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Abstract
The health status of the service sector workforce is a significant unknown in the field
of medical geography. While spatial epidemiology has made progress in predicting
the relationship between human health and the environment, there are still important
challenges that remain unsolved. The main issue lies in the inability to statistically
determine and visually represent all spatial concepts, as there is a need to cover a wide
range of service activities while also considering the impact of numerous traditional
medical variables and emerging risk factors, such as those related to socioeconomic
and bioclimatic factors. This study aims to address the needs of health professionals
by defining, prioritizing, and visualizing multiple occupational health risk factors that
contribute to the well-being of workers. To achieve this, a methodological approach
based on the synergy of Bayesian machine learning and geostatistics is proposed.
Extensive data from occupational health surveillance tests were collected in Spain,
alongwith socioeconomic and bioclimatic covariates, to assess potential social and cli-
mate impacts on health. This integrated approach enabled the identification of relevant
patterns related to risk factors. A three-step geostatistical modeling process, including
variography, ordinary kriging, and G clustering, was used to generate national dis-
tribution maps for various factors such as annual mean temperature, annual rainfall,
spine health, limb health, cholesterol, age, and sleep quality. These maps considered
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four target activities—administration, finances, education, and hospitality. Remark-
ably, bioclimatic variables were found to contribute approximately 9% to the overall
health status of workers.

Keywords Health data · Information theory · Bayesian learning · Ordinary kriging ·
G clusters

1 Introduction

The service sector, generally referred to as the tertiary sector of the economy, includes
the provision of services to other businesses, including final consumers. In the Euro-
pean Union (EU), services account for approximately 70% of the Union’s gross
domestic product (GDP) and employment (Eurostat 2022). In some countries, such as
the United States, it could be as high as 80% (World Bank Group 2022). Some of the
most common areas of the service sector are tourism (e.g., accommodation, and travel
agents), hospitality (e.g., food services), education, real estate, transport, and banking.
The wide range of activities available in this sector makes it extremely difficult to
assess the health status of their workforce. For example, the hospitality industry offers
employment opportunities to minority groups, such as immigrants, women, or youth
with low educational attainment. In many cases, these activities are characterized as
labor-intensive and are related to long working hours and a high workload (Rydzik
and Anitha 2020; Xu et al. 2020).

The impact of COVID-19 has exacerbated this situation (Chang et al. 2021). Glob-
ally, projections of investment in the health of the workforce appear inadequate, which
undermines the future sustainability of theworkforce andhealth systems (WorldHealth
Organization 2016). In practice, the tasks of men and women are often different,
which creates health risks at work for each gender. Despite the advances carried out
by medical geography and spatial epidemiology to predict spatial patterns of dis-
ease incidence, the abundance and accuracy of occupational health risk maps are still
very limited (Gerassis et al. 2021). The introduction of geostatistical modeling to
support occupational health decision-making is relatively new. Notably, Dos Santos
et al. (2020) used a geostatistical wave model to determine healthy workspaces for
rural workers exposed to tractor noise. Other application examples include the use
of Bayesian geostatistical binary regression to model the 2-week disease prevalence
rate among workers (Wen et al. 2021) or the geostatistical analysis of mental health in
construction workers (Yuvaraj and Thulasimala 2022). While significant progress is
being achieved, it remains a challenge how best to combine big data from occupational
health with data from other domains to examine the relationships between workers
and their environments. This is partly due to the multiple variables to be represented
without a holistic approach to unify the field of the problem, and evenmore, to discover
these differentiating variables.

Medical geography is cross-disciplinary (Jerrett et al. 2010). In practice, medicine
has been integrated into a range of disciplines, including sociology, economy, his-
tory, ecology, biology, anthropology, and political science. The geography of health
illustrates the importance of medical geography by identifying geographic variations
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within health and healthcare systems. Health geography has evolved from medical
geography in recent decades, and the construction process continues (Moon 2020). In
this study, medical and health geography is developed in occupational health to sup-
port public health policy and planning in the service sector. Here, the impact on the
health of climate change (Orlov et al. 2020) is understood to be a key consideration.

Climate change is already influencing the intensity, severity, and frequency of heat
waves (Perkins-Kirkpatrick andLewis 2020), which points to increased cardiovascular
and respiratory diseases and, subsequently, mortality, particularly during extreme heat
events (Ho et al. 2015). Rising temperatures are expected to open the door to a growing
number of diseases in the coming years whose effects could be worse at work. This
could have a major impact on service sector performance, as related surveys reveal
effects on morbidity, reduced productivity of individuals, and increased sick leave
(Ebi et al. 2021; Wondmagegn et al. 2021). At present, an important question remains
unanswered: what is the real impact of climate variables on the health of the service
sector? To clarify, annual mean temperature and annual rainfall were introduced as
covariates, enabling insight into the effect of location and environmental exposure on
the workers’ health.

The concrete goal of this study is to introduce a methodological decision-to-
visualization process to understand and measure the occupational health risk factors,
together with local climatic conditions, leading to unhealthy workers that may be unfit
to perform their duties. This is achieved by taking advantage of the latest advances in
probabilistic models of structural equations (PSEMs) using Bayesian modeling and
geostatistics. The occupational health data were obtained from the annual workers’
medical checks, socioeconomic covariates were obtained from the Spanish national
agencies, and bioclimatic variables from the WorldClim database (Fick et al. 2017;
Panagos et al. 2017). This survey involved research of big data using machine learning
techniques, interpretedwithin a framework of spatial organization, aimed at supporting
health policy development and targeting occupational strategies of disease monitoring
at work. By putting theory into practice, a progressive learning approach is proposed
to build a methodological process that leads to informed decision-making. Bayesian
networks were selected as a proxy to manage the large number of variables associated
with this type of complex problem. Specifically, Bayesian machine learning was used
to develop a PSEM where the health status is the target node of the model. The use
of a hierarchical Bayesian structure allows one to obtain a compact representation of
the probabilistic dependencies between the multiple variables used to characterize the
health status (Gao et al. 2022; Njah et al. 2021; Letta et al. 2022). Importantly, the
Bayesian equation model offers the possibility of inserting latent variables into the
structure, facilitating the identification of new relationships between variables and,
consequently, reducing the complexity of the problem (Peterson et al. 2020; Keter
et al. 2022).

The introduced methodological approach is understood as a unified and renewed
conceptualization of a series of prior works. Modeling geospatial uncertainty with
Bayesian models, including advanced deep learning techniques, is something already
extended in the literature (e.g., Hoffimann et al. 2022;Kirkwood et al. 2022). Structural
equation models (SEMs) have been an essential tool for causal analysis in social and
behavioral sciences for more than 50 years (Pearl 1998).
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Combining both domains leads to the PSEMs recently popularized by Conradi and
Jouffe (2015) with the recent scale-up of dedicated software for automated machine
learning (AutoML) both in research and industrial applications. Furthermore,mapping
is a precise way of simplifying reality (Lahr and Kooistra 2010; Albuquerque et al.
2017); however, a two-dimensional representation may only aggregate and display a
limited number of attributes. Consequently, when examining complex scenarios, such
as environmental or epidemiological characterization, there is a need to reduce the
dimensionality of the problem. Risk maps, which are widely cited in the literature, are
highly relevant to the visualization of spatial models, and powerful tools to support
policy development within a complex risk assessment framework. Examples of these
practices include the distribution of pollutant levels or vulnerability assessment. Geo-
statistical techniques are based on the theory of regionalized variables (Matheron 1971)
whereby variables within a region have spatially structured and random properties
(Journel and Huijbregts 1978). Geostatistics is based on an extensive methodological
approach and goes beyond the simple development and application of mathematical
(probabilistic) models and methods. A key challenge is to analyze the practical prob-
lems to be solved and to formalize them in terms of concepts. In anticipating risk, it
is imperative to emphasize the appropriateness of the likelihood that future estimated
values will exceed the maximum permissible values. The delineation of zones of high
and low impact requires the interpolation of the selected covariates to the nodes of
a regular grid, making possible the assessment and prediction of prevalent spatial
patterns, as guidance to a more sustainable management (Goovaerts 1997).

In that manner, the added value is the possibility to identify and characterize those
variables that may have a differentiating impact that is not meaningful from a mathe-
matical point of view (Kiebish et al. 2020; Mohamed et al. 2021). All in all, the results
of this research work are expected to be one more contribution towards the medical
services of the future, where the patient’s health status will no longer be subject to
only a series of traditional medical tests and underlyingmedical conditions (Awotunde
et al. 2021).

The remainder of the manuscript is organized as follows. Section 2 explains the
methodology employed to develop the PSEM based on a Bayesian hierarchical struc-
ture, as well as the probabilistic induction of latent factors. In addition, a preliminary
discussion on data description is currently under consideration. The methodological
approach to geostatistical modeling is also discussed in this section. Section 3 shows
the results of the PSEM and the spatial representation of the most significant variables
identified to characterize the health status of service sector workers, namely, annual
mean temperature, annual rainfall, spine health, limb health, cholesterol, age, and sleep
quality. Finally, Sect. 4 argues how the use of the PSEM improves the interpretability
of complex problems, its combination with geospatial modeling being a key tool for
health decision-making.
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2 Material andMethods

2.1 Data Characterization

A total of 74,401 occupational health surveillance tests gathered fromworkers belong-
ing to the service sector in the period between 2012 and 2016 throughout the Spanish
territory were used as a medical data source for this study. More specifically, the
workers for this research database carried out activities related to administrative
and auxiliary services (31,894), financial and insurance services (12,958), educa-
tion (13,938), and hospitality (15,611). Each clinical examination was conducted in
compliance with Spanish occupational health legislation (Ley 31/1995). Data were
anonymized and released only after a period which does not interfere with processes
performed by the relevant occupational health organizations and hospital services con-
ducting the medical tests and gathering major information about the state of workers’
health. Health status is defined by the major health risk factors underlying the disease,
including key physical conditions and health patterns. Importantly, this study goes
beyond traditional occupational health surveillance analyses, adding to the medical
record of each worker a cross-prediction with climatic and socioeconomic factors as
an instrument to better characterize and predict those factors disrupting the health
status in the future. The WorldClim database was used for bioclimate data extraction
(Fick et al. 2017), and socioeconomic data were obtained from the National Statistical
Institute (INEbase). Figure 1 in Sect. 2.2 (Analytical Steps) and Table 1 in Sect. 3
(Results and Discussion) give a comprehensive overview of the medical, bioclimatic,
and socioeconomic variables used.

2.2 Analytical Steps

Procedurally, this research is conducted through a five-level approach, as illustrated in
Fig. 1. First, an unsupervised Bayesian network is constructed to uncover direct prob-
abilistic relationships between the initial 48 manifest variables (level 1). Secondly,
latent class modeling is introduced to define representative subgroups for analysis
(level 2). Thirdly, the probabilistic structural equation model (PSEM) is developed, in
which latent factors and target variable health status provide an overall representation
of the field of study (level 3). Later, for each activity group, the health status also
acts as a target node for which the relevant patterns, associated with the type of work
performed, are ascertained (level 4). These four levels are associated with the develop-
ment of a Bayesian methodology for which BayesiaLab v.10.2 (www.bayesialab.com)
was used. Finally, at level 5, a three-stage geostatistical approach to the computation
of distribution maps was conducted, to deepen the network’s knowledge from a spatial
point of view. Ordinary kriging, followed by a G-group analysis, was used in the four
service activity groups under analysis. ArcGIS v-10.2.2 and SpaceStat v-4.1.26 were
used for computation.
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Fig. 1 The methodological process was implemented with five levels of analysis. The colors shown in the
description of the probabilistic latent factor induction represent each cluster of variables identified and the
corresponding number of variables analyzed

2.3 Probabilistic Latent Factor Induction

This section introduces levels 1 and 2 of the analysis, which aim to exploit and inter-
pret complex data by capturing direct probabilistic relationships and latent subgroups
within the dataset:

1. Level 1: Induction of latent factors (unobserved variables) begins with the devel-
opment of an exploratory Bayesian network (Pearl 1988). For this purpose, an
unsupervised network is built to represent the strongest probabilistic relationships
that exist between themanifest or observed variables under analysis. This approach
has great potential to create a global framework that reveals hidden trends to health-
care providers. In a formal sense, the joint distribution p(x) of a random set of
variables X = (X1, . . . , Xm)T may be described as follows (Murphy 2012)

p(x) = p(x1, . . . , xm) =
m∏

i=1

p(xi |xπ i ), (1)

which denotes that x = (x1, . . . , xm)T is a realization of X, and xπ i represents a
realization of parent variables Xπ i of each Xi .
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Table 1 Results of cluster analysis

Cluster Variables Node force

Precipitations Minimum precipitation, maximum precipitation, and
annual precipitation

4.7659

Temperatures Minimum temperature, maximum temperature, annual
temperature

4.0492

Body constitution Age, gender, height, weight, body mass index (BMI) 3.9049

Checkup Blood pressure (BP) diastolic, BP systolic,
electrocardiogram test, hearing test, limb test, lung
auscultation, neurological condition, spine test,
spirometric pattern, vision test, cardiovascular rate,
lung rate, skin, and mucosal test

3.2048

Blood analysis Glucose, hematocrit, hemoglobin, total cholesterol, and
triglycerides

2.7278

Rest Hours of sleep, sleep quality, start of sleep, subjective
feeling sleep

2.4094

General Aptitude, physical limitation, patient segmentation 1.4003

Socioeconomic GDP (%), population, unemployment rate 0.9238

General medical Localization, type of recognition 0.5945

Lifestyle Alcohol use, drug use, sports practice, tobacco use, type
of food, and other uses

0.3807

At this stage, workers’ health status is excluded from the learning process for
variable clustering. The reason is that the worker’s health status will be used as a
target variable in the conclusion of the PSEM; therefore, it is not relevant to add it
to the local learning rather than to analyze its liaison with those relevant clusters
of variables.

2. Level 2: The goal is to define the best-fit clusters of variables, for which an agglom-
erative hierarchical clustering algorithm supported in BayesiaLab v.10.2 is used.
Specifically, arc force between manifest variables is used as a probabilistic mea-
sure to gradually group highly correlated variables (Conrady and Jouffe 2015).
On this basis, once the global Bayesian model is built, because of the machine
learning process aimed to discover significant relationships in the problem space
search, the Kullback–Leibler (KL) divergence is used as a measure of strength in
the relationship between two nodes that are directly connected by an arc. Under a
formal approach, allow P andQ to represent the distribution of two common prob-
abilities defined for the same set of variables or X nodes (van Erven and Harremos
2014).

DKL(P||Q) =
∑

x∈X
P(x) log2

P(x)

Q(x)
. (2)

Once the variables were grouped, a latent class model was introduced to define
representative subgroups for the analysis. For this purpose, a naive architecture
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was created, in which the factor variable is the parent of themanifest variables. The
established latent factors provide a homogeneous, compact, and stable represen-
tation of the local joint probability distributions (JPDs) defined by the associated
manifest variables. Mathematically, an expression of a latent cluster model is pro-
vided by

PYi =
N∑

n=1

PXn P(Y i |Xn), (3)

where PXn describes the probability that an observation from the set of observed
variables (Y1, . . . ,Yn) describes the latent variable X, which belongs to a latent
class (n = 1, 2, ..., N ). On the other hand, P(Yi |Xn) is the conditional probability
of getting an observation with a response pattern Y i = (y1, ..., yn), while belong-
ing to a class n of a latent variable X (Yousefi and Tucker 2022). Additionally, to
characterize the probabilistic relationships between the latent factor and its mani-
fest variables an expectation–maximization (EM) algorithm is used. This criterion
for estimating the maximum likelihood permits us, through the Bayes theorem, to
obtain the subsequent probability of an observation belonging to a given class n.

P(Xt |Y i) = P(Y i |Xn)

P(Xn)

P(Y i)
. (4)

2.4 Probabilistic Structural EquationModeling (PSEM)

Subsequently, levels 3 and 4 involve the final construction of the Bayesian network
using supervised health condition analysis. Once the observed variables have been
linked to the underlying factors, the excluded target node (health status) mentioned in
Sect. 2.3 is incorporated into the final network structure to finalize the probabilistic
structural equation model (PSEM).

Specifically for level 3, the relationships between factors, marginal variables, and
the target node were established based on the combination of the presented proba-
bilistic theory and expert criteria. To characterize the target node, the relative weight
value is displayed as a fraction of the maximum KL divergence value. Similarly, these
weights can be represented as the global contribution percentage of each arc to the
target node, quantifying the value between two directly connected nodes DKL (par-
ent|child), and the sum of all KL divergence values across the network. This analysis
enables the identification of clusters that have the greatest impact on the health of
workers and enables the implementation of targeted interventions and strategies to
improve their well-being. The opportunity to introduce expert criteria opens the door
to amore flexible approachwhere different probabilistic configurations can be studied.

To validate the PSEM, the contingency table fit (CTF) metric was used to measure
the quality of the representation of the joint probability distribution via the latent vari-
able. BayesiaLab’s CTF is defined as the entropy value (HB) of the created network B
compared to the valueHC of the fully connected networkC. In addition,HU represents
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the entropy value of the data considering the disconnected network U (BayesiaLab,
n.d.)

CB = 100
HU (D) − HB(D)

HU (D) − HC (D)
. (5)

Therefore, if the current system can generate a precise representation of the fully
interconnected joint probability distribution, the CTF will assume a value of 100.
Conversely, if the network represents a completely disconnected structure where all
variables are marginally independent, the CTF will be equal to 0.

2.5 SupervisedMachine Learning Techniques for Target Characterization

Recent advances in computer science offer the possibility to couple machine learning
with traditional statistical methods such as Bayesian networks (Benavoli et al. 2017).
Bayesian networks have shown their potential in problem domains with manifold
variables of different typologies, where the medical and occupational health domain
is a showcase of their performance (Abad et al. 2019; Gerassis et al. 2019). Concretely,
information theory in combination with Bayesian networks can be used to respond to
the different stages of this study, allowing one to quantify the reduction of uncertainty
brought by each medical variable to the knowledge of the health state.

Accordingly, a set of supervised networks corresponding for each working group
is established. This higher degree of granularity, in which health has acted as a target
node, reveals trends associated with specific activities performed by workers. The
relative mutual information value is employed at this level to quantify how much
information a variable provides (Xn) knowledge about the characterization of the
patient’s health status (XT ). Mathematically, the formula used in the calculation was
as follows

IR(XT , Xn) = I (XT , Xn)

H(XT )
= H(XT ) − H(XT |Xn)

H(XT )
. (6)

2.6 Spatial Representation

Spatial models of selected attributes, annual mean temperature, annual rainfall, spinal
health, limb health, cholesterol, age, and quality of sleep have been constructed using
three-step geostatistical modeling:

1. Experimental isotropic variograms were computed, and theoretical models were
fitted.

2. Ordinary kriging (OK) was used as an interpolating algorithm for the original rank
values.

3. Finally, local G clustering (Getis and Ord 1992) allowed us to measure the degree
of association that results from the concentration of weighted points (or region
represented by a weighted point), and all other weighted points included within
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a radius of distance from the original weighted point. Considering a given zone
divided into n regions, I = 1, 2, …, n, where each neighbor is distinguished by a
point for which the Cartesian coordinates are known. Each I has associated with it
a value x (a weight) taken from a variable X. The variable has a natural origin and
is positive. The statistic of G(i) developed below allows us to test the assumptions
on the spatial concentration of the sum of the values x associated with the points
j in d of the ith point. The following statistical information is obtained

Gi (d) =
∑n

j=1 Wi j (d)x j∑n
j x j

, j not equal to i,

where Wij is a symmetric one/zero spatial weight matrix with ones for all links
defined as being within distance d of a given i; all other links are zero, including
the link of point i to itself. The numerator is the sum of all xj inside of i but without
including xi. The divisor is the sum of all xj, except xi.

3 Results and Discussion

This section presents the results obtained from a PSEM based on a Bayesian machine
learning construct to the subsequent spatial assessment using a geostatistical method-
ology. The results describe the findings in identifying themost significant occupational
health risks.

3.1 Probabilistic Latent Factor Induction

At thefirst level, an unsupervisedoverallmodelwas created from the initial 48marginal
variables, excluding the worker’s health status. The main purpose of the established
network was to find clusters in terms of probabilistic relations between nodes. Fur-
thermore, as the construction of an unsupervised network is the first step of a PSEM,
it was necessary to set a maximum number of variables per cluster. Specifically, to
get an understandable representation of the domain, 10 initial clusters were selected
with groups between 2 and 13 variables. This process was carried out with a hybrid
approach; that is, based on the algorithmic clustering proposal, the expert criterionwas
introduced for an adjusted model of the analysis scenario. Finally, Table 1 provides
the results of the cluster analysis, including the computed node strength value for each
cluster. The node force value represents the sum of the arc forces of all interconnected
arcs to the cluster, providing a quantitative measure of the individual influence of each
cluster for the domain under analysis.

The clustering variables of the initial Bayesian model are aggregated into a higher-
level subnetwork corresponding to the fourmain clusters under study: specificmedical
variables, socioeconomic variables, bioclimatic variables, and general medical vari-
ables. Multiple clustering algorithms within BayesiaLab create a discrete factor for
every subset of grouped marginal variables. In this case, the optimum number of states
to represent the JPD of the marginal variables is automatic. The only limitation, as
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Fig. 2 Multiple Bayesian models were generated from a data clustering analysis. The colors of the marginal
nodes are established following the groups obtained after the variable group analysis. The induced latent
factors for each group of marginal variables are shown in the top layer in yellow, while the main latent
factors are shown in gray

recommended by Conrady and Jouffe (2015), is to set the number of classes from 2
to 5. The spatial representation of the domain is depicted in Fig. 2.

3.2 Probabilistic Structural EquationModel (PSEM)

Once the multiple clustering is completed, the PSEM design shows four Bayesian
subnetworks surrounded by the induced latent factors and their marginal variables
(Fig. 3). To analyze the influence of all latent factors on workers’ health conditions,
the connection between health status (target node) and the four main clusters under
study (specific medical variables, socioeconomic variables, bioclimatic variables, and
general medical variables) was manually assigned (expert criteria).

Based on thePSEM, the statistical association betweenhealth status and each cluster
of the model was further investigated. The most representative parent–child relation-
ships are shown in Table 2, which accounts for all service activities (administrative
and ancillary services, financial and insurance services, education, and hospitality) in
the analysis.

The cluster of specific medical variables provides more insight into the target node
than the rest of the latent cluster (80%). Likewise, general medical variables provide
10% of the knowledge required to characterize the health status of workers. From the
point of view of predictive significance, the marginal variable workplace (location)
contributes 96.6820% to the reduction of the uncertainty of the latent cluster in which
it is located, compared to 1.0118% of the recognition type node. The high signif-
icance of the location variable within the latent cluster defined as general medical
variables highlights the importance of providing spatial patterns that represent how
the variables with the greatest impact on the health status of workers in the tertiary
sector are distributed. Lastly, the authors consider that it is very important to empha-
size the importance of bioclimatic variables on workers’ health indicators. Obtaining
a contribution of nearly 9% highlights the real influence of climate.
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Fig. 3 Final PSEM structure with two distinct levels of complexity built using a semi-supervised Taboo
algorithm

Table 2 The parent–child relationship and the analysis of the contribution between the clusters of the model
on the characterization of the health status of workers in the service sector

Parent Child KL (parent|child) Relative weight Contribution
(%)

Health state Specific medical
variables

0.0531 1 79.499

Health state General medical
variables

0.0067 0.1261 10.026

Health state Bioclimatic variables 0.0011 0.1108 8.807

Health state Socioeconomic
variables

0.0210 0.0210 1.668

To identify the most dominant variables in terms of the latent factor uncertainty,
the relative mutual information (RMI) of the arcs was computed exclusively between
the manifest latent factors and the target node health state (Fig. 4). The results show
that the cluster of specific medical variables is the factor that most reduces uncertainty
about having a healthy or unhealthy patient by an average of 5.3556%. For clusters
of bioclimatic and general health variables, the results are similar with percentages of
0.8840% and 0.7298%, respectively. Social and economic variables have the lowest
MI values.
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Fig. 4 PSEM arc’s mutual information (RMI child color blue and RMI parent color red) and contribution
visualization

Table 3 Performance indices of
factors induced in multiple
aggregations

Cluster CTF (%) Purity (%)

Rainfall 100.00 100.00

Temperature 99.91 100.00

Body constitution 92.98 98.29

Checkup 70.65 97.45

Blood analysis 96.99 99.98

Rest 95.67 97.69

General medical 35.49 94.85

Socioeconomic 54.94 94.67

General 13.51 99.57

Lifestyle 69.45 99.91

3.3 Model Validation

The CTF can evaluate the quality of the induced factors. The great advantage of
advanced software such as BayesiaLab lies in the possibility for researchers and health
professionals to directly calculate this metric-normalized set of values ranging from 0
to 100%. Table 3 shows the CTF values obtained for the latent factors induced in the
multi-network design phase.

3.4 Local Impact Analysis of Data

At the fourth level, four supervisedBayesiannetworkswere established, corresponding
to each of the defined service activities and whose common node was the worker’s
state of health. The application of a naïve Bayes algorithm allowed the generation of
a pragmatic network structure for the analysis of the influence of each variable on the
health status of the workers. The characterization of the target node revealed that age,
location, and total cholesterol, previously identified as the most significant factors in
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the general network of the service sector, also present a high impact on all the concrete
service activities under study. In that context, the authors have considered the need to
deepen the understanding of those variables that are a priori not that significant, but
which may hold key differentiating aspects within each population group.

When looking at the distribution of contributions of each variable to the character-
ization of the state of health, it is found that the nervous system (15–19%) matches
to a high extent the characterization of the medical examinations of healthy work-
ers (64–70%). The most important medical conditions affecting these two states are
age, total cholesterol, and location, while hearing problems and drug use are always
reflected as differential variables.As an example, after an inference analysis on patients
with high levels of total cholesterol belonging to hostelry services, a greater impact
could be seen on elderly workers (> 50) belonging to the autonomous community of
the Basque Country (38.26% of registered cases) located in the north of Spain. In
contrast, it can be concluded that there is a strong need to provide a higher level of
granularity on the musculoskeletal (8–11%) and cardiovascular (6–9%) pathologies,
as here the differences among possible additional differential variables, even if rel-
evant from a mathematical point of view, cannot be that meaningful from a policy
perspective (Table 4).

The great horizontality of variables such as age, location, and total cholesterol
directed this study toward the need to add value to those differentiating variables of
the musculoskeletal and cardiovascular systems. In addition, according to Table 4,
the binary mutual information for the four variables tends to be similar across ser-
vice activities. This situation leads to the spatial representation of the variable’s spine
observation, annual precipitation (BIO 12), limb observation, and annual mean tem-
perature (BIO 1) under an ordinary kriging approach (Fig. 5). These variables were
selected as the highest contribution to musculoskeletal and cardiovascular systems
(Table 4). This approach through OK allows the identification of both a spatial distri-
bution of spinal problems and potentially related extremities, and two differentiated

Table 4 Relative binary mutual information analysis of data over the target node for the states representing
musculoskeletal and cardiovascular systems by service activity

System Variables Administrative
and auxiliary
services (%)

Financial
and
insurance
activities
(%)

Education
(%)

Hostelry
(%)

Musculoskeletal Spine
observation

3.47 2.28 3.67 3.23

Annual
rainfall

0.65 0.56 0.75 1.29

Cardiovascular Limb
observation

1.75 1.51 0.88 2.12

Annual
temperature

1.39 0.96 0.45 0.04
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Fig. 5 Distribution maps for annual mean temperature (°C), annual rainfall (mm), and spine and limb obser-
vation variables using rate data between 2012 and 2016 interpolated by ordinary kriging

regions where these problems, as well as the systems they are related to, have a higher
impact; especially in the northeast of Spain, apart from Catalonia, and the south, with
vascular problems such as the presence of varicose veins. As in the western part of
Spain, a higher rate of spinal disorders, derived frommuscle contraction or otherminor
discomforts, is identified. Based on Bayesian results, it can be demonstrated that this
type of injury is related to a great extent to pathologies of the musculoskeletal system
which is potentially present in in-service activities such as hospitality (31.23%) and
administration (32.05%). Moreover, we also see that these pathologies are also an
underlying cause for problems in the end.

The estimated distribution maps and highly significant clusters were computed by
administrative zone for cholesterol, age, and sleep quality (Figs. 6, 7, and 8), giving
patterns of high values (red rings) and low values (blue rings). To begin with, as
shown in Fig. 6, cholesterol levels will not change with the work area. However, there
is a tendency associated with geography. The north is more cholesterol-rich than the
south. When the spatial distribution of cholesterol is compared with the distribution of
temperatures in Spain, a direct correlation can be identified: the colder the temperature,
the higher the cholesterol levels. Previous research indicates that cold increases blood
pressure and favors an increase in cholesterol levels (Davis et al. 2022). Another factor
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Fig. 6 a Distribution maps for cholesterol by service activity group using rate data between 2012 and 2016
through ordinary kriging; b high- and low-significance clusters

Fig. 7 a Distribution maps for age by service activity group using rate data between 2012 and 2016 through
ordinary kriging; b high- and low-significance clusters

can be the intake of more caloric meals required in northern areas against cold (Tien
et al. 2016). However, there are many more factors; the lifestyle of workers and lack
of physical activity could also be key factors. In this context, southern regions have
a warmer climate that invites more development of physical activities (Bernard et al.
2021).

There is insufficient evidence to establish a correlation between cholesterol (Fig. 6)
and age (Fig. 7). In any case, a trend can be observed in which the higher the age, the
higher the cholesterol level, a pattern that has beenobserved in recent studies (Mansoori
et al. 2023). Depending on the economic sectors, education has the highest age, except
in Murcia, which shows the ageing of the sector in Spain. Looking further into the
matter, Aragon has the highest average age and highest cholesterol levels. However,
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Fig. 8 a Distribution maps for sleep quality by service activity group using rate data between 2012 and 2016
through ordinary kriging; b high- and low-significance clusters

Catalonia andNavarra have the lowest average ages and the lowest cholesterol levels in
the north. In the financial sector, Aragon and Navarre have the lowest average ages and
lowest cholesterol levels in the north. However, Galicia and Catalonia have the highest
average ages and the highest cholesterol levels in the north (with some exceptions such
as Asturias). In the administrative section, La Rioja is the youngest community with
the lowest cholesterol levels.

The quality of sleep based on employee service activity is not significantly different
(Fig. 8). All data show a similar relationship in terms of color scale variation, except for
the education group, which is less blue than the rest. This suggests that the education
sector has poorer sleep quality than the rest, except the Navarre region. Freitas et al.
(2020) found a similar correlation and linked it to the strong psychological demand
teachers have during their psychosocial relationship with students at work. As for
correlations with other variables, it is curious that the quality of sleep does not seem to
depend upon age. However, sleep disturbances prevail in patients with high diabetes
(Huang et al. 2023). This can be corroborated by these data, as regions with the lowest
sleep quality can be observed to coincide with regions with high cholesterol levels in
the north. Inhabitants of the south of Spain (Andalusia) also present bad sleep quality;
in this case, this might be related to high temperatures (Lan et al. 2017).

4 Conclusions

This survey exposes the potentialities of a couple of Bayesian machine learning and
geostatistical methodologies in the form of a renewed PSEM to translate the complex
problem of determining the occupational health risks of workers in the service sector.
The goal is to obtain feasible visual analyses, typical of the geography of health, that
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can feed the evolution of medical policies at different levels of the national health sys-
tem in Spain. This methodology fully applies to the remaining geographic areas. With
this methodology, it is important to note that quantifying the influence of bioclimatic
and socioeconomic variables becomes a reality. Furthermore, if estimated bioclimatic
scenarios are introduced for the coming years, the change in climate attributes may be
addressed and consubstantiate insight for future medical decision-making and occu-
pational health.

Concretely, the results of this study revealed that variables such as age, location,
and cholesterol, with contributions to the general network between 9 and 17%, are
generally critical for the characterization of the health status of workers in the service
sector. To a second extent, it was possible to identify a series of differentiating variables
such as spine and limb observation, sleep quality, annual precipitation (BIO 12), or
annual mean temperature (BIO 1) that, despite not being extremely significant from
a mathematical point of view, play a key role and show a great impact in health risk
maps at a regional level. It is also worth noting the weight of the bioclimatic variables
on the health status of the worker, with a contribution value of approximately 9%.
Further analysis is required to measure the uncertainty associated with considering or
not considering other groups of variables, including worker behavioral aspects.
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