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Abstract: The study of the phenolic compounds present in olive leaves (Olea europaea) is of great
interest due to their health benefits. In this research, different machine learning algorithms such
as RF, SVM, and ANN, with temperature, time, and volume as input variables, were developed to
model the extract yield and the total phenolic content (TPC) from experimental data reported in the
literature. In terms of extract yield, the neural network-based ANNZ-L model presents the lowest root
mean square error (RMSE) value in the validation phase (9.44 mg/g DL), which corresponds with a
mean absolute percentage error (MAPE) of 3.7%. On the other hand, the best model to determine the
TPC value was the neural network-based model ANNR, with an RMSE of 0.89 mg GAE/g DL in the
validation phase (MAPE of 2.9%). Both models obtain, for the test phase, MAPE values of 4.9 and
3.5%, respectively. This affirms that ANN models would be good modelling tools to determine the
extract yield and TPC value of the ultrasound-assisted extraction (UAE) process of olive leaves under
different temperatures, times, and solvents.

Keywords: olive leaves; ultrasound-assisted extraction; extract yield; TPC; machine learning; random
forest; support vector machine; artificial neural network

1. Introduction

Olive leaves (Olea europaea) are an interesting waste by-product of the olive oil indus-
try [1]. Generally, they are acquired during olive harvesting or fabrication operations [2].
In the European Union (EU-28), oil mills generate 9.6 million tons/year of by-products
that can be recovered, such as olive pomace, stone, and olive tree pruning biomass, which
represents an additional 11.8 million tons [3]. Olive oil is the main lipid component of the
Mediterranean diet [4]. As reported by Ben Hmida et al. (2022) [5], olive oil production
and Olea europaea cultivation are significant and ancestral agricultural activities in Mediter-
ranean countries. The EU produces around 67% of the world’s total olive oil (mainly in the
Mediterranean EU countries, representing about 4 million hectares [6].

The olive plant has phenolic compounds that present beneficial health effects [7]
and, as reported de Bock et al. (2013) [7], could possess antioxidant or anti-inflammatory
properties, among others. Polyphenols are present principally in the tree’s leaves and
drupes [8]. The most ample phenolic compound in olive leaves is oleuropein [9]. As Martín
García (2001) [10] reports in his Ph.D. thesis, the chemical composition of olive leaves, and
therefore also their nutritional value, depends on a large number of factors such as climatic
conditions, the variety of olive, the age of the plantation, or the harvest season. In fact, in
the literature, studies can be found such as that by Cavalheiro et al. (2015) [11], in which
the olive leaves of different varieties from Brazil are analysed according to moisture, ash,
proteins, lipids, etc., or the research carried out by Ibrahim et al. (2016) [12], where different
chemical compositions of whole and boiled leaves were studied.
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On the other hand, Martín García (2001) [10] also reports that olive leaves generally
have greater digestibility and a higher nutritional value than other by-products of oil
extraction, but with a general observation that olive leaves have a low protein value.

Taking into account the trend to find abundant, renewable, and cheap sources of
polyphenols [13], it can be understood that the characteristics that are present in olive leaves,
together with the benefits that biophenols present, have given rise to a growing interest
in their use in different industrial applications in the food supplement or pharmaceutical
fields [2]. Nevertheless, the polyphenol profile in olive leaves is susceptible to several
abiotic and biotic factors, such as the geographical zone, leaves, and so on [14]. On the
other hand, there are certain important parameters that influence the extraction processes:
the type and composition of the solvent, the extraction time, or the extraction temperature,
among others [13]. Consequently, it is necessary to design and optimize the extraction
methods for each polyphenol source [13].

Ultrasound-assisted extraction (UAE), as reported by Yerena-Prieto et al. (2022) [15],
is a methodology based on cavitation, a phenomenon that causes the disruption of cell
walls and having the effect that the release of target compounds [16]. In terms of the sound
emitter devices (one of the parts of the core of ultrasonic equipment), two different types of
devices can be used: an ultrasonic bath and a sonotrode (ultrasonic probe) [17]. As reported
by Chahardoli et al. (2020) [18], UAE is a non-complex and reasonably priced method
that can be applied at large scales for industrial and commercial purposes, can afford an
improvement in mass transfer, provides an option for high-temperature procedures and a
reduction in extraction time, and other economical or environmental benefits [19–22].

The high efficiency is caused by to the acoustic cavitation effect produced by the
formation and implosion of microbubbles generated by ultrasonic waves [23].

The optimization and prediction of different properties in extraction methodologies
can be approximated by traditional modelling methods such as response surface methodol-
ogy (RSM) [13,24] or kinetic modelling [25]. Machine learning is an alternative to traditional
methods; examples of this are the models based on random forest (RF), support vector
machine (SVM), and artificial neural networks (ANNs).

According to Tian et al. (2017) [26], Breiman introduced RF for the first time in 2001 [27].
It is a classification and regression method that relies on statistical learning theory [26]. RF
combines many prediction trees, where each tree is based on the values of an independently
sampled random vector that presents the same distribution in all of the forest’s trees [27].
In classification, the RF output corresponds to the class selected by a majority vote of all
individual trees [26]; in regression, the predicted value is determined by averaging over all
the trees [28]. RF can be utilized in different research fields, such as in agricultural science
to detect nitrogen saturation [29], in environmental sciences to evaluated the exposure to
particular matter in urban areas [30], and in food technology for quality control [31] and to
detect food adulteration [32].

The next model, SVM, was first proposed, according to Waleed et al. (2020) [33], by
Cortes and Vapnik in 1995 [34]. SVM is a supervised non-parametric statistical learning
method; hence, it is not necessary to know the data distribution beforehand [35,36]. The
operation is based on building a hyperplane to separate the data into different classes [35],
while minimizing the classification error, through geometric margin maximization between
classes [33]. SVM can be applied in different research areas, such as in chemistry to predict
the toxicity of different compounds [37,38], in hydrology to determine water quality for
drinking purposes [39], and in food technology to study plasticizers in extra virgin olive
oil [40] or to classify Greek olive oils [41], among others.

Finally, the ANN technique is based on a computational system inspired by biological
neural networks, which is composed of an input, an intermediate, and an output [42].
These networks consist of a set of artificial neurons that receive a series of signals (called
inputs) that, once processed, if these signals exceed a threshold value, will be transmitted
to another neuron [42]. According to Silva et al. (2015) [43], the ANN algorithm offers
several advantages over conventional methods, such as its ability to fill in missing data,
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its non-linearity, insensitivity to noise or high parallelism, among others [44]. ANNs have
versatile applications across various fields of research, like in food technology for honey
classification [45] or wine authentication [46], in chemistry to determine the electrical
percolation of AOT-based microemulsions [47], and so on.

To summarize, in this study, different machine learning methods, (i) RF, (ii) SVM,
and (iii) ANN, were applied to model the extract yield (mg/g DL)—DL corresponds to
dried leaf—and the total phenolic content (TPC) (mg GAE/g DL) using experimental data
obtained from the literature [25].

2. Materials and Methods
2.1. Experimental Data

The data used in this research were obtained from the experimental work carried out
by Şahin (2019) [25]. According to Şahin (2019) [25], olive leaves were obtained from the
Mediterranean region of Kaş (Turkey) during November in 2013, which is when the leaves
have the highest content of phenolic content [48]. The leaves were dried under ambient
conditions without exposure to light, and then stored in plastic bags in the absence of light
until the time of grinding for extraction [25].

According to Şahin (2019) [25], UAE was performed using different solvent concen-
tration ratios (aqueous solutions (v/v) at 50% of ethanol or methanol, and water, EtOH, or
MeOH pure solutions) under a specific temperature (30 to 80 ◦C in steps of 10 ◦C for water;
30, 40, and 50 ◦C for EtOH, MeOH, and their aqueous solutions) and time range (20 to 60
min in steps of 10 min), with ninety being the total number of experimental cases.

The method developed by Malik and Bradford (2006) [49] was used by Şahin (2019) [25]
to quantify the total polyphenolic content (TPC) present in the extract samples. A second-
order kinetic model was used by Şahin (2019) [25] to carry out the kinetic description of
the extraction.

2.2. Machine Learning Approximations Developed

The database was divided into three groups: training (50%), validation (30%), and
testing (20%). The training dataset, as the name suggests, was used to train the model, the
validation group was used to find the best model, and the test group was retained to check
if the model fit well with other external data. Temperature (◦C), time (min), and volume
(v/v) for each solvent type were used as input variables.

The first approach developed was random forest. The RF algorithm involves the
random selection of samples from the original training dataset [50]. Its operation is based
on a general classifier that is composed of several individual decision trees [51] (Figure 1A).
Each of these individual classifiers is generated through a random vector that is taken
independently from the input vector [51], and then their predictions are averaged [50].
This method has multiple benefits because the bootstrapping process decreases model
variance without a bias increment [50,52]. It is also fast to analyse and is not vulnerable
to overtraining and noise compared to other boosting-based techniques [50,52]. In this
research, to find the best RF model, the following hyperparameters were tested: number
of trees (in the range 1–100 using 99 steps), maximum depth (in the range 1–100 using
99 steps), attribute selection criteria (criterion least square), and pre-pruning (true or false).
In addition, normalized RF models were also performed to fit the values to a specific range
as the data had different units and scales. Two normalization methods were used: Z-
transformation (indicated with subscript Z), which is a method of statistical normalization,
and range transformation between −1 and 1 (indicated with subscript R). The normalization
process was applied to the training group and, later, this normalization model was applied
to the other data groups.

The SVM method is a classifier focused on splitting two linearly separable classes
by searching for an optimal hyperplane [50,53] (Figure 1B). According to [50], to find the
best hyperplane it is necessary to maximize the distance between the closest training cases
(support vectors) and the separating hyperplane. To solve the SVM multiple classification
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problem, as reported by Wang et al. (2020) [54], a combination of multiple binary classifiers
is mainly used [55]. In this study, epsilon-SVR and nu-SVR were used to classify SVM types.
In addition, C and gamma parameters were chosen to train the data. These parameters can
be set according to the guide of Hsu et al. (2003) [56]. However, these working ranges were
extended to improve model fits: the range of gamma values was approximately 9.5 × 10−7

to 256 with 28 steps and the range of C values was approximately 9.8 × 10−4 to 1,048,576
with 30 steps. The SVM library, proposed by [57], known as LibSVM, was used [58]. The
two normalization methods, mentioned above, were also used: the Z-transformation and
the range transformation between −1 and 1. In addition, the models were also applied in
linear scale and logarithmic scale (indicated with subscript L) for gamma and C.
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in R3, and (C) an artificial neural network with a topology of 3-7-1.

ANN modelling is a simplified imitation of the human brain that it is composed of
parallel processing units like the neurons present in living creatures [59]. In this study, the
multilayer perceptron (MLP) was composed of input, intermediate, and output layers (each
of these layers with a certain number of neurons) (Figure 1C). The input nodes depend
on the experimental set, so in this case there were five (temperature, time, and volume
% for each solvent type). In the intermediate layer, the neurons number was defined
by 2n + 1, with “n” being the number of input variables. Moreover, the neural models
were developed with different hyperparameter configurations: training cycles (between 1
and 524,288 using 19 steps) and decay (true or false). In addition, the two normalization
methods, Z-transformation and range transformation between −1 and 1 scale, were
carried out again on each of them, and linear scale and logarithmic scale were used for the
training cycles.

General schemes for the RF, SVM, and ANN approaches that intended to model the
extract yield and total phenolic content can be seen in Figure 1.
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2.3. Best Model Selection

In this research, several statistical parameters were utilized to analyse the implemented
machine learning models: (i) the root mean square error (RMSE), (ii) the mean absolute
percentage error (MAPE in %), and (iii) the correlation coefficient (r); these were determined
for the training, validation, and testing groups. The equations can be consulted in Naeem
et al. (2021) [60]. The model with the lowest RMSE value was considered the best model
for each approach.

2.4. Equipment and Software

The obtained data were collected using Microsoft Excel 2013 (Microsoft, Redmond, WA,
USA). The different models were created with RapidMiner Studio Educational 9.10.001 version
(RapidMiner an ALTAIR Company, Troy, MI, USA). The computational equipment used was
an Intel® Core™ i7-8700 CPU at 3.20 GHz with 64 GB of RAM and Windows 10 Pro. Figures
were plotted with the SigmaPlot 13.0 (Systat Software Inc., San José, CA, USA).

3. Results and Discussion

In the following sections, corresponding to the Results and Discussion, the machine
learning models selected based on the RMSE in the validation phase are detailed. Likewise,
a discussion of the results is also carried out, comparing them with other research articles
located in the literature.

3.1. Models to Yield Determination

Table 1 is shown below, presenting the models selected for each of the types of
approximation carried out for the determination of yield and total polyphenol content.

Table 1. Adjustments for the selected algorithms to model the extract yield. RMSE corresponds
to the root mean square error (mg/g), MAPE is the mean absolute percentage error (in %), and r
corresponds to the correlation coefficient.

Training Validation Test

Model RMSE MAPE r RMSE MAPE r RMSE MAPE r

RF 8.20 3.3 0.991 13.42 5.0 0.962 13.89 4.9 0.983
SVML 8.36 2.9 0.986 9.87 3.9 0.979 5.95 2.6 0.997

ANNZ-L 2.71 0.9 0.999 9.44 3.7 0.980 12.82 4.9 0.985

For extract yield modelling, the first group of models developed was the random forest.
Among this kind of approximation, the best RF model present an RMSE value of 13.42 mg/g
DL in the validation phase that corresponds with a correlation coefficient of 0.962 (Table 1).
The other two selected models developed (RFR and RFZ) showed slightly higher RMSE
values (13.63 and 14.06 mg/g DL, respectively). The mean absolute percentage error is
practically the same in all three models and varies around the range 5.0 to 5.5%. The
selected RF model offers better adjustments for the training phase than for the validation
phase. This can be seen in the different values obtained for the statistics under study,
showing a clear decrease in the RMSE and the MAPE (8.20 mg/g DL and 3.3%) and an
increase in the correlation coefficient value (0.991).

The second group of models (six SVM) were developed at the linear scale (SVM, SVMR,
and SVMZ) and the logarithmic scale (SVML, SVMR-L, and SVMZ-L). The RMSE results
obtained from the SVM models at the logarithmic scale (9.87, 10.53, and 11.02 mg/g DL for
SVML, SVMR-L, and SVMZ-L, respectively) are significantly lower than the result obtained at
the linear scale (14.16, 37.88, and 37.68 mg/g DL for SVM, SVMR, and SVMZ, respectively).
Considering these results, it can be concluded that the best SVM model, considering the
lowest RMSE error for the validation phase, is the SVML model that presented an RMSE
value of 9.87 mg/g DL (Table 1). These good adjustments in terms of RMSE are also
reflected in the MAPE (3.9%) and in the correlation coefficient (0.979) obtained. These
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good adjustments are also obtained in the training, where the model presents very similar
values (RMSE of 8.36 mg/g DL and correlation coefficient of 0.986) to those reported for
the validation.

Finally, the last kind of model was the artificial neural network. In this case, different
ANNs were developed at the linear scale (ANN, ANNR, ANNZ) and the logarithmic scale
(ANNL, ANNR-L, ANNZ-L). The root mean square error values obtained by these models in
the validation phase varied between 14.16 mg/g DL (ANNL) and 9.44 mg/g DL (ANNZ-L).
The two un-normalized models (ANN and ANNL) are the models with the highest RMSE
in this phase (12.97 and 14.16 mg/g DL, respectively). The best model, as previously
stated, is the ANNZ-L model, which presents a root mean square error of 9.44 mg/g DL
for this phase, which corresponds to a MAPE of 3.7% (Table 1). The good behaviour in
the validation phase is widely exceeded in the training phase, where the ANNZ-L model
presents a relative RMSE of 2.71 mg/g DL and a mean absolute percentage error of 0.9%.

Among the three selected models chosen by the lowest RMSE in the validation phase
(Table 1), the one with the worst adjustments in the validation phase is the RF model
(13.42 mg/g DL), followed by the SVML model (9.87 mg/g DL), which is very close to the
best model, the ANNZ-L model (9.44 mg/g DL), developed with Z-transform normalization
and logarithmic scale (ANNZ-L). These three models improve, for the training group,
the adjustments obtained in the validation phase (especially the ANN model: 9.44 vs.
2.71 mg/g DL). It seems clear that the ANNZ-L model offers good results for both phases,
training and validation, but it is necessary to verify its proper functioning in external data;
for this, a previous group of data was reserved (test data). It can be seen that the ANNZ-L
model offers good results based on RMSE (12.82 mg/g DL) and MAPE (4.9%).

Despite the fact that the ANNZ-L model offers a good fit for the test phase, it can be
seen that one of the three previously selected models, the SVML, offers better results for
this phase. It can be seen that the root mean square error value is the lowest of the three
selected models (5.95 mg/g DL); this also corresponds to the MAPE (2.6%).

Based on these results, it can be concluded that although the ANNZ-L model is, within
the three selected models, the one that presents the lowest RMSE in the validation phase,
and works correctly in the external validation phase, the SVML model, whose statistics
in the validation are very close to those obtained by the ANNZ-L model, is also a good
performance modelling method due to the low error obtained in the test phase.

The RF model intended to model extract yield showed little dispersion between the
experimental and modelled data. However, it can be seen that some cases move away
from the line with slope one. For example, one training experimental case (81.9 mg/g
DL) presents a significant deviation from the dashed line: an overestimation of 31.1%
that corresponds with a modelled value of 107.4 mg/g DL. Additionally, another case
(328.8 mg/g DL) in the testing phase presents a slightly deviation from the line with slope
one, being modelled as 290.8 mg/g DL, which implies an underestimation of 11.6%. Based
on these results, it can be observed that dispersion is mainly centred on extreme values
of the extract yield values. This behaviour is not the case for the SVML model, where
dispersion is mainly concentrated in the middle–upper part of the graph. For instance,
in one training case (220.0 mg/g DL), a value of 247.7 mg/g DL is modelled, resulting
in an overestimation of 12.6%. The remaining cases in the training, validation, or testing
phases are close to the line with slope one. This is clear in the test data that present better
fits (RMSE = 5.95 mg/g DL) compared to the fits presented by the previous RF model
(RMSE = 13.89 mg/g DL). On the other hand, as previously seen in the results shown in
Table 1, the ANNZ-L model presents the lowest dispersion for the TVZ datasets. In fact, the
model presents a MAPE value of 2.6% for all the data. Even so, in the upper part of the
graph, there are two testing cases (281.2 and 328.8 mg/g DL) that are far from the dashed
line with modelled values of 307.0 and 301.1 mg/g DL, resulting in an overestimation of
9.2% and an underestimation of 8.4%, respectively. Although these points are the most
attractive to the human eye, there are a series of points towards the lower–middle zone
of the graph that present a greater overestimation between 13.6% and 9.8%. All these
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behaviours are reflected in Figure 2, where the scatter plots between the real value and
those modelled by each of the selected models are shown. The points, for the extract yield
models, are close, in general, to the black dashed line (line with slope one).
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3.2. Models for Total Phenolic Content Determination

The second group of models selected to model the TPC are shown in Table 2. The first
approach was, again, a group of three random forests. In this sense, the best random forest
model (RFR) presented an RMSE value of 1.93 mg GAE/g DL for the validation phase that
corresponds with a correlation coefficient of 0.982. The other two models developed (RF
and RFZ) showed similar RMSE values with minimum differences between them (2.00 and
1.94 mg GAE/g DL, respectively). Analysing the relative error, it remains unchanged across
the three models, varying around 6.5% to 6.8%. The RFR model exhibits better adjustments
during the training phase as opposed to the validation phase. These perceptible differences
can be seen in the statistical parameters analysed: the RMSE and MAPE values slightly
decreased (1.51 mg GAE/g DL and 4.6%), with an increase in the correlation coefficient
value (0.990).

Table 2. Adjustments for the selected machine learning algorithms to model the total phenolic
content. RMSE corresponds to the root mean square error (mg GAE/g DL), MAPE is the mean
absolute percentage error (in %), and r corresponds to the correlation coefficient.

Training Validation Test

Model RMSE MAPE r RMSE MAPE r RMSE MAPE r

RFR 1.51 4.6 0.990 1.93 6.5 0.982 2.47 9.4 0.978
SVMZ-L 0.41 0.8 0.999 0.93 2.7 0.995 1.23 3.1 0.995
ANNR 0.28 0.9 1.000 0.89 2.9 0.996 1.35 3.5 0.993

In addition to the RF models, a second group of six SVM models was also developed.
The RMSE values obtained, 0.99, 0.95, and 0.93 mg GAE/g DL for SVML, SVMR-L, and
SVMZ-L, respectively, were significantly lower than for SVM, SVMR, and SVMZ (1.89, 7.19,
and 7.35 mg GAE/g DL, respectively). Based on these results, it can be said that the
SVMZ-L was the best model, obtaining an RMSE value of 0.93 mg GAE/g DL during the
validation phase with a corresponding correlation coefficient of 0.995 and mean absolute
percentage error of 2.7% (Table 2). Similar to the RF models, better fits were observed in the
training phase than in the validation phase, with a decrease in RMSE and MAPE values
(0.41 mg GAE/g DL and 0.8%, respectively) and an increase in the correlation coefficient
value (0.999).

The final type of model included a set of six ANNs similar to the ANNs developed
for extract yield. The un-normalized models in both scales (ANN and ANNL) showed
slightly higher values of RMSE (1.52 and 1.70 mg GAE/g DL, respectively) compared to
the normalized models (between 0.89 and 1.00 mg GAE/g DL, respectively). The best
model was ANNR, which presented a root mean square error of 0.89 mg GAE/g DL in the
validation phase that corresponds with a MAPE value of 2.9% and a correlation coefficient
of 0.996 (Table 2). Consistent with previous findings, it can be observed that in the training
phase the model shows better adjustment compared to the validation phase. In this case,
the ANNR model presents a descent in both RMSE and MAPE (0.28 mg GAE/g DL and
0.9%, respectively).

Considering the three selected models based on the lowest RMSE during validation,
the best model is ANNR (0.89 mg GAE/g DL), followed by SVMZ-L (0.93 mg GAE/g DL)
and the RFR model (1.93 mg GAE/g DL). The correlation coefficients for all three models
are high, greater than 0.980, and the relative errors are generally low (under 3.0%), except
for the RF model, which exceeds 6.0%. All these models also show an improvement in
the adjustment parameters for the training phase, especially the ANNR model, which
improved from 0.89 mg GAE/g DL to 0.28 mg GAE/g DL. While the ANNR model appears
to perform well in both phases, it is necessary to verify its performance using test data. In
the testing phase, the ANNR model offers good results (1.35 mg GAE/g DL of RMSE), but
it fails to achieve the best result. In this case, the SVMZ-L model performs better during
testing with an RMSE of 1.23 mg GAE/g DL, a similarly high correlation coefficient (0.995
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vs. 0.993), and a low MAPE value (3.1 vs. 3.5%). However, it can be considered that the
differences between these two models, ANNR and SVMZ-L, are minimal.

Based on all the above, it can be said that the results show that ANNR has the lowest
RMSE in the validation phase and works well in external validation. However, SVMZ-L has
similar statistics and performs well in the test phase too, which makes both models good
modelling methods.

Analysing the scatter plots presented in Figure 2, it can be seen that the RFR model
designed to determine the TPC provides lower modelled values in the upper-right zone of
Figure 2. Three specific cases of training, validation, and testing (51.8, 49.2, and 51.0 mg
GAE/g DL), which decrease away from the dashed line (47.1, 45.4, and 46.1 mg GAE/g DL),
present underestimations of 9.0, 7.8, and 9.6%. On the other hand, it can be seen that for the
SVMZ-L and ANNR models, the dispersion around the trend line is smaller than for the RFR
model. For the SVMZ-L and ANNR models, two testing cases can be highlighted (25.8 and
43.1 mg GAE/g DL), with overestimations of 8.4 and 8.3%, and 14.2 and 7.4%, respectively,
for each model. By comparing the graphs and the statistical parameters obtained, it can be
concluded that not only can the ANNR model be used, but also the SVMZ-L model could
be used to model the variables of interest. This can be corroborated using the MAPE value
for the total dataset (1.8%).

The results obtained in this research can be considered good for all the selected models.
This statement is based on the good results obtained in all three phases where the selected
models present MAPE values between 1.8 and 6.1%, which means that the percentage
errors obtained by these models can be considered acceptable. The results obtained in this
research can be compared with others reported in the literature.

In this sense, Alrugaibah et al. (2023) [61] carried out the extraction of different
phenolic compounds, using deep eutectic solvents, by means of neural networks. The
authors used four input variables and were able to obtain RMSE values between 0.04 and
0.16 mg/g [61]. Although the RMSE values are lower than those obtained in this research,
it is necessary to indicate that the ranges studied for each of the phenolic compounds is
lower [61] than the range studied in this research for the total extract yield. İlbay et al.
(2014) [62] developed response surface methodology (RSM) and artificial neural network
approaches to model and optimize the extraction process. In that work, the range of TPC
(21.56 to 47.58 mg GAE/g DL) is similar to the range analysed in this research (9.79 to
51.78 mg GAE/g DL). In terms of RMSE, it can be observed that the ANN model presents
a lower value (1.13 mg GAE/g DM) compared to the RSM (1.85 mg GAE/g DM) [62]. A
similar work using response surface methodology was carried out by Goldsmith et al.
(2014) [63] using temperature, time, and sample-to-solvent ratio as input variables, obtain-
ing a model that can predict the TPC with an RMSE of 3.79 mg GAE/g for experimental
values around 20 to 40 mg GAE/g. In the present study, the selected ANN model shows,
for the total phases, an RMSE of 0.80 mg GAE/g DL, which indicates that the ANN model
would work in a similar, or better, way than the models reported by İlbay et al. (2014) [62]
and Goldsmith et al. (2014) [63].

More examples have also been found in the specialized literature; in this sense, Şahin
et al. (2017) [64] developed RSM and ANN models to model and optimize TPC and
oleuropein yields in olive leaf obtained by the SFMAE method (solvent-free microwave-
assisted extraction). After an analysis of variance (ANOVA), the ANN model provides
better results for TPC and oleuropein amount than the RSM model.

4. Conclusions

In this research, three supervised machine learning approaches, random forest, sup-
port vector machine, and artificial neural network, were developed to model the extract
yield and the total phenolic content extracted from Olea europaea leaves through ultrasound-
assisted extraction. According to the results, it can be seen that the ANN models showed
better performance in accuracy and generalization capability than the other models devel-
oped. Data normalization (Z-transformation and range transformation) was also identified
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as an important factor to improve the effectiveness of the ANN. In this sense, the best
selected neural network models present Z-transformation for the extract yield ANN model
and range transformation for the total phenolic content ANN model. These two models
provide good results in all phases, showing, for the querying phase, MAPEs of 4.9 and 3.5%,
respectively. These findings suggest that ANN models using an appropriate normalization
technique can be promising tools to model the extraction yield and TPC value. However,
more research could be necessary to improve these results and their applicability in the
pharmaceutical, food, or chemical industries.

Finally, it is necessary to emphasize that, with the increasing awareness of environmen-
tal issues and the growing need to reduce time, economic/material/personal costs, and the
use of toxic products, the combination of these two methods, UAE and machine learning,
will be an area of great interest among researchers that could lead to an improvement in
the specialized industry.
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