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ARTICLE INFO ABSTRACT

Laser-matter interactions in laser additive manufacturing (LAM) occur on short time scales (10 °-10~2s) and
have traditionally proven difficult to characterise. We investigate these interactions during LAM of stainless steel
In situ SS316L and 13-93 bioactive glass powders using a custom built LAM process replicator (LAMPR) with in situ and
53316]“_ . operando synchrotron X-ray real-time radiography. This reveals a wide range of melt track solidification phe-
13-93 bioactive glas.s nomena as well as spatter and porosity formation. We hypothesise that the SS316L powder absorbs the laser
Molten pool dynamics . . . . . . .

energy at its surface while the trace elements in the 13-93 bioactive glass powder absorb and remit the infra-red
radiation. Our results show that a low viscosity melt, e.g. 8 mPa s for SS316L, tends to generate spatter (diameter
up to 250 um and an average spatter velocity of 0.26 ms™') and form a melt track by molten pool wetting. In
contrast, a high viscosity melt, e.g. 2Pas for 13-93 bioactive glass, inhibits spatter formation by damping the
Marangoni convection, forming a melt track via viscous flow. The viscous flow in 13-93 bioactive glass resists
pore transport; combined with the reboil effect, this promotes pore growth during LAM, resulting in a pore size
up to 600 times larger than that exhibited in the SS316L sample.

Keywords:
X-ray imaging

1. Introduction

Laser additive manufacturing (LAM) technologies, including laser
powder bed fusion (LPBF) [1] and direct energy deposition (DED) [2],
fuse loose powder material together using a focused laser beam to build
up a three-dimensional (3D) object with complex features, layer upon
layer. They offer new design paradigms and product applications across
many different sectors, including nuclear fusion [3], aerospace [4] and
tissue engineering [5,6].

An entry-level LPBF system comprises a laser system, a powder re-
servoir and a build chamber that can operate in an inert atmosphere
(Fig. 1). It builds either by fusing powder particles on (1) powder
(termed an overhang build), or on (2) a solid substrate or a previously
built layer (termed layer-by-layer build).

Currently, the adoption of LAM technologies for high-performance
structural applications is hindered by many technical challenges,

including the control of defects [7] (e.g. porosity [8-101), non-uniform
shrinkage [11], poor dimensional accuracy [9,12,13], and surface
quality [12]. In addition, LAM parts can display pronounced anisotropy
and heterogeneity of microstructure and mechanical properties [14].
Such manufacturing issues may give rise to the failure of LAM com-
ponents during service [15-17], and hence it is critical to understand
the mechanisms by which they form in order to better control them.
Recently, Martin et al. [18] introduced inoculants in non-weldable Al-
based powders, leading to the formation of fine equiaxed grains, miti-
gating crack formation during LAM. Wang et al. [19] optimised scan
parameters to form low angle grain boundaries inside stainless steel
SS316L LAM parts, promoting dislocation pinning and twinning to
enhance the material strength. Sun et al. [20] extended previous work
by using a high laser power and multi-scan melt pool strategy to form a
strong < 011 > crystallographic texture and nano-twins in SS316L
parts to increase both strength and ductility.
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Fig. 1. Schematic of a typical LPBF machine. The build chamber is purged with a flowing inert atmosphere. The blue arrows indicate the gas flow direction.

a Class 1 Laser enclosure

Incoming
X-ray

1
I
I
1
I
1
I
[}
|

0

\ Collimato

Laser system

« Yb:fibre
laser
g

gal -
1
Beam T~ ] |
expander Control system H

Gas

inlet/outlet
Laser|beam / BN
/] \
In?_l:;l;g Em‘/:lrl;g::m:?tal : Atte)::la;ed =.\ Citirs
'Vislhle f Optics
light
H Sample insertion device Attenuated

! Powder bed B scintinator ! ey
: Mirror | Eﬂ" Powder bed  Vacuum flange assembly
P ] Boron nitride (BN) ™ m e m o e o o o o e e e o e e o >

Fig. 2. a, Schematic of the LAMPR mounted on a synchrotron beam line. It comprises three sub-assemblies: 1) a stainless steel environmental build chamber (blue), 2)
a laser system (green), and 3) a laser enclosure (black). b, A three-quarter section view of the environmental chamber. The purple arrows indicate the directions of the
incoming X-ray beam (dark purple) and the attenuated X-ray beam (light purple). The red arrow indicates the scan direction of the laser beam, which moves parallel
along the length of the powder bed. The blue arrow indicates the argon flow direction which is perpendicular to the X-ray beam and parallel to the laser beam.

In recent years, our understanding of additive manufacturing (AM)
has improved through ex situ destructive (e.g. metallography) [21-23]
and non-destructive (e.g X-ray computed tomography (XCT)
[9,10,12,13]) experiments. However, LAM occurs through an interac-
tion between a laser beam and powder particles, followed by a series of
complex powder consolidation phenomena that occur on very short
time scales (10 ~°-10 2 s) [24]. These phenomena cannot be studied by
ex situ characterisation techniques and hence they are not currently
well understood [25]. Since the laser-matter interaction and powder
consolidation are fundamental to the microstructure and thereby the
performance, a better understanding of such interactions is required
[26]. A variety of in situ real-time measurements [27], including high-
speed videography [28-31], Schlieren imaging [32], infrared (IR)
thermography [31,33-35], pyrometry [33,36] and electron microscopy
[37] have been used to characterise LAM. These in situ techniques
capture the temperature field and/or images at or above the molten
pool surface however they cannot study the changes inside the melt
zone, e.g. the fluid dynamics and evolution of defects.

Advances in third-generation synchrotron radiation sources [38]
make it possible to use a high flux X-ray beam to capture these dynamic
processes radiographically at a high spatial (a few micrometres) and
temporal (microseconds to milliseconds) resolution [39]. High frame
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rate radiography has been used to study metal foaming [40], casting
[41,42], laser welding [43] and LPBF [44-47], providing additional
insights into real-time kinetics, thermodynamics, phase transforma-
tions, and transport mechanisms.

Here, a LAM Process Replicator (LAMPR) is accommodated on two
high frame rate X-ray imaging beamlines at Diamond Light Source
(DLS), UK to study laser-matter interactions and powder consolidation
phenomena during LAM of stainless steel SS316L and 13-93 bioactive
glass. The SS316L has a near-infrared (NIR) absorption of 64-68%
[48,49], a melt viscosity of 8 mPas, and a solidification range of
1658-1723 K [50]. In contrast to SS316L, 13-93 bioactive glass has a
NIR absorptivity of < 1%, a large sintering range between the glass
transition and crystallisation onset temperatures (873-963K) [51], and
a melt viscosity of 2 Pas [52]. Through the study of these very different
systems, it is our aim to quantify the effects of chemical, optical and
thermophysical properties on the evolution of melt tracks, spatter and
porosity and thereby refine our existing understanding of solidification
in LAM.
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2. Methods
2.1. Technical description of the LAMPR

Our Laser Additive Manufacturing Process Replicator (LAMPR)
shown in Fig. 2 is designed to mimic the major features of a typical
LPBF system (Fig. 1) while permitting in situ and operando imaging of
the laser-matter interaction and powder consolidation phenomena with
synchrotron X-rays. It is a compact, lightweight (ca.15 kg) and portable
device that can be integrated into different synchrotron X-ray imaging
and diffraction beamlines (Fig. 2a). The environmental build chamber
and laser enclosure are each equipped with two circular boron nitride
(BN) X-ray translucent windows (10 mm in diameter and 0.25mm
thick) to permit X-rays to interact with the sample (Fig. 2b). In order to
capture the evolution of the melt track in steady and non-steady states,
the size of the X-ray windows is larger than the field of view (FOV) of
the imaging setup available at the synchrotron beamlines. In this study
we focus on the overhang build configuration [26], using a powder bed
(30 mm long, 3mm deep and 0.3 mm thick) contained by three BN
plates (each plate is 0.3 mm thick) stacked next to each other, in which
the middle plate is 3 mm shorter than the others (see inset image in
Fig. 2). For layer-by-layer AM build conditions, the middle plate is re-
placed by a metal substrate with a suitable height to match the thick-
ness of a single powder layer.

Boron nitride is often used for high temperature and X-ray imaging
applications [53,54] and hence is used for all components in the X-ray
beam path (giving a total transmitted thickness of 1.6 mm). This gives
an overall X-ray transmission of > 90% between 20-150 keV, providing
excellent image contrast of the sample. Furthermore, BN is not wet by
most molten metals or slag, i.e. glass, allowing reuse of the sample
holder. Alternatively, glassy carbon and Kapton™ may be used for the
external X-ray windows due to their low X-ray absorption and amor-
phous structures, which make them well suited for X-ray imaging and
diffraction studies [44].

The sample is placed into the environmental build chamber via the
side port (Fig. 2b). This is designed for precision alignment of the
powder bed to the focal position of the laser beam, and to be perpen-
dicular to the X-ray beam. All the connected components are either
sealed with O-rings or standard vacuum flanges, thus enabling the en-
vironmental build chamber to maintain a vacuum pressure of 10~ Torr
or support different gas flow environments at a pressure of 760 Torr.
The IR window has a high transmission percentage of 95% across a
wavelength range of 0.3-6 pm which permits the laser beam and light
reflections from the powder bed to pass through. This enables the
LAMPR to perform correlative optical imaging and thermography at the
powder bed surface while imaging the internal structure of the melt
track during LAM with X-rays.

The laser system consists of an ytterbium-doped fibre laser (wave-
length of 1070 nm, transverse mode TEMyo, continuous-wave (CW),
beam quality factor (M?) of 1.03, power (P) of 200 W (SPI Lasers Ltd,
UK)), a beam expander, Infra-red (IR) reflective optics, and a Class 1
laser safety enclosure (compliant with EN60825-4). The diameter of the
collimated laser beam is increased from 5 to 10 mm via a beam ex-
pander before entering into an X-Y galvanometer (Laser control systems
Ltd., UK). The X-Y galvanometer is capable of moving the 200 W laser
beam at a scan velocity (v) of 4m s~ L Lastly, the laser beam is focused
down to a 50 ym diameter spot at a focal distance of 254 mm (or at the
powder bed surface) via an f-theta lens and an IR reflector. The LAMPR
is synchronised with the image acquisition system in the synchrotron
beamlines for in situ and operando X-ray imaging in real and reciprocal
space.

2.2. Materials

To better understand the effects of powder properties on laser ab-
sorption mechanisms, melt flow behaviour, and the evolution of the
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melt track and defects (e.g. spatter and porosity), we chose two powders
with large differences in chemical, optical and thermophysical prop-
erties. The two powders were: (1) a gas atomised stainless steel
(SS316L) powder (Sandvik Osprey Ltd., Sweden); and (2) a melt-
quenched 13-93 bioactive glass powder (6Na,0-12K,0-5Mg0-20Ca0-
4P,05-53Si0,; wt%). The 13-93 bioactive glass composition was chosen
because it has a large sintering window (between the glass transition
temperature and the onset of crystallisation temperature), which means
it can be sintered without crystallisation (unlike the original 45S5
Bioglass).

The 13-93 bioactive glass was fabricated using a melt quenching
route described elsewhere [6,55,56]. Precursors of SiO, (Prince Mi-
nerals, Stoke-on-Trent), MgCO3, P>0s, CaCO3, Na>CO3 and K»COs, all
with a purity > 96% (Sigma-Aldrich, UK), were mixed together using a
Wheaton bench-top small bottle roller for 3h to ensure homogeneity.
The mixture of oxides and carbonates was melted at 1400 °C in a pla-
tinum (Pt/Au 95/5) crucible for 90 min. and quenched in deionized
water. The frit was dried at 120 °C for 24 h and ball milled for 30 min. at
500 rpm (Premium Line 7 ball mill, Fritsch GmbH, Germany). Finally,
the powder was sieved for 60 min at 2mm of amplitude (Vibratory
Sieve Shaker Analysette 3 Pro, Fritsch GmbH, Germany) to discard any
particles having a diameter greater than 150 um.

Powder morphology was characterised by scanning electron mi-
croscopy (SEM, JEOL JSM-6610LV, Japan). The particle size distribu-
tion (PSD) of both powders was determined from the SEM images using
segmentation and object identification routines in the Image Processing
Toolbox in MATLAB 2016a (Mathworks, USA). The SS316L composi-
tion was examined by Energy-Dispersive Spectroscopy (EDS). The 13-
93 bioactive glass composition was characterised by inductively cou-
pled plasma optical emission spectroscopy (ICP-OES, Optima 4300 DV,
Perkin Elmer, USA) following lithium metaborate fusion. After ball
milling, we performed X-ray Fluorescence (XRF) to examine the trace
compounds of the 13-93 bioactive glass. The diffuse reflectance (%) of
the 13-93 bioactive glass was measured by UV-VIS-NIR spectro-
photometer with an integrating sphere attachment (UV-2600 and IRS-
2600 plus, Shimadzu Corporation, Japan). The spectrum was calibrated
using a white barium sulphate standard. The Kubelka-Munk function,
F(R) is often used to correlate the diffuse reflectance (R) to the ab-
sorbance of the 13-93 bioactive glass [57]. F(R) is a ratio of the ab-
sorption coefficient (K) and scattering coefficient (S) of the powder:

(-R? _K
2R S

F®) = &)

2.3. In situ and operando synchrotron X-ray radiography setup

To observe the laser-matter interaction and powder consolidation
process, we performed LAM trials on SS316L using the LAMPR and the
imaging setup of Joint Engineering Environment and Processing (JEEP)
beamline (I12) and the Diamond-Manchester Imaging Branchline (I13-
2) to study LAM of 13-93 bioactive glass. The imaging parameters are
summarised in Table 1. Both beamlines are located at Diamond Light
Source, UK.

Both experiments were performed using overhang configurations
(Fig. 1). A laser beam scanned a 4 mm line across the powder bed of
SS316L (with a nominal P =150 W and v =5mms~ ') and 13-93
bioactive glass (with a nominal P = 20 W and v = 5mm s™1) in an
argon atmosphere at a flow rate of 41 min~"'. The scan velocity was
selected to enable the formation of a continuous track under overhang
configurations [45]. The image acquisition system was synchronised
with the LAMPR using a ring buffer mode that continuously recorded
images at 5100 frames per seconds (fps) into the on-board memory of
the camera until the laser was triggered. These images were captured
into digital images via a 700 um thick LuAg: Ce scintillator (at I12) and
a 500 um thick ZnWO, scintillator (at 113-2). Before the laser trigger
point, 100 images were recorded as flat field images, and then a further
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Table 1
Key characteristics of the synchrotron X-ray imaging systems used for this
study.

112: JEEP

55 (Monochromatic)
Miro 310 M (Vision
Research, US)

113-2

5-35 (Pink)

PCO.dimax S4 (PCO Group
GmbH, Germany)

Beamline
Energy range (keV)
CCD camera

Sensor size (pixels) 1280 x 800 2016 x 2016
Bit depth 12-bit 12-bit
Field of view (mm) 8.4 x 3.3 (Region of interest 6.5 x 2.5 (Region of
mode) interest mode)
Effective pixel size 6.6 5.5
(um)
Acquisition speed 5100 5100
(fps)

100 dark field images were taken without switching on the X-ray beam.

2.4. Post-mortem X-ray computed tomography (XCT)

After the in situ radiography experiments, both melt tracks were
examined by a laboratory X-ray computed tomography (XCT) system,
Nikon XTH 225 X-ray microfocus system (Nikon, Japan), using the
acquisition parameters in Table 2. We then reconstructed the XCT scan
into a 3D image volume using built-in beam hardening correction and
filtered back projection algorithms in CT Pro3D (Nikon, Japan).

2.5. Image processing and quantification

Using the image processing and quantification procedure defined in
our previous study [45], we applied a flat field correction and the
VBM3D denoising algorithm [58] in MATLAB 2016a to improve the
signal to noise ratio of the acquired images. This was followed by a
custom background subtraction and image thresholding techniques to
extract the evolution of melt features, which enables the quantification
of the molten pool geometries over time, including the length, width,
and area. For the SS316L dataset, we tracked some of the spatter dro-
plets using the Manual Tracking plugin from ImageJ [59] and quanti-
fied their velocities [45]. We also measured the spatter size using the
oval tool in ImageJ.

For the XCT dataset, we quantified the pore size distribution of both
melt tracks in 3D using Avizo 9.1 (Thermo Fisher Scientific, US) and the
method described in the literature [12,60]. We discarded any seg-
mented objects with a volume fewer than five voxels (equivalent to a
diameter of 6.75pum) to minimise quantification errors induced by
image noise.

3. Results
3.1. Powder characterisation

Fig. 3 shows the characteristics of the SS316L and 13-93 bioactive
glass powders. The SS316L powder particles are mostly spherical
though some are slightly elongated (Fig. 3a) whereas the 13-93 powder
particles exhibit an irregular shape (Fig. 3b). The particle size dis-
tributions are 30-105 um for SS316L and 5-140 um for 13-93 bioactive
glass (Fig. 3c). The median particle diameters (dso) for SS316L and 13-
93 bioactive glass are 43 pum and 38 um, respectively.

Given that the penetration depth of EDS is < 5um, the oxygen

Table 2
The XCT scan parameters.
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detected by EDS is mainly associated with the thin oxide layer at the
SS316L powder surface. As a consequence, we neglected the oxygen
content and normalised the elemental compositions of the SS316L
powder (Table 3).

The ICP-OES and XRF results (Table 4) show the composition of a
typical 13-93 bioactive glass; however, the XRF results indicate that the
13-93 bioactive glass exhibit trace compounds of Fe,03, Al,O3, TiO,,
and SiOj; after ball milling. The F(R) of 13-93 bioactive glass (Fig. 3d)
indicates that the glass powder had a high absorbance at the wave-
length of the laser beam compared to the rest of the spectrum.

3.2. In situ observation of LAM deposition of a SS316L track

A montage of time-series radiographs shows the evolution of SS316L
melt features from a cross-sectional view of the powder bed during
LAM; see Fig. 4 and Supplementary Movie S1. At the onset of LAM, the
laser beam scans from right to left across the powder bed, forming an
initial molten pool at the right-hand side of the powder bed. The molten
pool grows rapidly into a sphere; however, its growth rate slows sub-
stantially as it reaches an area equivalent diameter of 500 pm (at
22 ms). At 63 ms, the laser scan velocity surpasses the growth rate of the
initial melt bead such that the laser beam forms a new molten pool
50 um ahead of the first melt bead. At 146 ms, the new molten pool
coalesces with the previous melt bead to form a melt track. This process
of forming new, separate, molten pools ahead of the main track con-
tinues until 280 ms, with each subsequently coalescing into the main
melt track (green circle). By 350 ms, these large molten pools com-
pletely merge with the main melt track (green circle), extending the
track length to form a continuous layer. At 518 ms, the melt track be-
gins to cool and contract.

At the onset of LAM, the molten pool rises ca. 50 pm above the
powder layer, this is possibly due to (1) the molten pool geometry being
larger than the width of the powder bed (300 um), and thus the molten
pool is trapped between the BN walls; (2) the intense laser beam (with a
laser power density of 10° W/cm?) causes metal vapourisation at the
melt surface, generating a recoil pressure at the laser-matter interaction
zone. Therefore, the surrounding argon gas is conductively heated and
combined with the metal vapour; expanding as a gas/vapour jet up-
wards and outwards at high speed. This generates lift forces to keep the
molten pool away from the powder layer.

In some cases, these lift forces are sufficient to induce powder and
droplet spatter (blue dotted circles at 63 and 146 ms), forming a
denuded zone [61]. We tracked 13 typical spatter droplets, with
equivalent diameters varying between 33 pm and 250 pm. The average
and maximum spatter velocities are 0.16ms™ ' and 0.26 ms™*, re-
spectively. The radiographs and Supplementary Movie S1 indicate that
the spatter trajectories depend strongly on the directions of the gas flow
and scanning laser beam. Spatter and metal vapourisation remove
powder particles from the laser-matter interaction zone, whilst powder
consolidation further reduces the amount of powder ahead of the scan
path; all contribute to the enlargement of the denuded zone. These
factors reduce the growth rate and volume of the molten pool, and
hence reduce the final melt track size.

During LAM, the temperature at the centre of the molten pool is
expected to be much higher than that at the edges of the molten pool,
this induces a thermal gradient across the molten pool surface. The melt
moves away from the centre of the molten pool (ie. a low surface
tension region) to the edges of the molten pool (i.e. a high surface

Sample Accelerating voltage (kV) Beam current (HA) Number of projections Exposure time (ms) Scan volume (mm®) Voxel size (um®)
SS316L 100 80 3142 500 5.4 2.7
13-93 bioactive glass 50 130 3142 500 5.4 2.7
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Fig. 3. SEM images of (a) SS316L metallic powder and (b) 13-93 bioactive glass powder. (c) Particle size distributions. (d) Diffuse reflectance of 13-93 bioactive glass
powder in Kubelka-Munk unit or F(R). The red region indicates the wavelength of the laser beam.

Table 3
Normalised elemental composition of the SS316L powder obtained by EDS.

Elemental compositions of SS316 (weight %)

Fe Cr Ni Mo Mn Si Co Nb S P
65.9 = 0.4 17.8 * 0.2 11.7 * 0.2 22 * 0.3 0.8 * 0.1 0.7 * 0.1 0.4 = 0.2 0.2 * 0.2 0.2 * 0.1 0.1 = 0.1
Table 4 mechanism for track formation and growth during LAM of SS316L in

Chemical composition of the 13-93 bioactive glass obtained by ICP and XRF.

Method Chemical compositions (weight %)

Si02 CaO0 K,0O MgO Na,O P,Os Al,O3 SO; TiO, FeyO3

12.0 5.0 6.0 3.9 - - - -
10.6 5.0 6.2 5.0 0.19 0.07 0.05 0.05

ICP 53.0 20.0
XRF 50.1 22.7

tension region) to reduce the overall free energy, inducing Marangoni-
driven melt flow [62]. When new molten pools form ahead of the melt
track, the resultant Marangoni forces cause them to migrate in a di-
rection opposite to the direction of the scanning laser beam, facilitating
molten pool wetting onto the melt track (green dotted circle, Fig. 4).
These observations suggest that molten pool wetting is a key

the overhang condition. Similar mechanisms have been reported in
Invar 36 [45], further supporting this hypothesis.

3.3. Insitu observations of LAM deposition of a 13-93 bioactive glass track

A montage of time-series radiographs shows the evolution of 13-93
bioactive glass during LAM in Fig. 5 (and Supplementary Movie S2).
After 8 ms, the laser beam fuses the glass powder into a molten glass
bead at the right-hand side of the powder bed. At 22 ms, the molten
glass bead grows larger with spherical gas pores forming inside the
glass bead with an area equivalent diameter of 50 um. By 30 ms, some
of the gas pores inside these molten glass beads grow at the expense of
others via coalescence. At 60 ms, the molten glass bead grows into a
large 700 um bead by merging with neighbouring molten glass beads

Fig. 4. Typical time-series radiographs (see also Supplementary Movie S1) showing melt track evolution during SS316L LAM (P = 150 W and v = 5mms~ ).
Directions of the laser beam (red arrow) and gas flow (blue arrow) are shown in the 22 ms frame. The overlaid vertical red lines indicate the laser beam position as it
moves from right to left. Red outlines highlight tracked and quantified objects. Blue circles highlight the droplet spatter movement. Green circles show track growth

via molten pool wetting.
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Fig. 5. Time-series radiographs (see also Supplementary Movie S2) show the mechanisms of track formation during 13-93 bioactive glass LAM (P = 20W andv =5
mm s~ ). Directions of the laser beam (red arrow) and gas flow (blue arrow) are shown in the 8 ms frame. Vertical red lines indicate the laser beam position. The
yellow arrow indicates a growing gas pore. Green dotted lines highlight the glassy film and green arrows highlight the movement of the lower glass sphere. Dark red
lines show the necks between three spheres. Orange dotted circles highlight pores that stop growing after pore coalescence. Black dotted lines indicate that only a

section of the track length is being measured.

and powder particles [63]. Concurrently, the first melt bead residing at
the top of the powder bed stops growing. As LAM progresses, similar to
the SS316L, new molten glass beads form separately ahead of the ex-
isting beads (76 ms). Internal pores also form in these new beads,
growing as before. At 92 ms, several pores coalesce into a single large
pore with a diameter of 600 um (yellow arrow) in the new molten
bead, dramatically increasing its volume. At 124 ms, the large gas pore
bursts open. However, the molten bead remains the same size and its
internal structure retains many spherical pores. During 124-132ms,
some of these internal pores continue to coalesce and merge into larger
pores while others stop growing, suggesting that the bead is cooling.

After 108 ms a glassy film starts to form, creating a bridge between
the second and third melt beads (see the green dotted line). At
142 ms, another glassy film appears (green dotted line), wrapping
around the lower sphere and connecting to the two adjacent spheres.
From 142 to 180 ms, this glassy film pulls the bottom sphere upwards
(highlighted by the green arrows), bringing the molten glass spheres
into contact with each other. At 180 ms, necks form between these
spheres (red lines) and the glassy film becomes a part of a continuous
glass track. Between 180-220 ms, the viscous flow of the molten glass
continues to promote neck growth, forming a contiguous melt track for
most of the scan length. The driving force for neck growth is by redu-
cing the curvature of the neck surfaces and minimising the Gibbs free
energy of the system. These observations confirm that the viscous flow
is a main track formation mechanism for 13-93 bioactive glass.

3.4. Time-resolved quantification of SS316L and 13-93 bioactive glass melt
tracks

The in situ observations show the dynamic evolution of melt features
during LAM, including the formation of melt tracks, denuded zones,
pores and spatter. Using these radiographs, we have quantified the
evolution of melt track geometry and area shrinkage (%) for SS316L
and 13-93 bioactive glass (see Fig. 6).

The track length of the SS316L sample is 4.6 mm, ca. 15% longer
than the nominal scan length of 4 mm (Fig. 6a). This is because the heat
affected zone is always larger than the laser spot size, hence the melt
track is expected to be longer than the nominal scan length. The
elongation of the melt track may also be constrained by the BN walls. In
contrast, the track length of the 13-93 bioactive glass sample is 2.8 mm,
ca. 40% shorter than the nominal track length, due to the glassy film at
the front-end of the track breaking apart during sample handling, thus
the front end of the track is excluded in this quantification. The overall
track length, including the glass film and beads, is ca. 6.3 mm.

Fig. 6b shows that the SS316L and the 13-93 bioactive glass undergo

a maximum shrinkage of 6.4 % and 3.2 % during LAM, respectively.
The coefficient of expansion (CTE) of SS316L is at 19.5 X 107 %K !at
200-1000°C [64] whereas the CTE of 13-93 bioactive glass is ca.
12.5 x 10" %K ™! at the glass transition temperature (ca. 600 °C) [65].
This is in accordance with our results which show that SS316L can
contract ~50% more than 13-93 bioactive glass during cooling.

Fig. 6¢ shows that the measured spatter velocity is inversely pro-
portional to the size of the spatter droplet, reducing from 0.26 ms™? to
0.05m s~ ! as the equivalent diameter (Deg) increases from 33 um to ca.
250 um, matching the trend reported by Ly et al. [66]. The weight of
the spatter and the vapour induced recoil force on the spatter surface
increases proportionally with D,,*> and D, respectively, therefore we
would expect the spatter velocity to decrease with increasing D.q.

3.5. Ex situ analysis by X-ray computed tomography

One drawback of 2D radiographic imaging is that all the melt fea-
tures are overlaid along the X-ray beam path, making it difficult to
interpret whether gas pores/glassy films are connected or just lie in
front or behind each other. Therefore we performed XCT to reveal the
internal structure and connectivity of these melt tracks, enabling
quantification of porosity and other features in 3D (Fig. 7a—c) [12,60].

The total percentage porosity in the SS316L melt track is 0.03 vol%,
indicating that the LAMPR is capable of producing high density SS316L
melt tracks under overhang conditions. Of this tiny amount of porosity,
80% is open pores that connect to the surface, while only 20% is closed.
The majority of closed pores have a D4 of 10 * 2um, with the largest
having a D,q of 27 ym. These closed pores in SS316L are likely to be gas
pores on account of their spherical shape (Fig. 7a) and small size
(Fig. 7¢) [67].

The 13-93 bioactive glass track has a porosity of 17.6 vol%, which is
600 times greater than that of SS316L, see Fig. 7b and c. Of the por-
osity, 82% is open pores and 18% is closed pores. The closed pores are
spherically shaped and have an average D,  of 260 um. The largest open
pore in the 13-93 bioactive glass track has a D, of 530 um whereas the
largest open pore in SS316L has a D, of 83 um. Overall, the 13-93
bioactive glass track has pores with a diameter 5-10 times larger than
those in SS316L, suggesting that the mechanisms driving pore nuclea-
tion and growth are very different during LAM of 13-93 bioactive glass
as compared to SS316L.
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Fig. 6. Time-resolved quantification of (a) molten pool geometry, (b) area shrinkage, and (c) spatter velocity (SS316L only).

4. Discussion
4.1. Laser absorption mechanisms

This study reveals the very different melt behaviour of stainless steel
SS316L and 13-93 bioactive glass powders during LAM. For SS316L, the
powder particles absorb approximately 68% of the laser beam’s energy
at a wavelength of 1000 nm [48,49] via electron-electron and electron-
photon interactions [68], heat energy is transferred across the powder
bed via conduction.

For the 13-93 bioactive glass, its major constituents (SiO,, MgO [69]
and P,0s5 [70]) exhibit minimal absorption in the NIR range; however,
the F (R) results show that the 13-93 bioactive glass has a much higher
absorbance than expected owing to the presence of transition metal
oxides (TMOs), such as TiO, [71] and Fe,O5 [72]. The TMOs absorb
and re-emit the IR radiation, combining with multiple reflections (or
scattering) of IR radiations, promote the NIR absorption and melting of
13-93 bioactive glass as shown by Fig. 8.

4.2. Mechanisms of melt track evolution

As shown in Figs. 4 and 5, the melt track formation of SS316L is
mainly driven by molten pool wetting whereas the melt track formation
of the 13-93 bioactive glass track is driven by viscous flow (or viscous
merging [73]). As the laser beam scans across the molten pool of SS316,
the Marangoni-driven flow causes the molten pool to move opposite to
the laser scanning direction; thus, the molten pool coalesces onto the
solidified beads to form a melt track. We have observed a different
mechanism during LAM of 13-93 bioactive glass. The radiography re-
sults show the 13-93 bioactive glass undergoes viscous flow, suggesting
that the temperature of the glass is near the glass transition temperature
(ca. 600 °C [74]). At this temperature, the viscosity remains high that
strong Marangoni-flow in the 13-93 bioactive glass does not occur.
Henceforth, the track formation of 13-93 bioactive glass is driven by
forming necks between glass beads, minimising the overall surface
energies of the process.

4.3. Pore evolution mechanisms

Both melt tracks contain many spherical closed pores (Fig. 7). In
general, pore formation is due to three main factors: (1) exsolution of
dissolved gas, (2) inadequate liquid feeding upon solidification, and (3)
entrainment of insoluble gas (e.g. lapping). In terms of the first, ex-
solution of dissolved gases such as hydrogen [8,41], the gas can either
be present in the powder particles [75], formed by dissociation of

adsorbed moisture on the powder surface or be absorbed from the cover
gas in the environmental build chamber during LAM. In the 13-93
bioactive glass study, we postulate that the laser-glass powder inter-
action produces low boiling point volatiles (e.g. Na, K, and Mg) inside
the molten glass which also promotes pore formation, i.e. the 13-93
bioactive glass undergoes reboiling [76].

For the SS316L build, the large open pores were formed by the
coalescence of small closed pores to minimise their surface energy
which then burst open at the surface. This happens either during the
final solidification stages, and hence the surface freezes, forming a
surface depression or a dent at the same location [45], or the depression
may be stabilised by an oxide film. Either way an open pore is formed
[45,77], see inset of Fig. 7a. By contrast, the formation mechanism of
open pores in LAM of 13-93 bioactive glass is different from that in
metallic alloys. The viscous flow movement induces a shear stress that
overcomes the surface tension of the molten glass, breaking open the
closed pore, and forming an open one. These open pores are retained as
indents after pore bursting as shown in Fig. 5 at 220 ms and Fig. 7b.

In addition to pore formation, growth and collapse during LAM of
SS316L, the Marangoni-driven melt pool flow can facilitate pore mi-
gration, entraining gas pores and transporting them to different loca-
tions inside the melt track; e.g. near the top surface or at the bottom of
the melt track [45]. We also observed that flow facilitated pore coa-
lescence, forming many pores [45]. Although some pores were swept to
the surface by the Marangoni-driven flow and released into the atmo-
sphere, many did not burst and were retained in the solid near the melt
track surface after solidification. We postulate that these pores are
trapped in the rapidly growing dendrites, being pinned between them
[78].

In contrast, the high viscosity of the 13-93 bioactive glass sub-
stantially restricts pore migration by dampening the Marangoni-driven
flow. This facilitates pore coalescence and bursting. Viscou flow, re-
boiling, and vitrification of the 13-93 bioactive glass all promote pore
growth, resulting in a much higher pore fraction of large pores than in
SS316L (Fig. 7b and c).

A significant amount of powder and droplet spatter was observed
during SS316L LAM caused by Marangoni-driven flow combined with
metal vapour and argon gas induced recoil pressure. Conversely, no
spatter is evident during LAM of the high viscosity 13-93 bioactive
glass. At the melting temperature of both samples, the viscosity of the
molten 13-93 bioactive glass (2Pas) [52] is ca. 250 times higher than
the viscosity of the molten SS316L (0.008 Pas) [50]. The 13-93
bioactive glass’s high viscosity dampens Marangoni-driven flow, redu-
cing spatter formation, supporting the hypothesis of Khairallah et al.
[79] that increasing molten pool viscosity could possibly reduce spatter
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Fig. 8. Schematic showing the laser melting
sequence of 13-93 bioactive glass: (a) the
TMOs in the 13-93 bioactive powder (b) ab-
sorbs a portion of the laser beam during LAM.
The other portion of the laser beam was re-
flected by the powder surfaces. (c¢) The TMOs
re-emit the absorbed radiation which heats up
the rest of the powder particles, the residual
heat conducts to the surrounding powder par-
ticles. The combination of (b) multiple reflec-
tions and (c) the re-emission of IR radiations
from the TMOs promote the melting of 13-93
bioactive glass.

in LAM.

Direct [80-83] and indirect (with binder materials) [84,85] LAM of
glass powders has previously been demonstrated using CO, lasers (10.6
um); however, to the best of our knowledge, it has not been done using
a NIR laser. Our results demonstrate that direct LAM of 13-93 bioactive
glass is possible without a binder, opening a window for LAM of
bioactive glasses using NIR laser beams.

5. Conclusions

A custom-built LAMPR was integrated into two synchrotron X-ray
imaging beamlines allowing the laser-matter interaction and powder
consolidation of stainless steel SS316L and 13-93 bioactive glass during
LAM to be investigated.

It appears that SS316 powder absorbs the laser energy at its surface,
which transforms into heat energy and subsequently conducts to the
rest of the powder bed whilst 13-93 bioactive glass absorbs much of the
laser energy via absorption and re-emission of IR radiation and multiple
IR reflections stimulated by the presence of transition metal oxides.

In situ real-time radiography reveals that the melt track formation
mechanisms of SS316L and 13-93 bioactive glass are driven by molten
pool wetting and viscous flow, respectively. It also shows that a low
viscosity melt, e.g. SS316L, tends to form droplet spatter during LAM
due to the strong Marangoni-driven flow. The Marangoni-driven flow
also promotes pore transport and gas release into the atmosphere,
therefore the SS316L track only exhibits 0.03% porosity.

Conversely, a high viscosity melt, e.g. 13-93 bioactive glass, pre-
vents spatter formation during LAM by damping Marangoni-driven
flow. The viscous flow behaviour of 13-93 bioactive glass restricts pore
transport, in combination with the reboil effect, facilitates pore coa-
lescence and growth. Consequently, the 13-93 bioactive glass track
exhibited 17.6% porosity, ca. 600 times higher than that in SS316L
track. Lastly, we reveal that the formation of open pores in LAM of 13-
93 bioactive glass is due to pore bursting.
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