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• Compared DI, EBDI, and SEM dynamic 
imputation mehods. 
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A B S T R A C T   

Tackling the impact of missing data in water management is crucial to ensure the reliability of scientific research 
that informs decision-making processes in public health. The goal of this study is to ascertain the root causes 
associated with cyanobacteria proliferation under major missing data scenarios. For this purpose, a dynamic 
missing data management methodology is proposed using Bayesian Machine Learning for accurate surface water 
quality prediction of a river from Limia basin (Spain). The methodology used entails a sequence of analytical 
steps, starting with data pre-processing, followed by the selection of a reliable dynamic Bayesian missing value 
prediction system, leading finally to a supervised analysis of the behavioral patterns exhibited by cyanobacteria. 
For that, a total of 2,118,844 data points were used, with 205,316 (9.69 %) missing values identified. The 
machine learning testing showed the iterative structural expectation maximization (SEM) as the best performing 
algorithm, above the dynamic imputation (DI) and entropy-based dynamic imputation methods (EBDI), 
enhancing in some cases the accuracy of imputations by approximately 50 % in R2, RMSE, NRMSE, and loga
rithmic loss values. These findings can impact how data on water quality is being processed and studied, thus, 
opening the door for more reliable water management strategies that better inform public health decisions.  
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1. Introduction 

Water infrastructures and policies have been developed during 
centuries to ensure the agricultural, industrial, and urban development 
of the territory. Human development and access to water go hand in 
hand. However, the lack of adequate policy coordination and underin
vestment have led to several water infrastructure and quality challenges 
in many parts of the world. Moreover, insufficient consideration has 
been given to the negative environmental implications arising from 
pollution sources and excessive depletion of natural resources (Xiao 
et al., 2021; Vigiak et al., 2023). 

According to the United Nations Economic Commission for Europe 
(UNECE) and the World Health Organization (WHO), the projected area 
of the European Union with high water stress is estimated to increase 
from 19 %, in 2007, to 35 %, in 2070, affecting an additional 7 % of the 
population (Economic and Social Council, 2022). This scenario could 
lead to a situation in which water supplies would be less reliable and 
people’s exposure to pathogens and harmful chemicals would increase 
(Pierrat et al., 2023). Factors like climate change, alongside global 
population growth, are intensifying the stress on our planet’s water re
sources. Water overexploitation and inadequate management further 
exacerbate this crisis (Asif et al., 2023). For instance, as sea levels rise, 
coastal freshwater supplies face increasing saltwater intrusion, altering 
ecosystems, and threatening agriculture (Karimidastenaei et al., 2022). 
Additionally, the ever-growing demand for freshwater – essential for 
food production, which consumes nearly 90 % of the global supply 
(Scanlon et al., 2007) – is heightened by the widespread use of fertil
izers, leading to increased waste and contamination (Mishra, 2023). 
These changes portray a stark picture of the challenges faced by com
munities worldwide, from small coastal towns to large agricultural re
gions, underscoring the urgent need for sustainable water management 
solutions. Over the past twenty years, there has been growing interest in 
the creation and application of hydrological models at global, conti
nental, and national levels (Paul et al., 2021). At present, hydrological 
information is being increasingly exploited, demonstrating its great 
potential in the mitigation of adverse events, such as floods (e.g. Al- 
Sabhan et al., 2003; Chen et al., 2019), and in the development of new 
solutions, including adequate irrigation systems (Roy et al., 2023) or 
climate change adaptation strategies for water management (Abdel
karim et al., 2023; Muzammil et al., 2023; Özerol et al., 2020). Recent 
advances in water resource management demonstrate a notable shift 
towards employing emerging technologies. Convolutional neural net
works (CNNs) have been applied by Sadeghi et al. (2020) for the inte
gration of geographic and infrared data, enabling real-time precipitation 
monitoring. Gerassis et al. (2021) utilized Bayesian AutoML for an 
environmental impact assessment, presenting scenarios to understand 
basin contribution changes. Huang et al. (2022) integrate machine 
learning and deep learning algorithms to improve prediction and man
agement strategies. Dhaoui et al. (2022) assess groundwater quality for 
irrigation using fuzzy logic in their research. These contributions un
derscore the movement towards digitalization and the use of decision- 
making models for informed and sustainable water management.. 
However, effectively harnessing the information provided by water in
frastructures with quality monitoring systems remains a major challenge 
for researchers (Ezzati et al., 2023; Simpson et al., 2023). For example, 
the analysis of water quality time series data often presents difficulties 
due to non-normal distributions, seasonality, or runoff (e.g. Acock, 
2005; Desbureaux et al., 2022; Albers, 2023). Furthermore, the quality 
of statistical analysis can be significantly influenced by the amount of 
missing data (Dong and Peng, 2013; Rigueira et al., 2023). Processing 
datasets with missing values is a frequent problem for which traditional 
methods (Ngouna et al., 2020) are of limited value, such as complete 
case deletion, pairwise deletion, or mean substitution (Lin, 2010; van 
Buuren, 2016). 

Understanding the significance of accurate water quality assessment 
is crucial, especially when considering the challenges posed by 

incomplete datasets. Incomplete datasets in water quality studies can be 
a frequent situation (Tiyasha et al., 2020). They arise due to multiple 
factors, such as failures in the data-gathering sensors or environmental 
factors that hinder data collection. These gaps in data pose a substantial 
challenge in accurately assessing water quality, as they can lead to 
skewed interpretations and unreliable conclusions. Addressing the issue 
of missing values in water quality datasets is therefore crucial for the 
successful development and implementation of advanced water man
agement solutions (Johnson et al., 2021). This necessarily requires a 
shift towards more advanced data handling techniques and analytical 
tools, which can not only manage the intricacies of water data but also 
enhance the applicability of the models developed. Based on that, an 
important question emerges: How can we address the challenge of 
studying water quality variables with significant amounts of missing 
values in our data samples? 

To address this issue, this study proposes the introduction of 
Bayesian machine learning to facilitate the simulation of posterior data 
quality parameters distributions. The Bayesian model developed in this 
study aims to capture different types of data (e.g., physicochemical, 
hydraulic parameters or temporal variables) to integrate available hy
drological and water quality information, as well as identifying the in
fluence of the different anthropogenic activities and climate change. The 
obtained results will allow to the definition of new tailored probabilistic 
safety ranges for water quality, which could be translated into the design 
of scientifically, backed-up water quality management measures. 

The possibility of modeling and inferring the aquatic system 
behavior and response mechanisms already represents an important 
advance for the decision-making and selection of the best available 
corrective measures (Zakwan et al., 2022), thereby facilitating public 
health and compliance with environmental objectives (Wang et al., 
2019; European Commission, 2022). Notwithstanding this, the central 
goal of this investigation is to identify, analyze and characterize the 
significance of dynamic missing data management using Bayesian net
works for accurate water quality prediction. This methodology is 
applied to a stream from Limia river basin in the autonomous region of 
Galicia (Spain), where missing data is a major problem that impedes to 
ascertain the root causes associated to high cyanobacteria occurrence. 
The excessive application of nitrates, pesticides, and other agrochemi
cals associated to the agricultural sector is typically the main degrada
tion factor in in-land and coastal waters (e.g. Evans et al., 2019; Wiering 
et al., 2020). One of the most worrying problems is cyanobacteria and 
microalgae blooms whose appearance can prejudice water reservoirs 
and other aquatic ecosystems that provide valuable services to fishing, 
wildlife, recreation, and drinking water with a crucial ecological 
importance (Ho et al., 2021; Acuña-Alonso et al., 2021). These blooms 
often produce potent toxins, and their harshness and impact worsen 
when factors such as excess nutrients and climate change are combined 
(O’Neil et al., 2012; Boelee et al., 2019). 

To shed light on that challenge, this study aims also to benefit from 
the introduction of innovative AI-based algorithms embedded in 
Bayesian machine learning processes. This approach in combination 
with the expert knowledge gathered over years allows to unveil and 
validate hidden relationships between the hydrological and water 
quality parameters. Previous studies have evaluated this Limia 
ecosystem negatively affected by the presence of agricultural and live
stock activities, trying to understand the influence of hydrological or 
physical-chemical factors on the proliferation of cyanobacteria (Car
balleira et al., 2018; Acuña-Alonso et al., 2020; Garzon-Vidueira et al., 
2020; Moron-Lopez et al., 2021). However, the behavior patterns of the 
reservoir are not well known, and the problem persists. 

2. Materials and methods 

2.1. Study area and data collection 

The data source was collected from three ecologically sensitive 
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locations in the Limia riverbed, covering the stretch from the riverbed to 
the As Conchas reservoir in Galicia, Spain (Fig. 1). The data collection 
period spanned from October 2017 to January 2021, with water mea
surements taken every 15 min (2,118,844 data points in total). 

The data series obtained could be classified into four main cate
gories: (1) hydrological characteristics; (2) physicochemical parameters; 
(3) chlorophyll-a concentration; and (4) seasonality. More concretely, 
physicochemical, and hydraulic parameters were recorded using two 
different hydrographic systems deployed in Spain. Firstly, the Automatic 
Hydrological Information System (SAIH) for real-time monitoring of 
water. Secondly, the Automatic Water Quality Information System 
(SAICA) for water quality monitoring. The variables recorded with SAIH 
were river flow (m3/s), air temperature (◦C) and precipitation (mm), 
whereas for SAICA were dissolved oxygen (DO; mg/L), pH (u.pH), 

turbidity (NTU), electrical conductivity (EC; μS/cm), water temperature 
(◦C), water level (m), ammonium (NH4; mg/L) and phosphate (PO4; mg/ 
L) contents. 

Additionally, high-frequency chlorophyll-a (Chl-a) concentration 
was extracted from a publicly accessible repository (Mozo et al., 2022). 
The Chl-a concentration was measured using two buoys anchored at 
specific locations in the central region of the reservoir, with an 
approximate spatial distance of 4 km, as reported by Moron-Lopez et al. 
(2021) and Mozo et al. (2022). 

In the analyzed dataset, it was identified that 9.69 % (205,316 
measures) of the data points are missing. This absence of data exhibits a 
considerable variation across different variables. Specifically, the 
missing data percentage ranges from a minimal 0.01 % in variables like 
river flow or air temperature, to a high of 42.69 % in variables, such as 
EC. 

The descriptive statistics of the collected data were calculated and 
include the mean, standard deviation (sd), minimum value (Min), 
maximum value (Max), as well as the percentage and number of missing 
values for each variable (Table 1). 

2.2. Bayesian machine learning 

Bayesian networks are directed acyclic graphs (DAG) (G) created to 
evaluate causal and probabilistic relationships between variables, where 
the nodes of these models represent the domain variables, and the 
linking arcs represent the direct dependence relationships (Pearl, 1988). 
Consequently, G leads to the factorization (Scutari, 2019): 

P(X|G, θ) =
∏N

i=1
P(Xi|ΠXi , θXi ), (1)  

where the joint probability distribution (JPD) of a random set of vari
ables X = {X1, …, Xn}, with parameters θ, splits into individual local 

distributions for each Xi (with parameters θXi ,
⋃

xiϵX
θxi = θ

)

dependent on 

its parent variables ΠXi . Furthermore, these local distributions are 
mathematically calculated based on (Heckerman et al., 1995): 

Fig. 1. Hydrography of the Limia River up to the As Conchas reservoir. Monitoring and control networks SAIH, SAICA, Chl-a dam buoy, and Chl-a beach buoy at 
three points of special sensitivity. 

Table 1 
Descriptive statistics for Chl-a concentration, water quality parameters, and 
meteorological data from a 3-year period (Oct 2017–Jan 2021).  

Parameter Unit Mean ± Sd Min Max Missing values 
(n) 

Dam Chl-a μg/L 9.10 ± 8.57 –  133.87 3.84 % (4280) 
Beach Chl-a μg/L 8.87 ± 7.98 –  135.84 1.47 % (1636) 
NH4 mg/L 0.07 ± 0.07 –  0.38 32.83 % 

(36624) 
PO4

3− mg/L 0.08 ± 0.15 –  10.86 8.69 % (9695) 
EC μS/ 

cm 
102.25 ±
25.17 

27.00  206.00 42.69 % 
(47616) 

DO mg/L 6.90 ± 2.79 0.50  12.80 24.86 % 
(27728) 

pH u. pH 6.49 ± 0.32 5.10  7.80 21.06 % 
(23495) 

Water 
temperature 

◦C 12.38 ± 4.65 1.80  24.10 24.89 % 
(27762) 

Turbidity NTU 5.73 ± 10.78 0.00  200.00 22.36 % 
(24947) 

Flow m3/s 5.95 ± 9.62 0.12  121.12 0.01 % (12) 
Water level m 0.26 ± 0.23 0.03  1.97 0.01 % (12) 
Precipitation mm 0.029 ± 0.17 –  13.60 1.34 % (1497) 
Temperature ◦C 11.80 ± 7.48 −8.30  39.40 0.01 % (12) 

– Not detected. Total missing values: 205,316. 
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Xi∣ΠXi ∼ Mul
(
πik|j

)
, πik|j = P(Xi = k|ΠXi = j); (2)  

where parameters πik|j correspond to the conditional probabilities of Xi, 
considering the distinct configurations of their parent values. 

In this research, Bayesian networks, based on Judea Pearl’s proba
bilistic theory, were employed to model a complex system. Their 
application in this study was twofold: firstly, to facilitate accurate pre
dictions, and secondly, to elucidate causal and dependency relationships 
among variables. This dual capability is essential in machine learning for 
managing uncertainty, optimizing hyperparameters, and adapting to 
different data scenarios. Consequently, Bayesian networks were key in 
decision-making processes, especially under conditions of uncertainty 
associated to missing data. 

2.3. Missing data mechanisms 

Regarding the mechanisms underlying missing data, several re
searchers (e.g. Rubin, 1976; Little and Rubin, 2002; Little and Rubin, 
2019) conducted extensive analysis and provided a widely accepted 
understanding of the nature and implications of missing data (Lin and 
Tsai, 2020; Ijadi Maghsoodi et al., 2023). Three missingness mecha
nisms are recognized: missing completely at random (MCAR), missing at 
random (MAR), and missing not at random (MNAR) (Rubin, 1976). 
MCAR, occurs when the absence of data is independent of both observed 
and unobserved variables, making the available data a representative 
sample of the total dataset. In contrast, MAR refers to situations where 
the missing data can be explained by observed data. Lastly, MNAR oc
curs when the missingness is a function of the not observed data. 

2.4. Dynamic processing of missing values 

In this study, dynamic inference techniques allow leveraging the 
advantages of structural algorithms, such as the ability to handle large 
complex datasets and to capture non-linear relationships. Similarly, 
while previous research has examined the trend of missing values in 
water quality data to follow the MAR mechanism (Güler et al., 2002), 
the present study explores advanced imputation methods capable of 
handling MAR, MNAR and MCAR assumptions. By addressing the full 
spectrum of missing data scenarios, the study proposed a 

Table 2 
Evaluation of unsupervised structural learning algorithms: MDL values and computational times.  

Algorithms DI EBDI SEM 

MDL Timea MDL Timea MDL Timea 

MWST  3,236,262.98 1 m 34 s  3,164,965.88 1 m 1 s  3,150,576.43 15 m 15 s 
Taboo  3,195,219.59 14 m 37 s  3,153,398.79 1 m 44 s  3,122,140.33 21 m 46 s 
EQ  3,149,413.93 23 m 19 s  3,185,068.90 6 m 42 s  3,154,098.36 32 m 30 s 
TabooEQ  3,179,329.98 5 h 56 m  3,172,223.74 2 h 16 m  3,154,964.49 4 h 26 m 
SopLEQ  3,145,272.40 56 m 16 s  3,166,142.03 7 m 36 s  3,115,917.14 33 m 49 s  

a The computational analyses were conducted on an Intel Core i9-12700F, Z690 motherboard, 64 GB DDR5 RAM, 1 TB NVMe PCIe SSD, and NVIDIA RTX 3070 8GB 
GPU. 

Fig. 2. Radial Layout of SEM Unsupervised Bayesian Network Using the SopLEQ Algorithm. Node colors classify variable types: green for cyanobacteria, blue for 
quality indicators, violet for meteorological, and gray for temporal variables. Nodes with missing values are marked with a question mark. 

Table 3 
Performance comparison of DI, EBBI and SEM models for water quality 
parameter prediction.  

Imputations R2 RMSE NRMSE Precision Log-loss Calibration 

DI  0.69  3.72 4.99 % 71.69 %  0.27 91.79 % 
EBDI  0.71  4.04 5.37 % 79.04 %  0.26 92.74 % 
SEM  0.76  2.92 3.85 % 80.00 %  0.22 92.79 %  
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methodological approach for understanding water quality dynamics 
under fluctuating missing data scenarios. This advancement not only 
aligns with the latest techniques for inferring missing values but also sets 
a new benchmark in how water resources can be predicted, monitored, 
and managed amid the growing challenges posed by climate change 
scenarios. In the following subsections, three methods for inferring 

missing values are presented: Dynamic Imputation (DI), Entropy-Based 
Dynamic Imputation (EBDI), and Structural Expectation-Maximization 
(SEM), using BayesiaLab v.10.2 software. 

2.4.1. Dynamic imputation 
This method is relatively straightforward compared to EBDI and 

Fig. 3. Bar charts of the performance metrics (a) R2, (b) Log-Loss, (c) RMSE, (d) NRMSE (%), (e) Precision (%), and (f) Calibration for each missing value imputation 
model DI, EBDI and SEM on the selected critical variables. 
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SEM. It focuses on the adjustment to time-based variations in data. 
Although advance, DI involves fewer complex calculations than those 
integrating advanced statistical models. As with static imputation, 
initially inferred values are obtained from random extractions of the 
marginal distributions of observed data, which act as placeholders. 
However, in a second step, DI updates the missing values during the 
structural learning of the Bayesian network (Gámez et al., 2011). In this 
way, the updated network functions as a support to infer the used dis
tribution during imputation, considering the observed variables and 
their previously inferred values (Conrady and Jouffle, 2015). This sets 
DI apart from the static method and leads to its enhanced performance. 
From a mathematical perspective, based on Eq. (1), the marginal like
lihood can be decomposed into a single element for each local 
distribution: 

P(D|G) =

∫

P(D|G, θ)P(θ|G)dθ =
∏N

i=1
P(Xi|ΠXi , θXi )P(θXi |ΠXi )dθXi (3)  

2.4.2. Entropy-based dynamic imputation 
Entropy-based dynamic imputation is similar to dynamic imputa

tion, but it prioritizes the imputation of missing values based on the 
entropy of the conditional probability distributions in the Bayesian 
network. The rational is to use the uncertainty in the network to guide 
the imputation process. In this method, the missing value with the 
highest entropy is inferred first, with subsequent imputations prioritized 
based on the decreasing entropy of the conditional probability distri
butions in the network (Scutari, 2018). The equation for entropy (H) 
computation can be expressed as follows: 

H(Xi) = −
∑

xϵX
p(xi)log2(p(xi) ) (4)  

where xi represent the potential outcomes of Xi, and their corresponding 
probabilities (p(xi) ) indicate the complexity of the network and deter
mine the number of bits needed for its representation. 

2.4.3. Structural expectation-maximization 
Structural expectation-maximization involves an iterative algorithm 

to find the most probable explanation estimates of parameters in the 

Bayesian model. The basic idea is to iteratively compute the expected 
values of the data parameters (E-step) and then, use those inferred 
values to find the structure that maximizes the expected log-likelihood 
function (M-step) (Friedman, 1998). The specific formulas underlying 
the E-step 

(
E

(
DM, DO⃒

⃒G , θ
)
), and M-step 

(
P

(
θ|G, DO, DM) )

of the 
Maximum Likelihood Estimation (MLE) algorithm are described as 
follows: 

E − step : Q (θ | θ(t)
)

= EXm∼p(•|Xo ,θ(t) )[logp(Xo, Xm|θ) ] (5)  

M − step : θ(t+1) = argθmaxQ (θ | θ(t)) (6)  

where Q (θ | θ(t)) represents the expected value of the log-likelihood 
function of a missing parameters vector θ, regarding the current con
ditional distribution of a set of missing values (Xm) given a set of 
observed data (Xo), and the current estimates of θ(t). 

Finally, the general formula for structural expectation-maximization 
can be expressed as follows: 

θ(t+1) = argθmaxEXm∼p(•|Xo ,θ(t) )[logp(Xo, Xm | θ) ] (7)  

2.5. Network performance and validation methods 

The selection of the Bayesian structural learning algorithms applied 
in this study has been carried out following the principle of minimum 
description length (MDL). The MDL allows to identify those algorithms 
that provide the most accurate and reliable explanation of the data. 
Score-based approaches, such as MDL, evaluate a function (metric) that 
measures the quality of a candidate network concerning the available 
data. The term MDL, derived from information theory and commonly 
used in artificial intelligence, can be defined mathematically as follows 
(Friedman, 1997; Conrady and Jouffle, 2015): 

MDL(B, D) = αDL(B) + DL(D|B) (8)  

where DL(B) represents the number of bits needed to represent the 
model (graph and probabilities), DL(D|B) represents the number of bits 
needed to represent the model data (i.e., probability of the data given 

Fig. 4. Missing value imputation performance. For each color pair, the first column (on the left) corresponds to the empirical distribution of the variables, while the 
second column (on the right) corresponds to the probabilities calculated with the Bayesian network. The top part also shows the average of the difference between the 
empirical and the inferred probability (Delta Mean), the largest difference between both (Max) and the frequency of missing values for each variable in the dataset 
(Missing Value Rate). 
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Fig. 5. Temporal representation of observed (blue) and predicted (red) values for chlorophyll concentration at (a) dam (μg/L) and (b) beach (μg/L), (c) NH4 (mg/L), 
(d) water temperature (◦ C), (e) pH (u.pH), and (f) EC ((μS/cm). Figure created using Python and the pandas, numpy, and matplotlib libraries. 
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the Bayesian network), and α is the structural coefficient (ranging from 
0 to 150). The structural coefficient modifies the relative weighting of 
DL(B) and DL(D|B), allowing the number of observations to be adjusted. 

To provide a comprehensive evaluation of model accuracy and fit, 
essential for validating and comparing predictive models each of them 
was assessed by means of the root mean square error (RMSE) (Jain and 
Singh, 2003), the normalize root mean squared error (NRMSE), the 
coefficient of determination (R2) (Wright, 1921), and mean absolute 
error (MAE) (Chicco et al., 2021; Zakwan et al., 2022): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
Xo,i − Xp,i

2

√
√
√
√ ,

0 (best value) ≤ RMSE < +∞(worst value)

(9)  

NRMSE (%) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N

i=1
Xo,i − Xp,i

2

√

1
N

∑N

i=1
Xobs,i

× 100,

0 (best value) ≤ NRMSE < 100 (worst value)

(10)  

R2 =

∑N

i=1
Xo,i − XoXp,i − Xp

2

∑N

i=1
Xo,i − Xo

2 ∑N

i=1
Xp,i − Xp

2
,

0 (worst value) ≤ R2 < 1 (best value)

(11)  

MAE =
1
N

∑N

i=1

⃒
⃒Xo,i − Xp,i

2
⃒
⃒,

0 (best value) ≤ MAE < +∞(worst value)

(12)  

where Xo and Xp correspond to the observed and predicted values for the 
N observations. Likewise, Xo and Xp represent the mean of the measured 
and predicted variables, respectively. 

On the other hand, variable discretization was also implemented into 
the analysis. Discretization simplifies data, aiding in model interpret
ability and assessment of classification accuracy and reliability. The 
resulting values of correctly and incorrectly classified observations were 
assessed based on precision, calibration, and logarithmic loss (log-loss) 
of the models. These evaluation parameters were defined as: 

Precision =
Observations correctly classified as A

Total observations as A
0 (worst value) ≤ Precision < 100 (best value)

(13)  

Calibration Index =
1
N

∑N

i=1

(

1 −
2Ri

Yi

)

,

0 (worst value) ≤ Calibration < 100 (best value)

(14)  

where Ri represents the mis-calibration area for each calibration curve, 
Yi are the respective areas of non-gray (total possible area) below the 
diagonal for each calibration curve. 

Finally, the logarithmic loss returned by the model was calculated 
based on: 

Log − Loss =
1
N

∑N

i=1
log2(PTi )

0 (best value) ≤ Log − Loss < 1 (worst value)

(15)  

where PTi represents the posterior probability provided by the model for 
the true state of the Target Node in the ith row of the dataset. The log
arithmic loss (Log-Loss) imposes significant penalties on inaccurate 
predictions made with a high level of certainty. 

3. Results and discussion 

3.1. Unsupervised structural learning 

As first step in the dynamic Bayesian network-based processing 
system, the entire portfolio of unsupervised learning algorithms avail
able in the BayesiaLab v.10.2 software was tested. The aim was to select 
the algorithm that could describe the data most efficiently, using the 
MDL metric. To select the best algorithm, MDL values for each algorithm 
were compared, and the lowest value was considered. As a result, the 
SopLEQ was selected for DI (3,145,272.40) and SEM (3,115,917.14), 
and the Taboo (3,153,398.79) was chosen for EBDI. In Table 2 it is 
shown a comparison of the different algorithms tested and their 
computational performance. This approach ensures that the most effi
cient algorithms are chosen for each dynamic imputation processes. 

In Fig. 2, a radial layout is presented, showcasing an unsupervised 
Bayesian network developed through the SopLEQ algorithm. This 
network integrates the SEM method for the inference of missing values. 
From an exploratory standpoint, this radial layout offers a well- 
organized visual representation, highlighting the complex in
terconnections within the network. Additionally, a thorough explor
atory analysis of this model reveals the pivotal role of the temporal 
variable month as a central node, underlining its significant influence in 
the Limia river features. 

3.2. Assessment of the dynamic Bayesian models 

In this section, the performance and predictive capacity of the 

Table 4 
SEM performance metrics MAE. RMSE, NRMSE (%), and R2 of the dataset for 10 %, 15 %, and 30 % of missing values.   

MAE RMSE NRMSE R2 

10 % 15 % 30 % 10 % 15 % 30 % 10 % 15 % 30 % 10 % 15 % 30 % 

Dam Chl-a  0.46  0.85  1.35  2.88  4.43  5.05  2.15  2.83  3.78  0.95  0.89  0.86 
Beach Chl-a  0.46  0.74  1.36  3.19  3.84  5.49  2.35  2.83  4.04  0.94  0.91  0.83 
NH4  0.01  0.01  0.01  0.04  0.05  0.06  4.25  5.20  7.04  0.92  0.88  0.78 
PO4

3− 0.02  0.03  0.04  0.30  0.36  0.46  2.81  3.31  4.22  0.88  0.84  0.74 
EC  1.73  2.53  4.75  8.33  9.95  13.67  4.66  5.56  7.64  0.94  0.91  0.84 
DO  0.15  0.21  0.39  0.63  0.75  1.01  5.16  6.09  8.24  0.96  0.95  0.90 
pH  0.02  0.04  0.06  0.13  0.15  0.20  4.72  5.41  7.43  0.90  0.87  0.75 
Water Tª  0.21  0.31  0.58  0.88  0.15  1.49  3.96  4.85  6.66  0.97  0.96  0.93 
Turbidity  0.59  0.83  1.47  4.64  5.45  7.37  2.32  2.73  3.69  0.89  0.85  0.73 
Water level  0.01  0.01  0.03  0.04  0.05  0.08  2.05  2.53  4.00  0.97  0.96  0.90 
Water flow  0.33  0.48  1.06  2.01  2.43  4.67  1.67  2.02  3.87  0.97  0.95  0.81 
Precipitation  0.03  0.04  0.07  0.43  0.47  0.63  3.15  3.44  4.65  0.88  0.85  0.73 
Air temperature  0.49  0.72  1.39  0.47  2.53  3.59  4.39  5.30  7.52  0.94  0.92  0.84  
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missing value imputation processes DI, EBDI, and SEM are evaluated. 
Table 3 presents the metrics utilized to define the models’ goodness of 
fit, considering the imputation of missing values in the eleven physico
chemical water and hydraulic parameters measured by the SAICA and 
SAIH sensors, as well as the Chl-a concentration recorded by the buoys 
located at the beach and reservoir dam. 

The results show that the dynamic processing of missing values, SEM, 
outperformed the DI and EBDI methods based on the evaluated metrics. 
It is important to note that R2, RMSE, and NRMSE (%) are commonly 
used metrics for evaluating model fit and offer unique information that 
allows analyzing different aspects of the model. In this case, the results 

obtained using the SEM methodology indicate a higher R2 value (0.76) 
which makes it potentially the best model to explain the variability of 
the data. In addition, the lowest RMSE value (2.92) was observed, 
indicating that the inferred missing values are closer to the observed 
ones. Similarly, the SEM model provided the lowest NRMSE (3.85 %), 
implying a better accuracy in the predicted values relative to the range 
of the dependent variable. Otherwise, according to the precision (80 %), 
log-loss (0.22), and calibration (92.79 %) results of the SEM model, it is 
possible to observe that SEM algorithm corresponds to the best perfor
mance. Even so, despite EBDI and DI showed lower precision and log- 
loss, both provided acceptable results (Table 3). 

Fig. 6. Representation of observed (dotted blue) and predicted values for 10 % of MV (dotted red), 15 % of MV (dotted green), 30 % of MV (dotted orange) in the 
database. Analyzed variables: chlorophyll concentration at (a) dam (μg/L) and (b) beach (μg/L), (c) NH4 (mg/L), (d) water temperature (◦C), (e) pH (u. pH), and (f) 
EC (μS/cm). Figure created using Python and the pandas, numpy, and matplotlib libraries. 
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3.3. Feature selection and prediction performance 

This section focuses on the performance results of the DI, EBDI and 
SEM models to the dynamic imputation of missing values in each 
measured variable. For this purpose, a general unsupervised Bayesian 
analysis was performed to identify those physicochemical or hydraulic 
parameters with significant impact on the river system. The node force 
values of the SAICA and SAIH parameters were calculated for the three 
dynamic imputation processes to identify those variables with the 
greatest relative importance in the behavioral patterns of the aquatic 
ecosystem. The results of the node weight considering the mean values 
of the three models identified river level (2.53), water temperature 
(2.42), and NH4 water concentration (2.23) as the three most significant 
variables, followed by pH (1.73) and EC (1.62). 

Therefore, based on the analysis of the underlying data structure and 
the issue of cyanobacterial proliferation in the As Conchas reservoir, 
Fig. 3 presents the performance of the three data imputation methods 
(DI, EBDI, and SEM) on the significant identified variables. Fig. 3 was 
created using Python, with the employment of pandas, numpy, and 

matplotlib libraries for data handling and visualization generation. The 
evaluation metrics applied in the analysis are presented relatively to R2 

(Fig. 3a), logarithmic loss (Fig. 3b), RMSE (Fig. 3c), NRMSE (Fig. 3d), 
precision (Fig. 3e) and calibration (Fig. 3f). 

Across all measured variables, the three missing value imputation 
methods show comparable R2 values. However, for certain variables 
such as NH4, EBDI exhibits a significantly lower R2 value (0.69) 
compared to DI (0.80) and SEM (0.92). Similarly, in the case of EC, DI 
(0.56) also shows a significantly lower value than EBDI (0.73) and SEM 
(0.87). These critical variables present a more consistent imputation of 
missing values with SEM model, as it achieves higher R2 values for Beach 
Chl-a (0.74), EC (0.87), NH4 (0.92), water level (0.94), water Temper
ature (0.94), and pH (0.77). This indicates a better model fit to the data 
and a higher ability to explain the variability of the measured parame
ters. Relatively to Log-Loss results, it is noteworthy that lower values of 
Log-Loss indicate better performance. Algorithmic loss penalizes inac
curate predictions, especially with high certainty conditions. Regarding 
Log-Loss values, as with the previously mentioned statistical metrics, 
SEM potentially performs better. Otherwise, RMSE and NRMSE (%) 

Fig. 7. Supervised Bayesian network created with the Augmented Naive Bayes algorithm. The colors of the network nodes correspond to the classification of the type 
of variables measured, while their sizes represent the force of the nodes (values also represented in the adjacent table). Also, the arcs highlighted in blue connect the 
variables with more mutual information. 

Table 5 
Results of the marginal probabilities and the Relative Binary Mutual Information (RBMI) analysis with Chl-a target states.   

No risk Precautionary alarm WHO medium alarm WHO high alarm 

Dam Beach Dam Beach Dam Beach Dam Beach 

Marginal probability 37.29 % 38.33 % 28.78 % 32.14 % 32.50 % 28.99 % 1.43 % 0.25 % 
aChl-a (μg/L) 32.01 % 5.59 % 28.11 % 16.65 % 
Date (dd/mm/yy) 26.37 % 18.20 % 11.19 % 13.04 % 20.79 % 14.04 % 43.38 % 25.27 % 
Water Level (m) 1.14 % 1.57 % 1.98 % 3.73 % 0.37 % 4.49 % 5.79 % 3.30 % 
EC (μS/cm) 8.18 % 10.00 % 4.23 % 3.12 % 12.78 % 14.93 % 25.01 % 7.33 % 
pH (u.pH) 0.92 % 1.8 % 1.01 % 2.97 % 2.88 % 4.56 % 9.28 % 1.99 % 
NH4 (mg/L) 7.36 % 2.37 % 2.18 % 3.12 % 4.17 % 3.58 % 4.84 % 3.64 % 
Water temperature (◦C) 3.20 % 1.86 % 1.15 % 1.81 % 4.49 % 2.60 % 10.32 % 2.25 %  

a RBMI value concerning beach buoy Chl-a concentration and vice versa. 
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values suggest that data imputation models exhibit a good fit, with 
values below the commonly NRMSE accepted threshold of 10 %. 

Finally, the SEM imputation algorithm shows outstanding perfor
mance in several aspects, followed by the EBDI. Notably, a significant 
improvement in the imputation of the EC variable is observed with the 
SEM model, reducing RMSE, NRMSE and Log-Loss values by >50 % 
compared to the DI model. This imputation algorithm also demonstrated 
robust calibration on almost variables, indicating that the predicted 
probabilities are consistent with the observed frequencies. In addition, 
SEM also obtained remarkably high accuracy in pH (92), NH4 (88.58), 
water level (89.59), and water temperature (86.04) indicating that the 
inferred values were correctly classified. However, the accuracy values 
are reduced in the Dam Buoy zone, probably due to the greater water 
depth than in the Beach Buoy zone (>10 m). This may result in wider 
oscillations of Chl-a occurrence, and consequently a more difficult and 
accurate prediction. 

As a further step in the analysis of missing value imputation, six 
adjacent histograms are presented for each variable using the SEM 
missing value imputation model (Fig. 4). These histograms depict the 
distribution of observations (left column) and the distribution inferred 
by the learned Bayesian network (right column). By analyzing the var
iable marginal distribution, it can be observed that the water flow rate 
presented no bias introduced by the missingness (0.01 % missing 
values). However, variables such as water temperature, pH, EC, Beach 
Chl-a and to a lesser extent Dam Chl-a were overestimated, i.e. the lower 
values were missed, and the current probability distribution was 
recovered. In the case of water NH4 concentration, the empirical dis
tribution of the lowest values was being underestimated. The visuali
zation of the variables marginal probability distribution is a powerful 
analytical tool, as it allows to understand the extent of missing values 
have biased the data, as well as to identify the presence of MNAR or MAR 
mechanisms in these biases. This information is crucial for researchers 
on make decision processes based on accurate and representative data. 

Regarding the inferred missing values, the values of the last updated 
network have been extracted (Fig. 5). 

3.4. Dataset validation 

In the last step of the analysis, new test data are generated to validate 
the performance of the SEM algorithm. This involves the creation of a 
new dataset that aligns with the Joint Probability Distribution (JPD) 
encoded by the reference network. In this way, it ensures that the test 
data accurately represent the underlying distribution captured by the 
model. This approach is crucial to maintaining the validity and rele
vance of the evaluation process. Finally, 50,000 data points were 
generated and tested for 5 %, 15 %, and 30 % missing values (Table 4). 

The values of the most recent updated network have been extracted 
to showcase the inferred missing values (Fig. 6). 

3.5. Supervised Bayesian analysis 

Finally, this section demonstrates the applicability of the method
ology proposed in this study by identifying the variables significantly 
associated with the risk of exceeding the WHO chlorophyll-a concen
tration threshold (Chorus and Welker, 2021) in the most problematic 
areas for the occurrence of cyanobacterial blooms. 

For this purpose, the values of chlorophyll-a concentration have been 
discretised into four alarm levels denoted as: no risk (<5 μg/L), pre
cautionary alarm (5 to 10 μg/L), WHO medium alarm (10 to 50 μg/L), 
and WHO high alarm (>50 μg/L). Considering that microalgal blooms 
do not necessarily occur in the same regions of the reservoir, nor with 
the same intensity, two supervised Bayesian networks were constructed 
to investigate the statistical association between model variables and 
chlorophyll-a concentration states (target node) as a function of record 
location (Fig. 7). 

The analysis of node force between the target nodes and other 

variables in the model demonstrated a similar behavior at the dam and 
the beach (Fig. 7). The results revealed that temporal variables exerted 
the greatest influence on the model, with the variable month as the most 
significant predictor (7.73–7.74). Following this, the next most highly 
ranked predictor variable was pH (1.97–2.03). As highlighted in the 
study conducted by Acuña-Alonso et al. (2020), the optimal range for 
cyanobacteria growth occurs to water pH value between 6 and 9 (neutral 
or alkaline environment). Notably, 94.43 % of recorded pH water values 
were within this interval, indicating a conducive environment for the 
rapid cyanobacteria growth. In fact, pH has also been identified as the 
most influential variable on cyanobacteria behavior in the reservoir, as 
demonstrated by Mozo et al. (2022). 

The second most significant water quality variable corresponds to 
water level (1.54–1.59), followed by water temperature (1.43–1.45), 
NH4 (1.36–1.44) and EC (1.28–1.34). Water level variation is a critical 
factor directly related to water flow, and some studies indicate that 
cyanobacteria dominance is commonly found in reservoirs and slow- 
flowing rivers (Xu et al., 2023). In addition, water temperature is one 
of the most extensively studied variable in microalgae growth (Sarma, 
2013; Huisman et al., 2018). Water temperature has a significant in
fluence on the growth of cyanobacteria, with an optimal temperature 
between 15 ◦C and approximately 28 ◦C (Robarts and Zohary, 1987; 
Acuña-Alonso et al., 2020). 

In summary, the most influence parameters on the proliferation of 
cyanobacteria point to be water electrical conductivity and ammonium 
concentration as crucial parameters to control and determine water 
quality (DOUE-L-2000-82524). Previous studies have analyzed the in
fluence of the two water parameters on cyanobacterial proliferation in 
the As Conchas Reservoir (di Blasi et al., 2013; Garzon-Vidueira et al., 
2020), revealing significant diffuse pollution issues in the area and a 
strong relationship with human activity. In addition, these parameters 
can be influenced by substances dragged from adjacent lands, such as 
ammonium occurrence associated to fertilizers or salts that will increase 
water electrical conductivity. 

To a better understanding of water Chl-a concentration and distri
bution, a second level of analysis was carried out to assess the relevance 
of the six predictors that will contribute to an higher risk of exceeding 
the Chl-a threshold alarm levels: no risk (<5 μg/L), precautionary alarm 
(5 to 10 μg/L), WHO medium alarm (10 to 50 μg/L), and WHO high 
alarm (>50 μg/L; Table 5). The local impact analyses enabled the 
quantification of the amount of information associated to each variable 
on the Chl-a concentration range. 

Previous studies have shown that the presence and proliferation of 
cyanobacteria in surface water are clearly influenced by seasonal fac
tors, such as air temperature, sunlight, and nutrient availability (Iglesias 
et al., 2016). These factors are fundamental on the dynamics of Chl-a 
and their relationship with water quality parameters. On the study 
area is possible to identify the pattern of dependence and simultaneously 
quantify the mutual information shared among these factors (Table 5). 
In particular, measurement date, electrical conductivity, water tem
perature and ammonium concentration show a high percentage of 
mutual information for high Chl-a concentration (high alarm). The 
presence of nutrients in the river, which influences other factors such as 
electrical conductivity should be noted as the main source of nitrates in 
the As Conchas River appears to be organic inputs to the soil through 
livestock waste (Garzon-Vidueira et al., 2020). This information sup
ports the major contribution to water electrical conductivity values and 
ammonium concentration as a relevant risk to cyanobacterial contami
nation in the reservoir, especially at concentration higher than 10 μg/L. 

4. Conclusions 

The impact of missing data on the reliability of water quality ana
lyses can be managed. This study introduced a methodological approach 
that addresses and integrates missing information to advance scientific 
understanding of water quality. This issue is particularly relevant, as in 
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the present research, where missing data of varying magnitude was 
impeding to ascertain the root causes associated to water cyanobacteria 
proliferation in the case study of Limia river in Spain. The present 
research demonstrated that a methodological approach based on 
Bayesian dynamic imputation allows to reliably approximate observed 
values in the missing water samples from the monitoring sensors. These 
methods showed precise estimations and adequate calibration, indi
cating their effectiveness in improving the behavior of these aquatic 
ecosystems. The analyses conducted, considering the entire database or 
individual variables – Chl-a concentration (μg/L), river level (m), water 
temperature (◦C), NH4 (mg/L), pH (u. pH), and EC (μS/cm) – showed 
that SEM imputation method outperformed the DI and EBDI methods 
also applied, although EBDI and DI demonstrated good performance. 
Looking further, it is still necessary to understand to what extent this 
proposed system can handle large volumes of missing data in a reliable 
manner. 

Finally, the applicability of this methodology was shown by show
casing cyanobacteria concentration in the As Conchas reservoir, where it 
had almost reached alert level 2 according to World Health Organization 
(WHO) guidelines (Moron-Lopez et al., 2021; Chorus and Welker, 2021), 
and resulting in water supply cuts for the population. The Chl-a water 
concentration was categorized into four alarm levels: no risk (<5 μg/L), 
precautionary alarm (5 to 10 μg/L), WHO medium alarm (10 to 50 μg/ 
L), and WHO high alarm (>50 μg/L). A supervised Bayesian method
ology implemented shed light on the problem, revealing that temporal 
variables exerted the greatest influence on cyanobacterial proliferation, 
with RMBI values up to 43 % concerning the identification of a 
maximum cyanobacterial water contamination alarm situation. These 
findings and practical demonstration contribute to the scientific 
assessment of water quality subject to varying missing data. 
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Özerol, G., Dolman, N., Bormann, H., Bressers, H., Lulofs, K., Böge, M., 2020. Urban 
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