd-13-6051-2020
https://doi.org/10.5194/gmd-13-6051-2020
https://doi.org/10.1175/JCLI-D-19-0928.1
https://doi.org/10.1002/qj.3431
https://doi.org/10.1002/qj.3431
https://doi.org/10.1029/2019EA000906
https://doi.org/10.1029/2019EA000906
https://doi.org/10.3390/atmos9100397
https://doi.org/10.3390/atmos9100397
https://doi.org/10.1175/2007MWR2143.1
https://doi.org/10.1175/2007MWR2143.1
https://doi.org/10.5194/nhess-13-1707-2013
https://doi.org/10.1007/s00382-021-06018-x
https://doi.org/10.3390/atmos10010006
https://doi.org/10.1175/JCLI-D-19-0639.1
https://doi.org/10.1175/JCLI-D-19-0639.1
https://doi.org/10.1175/JCLI-D-14-00131.1
https://doi.org/10.1175/JCLI-D-14-00131.1
https://doi.org/10.1029/2019GL085582
https://doi.org/10.1002/jgrd.50475
https://doi.org/10.1175/MWR3420.1
https://doi.org/10.1175/MWR3420.1
https://doi.org/10.1007/s00382-016-3394-y
https://doi.org/10.1175/JCLI-D-17-0122.1
https://doi.org/10.1080/07055900.1995.9649522
https://doi.org/10.1080/07055900.1995.9649522
https://doi.org/10.3389/fmars.2022.1061159
http://refhub.elsevier.com/S1364-8152(24)00088-4/sref95
http://refhub.elsevier.com/S1364-8152(24)00088-4/sref95
https://doi.org/10.1029/2018JD028766
https://doi.org/10.1175/BAMS-D-15-00299.1
https://doi.org/10.1175/JCLI-D-12-00777.1
https://doi.org/10.1175/JCLI-D-12-00511.1
https://doi.org/10.1175/JCLI-D-12-00511.1
https://doi.org/10.1175/JCLI-D-12-00510.1
https://doi.org/10.1007/s00382-015-2941-2
https://doi.org/10.1007/s00382-005-0065-9
https://doi.org/10.5194/gmd-10-1069-2017
https://doi.org/10.5194/gmd-14-5023-2021
https://doi.org/10.1002/grl.50560
https://doi.org/10.1175/JCLI-D-14-00158.1
https://doi.org/10.1175/1520-0493(2001)129&percnt;3C2521:SFOTSU&percnt;3E2.0.CO;2
https://doi.org/10.1175/1520-0493(2001)129&percnt;3C2521:SFOTSU&percnt;3E2.0.CO;2
https://doi.org/10.1175/JCLI4074.1
https://doi.org/10.1175/JCLI4074.1
https://doi.org/10.1016/j.atmosres.2016.06.010
https://doi.org/10.1016/j.atmosres.2016.06.010
https://doi.org/10.1007/s00382-012-1450-9
https://doi.org/10.1007/s00382-012-1450-9
https://doi.org/10.1175/JCLI3781.1
https://doi.org/10.1175/JAS3766.1
https://doi.org/10.3402/tellusa.v64i0.17196
https://doi.org/10.1038/s41467-019-13902-y
https://doi.org/10.1038/s41467-019-13902-y
https://doi.org/10.1016/j.atmosres.2023.106726
https://doi.org/10.1175/JTECH-D-12-00119.1
https://doi.org/10.1175/JTECH-D-12-00119.1
https://doi.org/10.1175/JAMC-D-20-0149.1
https://doi.org/10.1175/JAMC-D-20-0149.1
https://doi.org/10.1002/joc.6669
https://doi.org/10.1002/joc.4250

	CyTRACK: An open-source and user-friendly python toolbox for detecting and tracking cyclones
	1 Introduction
	2 CyTRACK algorithms and kernel
	2.1 Detecting critical centres
	2.2 Paring cyclone centres in continuous time steps
	2.3 Utilities
	2.3.1 Estimating cyclone outer radius based on the mean sea level pressure
	2.3.2 Estimating cyclone size based on the wind speed
	2.3.3 Cyclone thermal structure

	2.4 Description of CyTRACK input parameters
	2.5 Input data
	2.6 CyTRACK outputs
	2.7 Parallelization considerations

	3 Datasets and validation method
	3.1 Validation datasets
	3.1.1 Tropical cyclones
	3.1.2 Extratropical cyclones
	3.1.3 Mediterranean cyclones
	3.1.4 Subtropical cyclones

	3.2 Cyclone track-to-track comparison

	4 Results and discussion
	4.1 Tropical cyclones
	4.2 Extratropical cyclones
	4.3 Mediterranean cyclones
	4.3.1 The special case of medicanes

	4.4 Subtropical cyclones

	5 Conclusions
	Software and data availability
	Funding
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


