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Abstract

Purpose. Material extrusion is one of the most commonly used approaches within the additive manu-
facturing processes available. Despite its popularity and related technical advancements, process reliability
and quality assurance remain only partially solved. In particular, the surface roughness caused by this
process is a key concern. To solve this constraint, experimental plans have been exploited to optimize sur-
face roughness in recent years. However, the latter empirical trial and error process is extremely time- and
resource-consuming. Thus, this study aims to avoid using large experimental programs to optimize surface
roughness in material extrusion.

Methodology. This research provides an in-depth analysis of the effect of several printing parameters:
layer height, printing temperature, printing speed and wall thickness. The proposed data-driven predictive
modeling approach takes advantage of Machine Learning models to automatically predict surface roughness
based on the data gathered from the literature and the experimental data generated for testing.

Findings. Using 10-fold cross-validation of data gathered from the literature, the proposed Machine
Learning solution attains a 0.93 correlation with a mean absolute percentage error of 13 %. When testing
with our own data, the correlation diminishes to 0.79 and the mean absolute percentage error reduces to 8
%. Thus, the solution for predicting surface roughness in extrusion-based printing offers competitive results
regarding the variability of the analyzed factors.

Originality. Although Machine Learning is not a novel methodology in additive manufacturing, the use
of published data from multiple sources has barely been exploited to train predictive models. As available
manufacturing data continue to increase on a daily basis, the ability to learn from these large volumes of
data is critical in future manufacturing and science. Specifically, the power of Machine Learning helps model
surface roughness with limited experimental tests.

Research limitations. There are limitations in obtaining large volumes of reliable data, and the
variability of the material extrusion process is relatively high.

Keywords: Additive manufacturing, Machine Learning, Material extrusion, Predictive material extrusion
modeling, Surface roughness

1. Introduction

Nowadays, data are a pivotal asset for the world economy. In fact, the term data economy is becoming
popular (Carvalho and Kazim, 2022). Large amounts of data are created, captured, copied and consumed
every year. Consequently, the IDC Global Data Sphere report established the size of global data in 59
zettabytes as a baseline (Zillner et al., 2021). Science is aware of the shift toward more data-oriented
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research. The increasing availability of data creates new possibilities to develop more accurate and reliable
models that may help verify or reject research hypotheses. However, it is still not easy to access most data
or to even obtain properly curated data to be used (Hey et al., 2009). Mainly, scientific research combines
both open and sub-scripted books, conference proceedings and journals. However, in science, there is no
common standard for arranging data for publication, and there are times when data are simply missing from
the studies.

Traditionally, linear regression models have largely been used in research to investigate the causal re-
lationship between multiple independent variables and dependent variables (Efendi et al., 2023). However,
these models are based on strong assumptions, such as normally distributed errors, which may be violated
when large data sets from different sources are used (Thongpeth et al., 2021). Therefore, these traditional
statistical approaches are not good enough when it comes to addressing big data issues. The Machine
Learning (ml) models are good alternatives to linear regression without the normality assumption (i.e.,
when the relationship between the outcome and its determinants is non-linear) (Thongpeth et al., 2021).
In this sense, artificial intelligence allows patterns to be identified in data by training computers (Shu and
Ye, 2022). Over the last few decades, there have been great advances in the artificial intelligence field.
Applications of various levels of complexity have been developed for a wide range of industrial sectors to
solve very different types of problems. For example, the automotive, fishing, food and beverage industries
are introducing these techniques (Carou et al., 2022). In fact, advanced predictive modeling is essential to
ensure high-quality products and to further optimize processes. Particularly, advancements in data analytics
(Awan et al., 2021) will benefit the smart manufacturing sector (Cui et al., 2020; Carou et al., 2022).

In engineering, research efforts are mainly conducted by research labs that develop experimental research
using their own means. Despite the fact that these efforts are connected to the literature, some studies are
developed around the same hypothesis and methodologies, making the conclusions redundant. Additionally,
some efforts may not be reproducible and, therefore, are of little value. According to Kozlov (2023), science
in the twenty-first century is less disruptive than science in the mid-twentieth century. Moreover, research
is more oriented toward obtaining incremental advances. This explanation is based on a study of a large
set of manuscripts (45 million) and patents (3.9 million), which states that less departure from previous
literature results in less disruptive research. However, although the research is based on the literature,
the large quantity of published research makes it impossible for researchers to have comprehensive and
accurate knowledge of the current state-of-the-art due to the lack of capabilities and resources to process
this information. In other words, researchers may not know some key data, verified hypotheses, and general
know-how. In contrast, when provided with huge amounts of data, artificial intelligence can obtain knowledge
from those sources to help develop new adequate research projects.

Presently, additive manufacturing is being extensively used in the automotive and electronic industries
(Leal et al., 2017; Saengchairat et al., 2017; Böckin and Tillman, 2019) and in healthcare products (Zadpoor
and Malda, 2017; Rezvani Ghomi et al., 2021), among many other cases. Its economic and flexible nature
stands out as a relevant advantage (Ford et al., 2016). It can be classified into seven processes (Wu et al.,
2019): (i) binder jetting, (ii) directed energy deposition, (iii) material extrusion, (iv) material jetting, (v)
powder bed fusion, (vi) vat polymerization, and (vii) sheet lamination.

Material extrusion was first intended for prototyping applications though its potential enables the creation
of fully functional products. This process is of special interest because it is the most commonly used
approach. This is due to the existence of affordable solutions and the variety of usable materials (mainly
plastic) (Messimer et al., 2019).

Unfortunately, even though the use of material extrusion is increasing and becoming more mature,
process reliability and quality assurance remain an open challenge (Baumers et al., 2017). During the last
few decades, many experimental studies have been presented to optimize the printing parameters that might
have an effect on the printing results (Panda et al., 2015, 2017). Specifically, material extrusion processes
have been thoroughly revised to enhance surface quality (Pérez et al., 2018), form (cylindrical, staircase
error, flatness and straightness of parts) (Haghighi and Li, 2018) and mechanical resistance, among others
(Moreno et al., 2021). For instance, printed parts are subjected to the staircase effect, which depends on the
layer height and face inclination (Paul and Anand, 2015). Issues such as the staircase effect can be limited
by diminishing the layer height (Gupta et al., 2022). However, the generalizability of these parameter
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optimization studies is limited regarding dimensional accuracy. According to a study by Golab et al. (2022)
"The variety of optimal printing parameter values suggests that unique solutions exist for each combination
of machine, material, and artefact".

Among the studies on quality assurance, both the research community and related enterprises have
considered surface finish (Wu et al., 2019). In particular, surface roughness is a critical constraint that
usually comes as a specification in engineering products (Demircioglu et al., 2013). In light of this, analyzing
the influence of the processing conditions becomes crucial to meet the part’s requirements. In the specific
case of surface roughness, the lower, the better.

Different approaches have been used to analyze surface roughness in material extrusion, including an-
alytical (Chohan et al., 2016; Lalehpour and Barari, 2018; Ehsanul Haque et al., 2019; Wang et al., 2019)
and experimental (Pérez et al., 2018). However, very limited effort has been directed to ml approaches,
particularly for studies using published data. Based on all of the above, it is hypothesized that by using the
available published data, a model can be developed to predict outputs in manufacturing processes without
needing to perform large, costly and time-consuming experimental plans.

In this study, the objective is to focus on the material extrusion process. In this sense, the study
is developed as a preliminary analysis to predict surface quality in material extrusion by utilizing ml.
Specifically, this article aims to analyze the influence of layer height, printing speed, printing temperature and
wall thickness on surface roughness using published data and experimental data. Consequently, these models
might demonstrate that surface roughness can be modeled avoiding the need to perform large experimental
programs by taking advantage of the aforementioned data from the literature.

The article is organized in the following way. Section 2 reviews related work on predictive modeling in
material extrusion, considering both traditional ml and Deep Learning (dl) models for surface roughness
prediction. Section 3 describes our novel proposal. Section 4 presents the experimental results. Finally,
Section 5 identifies the main conclusions and Section 6 presents the main limitations of the study and insights
for future research.

2. Related work

A variety of factors exist that directly affect the printing process and can be controlled programmatically
(e.g., layer height). Accordingly, the Ultimaker Cura printer, one of the most popular software for 3d printers,
offers over 400 different settings in the custom mode. However, some factors cannot be controlled before the
printing process takes place (e.g., vibrations).

In the specific case of surface roughness, considerable effort has been carried out to identify the potential
factors that most affect printed parts. These efforts have resulted in a generally accepted body of knowledge
about the most important factors that might affect surface roughness: bed temperature, fan speed, infill
density and pattern, layer height, printing speed and temperature, type and state of the material, type of
printer, and wall line count (Bikas et al., 2016; Hällgren et al., 2016; Bourell et al., 2017; Umaras and Tsuzuki,
2017; Pérez et al., 2018; Li et al., 2019b). This background was mainly gathered by testing the experimental
designs developed by the research community. In general, the experimental studies confirm that layer height
is critical for surface roughness (Pérez et al., 2018), but the effect of other printing parameters on surface
roughness is not well-known yet. For instance, Mendricky and Fris (2020) identified the influence of printing
speed on surface roughness, whereas Yang et al. (2020) found that this factor did not influence this output.
Consequently, there is still a research gap that requires more testing to validate published findings.

Among data mining research applied to additive manufacturing, traditional approaches (Barrios and
Romero, 2019; Li et al., 2019b,a; Wu et al., 2019; Liu et al., 2021) and dl or Neural Networks (nn) approaches
(Hooda et al., 2021; Kandananond, 2021; Tripathi and Singla, 2021; Saad et al., 2022) deserve attention.
However, the use of the former nn models is limited due to the huge amount of training data needed.

Barrios and Romero (2019) proposed a ml-based solution for surface roughness in material extrusion.
Specifically, the authors exploited the Decision Tree (dt) and Random Forest (rf) models, along with J48
and Random Tree (rt) combined with the L27 array-based Taguchi method. The outcome allows the end
users to efficiently and effectively set the flow rate, layer height, print acceleration, speed and temperature
parameters.
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Li et al. (2019b) presented a more sophisticated data-driven solution with an ensemble ml model to
predict surface roughness in two stages (offline and online). For the offline operation mode, classification
and regression trees were used to train the system. Afterward, the testing stage was performed in online
mode. Note that the surface roughness was estimated in a unique direction. Moreover, the MakerBot
Replicator Plus 3d printer was used to obtain the parts. Wu et al. (2019) presented a similar ml-based
work, and the prediction accuracy was subsequently enhanced by Li et al. (2019a). Particularly, they based
their model on the parabolic curve and linear straight-line surface profile representation method.

More recently, Hooda et al. (2021) used ml models to predict the optimum deposition angle. The
training data were obtained from the Ultimaker Cura software using different geometries for the Prusa
i3 printer. The authors used Linear and Logistic Regression (lr), dt, rf and Support Vector Machine
(svm) models, along with Multi-layer Perceptron and nn. In the end, the rf classifier offered the best
results. Kandananond (2021) also used Multi-layer Perceptrons. More in detail, they applied two training
methods (weight backtracking-resilient backpropagation and globally convergent resilient backpropagation)
to compare the effect of the number of neurons in hidden layers.

Tripathi and Singla (2021) analyzed the impact of several parameters on surface roughness using dl.
However, the authors did not use K-fold cross-validation, leaving this method for future work, and admitted
the need for larger amounts of data. Similarly, Jiang et al. (2022b) presented a theoretical solution for
surface roughness in material-extruded products. The authors concluded that extrusion temperature and
layer thickness are the most relevant factors. Finally, although the use of nn is limited due to the huge
amount of training data needed, Saad et al. (2022) analyzed the influence of several network structures on
the printing process, using the coefficient of determination as a representative parameter in their study.

More closely related to our work, Liu et al. (2021) presented a detailed study on additive manufacturing
to endorse the application of ml models. Their study is based on data gathered from 121 articles in the
literature on powder laser-based additive manufacturing of the Ti-6Al-4V alloy. When dealing with data
mining, the authors identified some important drawbacks, such as: “[...]these data do not consistently record
composition, micro-structure, thermal history, part shape and orientation, starting powder composition
and density, and other important process and material properties[...]”. Despite the limitations, the authors
proved that ml can be used as a starting point for further analysis.

The ability to learn from these large volumes of data will be critical in future manufacturing and science.
The traditional approaches require a lot of testing and are highly demanding. To the best of our knowledge,
this is the first research study to combine multi-source data sets and ml techniques to train a surface
roughness predictive model in material extrusion. The main objective is to combine data from the literature
in order to (i) reduce time and resource constraints, and (ii) analyze the coherence of the literature data
from different printing machines.

3. Materials and methods

Figure 1 details the system scheme developed for the surface roughness prediction experimental plan,
which it is composed of three stages: (i) data acquisition (Section 3.1 and 3.2); (ii) ml modeling (Section
3.3), including feature analysis and selection processes (Section 3.3.1); and (iii) evaluation (Section 3.4). In
Section 3.5, the computer requirements and implementations are described.

Initially, data acquisition was performed to create an adequate and reliable experimental data set. Af-
terward, an optimal ml model was created to predict the surface roughness based on the training data set.
In the end, data from experimental tests were used to validate the model.

3.1. Data acquisition
Data were obtained from published experimental studies in the literature (Alsoufi and Elsayed, 2017;

Peng and Yan, 2018; Aslani et al., 2020; Buj-Corral et al., 2021; Morampudi et al., 2021; Taşdemir, 2021;
Vambol et al., 2021). Several manuscripts were discarded based on criteria, such as not indicating the
measuring surface or only presenting graphs rather than the recorded values. Furthermore, a testing data
set was obtained by experimental testing. The former data are composed of 100 training values, whereas
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Figure 1: System scheme (figure by authors).

the latter data are composed of 128 experimental values. Note that the final data set1 is similar in size to
other state-of-the-art studies (Gu et al., 2018; Jiang et al., 2022a; Westphal and Seitz, 2022).

In this study, the experimental data set (used for testing) is 28 % larger than the merged data set
retrieved from the literature (used for training). However, the latter smaller data set includes data related
to different printers; therefore, different printing patterns will contribute to creating a general ml model.
The ultimate objective is to validate whether the general data set from the literature is able to predict the
surface roughness of a different printer in different laboratory environments.

3.2. Experimental plan
To create a data set to validate the models, an experimental plan consisting of 16 tests was defined.

The samples were printed with four varying factors. The combinations were selected with the objective
to analyze these four factors with a limited number of samples. The printing tests were performed using
polylactic acid (pla)), which is characterized by the data listed in Table 1. The material selection helps
to model the outcome by taking into account that different materials require different printing parameters,
such as bed temperature and printing temperature.

The printed samples consisted of cylindrical pieces of 30 mm diameter and 60 mm height that were
printed via the Ultimaker S5 (referred to as printer us5) and the Ultimaker 3 extended (referred to as
printer u3) using the Ultimaker Cura 4.13.1 software. The resolution of the two printers was 20-200 µm.
The nozzle had a diameter of 0.4 mm. The factors analyzed included the following: layer height, printing
speed, printing temperature and wall thickness. In addition, the infill density was 20 %. Thus, two sets of
eight samples were printed with each of the printers. The full breakdown can be seen in Table 2.

Table 1: Characteristics and recommended processing conditions of the pla (table by authors).

Composition pla (polylactic resin) - 99 % CAS: 9051-89-2
Density 1.24 g/cm3

Diameter 1.75 ± 0.03 mm
Printing temperature 220 ± 20 ºC
Melting temperature 180 ºC

1Available at https://bit.ly/3RIEA8i, April 2023.
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Figure 2: Surface roughness profilometer (figure by authors).

Table 2: Factors and levels in the experimental plan (table by authors).

Sample Printer Layer Printing Printing Wall Infill
height (mm) speed (mm/s) temperature (°C) thickness (mm) density (%)

1 us5 0.15 60 200 2 20
2 us5 0.23 60 200 2 20
3 us5 0.30 60 200 2 20
4 us5 0.23 60 215 2 20
5 us5 0.23 60 230 2 20
6 us5 0.23 60 200 1 20
7 us5 0.23 60 200 3 20
8 us5 0.23 40 200 2 20
9 u3 0.15 60 200 2 20
10 u3 0.23 60 200 2 20
11 u3 0.30 60 200 2 20
12 u3 0.23 60 215 2 20
13 u3 0.23 60 230 2 20
14 u3 0.23 60 200 1 20
15 u3 0.23 60 200 3 20
16 u3 0.23 40 200 2 20
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The arithmetic average roughness (Ra) was computed as the response variable. The ISO 4287 standard
was used to record the roughness using five cut-offs of 8 mm. Thus, a length of 40 mm was evaluated because
the expected surface roughness values were higher than 10 µm. To measure the surface roughness, a Taylor
Hobson profilometer was used (see Figure 2). The surface roughness measurement was performed in eight
different locations for each sample. Figure 3 details the eight positions with a 45º separation. The average
surface roughness at these eight positions is defined as Ra1, Ra2, Ra3, Ra4, Ra5 Ra6, Ra7, and Ra8.

Figure 3: Measuring position and location of the zipper (top view of the printing bed) (figure by authors).

3.3. Machine Learning modeling
Since the literature data are collected from different printers and acquisition environments, the correlation

between the layer height feature and the target feature in the literature merged data set (0.82 in Table 3)
can be used as a baseline and motivation to apply a more sophisticated multi-modal approach to extract
patterns with greater precision. Table 3 shows the linear correlations between all of the features in the
study and the target feature, regardless of the model used. Accordingly, different ml models were selected
to evaluate the data set using diverse analysis perspectives.

Table 3: Correlation of features in the data set extracted from the literature (table by authors).

Printing parameter Significance
Layer height 0.82
Nozzle diameter 0.35
Wall thickness 0.16
Infill density 0.09
Printing temperature 0.06
Printing speed -0.03
Shape -0.21

The models were trained and tested with 10-fold cross-validation (Berrar, 2019) using the data from
the literature exclusively. The latter process consists of using different parts of the experimental data set
over multiple iterations for both training and testing models. Consequently, it is possible to estimate the
precision with which a model will be able to predict new samples in a real scenario. The latter process also
contributes to minimizing data selection randomization during evaluation. In the end, the proposed model
is validated using our own data gathered throughout this project.

Two operation modes in ml-based solutions exist that depend on the feasible values of the target feature:
(i) nominal and (ii) categorical. This work belongs to the first group. Thus, the ml models seek to infer
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the best mathematical equation to fit the training data acting as regressor models. Motivated by their good
performance in related studies in the literature (Barrios and Romero, 2019; Hooda et al., 2021), the following
models were selected:

• ZeroR (Sangeorzan, 2020) is a rule-based model that operates with the mean of the data.

• lr (Pal and Bharati, 2019) uses the Akaike criterion for model selection and is capable of handling
weighted instances.

• smoreg (Assim et al., 2020) implements a specific svm for regression problems.

• Decision Stump (ds) (Uskov et al., 2021) belongs to the group of tree algorithms and is one of the
most basic.

• rf (Schonlau and Zou, 2020) belongs to the group of tree algorithms, but follows a more complex
approach than ds. Particularly, it is composed of a set of n trees that finally ends up assembled into
one to make a prediction.

For the ml models, we selected implementations from Weka ml software in Java: ZeroR2, lr3, smoreg4,
ds5, and rf6.

The aforementioned models are executed with default parameters. Based on the results in Table 3, the
correlation between the input features and the surface roughness target will be higher in the ml models and
will have more complex relationships among them, ensuring competing results. Furthermore, for both the
experimental data and the data gathered from the literature, the data variability is assumed to be minimal.
Otherwise, the ml models will not converge, and the results will be extremely low.

3.3.1. Feature analysis and selection
This module exhibits a circular behavior (i.e., first, the features are optimized, and then, the model is

re-evaluated). Using feature ranking techniques, a list of the most relevant features is obtained, excluding
those that negatively influence the model. Afterward, the ml models are evaluated. Note that the feature
selection seeks to (i) eliminate redundant features, (ii) improve the results, and (iii) reduce the complexity
of the model in terms of the number of features used.

3.4. Evaluation module
When ml models act as classifiers, they are traditionally evaluated using metrics such as accuracy,

precision and recall, because of the limited number of values available to predict the target feature. However,
when they are used as regressors, as in this study, the unlimited target values support the use of correlation
analysis and relative absolute error (rae, see Equation 1) where fi and ai correspond to the forecast and
actual values, respectively.

RAE(%) = 100

∑n
i=1 |fi − ai|∑n
i=1 |a− ai|

(1)

The former metric assesses the model’s adaptability to the target feature variations (decreases and
increases). The rae metric evaluates the predicted value’s average-percentual deviation from the expected
one. However, in a problem with sparse target values, such as this case (the surface roughness values range
from 3.88 to 32.79 µm for the training data, and in the experimental data, from 8.53 to 27.02 µm), the
rae metric may provide rather despairing results. The latter is due to the fact that the rae metric weighs

2Available at https://weka.sourceforge.io/doc.stable-3-8/weka/classifiers/rules/ZeroR.html, April 2023.
3Available at https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/LinearRegression.html, April 2023.
4Available at https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/SMOreg.html, April 2023.
5Available at https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/DecisionStump.html, April 2023.
6Available at https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomForest.html, April 2023.
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using the average of the actual values of surface roughness. Consequently, the mean absolute percentage
error (mape) metric was also computed to perform a much more precise evaluation of the ml models (see
Equation 2). mape metric is a measure of the error between forecast and actual values with respect actual
values, whereas the rae metric measures the error with respect to the deviation of mean actual values.
Thus, based on similar works in the literature (Rahmati and Vahabli, 2015; Vahabli and Rahmati, 2016),
mape is the most appropriate metric to assess the surface roughness prediction model.

MAPE(%) =
100

n

n∑
i=1

|fi − ai
ai

| (2)

The tolerance error (te) shown by the printers must also be taken into account as the lower limit.
Accordingly, te values have been reported to oscillate between 10 and 40 % in the literature (Kairn et al.,
2021). In the end, combining the aforementioned metrics allows us to assess the effectiveness of the proposed
solution from a complete perspective.

3.5. Experimental setting and implementations
The experiments were performed on a computer with the following specifications:

• Operating system: Ubuntu 18.04.2 lts 64 bits

• Processor: IntelCore i9-9900K 3.60 GHz

• RAM: 32 GB DDR4

• Disk: 500 GB (7200 rpm SATA) + 256 GB SSD

4. Results and discussion

The experimental results and the development of the ml models are described; and the results obtained
and the limitations of the proposed method are discussed.

4.1. Machine Learning modeling
Table 4 presents the surface roughness results obtained for the 16 samples manufactured with the afore-

mentioned printing conditions. Note the variability in the surface roughness values. For the same sample
and printer, the surface roughness can reach values up to 27.02 µm (see sample 14). Moreover, compared to
the Ultimaker S5, the Ultimaker 3 extended printer attains up to 8.52 µm more in average surface roughness
(see the comparison between samples 6 and 14 in Table 5).

Table 6 details the classification results obtained with 10-fold cross-validation. The correlation value
of the best classifier, rf, is 0.93 (0.11 higher than the baseline established in Table 3). Although the
rae reaches 30.16 %, the mape is 13.01 %. The latter value means that the surface roughness prediction
presents an accuracy of 87 %. These values are considered competitive taking into account that data come
from different sources (i.e., different printing environments, materials and printers). For the rest of the
classifiers, especially in the case of the smoreg and lr models, the results obtained are close to these values,
which endorses the steady nature of the final data set.

Table 7 shows the correlation, error values, rae and mape for each of the aforementioned algorithms
that were trained with the data sets from the literature and tested with the original experimental data
set. Notably, the ZeroR model predicts the mean of the analyzed values, resulting in a correlation of 0 and
an error of 100 %, which confirms that the data set is complex and that there is no predominant target
class. The results improve when the lr model is used, resulting in a correlation of 0.73, which supports
that the model is capable of detecting patterns. However, the rae is still very high (108.55 %). There is no
improvement in the metrics when using the smoreg algorithm. In the latter case, the correlation remains
at 0.70, and the rae reaches 164.41 %. Therefore, it can be concluded that this type of algorithm is not
suitable for predicting surface roughness in material extrusion. The alternative is to opt for a tree-based
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Table 4: Surface roughness results (table by authors).

Sample Ra1
(mm)

Ra2
(mm)

Ra3
(mm)

Ra4
(mm)

Ra5
(mm)

Ra6
(mm)

Ra7
(mm)

Ra8
(mm)

Avg Ra
(mm)

1 8.64 9.39 9.22 9.84 9.70 8.53 8.84 9.28 9.18
2 15.70 15.95 15.83 16.63 16.34 16.26 16.22 16.33 16.16
3 22.61 22.76 22.33 21.89 20.87 22.17 22.11 22.52 22.03
4 15.28 15.64 15.86 16.77 14.98 15.16 15.95 16.15 15.72
5 16.29 16.35 16.53 15.51 16.99 15.26 15.91 16.55 16.17
6 15.70 15.52 15.53 14.81 16.58 15.82 15.37 15.82 15.64
7 15.14 15.44 14.93 15.76 15.83 14.48 15.61 15.51 15.34
8 15.68 16.30 16.19 17.01 15.95 15.30 16.62 16.18 16.15
9 10.19 11.79 11.29 11.87 10.90 10.84 9.55 10.53 10.87
10 17.62 18.57 19.74 18.14 16.10 16.81 16.79 17.29 17.63
11 21.65 21.90 21.98 22.00 21.14 22.08 21.99 21.41 21.77
12 17.10 16.36 17.65 18.44 16.61 18.31 15.66 18.27 17.30
13 17.55 18.84 17.60 17.26 16.06 15.76 15.55 17.73 16.99
14 26.49 27.02 26.25 26.00 22.70 21.57 21.47 21.81 24.16
15 17.17 17.31 18.31 16.97 16.11 17.44 16.25 17.42 17.12
16 18.09 18.72 19.03 18.53 17.09 16.89 17.80 18.97 18.14

Table 5: Comparison of surface roughness results (in absolute value) between the Ultimaker S5 and the
Ultimaker 3 extended printers (table by authors).

Compared
samples

∆ Ra1
(mm)

∆ Ra2
(mm)

∆ Ra3
(mm)

∆ Ra4
(mm)

∆ Ra5
(mm)

∆ Ra6
(mm)

∆ Ra7
(mm)

∆ Ra8
(mm)

∆ Avg Ra
(mm)

1, 9 1.55 2.40 2.07 2.03 1.20 2.31 0.71 1.25 1.69
2, 10 1.92 2.62 3.91 1.51 0.24 0.55 0.57 0.96 1.47
3, 11 0.96 0.86 0.35 0.11 0.27 0.09 0.12 1.11 0.26
4, 12 1.82 0.72 1.79 1.67 1.63 3.15 0.29 2.12 1.58
5, 13 1.26 2.49 1.07 1.75 0.93 0.50 0.36 1.18 0.82
6, 14 10.79 11.50 10.72 11.19 6.12 5.75 6.10 5.99 8.52
7, 15 2.03 1.87 3.38 1.21 0.28 2.96 0.64 1.91 1.78
8, 16 2.41 2.42 2.84 1.52 1.14 1.59 1.18 2.79 1.99

Table 6: Correlation and error values for the selected ml models using the data sets from the literature for
training (table by authors).

zeror lr smoreg ds rf
Correlation -0.28 0.90 0.91 0.74 0.93
rae (%) 100.00 38.50 36.24 58.27 30.16
mape (%) 50.22 17.54 16.04 24.00 13.01
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(a) Prediction error in training with the data from
the literature

(b) Prediction error in testing with the experimental
data

Figure 4: Histogram of the prediction error for both training and testing (figure by authors).

model. Thus, the most basic classifier, ds, is selected. With this algorithm, the value of the correlation is
maintained at 0.70, equal to smoreg, but the rae drops to the value obtained with the lr model, with an
error of 107.18 %. The best performance is obtained with the rf model, with the correlation value improving
to 0.79, and the mape metric reducing to 8 % (i.e., the accuracy of the model reaches 92 %). Consequently,
rf seems to be the best algorithm for predicting surface roughness even though the rae is relatively high
due to the nature of this metric as indicated in Section 3.4.

Table 7: Correlation and error values for the selected ml models using the data sets from the literature for
training and our own experimental data set for testing (table by authors).

zeror lr smoreg ds rf
Correlation 0.00 0.73 0.70 0.70 0.79
rae (%) 100.00 108.55 164.41 107.18 49.88
mape (%) 17.08 18.83 28.70 17.51 8.00

In the end, Figure 4 shows the histogram of the prediction error for both training and testing, which
corresponds to the difference between the forecast and actual value for each sample. Thus, the histogram
collects the absolute errors as ranges. Note that most of the values are concentrated in lower deviation
zones.

4.1.1. Feature analysis and selection
For optimization purposes, assessing the influence of the printing parameters on the response variable

is particularly interesting. Accordingly, an analysis of the significance of each selected printing parame-
ter and three parameters available in the data set obtained from the literature (layer height, nozzle di-
ameter, wall thickness, infill density, printing temperature, printing speed and shape) is performed using
ClassifierAttributeEval7 on the data sets gathered from the literature to evaluate the worth of an
attribute by using the rf model. Table 8 ranks these parameters based on their relevance.

Based on the results, the most significant parameter is layer height. This agrees with the general
knowledge of the process (Pérez et al., 2018). The nozzle diameter is the second most important factor,
whereas wall thickness lies in third place. In the end, printing speed and temperature are barely relevant.
However, in the experimental data, the nozzle diameter remains unchanged with a value of 0.4 mm, as

7Available at https://weka.sourceforge.io/doc.dev/weka/attributeSelection/ClassifierAttributeEval.html, April
2023.

11

https://weka.sourceforge.io/doc.dev/weka/attributeSelection/ClassifierAttributeEval.html


Table 8: Significance of printing parameters (table by authors).

Printing parameter Significance
Layer height 3.15
Nozzle diameter 0.48
Wall thickness 0.24
Infill density 0.15
Printing temperature 0.01
Printing speed -0.04
Shape -0.20

(a) Surface roughness versus layer height (b) Surface roughness versus wall thickness

Figure 5: Surface roughness versus the layer height and wall thickness for both the Ultimaker 5S and
Ultimaker 3 extended (figure by authors).

previously mentioned. It should be noted that the average nozzle diameter of the training data set was 0.39
mm.

Figure 5 (a) plots the surface roughness against the layer height for the two selected 3d printers, demon-
strating that the surface roughness increases with the layer height. The relationship between wall thickness
and surface roughness is not straightforward as the latter case (see Figure 5 (b)). In both cases, the Ul-
timaker S5 results in lower surface roughness. Therefore, the influence of the printer is critical. Taking
into account that the results of the experimental testing data depend on the printer, the same is true when
dealing with the training data. This confirms that the material extrusion process lacks repeatability when
it comes to surface quality.

Figure 6 details the variation of the most significant printing parameters from the experimental data for
testing from Table 8, along with the surface roughness in decreasing order of significance for the ml model. In
light of the illustrations, the layer height is the only one that exhibits a clear, direct linear relationship with
regard to surface roughness, demonstrating that it is the parameter with the highest significance. However,
based on the values shown in the rest of the graphs for wall thickness, printing temperature and printing
speed, there are additional and more complex relationships with surface roughness in the experimental data.
Thus, a simple correlation analysis may not be effective enough for this research problem. Take the case of
a surface roughness higher than 20 µm as a representative example. In this case, surface roughness cannot
be exclusively inferred using the layer height parameter, but might feasibly be detected by an ml model
when combined with data of wall thickness, printing temperature and printing speed.
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(a) Surface roughness versus layer height (b) Surface roughness versus wall thickness

(c) Surface roughness versus printing temperature (d) Surface roughness versus printing speed

Figure 6: Surface roughness versus printing parameters for testing (figure by authors).
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5. Conclusion

The present study proposes using ml models to predict the surface roughness of parts printed using the
material extrusion approach. As input data, this study takes advantage of previously published data and is
presented as a preliminary application of this methodology.

The results of the study help identify the following conclusions: (i) the use of published data largely allows
researchers to diminish the need to perform costly and time-consuming experiments; (ii) ml algorithms
have proven to be a good tool for analyzing data and building models to study surface roughness in material
extrusion; (iii) the correlations among the models were determined using only published data, and published
and experimental data being 0.93 and 0.79, respectively, for the rf model; (iv) when addressing the error,
it should be noted that the values are relatively low (mape metric: training 13 %, training and testing 8 %);
(v) the analysis of the printing parameters’ significance agrees with the existing knowledge of the process,
with layer height being the most critical parameter.

6. Limitations and future work

Certain limitations in the presented methodology for modeling surface roughness appear in a number of
ways: (i) access to data from some published papers is not available; (ii) some measuring methodologies are
not fully described, including details on the used standard, filters, cut-off and other relevant characteristics,
which make it impossible to identify the measured features; (iii) the configuration complexity of the printing
process may result in significant differences among data, such as variations in the type of printer, the fan
setups and the build plate, resulting in undesired variability.

In summary, despite the limitations, the proposed solution can help obtain insights from the material
extrusion printing process and aid designers and researchers in optimizing this process to improve the surface
quality of their products. However, future work is still needed. For instance, (i) there is a need to elaborate
larger data sets for training and testing; (ii) additional printing factors should be included in the analysis,
such as printing orientation and the influence of the machine settings on surface roughness; (iii) the Deep
Learning models can be tested; (iv) generalization must be further researched. In this sense, both the
training and the testing data sets should include different samples and contexts.

In addition, the proposed methodology should be identified as a general approach that can be further
used in other manufacturing processes to predict other types of variables. The present study proves that it
is possible to take advantage of the published data to improve the knowledge of the printing process with
limited effort in terms of time and money investment for carrying out experiments. Although data-driven
research requires large investments in data curation, with easy access guaranteed to data for researchers
and general users (Hey et al., 2009), there are still large opportunities to work under data-driven research
in manufacturing in the coming years.

Abbreviations
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