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Abstract
The stability of potentially toppling rock blocks has been typically addressed for the case of regular block geometries 
showing symmetry planes and resting on surfaces aligned with the slope face, i.e., the strike of the slope is parallel to 
the block sides and their basal planes. However, these simple geometries with ideally oriented blocks are not often found 
in nature. This study aims to bridge this knowledge gap through analytical and experimental approaches, in the form of 
laboratory physical models, to study toppling cases for non-conventional scenarios. An engineering geology review was 
first conducted, identifying potential non-standard cases in nature. Then, the current analytical solutions for both the fac-
tor of safety and critical toppling angle were modified for these misaligned cases, focusing on single block and standard 
block toppling, and considering the effect of block-edge rounding. Physical models support the analytical approach. It is 
concluded that toppling stability is slightly improved when the orientation of the basal plane of the blocks differs with the 
strike of the slope. In this way, for single blocks, the critical toppling angle increases a few tenths of a degree when the 
difference between strikes is 10°, about 1° with strike differences about 20° and 2 to 3° for misalignments about 30°. Simi-
lar increases are observed for block toppling cases. Accordingly, small differences in strike of basal planes and the slope 
contribute to slightly increasing the factor of safety of slopes prone to block toppling. This approach improves practical 
engineering toppling stability analyses.
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Introduction

The analytical resolution of rock mechanics problems often 
resorts to a number of initial hypotheses or assumptions. 
They allow a correct mathematical and physical definition of 

the problem, and eventually to produce a rigorous analytical 
solution. Due to the variable nature of rock masses, these 
assumptions may not strictly hold something that could com-
promise the reliability of the solution found. One of the main 
tasks of rock engineers is to assess how variations in the 
assumptions used in their solutions may affect the computed 
results, considering the actual circumstances. In this study, 
the authors address this issue, trying to analytically quantify 
the impact of the orientation of the base of the blocks with 
respect to that of the slope on toppling stability.

Priest (1993), in line with Goodman (1975), highlighted 
the importance of discontinuities for the detection of poten-
tial failure instabilities. An obvious and direct consequence 
of the discontinuous nature of a rock mass is the potential 
existence of rock blocks, which may be near an existing or 
future free rock face, having the possibility of falling, slid-
ing, or toppling. It is also clear that the fracture geometry 
and the variability of rock joint properties influence the frac-
tured rock-mass slope stability (Tang et al. 2017; Jia et al. 
2023).
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The mechanism of toppling typically involves the rotation 
of rectangular or slab-like-shaped rock blocks or columns 
around a fixed axis. According to the number of elements 
involved, it is possible to differentiate between single and 
multiple block toppling. The analysis of single block top-
pling in regular cases is a relatively simple matter (Ashby 
1971; Hoek and Bray 1974; Sagaseta 1986), although it 
is necessary to know a priori whether the block is already 
detached from the rock mass (block toppling) or remains 
attached (flexural toppling). In nature, typical toppling fail-
ures involve several blocks, producing different kinds of 
mechanisms. According to Goodman and Bray (1976), block 
toppling, flexural toppling, and block flexural toppling are 
the most frequent types of mechanisms. Some more complex 
phenomena involving irregular geometries may take place, 
generally known as secondary toppling.

Wyllie and Mah (2004) stated that block toppling takes 
place in hard rock when individual blocks or columns are 
formed from two perpendicular joint sets, with the main one 
dipping steeply into the face. The upper blocks tend to top-
ple and push forward onto the short columns at the slope 
toe. Flexural toppling occurs when continuous rock columns 
dipping steeply towards the slope break due to flexure and 
tilt forward. Finally, block flexural toppling is a mixed-mode 
mechanism characterized by pseudo-continuous flexure 
along long blocks that are divided by several cross-joints. 
The object of this study focuses on block toppling, that is, 
the case in which one or more blocks are already detached 
from the rock mass.

The necessary but not sufficient condition for the occur-
rence of toppling instability phenomena in rock slopes is 
the presence of a tightly spaced discontinuity set striking 
parallel to the slope but steeply dipping towards it (Good-
man and Bray 1976; Brideau and Stead 2012), as shown in 
Fig. 1 a. Particularly, block toppling occurs when the indi-
vidual columns present basal joints that release every single 
block from the rest of the rock mass. In what concerns the 
geometry of the block setup, the strike of the main joint set 
should not differ in more than 10° from that of the slope 
(Goodman and Bray 1976; Goodman and Kieffer 2000), 
condition represented in stereographic projection in Fig. 1 
b. Nevertheless, Cruden (1989) proposed that this angle 
could be extended to higher values, even if no mathemati-
cal expression was provided to quantify this in a rigorous 
way. Romana (1985) implicitly acknowledged that this angle 
should be under 20° when proposing the slope mass rating 
(SMR) classification system. As defined in Fig. 1, γ will be 
used to denote the angle between the slope strike and that of 
the basal planes, normal to the main joint set.

Goodman and Bray (1976) stated two geometrical 
assumptions permitting the analytical evaluation of block 
toppling stability: (i) the block/column-forming discontinu-
ity set is perpendicular to the basal plane and (ii) the strike 

of the discontinuity set is strictly parallel to that of the slope 
(Fig. 1a, b). This implies a slab-like geometry and an axis of 
rotation that coincides with the inclined plane on which they 
rest. As put forward by Vanneschi et al. (2019), the simple 
two-dimensional conceptual model may often oversimplify 
the instability mechanisms, ignoring potential critical factors 
specifically related to orientations and the three-dimensional 
component. This can also be relevant when analyzing the 
stability of precariously balanced rock boulders (Pérez-Rey 
et al. 2019).

The main objective of this study is to analyze what hap-
pens when this hypothesis is not fulfilled, that is, when the 
strike of the main joint set and that of the slope face are 
not parallel but they form an angle γ (Fig. 1c, d). Based 
on the authors’ experience, this may occur quite often in 
nature. However, this issue has not been extensively studied 
in an independent manner so far, even if some authors have 
remarked on the relevance of not considering this assump-
tion (Freitas and Watters 1973; Kimber et al. 1998; Sagaseta 
et al. 2001; Brideau and Stead 2010).

For instance, Brideau and Stead (2012), based on numeri-
cal models analyzing various scenarios for different orien-
tations of the rear, lateral, and basal planes, concluded that 
changes in the dip direction of the basal surfaces beyond 20° 
led to increased stability, even if they did not formalize this 

Fig. 1   a Sketch of a slope prone to block toppling, with a continu-
ous joint set whose strike is parallel to the slope and dipping gently 
against it, b stereographic representation of the previous slope and 
the necessary but not sufficient condition proposed by Goodman and 
Bray (1976) for block toppling, stating that the poles of the main joint 
set falls within the shaded area. c Sketch of a slope prone to block 
toppling where the strike of the joint set is not parallel to the slope 
face. d Stereographic representation of the previous slope and exten-
sion of the condition for block toppling analyzed in this study
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in an analytical manner. These numerical models were not 
able though to clearly identify and quantify, independently, 
the influence of different dip directions between basal planes 
and the slope, which is the main object of the present study.

There exist three main approaches to analyze the stability 
of slopes prone to block toppling, namely, analytical limit 
equilibrium-based methods or LEM, numerical modeling in 
2D or 3D and physical modeling by means of tilt tests. These 
methods are tabulated and referenced in Table 1, where their 
pros and cons are synthetized.

At a practical level and for a flexural toppling case, Sagas-
eta et al. (2001) studied a rock cut at a motorway with a 
strike N-70°, forming an angle of 40° with the strike of the 
bedding planes dipping towards the slope. Though it was 
initially considered that this obliquity was enough to prevent 
toppling failure, several problems associated with changes 
in a zone of the slope were reported. Also, Alejano et al. 
(2010, 2019) presented slope instability case studies, where 
toppling of blocks occurring in certain areas contributed 
to making the slopes unstable due to mixed mechanisms, 
including sliding.

In the present study, the authors try to quantify the impact 
of assumed joint geometry conditions for the study of block 
toppling phenomena in rock masses, by means of simple 
limit equilibrium analytical calculations and laboratory 

physical models (Adhikary et al. 1997; Dong et al. 2020). 
In particular, the difference in the dip direction of the basal 
planes of the blocks and that of the slope is quantified. This 
divergence changes the position of the rotation axis, and 
therefore the kinematics of the phenomenon. This study 
takes also into account the role of the block corner rounding.

Engineering geology context

The formal analysis of block toppling, as defined by Good-
man and Bray (1976), is founded on various assumptions, 
some of which do sometimes not hold in practice. These 
hypotheses include constant spacing of the block joints, per-
pendicularity between the basal planes and joints, occur-
rence of lateral separation surfaces, and parallelism between 
the joint set and the slope face. The last both do often affect 
the reliability of block toppling stability estimates, according 
to the authors’ experience.

Therefore, it is pertinent to consider the actual orienta-
tion of the basal plane in relation to that of the slope when 
studying the stability of a slab-like block or its interaction 
with neighbor blocks (Fig. 2).

These divergences in the orientation of the potential top-
pling basal plane and the slope face are not uncommon. They 

Table 1   Methods to analyze the stability of slopes prone to block toppling. The pros and cons of each method are also summarized

Method Pros Cons

Analytical LEM for regular-edged blocks 
(Goodman and Bray 1976)

Easy to apply
Practical approach to analyze stability and plan 

reinforcement measurements
Easy to combine with sensitivity analysis
Available in software version in code RocTopple 

(Rocscience 2021)
Application examples (Aydan et al. 1989; Wyllie 

1980; Braathen et al. 2004, etc.)

Stringent geometrical assumptions
Difficult to accommodate realistic geometries

Analytical LEM for round corner blocks
(Alejano et al. 2015, 2018b)

Not difficult to apply
Improves accuracy for eroded or physical cut 

blocks
Easy to combine with sensitivity analysis
Guidelines provided to estimate corner radius

Still stringent geometrical assumptions
Estimate of round corner radius may not be easy

Numerical models 2D
(Kimber et al. 1998)

Relatively easy to carry out
Can study the effect of the basal plane dip angle
Improves the understanding of slope behavior and 

failure evolution
Compare well with LEM analysis

Not easy to estimate input parameters and par-
ticular normal stiffness

It does not account for 3D effects

Numerical models 3D
(Brideau and Stead 2010)

Accommodates 3D geometries
More accurate calculations
It shows that the assumption of 2D models that 

the slope is continuous and constant along its 
strike leads to different results for 3D models

Can model combined failure mechanisms

Not easy to perform and very time-consuming
Needs a very detailed knowledge of realistic 

geometries, joint properties and boundary 
conditions

Physical models
(Pérez-Rey et al. 2021)

Accommodates 3D geometries
Allows study of other detailed geometrical fea-

tures (rounded corners, rough bases)

Very time-consuming
Needs laboratory skills
Only provides critical angles and not factors of 

safety
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have been observed by the authors in a good number of cases 
in the field, as the one depicted in Fig. 3 and the group of 
cases illustrated in Fig. 4 for the three main rock types.

So, toppling of blocks is prone to take place also when 
the strike of the block joints does not coincide with that of 
the slope face. In such a case, the intersection of the slope 
face with these discontinuities will produce lines gently 
dipping towards one side of the slope face, as illustrated 

in the sketch of Fig. 1 c, but can also be appreciated in the 
slope presented in Fig. 2. It must be noticed that, when 
the main discontinuity set direction is oblique to the slope 
(γ > 30°) and very steep (45° < dip ≤ 70°), care should be 
taken to properly select the actual dip and not the appar-
ent dip of the slope, observable on the lateral side of the 
slope (Fig. 1c).

It is also known that when a block toppling phenomenon 
takes place and due to the overturning trends (Fig. 5a) of 
blocks, counter-slope escarpments are commonly observed 
(Alejano 2021). Figure 5 b illustrates the eastern slope of 
Meirama mine in NW Spain (Bassa et al. 2014), where 
these counter-slope escarpments can be well observed, 
associated to the block toppling phenomena described in 
this mine. The oblique trends of these escarpments indi-
cate that the slope and the block planes are not parallel. 
The example also illustrates how this situation does not 
avoid the occurrence of a block toppling phenomena, as 
already pointed out by Goodman and Bray (1976).

The presented examples confirm that, as stressed by Cru-
den (1989) and others, block toppling can occur even when 
the block joints do not strike parallel to the slope face. In 
what follows, different approaches will be resorted to with 
the aim of better understanding and quantifying this phe-
nomenon from a rock slope engineering point of view.

Fig. 2   Picture and sketch of a rock slope in quartzite (Taramundi, 
Asturias, Spain) with three joint sets and a fallen block marked in 
blue in its original position. An orientation sketch showing the differ-
ent dip directions of the slope and the basal planes is also illustrated

Fig. 3   Picture of a mountain slope in granitic rock in the Peneda-
Gêres National Park (North Portugal) where a block toppling phe-
nomena can be identified. The authors have marked in white color the 

estimated original block disposition and in red and blue the estimated 
dip directions of the slope and the basal plane, which do not coincide
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Fig. 4   Pictures of various natural slopes or structures, where top-
pling of blocks is observed or identified and where the toppling basal 
planes do not follow the same strike as that of the slope. a Eclogite 
in Cariño, A Coruña, Spain; b granite in O Pindo, A Coruña, Spain; 

c sandstone associated to the so-called Courthouse Towers in Arches 
National Park, Utah, USA. On the left lower corner at the bottom of 
the picture, the potential failure mechanism is illustrated; d limestone 
in the Pyrenees near the sky resort of Candanchú, Huesca, Spain

Fig. 5   a Cross-cut section of a slope prone to block toppling before 
and after suffering movements, where counter-slope escarpments or 
steps are illustrated; b east wall of the Meirama lignite mine in Gali-

cia, Spain in 2013, where oblique counter-slope escarpments marked 
with blue arrows can be observed
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Basic previous studies

The theoretical stability analysis against toppling of a slab-
like regular block was traditionally addressed in the form 
of a factor of safety (FoS) by computing the stabilizing and 
overturning moments of all the forces acting on the block 
related to the potential rotation axis, which was defined 
as the origin of the calculating coordinate system. This 
approach needs to have a prior recognition of the potential 
rotating axis. The factor of safety can then be computed 
based on the general Eq. (1).

For a regular block with sharp corners resting on a tilted 
plane (Fig. 6a), Ashby (1971) did the first study on top-
pling failure mechanisms of this type of block by means of 
carrying out laboratory tests on physical models. A theo-
retical 2D formula was proposed:

where W refers to the weight of the block and Δx and y to 
its width and height, respectively, and Δx/y is defined as the 
inverse of slenderness. The dipping angle of the platform is 
denoted as α.

It is possible to carry out tests of toppling blocks by 
means of a tilting table (Pérez-Rey et al. 2021), following 
a procedure similar to that used to estimate the basic fric-
tion angle of rock discontinuities (Alejano et al. 2018a).

(1)FoStoppling =

∑

Mstabilizing
∑

Moverturning

(2)

FoStoppling =
Mstabilizing

Moverturning

=

Δx

2
⋅W ⋅ cos�

y

2
⋅W ⋅ sin�

=

(

Δx

y

)

tan−1�

Sagaseta (1986) extended the approach providing a graph 
of the possible failure mechanisms of a single block towards 
sliding, toppling, or sliding and toppling, based on dynamic 
calculations.

Considering that the dip angle of the platform is smaller 
than the friction angle of the contact base (to avoid sliding), 
the FoS against toppling can be computed by relating the 
stabilizing and overturning moments, and thus, the critical 
toppling angle, αcrit., can be derived by equating FoS, as in 
Eq. (2), to 1.

Alejano et al. (2015, 2018b) noticed that eroded blocks 
tend to show rounded corners in natural rock masses, and 
notably in granitic ones. Also, saw-cut rock block samples 
typically present irregular edges in rock mechanics labs. In 
both cases, these imperfect specimens tend to produce lower 
critical toppling angles than those predicted for the case of 
perfect edges as for Eq. (3). Thus, they proposed resorting to 
an equivalent radius of the corners to account for this effect. 
Accordingly, when rock columns or blocks present rounded 
corners, the position of potential rotation pivot will move 
up against the tilting direction in a length equivalent to this 
round corner radius. Therefore, the eroded or irregular-edge 
block is less stable than an equal-sized block with perfectly 
sharp corners. Its stability can be calculated by introducing 
an equivalent radius r (Fig. 6b) to generate Eq. (4). If the 
moment equilibrium calculation is conducted, the critical 
angle can be obtained as in Eq. (5).

(3)�crit. = tan−1
(

Δx

y

)

(4)

FoS =

Mstabilizing

Moverturning

=
(Δx − 2r) ⋅W ⋅ cos�

(y) ⋅W ⋅ sin�
=

(

Δx − 2r

y

)

tan−1�

Fig. 6   Sketches of a single 
block resting on a dipping 
platform for toppling mecha-
nism analysis: a standard block 
with sharp corners; b block with 
rounded corners of r-radius
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This round corner analysis is relevant at lab scale, too. 
When testing physical toppling models in the lab, it is dif-
ficult to produce rock specimens with perfectly sharp cor-
ners, notably when cutting small blocks. Therefore, speci-
mens’ corners tend to show some defects and irregularities 
in line with natural erosion phenomena, and these corners 
do affect test results. With the help of an equivalent round 
corner radius r, it is generally possible to have better accu-
racy when comparing analytical and laboratory results.

On the other hand, the radius of the corner in the block 
toe is the one controlling the toppling behavior. However, 
the processes producing rounding of the blocks’ corners 
tend to produce similar curvature radii in all corners of 
the block. In this way and for computation purposes, the 
average radius is considered a good estimate.

Alejano et al. (2015) experimentally obtained that the 
curvature radius, r to be input in Eqs. (4) or (5), can be 
estimated as 2/3 of the average curvature radius rav

c
 . This 

is due to the fact that at the center of the edges, the oper-
ating radius will be smaller than the average one due to 
differential erosion of the block (larger in the corners than 
in the center of the edges).

This radius rav
c

 will be the average radius of all the cor-
ners of the block to produce the volume (V) computed 
based on the dry weight (Wdry) and submersed weight 
(Wsubm.) of the sample applying the Archimedes’ princi-
ple (Eq. 6)

where γwater is the specific weight of water.
The theoretical volume of the slab-like block with 

rounded corners can be expressed in terms of Eq. (7).

where Δx is the thickness of the block, Δy is the height, and 
Δz is the breadth of the block. The volume in Eq. (7) is equal 
to the addition of volumes of seven rectangular prisms for 
the core of the block, twelve quarters of a cylinder for all 
edges and eight eighths of a sphere for all corners, being 
the size of all these geometrical figures dependent on the 
average curvature radius, rav

c
 . To compute this value, it is 

recommended to compute the volume by inputting Eq. (7) in 
a spreadsheet depending on rav

c
 , and increasing values of rav

c
 

starting from 0, to find the one that produces the computed 
volume in Eq. (6).

Coming back to the general stability against toppling of 
a block, some of the authors of this paper have studied the 

(5)�crit. = tan−1
(

Δx − 2r

y

)

(6)V =

Wdry −Wsubm.

�water

(7)
V = x

�
y
�
z
�
+ 2rav

c
(x

�
y
�
+ x

�
z
�
+ y

�
z
�
) + �

(

rav
c

)2
(x

�
+ y

�
+ z

�
) +

4

3
�
(

rav
c

)3

Where x
�
= Δx − 2rav

c
; y

�
= Δy − 2rav

c
and z

�
= Δz − 2rav

c

influence of regularly rough bases on the stability of typi-
cal slab-like blocks (Gui et al. 2023), an aspect that could 
be analytically incorporated into some of the stability esti-
mates introduced in this text. The present approach can also 
be applied to blocks with more complex shapes, including 
realistic boulders (Pérez-Rey et al. 2019, 2021).

In both cases analyzed in this section, an implicit assump-
tion is that the slab-like sample tested is parallel to the strike 
of the tilting plane, but this condition may not hold in nature.

Stability of a slab‑like block with a base 
differently oriented than the tilting plane

As shown in Fig. 7, when the potential rotation axis of the 
block at stake is not parallel to the strike of the dip plane (in 
practice, the strike of the slope), but forms an angle γ with 
it, the component of the block weight parallel to the plane 
(W·sinα) will not fully contribute to toppling.

Only the part perpendicular to the rotation axis (W·sinα·cosγ) 
will act as toppling force. The part normal to the rotation axis 
(W·sinα·sinγ) will be counteracted by some friction in the block 
base. Therefore, in this case, the FoS against toppling of the 
block can be computed based on Eq. (8).

Then, the critical toppling angle for this case can be 
derived by equating Eq. (8) to 1, so Eq. (9) is derived:

If we consider the case in which the block presents round 
corners, as explained in the previous section, Eq. (9) now 
reads as Eq. (10) as derived from Eq. (5).

According to this mechanically sound approach, the impact 
of orientation on the toppling of a block can be relevant. To 
illustrate that, we have graphed the values of the FoS against 
toppling of two sharp-edged blocks with two slenderness (2 
and 3) against the inclination or dip of the tilted base for dif-
ferent values of the rotation angle of the block γ marking the 
orientation. The graph of Fig. 8 presents these results.

As this graph shows, a block with slenderness 3 would 
topple for an inclination angle of roughly 18.5°. However, 
if the block is rotated 20, 30, or 40° in relation to the basal 
plane strike, this toppling angle will increase to 19.3, 21, 
and 23.4°, respectively, therefore making the block more 

(8)

FoS =

Mstabilizing

Moverturning

=

Δx

2
⋅W ⋅ cos�

Δy

2
⋅W ⋅ sin� ⋅ cos�

=
Δx

Δy ⋅ cos�
tan−1�

(9)�crit. = tan−1
(

Δx

Δy ⋅ cos�

)

(10)�crit. = tan−1
(

Δx − 2r

Δy ⋅ cos�

)
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stable in these circumstances. Indeed, a block with slen-
derness 3 resting in an inclined 18.5° base will have FoS 
of 1.06, 1.15, and 1.3 for rotations of γ = 20, 30, and 40° 
respectively, instead of 1 and as the graph of Fig. 8 shows.

Similar increases in stability can be derived for the block 
with slenderness 2. Therefore, the authors deem important to 
account for these effects when the strike of the slope differs 
from that of the basal plane, even if for very small orientation 
variations (i.e., γ up to 10°) the influence is rather small, as 
implicitly recognized by Goodman and Bray (1976).

Experimental program

In the present section, a group of tilt tests involving 
plastic (3D-printed) and rock physical models was car-
ried out in order to analyze the accuracy of the theo-
retical approach described in the previous sections. The 
effect of misalignment between the rotation axis of the 
block and the strike of the tilting plane has been rep-
licated in the testing program herein presented for the 
physical models.

Fig. 7   A single slab-like block 
resting on a platform where 
its orientation forms an angle 
γ with the platform strike line. 
Force decomposition based on 
the block weight

Fig. 8   Graph presenting the FoS 
against toppling for blocks with 
slenderness 3 and 2 respec-
tively for different values of γ, 
according to the dip of the basal 
plane, as computed by means of 
Eq. (8). Increasing the value of 
γ, produces increasing stability
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Tilt tests with 3D‑printed blocks

First, the analytical approach was experimentally tested 
by resorting to two plastic blocks (one representative 
of the standard case with rather sharp corners, and the 
other one with rounded corners) both fabricated with a 
3D printer. The dimensions of the block with straight cor-
ners were ∆xs = 40 mm, ∆ys = 120 mm, and ∆zs = 40 mm 
and, in the case of that with rounded corners, ∆xr = 80 mm, 
∆yr = 100 mm, and ∆zr = 60 mm, with a radius of curva-
ture, r = 20 mm, as presented in Fig. 9. Remark that for 
this block faces C and D are normal to axis x, and faces 
A and B are normal to axis y and faces 1 and 2 to axis z.

To compute an estimative radius in the corners of the 
prismatic block depicted in Fig. 9 a, the authors have fol-
lowed the procedure described in the “Basic previous stud-
ies” section. In this way, they measured the submersed and 
dry weight to compute its volume according to Eq. (6). 
Then, based on the measured dimensions and Eq. (7), an 
average curvature radius of 1.21 mm was computed, cor-
responding as explained in the “Basic previous studies” 
section to an operating radius r = 0.8 mm, equivalent to 2/3 
of the average one as suggested by Alejano et al. (2015). 
The block toppling response is computed analytically and 
empirically for four scenarios for each block position, con-
sidering different orientations of the block (γ equal to 10°, 
20°, 30°, and 40°). To orientate the block on the tilting 
platform, four dedicated plastic wedges were 3D printed, 
as shown in Fig. 10.

For the block with square base (Fig. 9a), it was possible 
to carry out eight groups of three tilt tests (one per each 
edge of the top (A) and bottom (B) block faces, Fig. 9a) 
for the four rotation angles 

(γ), implemented through the corresponding plastic 
wedge. So, 32 groups of three tests were carried out for this 
block, whose average experimental critical toppling angles 
are presented in Table 2. Remark that for all the experimen-
tal tilt tests mentioned in this study, the presented result is 
the average of three tests, where experimental critical angles 
have been measured with an accuracy of 0.1°.

In Table 2, the experimental critical angle ( �exp.

crit
 ) observed 

in every test group is also compared to the theoretical critical 

angle considering it a sharp-edged block ( �theor.
crit

 ) as in Eq. (9) 
or a rounded corner block ( �theor.−r

crit
 ) as in Eq. (10), for the 

estimated curvature radius r = 0.8 mm. To assess accuracy, 
the error is computed as the difference between the theoreti-
cal and the average experimental critical angles, in each case 
of sharp-edged and rounded corners.

The experimental results were also graphed (Fig. 11) 
against the theoretical ones for perfectly square corners or 
sharp-edged blocks (“without r”) and by considering the 
possible effect of slight rounding, by introducing a round 
corner (“with r”). A 1:1 line is provided for comparative 
purposes.

As this graph illustrates, the theoretical change in criti-
cal angle varies in some degrees according to the level of 
misalignment (γ). Remark that the average error for the 
sharp edge block theoretical approach is 0.7°, less than 1°, 
which is the typical measurement accuracy in the field. How-
ever, when considering the small possible curvature of the 
edges, the error becomes even smaller and close to 0°. In 
both cases, the standard deviation is around 0.46°, which 
means that 0.5° error can be associated to the irregularities 
of the edges, which are necessarily not too relevant in this 
3D printed element.

The plastic block with rectangular cross-section and 
rounded edges (r = 20 mm) was also tested with its axis 

Fig. 9   Diagrams and picture of 
the two blocks: a plastic block 
with square cross-section and 
straight corners; b, c two views 
of the block with rectangular 
cross-section and rounded 
corners and d picture of both 
plastic 3D printed blocks

Fig. 10   Test arrangement for a plastic block rotated γ degrees, and 
wedges used for positioning the block. Remark, once the block is 
positioned, the small plastic wedge is removed before starting to tilt 
the table
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of rotation misaligned with that of the tilting table, by 
considering the four values of γ as previously explained. 
The geometrical features of this block make necessary the 
study of the testing positions in advance: as the block has 
a rectangular cross-section and rounded edges, it may not 
achieve some of the toppling scenarios studied for the case 
of the block with straight corners, resulting in a change of 
the axis of rotation when tilted, if certain values of γ are 
exceeded.

According to Fig. 9 b and c, these γ critical values (γcrit.) 
can be defined for the three possible positions, including 
the block toppling around x-axis with Eq. (11), the block 
toppling around y-axis with Eq. (12), and the block top-
pling around z-axis with Eq. (13).

Equation (13) means that if we try to topple the block 
rotating around axis z, it will eventually topple if γ is smaller 
than 26.6°. If γ is larger than this (i.e., γ = 30°), the block will 
topple around axis x, as illustrated in Fig. 12.

(11)�crit.−x = tan−1
(

Δxr − 2r

Δzr − 2r

)

≅ 63.4◦

(12)�crit.−y = tan−1
(

Δyr − 2r

Δzr − 2r

)

≅ 71.6◦

(13)�crit.−z. = tan−1
(

Δzr − 2r

Δxr − 2r

)

≅ 26.6◦

Table 2   Results for the tilt 
test series performed for each 
γ on the four edges of each 
contact face of the block with 
square cross-section (A and B, 
according to Fig. 9a). The error 
Ea is computed as the difference 
between the theoretical and 
the experimental critical angle 
results

Contact face γ (°) Block 
position

�
exp.

crit
(°) Without r With r

�theor.
crit

(°) Ea (°) rc (mm) �theor.−r
crit

(°) Ea (°)

A 10 1 18.87 18.70  − 0.17 0.80 18.00 0.87
10 2 18.53 18.70 0.17 0.80 18.00 0.53
10 3 19 18.70  − 0.30 0.80 18.00 1.00
10 4 18.43 18.70 0.27 0.80 18.00 0.43

B 10 1 17.17 18.70 1.53 0.80 18.00  − 0.83
10 2 18.63 18.70 0.07 0.80 18.00 0.63
10 3 17.73 18.70 0.97 0.80 18.00  − 0.27
10 4 18.63 18.70 0.07 0.80 18.00 0.63

A 20 1 19.1 19.53 0.43 0.80 18.81 0.29
20 2 18.97 19.53 0.56 0.80 18.81 0.16
20 3 19.2 19.53 0.33 0.80 18.81 0.39
20 4 18.73 19.53 0.80 0.80 18.81  − 0.08

B 20 1 18.8 19.53 0.73 0.80 18.81  − 0.01
20 2 18.87 19.53 0.66 0.80 18.81 0.06
20 3 18.87 19.53 0.66 0.80 18.81 0.06
20 4 19.03 19.53 0.50 0.80 18.81 0.22

A 30 1 20.63 21.05 0.42 0.80 20.28 0.35
30 2 20.33 21.05 0.72 0.80 20.28 0.05
30 3 20.43 21.05 0.62 0.80 20.28 0.15
30 4 19.97 21.05 1.08 0.80 20.28  − 0.31

B 30 1 19.83 21.05 1.22 0.80 20.28  − 0.45
30 2 20.4 21.05 0.65 0.80 20.28 0.12
30 3 20.3 21.05 0.75 0.80 20.28 0.02
30 4 20.47 21.05 0.58 0.80 20.28 0.19

A 40 1 22.77 23.52 0.75 0.80 22.67 0.10
40 2 22.47 23.52 1.05 0.80 22.67  − 0.20
40 3 22.83 23.52 0.69 0.80 22.67 0.16
40 4 22.3 23.52 1.22 0.80 22.67  − 0.37

B 40 1 21.43 23.52 2.09 0.80 22.67  − 1.24
40 2 22.6 23.52 0.92 0.80 22.67  − 0.07
40 3 22.23 23.52 1.29 0.80 22.67  − 0.44
40 4 22.5 23.52 1.02 0.80 22.67  − 0.17

Average
St. deviation

0.70
0.49

0.06
0.46
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Adapting Eq. (10) to the geometry names given to this 
plastic block, we will obtain the corresponding critical 
angles for toppling according to the rotation axis and to 
basal face of the block applying Eq. (14). For the cases 
of rotating axis x and basal faces 1 and 2, rotating axis y 
and basal faces 1 and 2 and rotating axis z and basal faces 
C and D (see Fig. 9b, c), the computed critical toppling 
angle will be over 33° (larger than the measured friction 
angle), so in all these cases the block will tend to topple. 
This trend is due to the plumpness (small slenderness) of 
the block when orientated in these positions.

(14)

�crit. = tan−1
(

Δzr−2r

Δyr ⋅cos�

)

for axis x, bases A and B

�crit. = tan−1
(

Δyr−2r

Δzr ⋅cos�

)

for axis x, bases 1 and 2

�crit. = tan−1
(

Δzr−2r

Δxr ⋅cos�

)

for axis y, bases C and D

�crit. = tan−1
(

Δxr−2r

Δzr ⋅cos�

)

for axis y, bases 1 and 2

�crit. = tan−1
(

Δxr−2r

Δyr ⋅cos�

)

for axis z, bases A and B

�crit. = tan−1
(

Δyr−2r

Δxr ⋅cos�

)

for axis z, bases C and DFig. 11   Experimental critical toppling angles represented against 
theoretical critical toppling angles for a model with square cross-sec-
tion (as determined from Eqs. (10) and (11) for straight or slightly 
rounded corners, correspondingly)

Fig. 12   Illustration of tilt test of the plastic block rotating the tilt table around axis z for γ = 30°, with base in face A. Since the γ critical is 
exceeded, the block will topple around axis x of the sample, as the picture is showing
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For the rest of the cases (rotating axis x and basal faces A 
and B, rotating axis y and basal faces C and D, and rotating 
axis z and basal faces A and B), the critical toppling angle 
is below 30°, so the block tends to topple.

For the case of rotation against axis z (basal faces A and 
B), as explained above, the critical γ value is 26.6°, so when 
γ is over this value, for example 30 or 40°, the block will 
topple around sample axis x, and the critical angle should 
be computed according to Eq. (15):

Results of tilt tests (every case the average of 3) 
comparing to theoretical solutions as in Eqs. (14) and 
(15), when needed, are presented in Table 3, where it 
is observed again how the theoretical and experimental 
changes in critical angle vary in some degrees according 
to the level of misalignment (γ). Remark that the average 
error for the 24 groups of three tilt tests is less than 0.6°, 
again smaller than the typical accuracy of field measure-
ments with a similar value of standard deviation. Errors 
will tend to be somewhat larger when analyzing actual 
rock blocks in the field where the geometry is not so well 
controlled.

Results reported in Table 3 are graphed in Fig. 13. The 
plotted points fall quite close to the 1:1 line, representing the 
ideal case (experimental and theoretical results equal). As 
observed, theoretical results tend to be slightly higher than 
the experimental ones, something that can be attributed to 
imperfections in the block’s real shape due to the printing 
process.

Comparison of experimental and theoretical results for 
this engineered block shows a good accuracy of the pre-
sented analytical approaches. Remark that average errors and 
most individual test errors are below 1°, which is the typical 
accuracy when measuring field discontinuity orientations.

Tilt tests with rock blocks

The experimental program was complemented with tilt tests 
carried out with rock blocks of various igneous and meta-
morphic rock types. Eight slab-like specimens with different 
dimensions were prepared, as shown in Fig. 14 a.

Mean width, height, and breadth (∆x, ∆y, and ∆z, cor-
respondingly, as depicted in Fig. 14a) of each block were 
obtained by averaging three caliper measurements. Weights 
of the block dry and submersed permitted to obtain the dry 
density, and also the difference between actual and theoreti-
cal volumes (ΔV), so the average curvature radius, rc

av, was 
also obtained by means of Eq. (7) for each block. These data 
are shown in Table 4.

(15)�crit. = tan−1
(

Δzr − 2r

Δyr ⋅ cos(90
◦ − �)

)

The test arrangement is described in Fig. 14 b. For each test, 
the rock slab is positioned on the tilting table in contact with 
a rock plate. The block is rotated γ degrees with respect to the 
rotation axis of the table, ensuring an accurate position with 
the dedicated corresponding plastic wedge, which is removed 
later on, as done with the 3D-printed models described in the 
“Tilt tests with 3D-printed blocks” section. The platform is then 
swiftly tilted until toppling is observed. The critical experimen-
tal toppling angle ( �exp .

crit
 ) of the block is registered and the aver-

age of three individual tests eventually computed.

Table 3   Experimental and theoretical results for the tilt tests per-
formed for each γ according to the four contact faces of the block (A, 
B, C and D, in Fig. 9b, c). The error Ea is computed as the difference 
between the theoretical and the experimental critical angle results

*Toppling takes plays rotating around a different rotation axis of that 
initially forming an angle γ with the strike of the tilt table, theoretical 
value computed according to Eq. (15)

Contact surface γ (°) Axis of rotation �
exp.

crit
(°) �theor.

crit
(°) Ea (°)

A 0 X 11.95 11.31  − 0.64
0 Z 21.87 21.80  − 0.07
10 X 11.45 11.48 0.03
10 Z 22.33 22.11  − 0.22
20 X 11.90 12.02 0.12
20 Z 23.38 23.06  − 0.32
30 X 12.55 13.00 0.45
30 Z* (X) 21.50 21.80 0.30
40 X 13.72 14.63 0.91
40 Z* (X) 17.32 17.28  − 0.04

B 0 X 11.03 11.31 0.28
0 Z 21.53 21.80 0.27
10 X 11.13 11.48 0.35
10 Z 22.03 22.11 0.08
20 X 11.68 12.02 0.34
20 Z 22.73 23.06 0.33
30 X 12.50 13.00 0.50
30 Z* (X) 20.38 21.80 1.42
40 X 14.13 14.63 0.50
40 Z* (X) 16.93 17.28 0.35

C 0 Y 13.18 14.04 0.86
10 Y 13.78 14.24 0.46
20 Y 14.27 14.90 0.63
30 Y 15.62 16.10 0.48
40 Y 16.95 18.07 1.12

D 0 Y 13.86 14.04 0.36
10 Y 14.73 14.24  − 0.49
20 Y 14.55 14.90 0.35
30 Y 15.42 16.10 0.68
40 Y 17.15 18.07 0.92

Average
St. deviation

0.39
0.42
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The geometry of the rock blocks used in this study 
allowed only block rotations (γ values) in the range of 0° 
to 30°, to prevent the change of the axis of rotation, as pre-
viously explained. Results for all blocks are presented in 
Table 5, where a correction considering certain roundness 
of the block corners was applied, with r = 2/3 rc

av, following 
recommendations presented by Alejano et al. (2018b).

The error Ea is computed as the difference between the 
theoretical and the experimental critical angle results, as pre-
sented in Table 4, both for straight and for rounded corners, 

with r = 2/3 rc
av. The mean Ea for the case of straight corners 

is 2°, whereas for rounded corners lowers to − 0.68°, being 
the standard deviation around 1°. Again, when considering 
the curvature radius as a means to account for edge irregu-
larity, the accuracy is below measurement field accuracy.

Following the line of previous tests, the experimental 
results are also plotted against the theoretical ones for all 
the studied rock blocks (Fig. 15), where a better fit of the 
results can be seen when the effect of rounding is taken into 
account (results are closer to the 1:1 line).

From these results, one can conclude that first, the effect 
of rounding on results improves the performance of the 
equations for analyzing block toppling behavior. Moreover, 
when the rotation of the block is taken into account, the new 
expression presented in Eq. 10 is able to accurately capture 
the toppling behavior of different 3D-printed plastic models 
and actual rock slab-like samples, for the range of γ values 
studied.

Application to multiple block toppling

The analysis of slope stability against general block top-
pling affecting some blocks has been traditionally founded 
on the limit equilibrium method–based approach proposed 
by Goodman and Bray (1976). This approach has been stud-
ied theoretically for varying parameters (Muralha 2002) and 
tested both with physical model studies including centri-
fuge tests (Zhang et al. 2007; Alejano et al. 2018b) and in 
the interpretation of actual cases (Wyllie 1980; Pritchard 
and Savigny 1991; Bye and Bell 2001; Alejano et al. 2010). 
Tatone and Grasselli (2010) developed a spreadsheet 
approach presenting an easy application of the Goodman 
and Bray (1976) approach, which was later implemented in 

Fig. 13   Experimental critical toppling angles represented against the-
oretical critical toppling angles for a model with square cross-section 
and rounded corners, as determined from Eq. (11)

Fig. 14   a Rock slabs used in the experimental program and posi-
tion of the axes for determining ∆x, ∆y, and ∆z. b Arrangement of 
the specimen during the test: (i) Plastic wedge to ensure the angle of 

deviation from the axis of rotation of the tilting table (removed before 
starting the test); (ii) electronic inclinometer; (iii) rock plate for fric-
tion control (avoid sliding)
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Table 4   Main dimensions and 
features of the rock specimens

Block
no

Rock Δx (cm) Δz (cm) Δy (cm) Δy/Δx Dry density,
ρdry (g·cm−3)

Difference of 
volume, ΔV 
(cm3)

Edge radius,
rc

av (mm)

1 Granite 2.18 5.13 14.79 6.78 2.70 10.07 4
2 Granite 2.38 7.82 9.34 3.92 2.68 9.74 4.2
3 Dunite 3.96 10.08 10.00 2.53 2.78 11.43 4.1
4 Granite 1.52 2.43 4.98 3.28 2.78 2.29 3.1
5 Gneiss 2.56 8.75 11.48 4.49 2.64 2.59 1.9
6 Granite 5.09 4.92 14.72 2.89 2.63 9.46 3.6
7 Granite 1.63 5.09 5.01 3.08 2.65 1.92 2.4
8 Basalt 2.05 8.03 7.03 3.43 2.73 1.78 1.9

Table 5   Experimental and 
theoretical critical toppling 
angles for all the rock models 
under study (for straight 
and rounded block corners). 
The error is computed as 
the difference between the 
theoretical and the experimental 
critical angle results

Block γ (°) �
exp.

crit
(°) Sharp-edged Rounded

�theor.
crit

(°) Ea (°) �theor.−r
crit

Ea (°)

1 0 5.8 8.4 2.6 6.3 0.6
10 7.3 8.5 1.2 6.4  − 0.9
20 7.9 8.9 1.1 6.7  − 1.1
30 8.9 9.7 0.8 7.3  − 1.6

2 0 10.1 14.3 4.2 11.2 1.1
10 11.8 14.5 2.7 11.4  − 0.4
20 13 15.2 2.2 11.9  − 1
30 14.4 16.4 2 12.9  − 1.5

3 0 18.7 21.6 2.9 18.8 0
10 20 21.9 1.9 19  − 1
20 21.1 22.8 1.8 19.9  − 1.2
30 22.7 24.6 1.9 21.4  − 1.3

4 0 12.8 17 4.2 12.5  − 0.3
10 13.9 17.2 3.3 12.7  − 1.2
20 14.7 18 3.3 13.3  − 1.4
30 16.9 19.4 2.6 14.3  − 2.5

5 0 10.6 12.6 2 11.3 0.7
10 11.7 12.7 1 11.5  − 0.2
20 12.5 13.3 0.8 12  − 0.5
30 13.3 14.4 1.1 13  − 0.3

6 0 16.1 19.1 3 17.4 1.3
10 17.8 19.3 1.5 17.6  − 0.2
20 18.9 20.2 1.3 18.4  − 0.5
30 20.4 21.8 1.3 19.9  − 0.6

7 0 15.1 18 2.9 14.6  − 0.4
10 15.9 18.3 2.4 14.9  − 1
20 17.1 19.1 2 15.5  − 1.6
30 19 20.6 1.6 16.8  − 2.2

8 0 14.2 16.2 2 14.3 0.1
10 14.9 16.5 1.6 14.6  − 0.3
20 16.3 17.2 0.9 15.2  − 1
30 18 18.6 0.6 16.5  − 1.5

Average Ea 2.02  − 0.68
St. deviation 0.95 0.87
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a friendly user code developed by Rocscience (2021) named 
Roc-Topple.

Some authors have studied the limitations of this 
approach and provided ways to account for these limitations 
related to non-normality of blocks, occurrence of lateral sep-
aration surfaces, blocks with rounded corners, etc. (Cruden 
1989; Liu et al. 2008; Brideau and Stead 2010; Alejano et al. 
2018b; Cai et al. 2022).

In this section, we present the extension of the Goodman 
and Bray approach to the case where the base planes of the 
potentially toppling blocks present a different strike than 
that of the slope, being the difference γ. Remark this is an 
extension of the approach presented for the case of single 
blocks in the previous sections.

Authors of this paper prepared a scaled physical model 
of a typical block toppling case for the case of standard 
(sharp-edged) and rounded blocks (Alejano et al. 2018b). 
These models were tested on a tilting table following the 
procedure presented in more detail by Pérez-Rey et al. 
(2021) to compute the experimental critical angles, which 
sensibly coincide with those derived from the Goodman 
and Bray (1976) theoretical approach. Both groups of 
blocks and a regular stair-like surface were used to check 
the extended theoretical approach, which are presented in 
the following paragraphs.

The authors revisited the limit equilibrium block toppling 
stability analysis proposed by Goodman and Bray (1976) 
for sharp-edged blocks. These authors proposed the relevant 
computations regarding the estimate of the force that has 
to be applied to the lower face of block n to keep it sta-
ble against toppling Pn-1,t (Eq. 16) and against sliding Pn-1,s 
(Eq. 17) for the standard case. See Fig. 16 for a reference to 
the considered forces and angles.

Remark that Pn-1 refers to the force to be applied in the lower 
face of block n, which, according to the principle of reaction, 
will then be transmitted to the upper face of block n-1 (detailed 
information is presented in Goodman and Bray (1976)):

where ϕb and ϕj refer to the friction angle of the basal plane 
and lateral joints of the blocks at stake. Alejano et al. (2015) 
demonstrated that the impact of rounded corners on the slid-
ing mechanism is negligible, so Eq. (16) still holds in this 
case. Nevertheless, the axis of rotation for every block for 
rounded-corner case moves towards the base of the block 
r (the radius of the rounded corner). Accordingly, Eq. (16) 
needs to be modified in this case to calculate the force nec-
essary to prevent a block from toppling, producing Eq. (18) 
according to Alejano et al. (2018b):

If we consider now the case where the basal planes present 
a dip direction rotated γ in relation to that of the slope (or that 
of the tilting plane for the case of the physical models at stake), 
both Eqs. (16) and (17) must be updated to this contingency, 
and based on the individual analysis of Eq. (8) and Fig. 7, they 
become now Eqs. (19) and (20) for sharp-edged blocks:

Additionally, in the case of blocks with rounded edges 
for different orientation, this should be considered in the 
computations and even if Eq. (20) will still hold, Eq. (21) 
will substitute Eq. (19) in this case:

(16)

Pn−1,t =

Pn

(

Mn − tan�j ⋅ Δx
)

+
Wn

2

(

Yn ⋅ sin� − Δx ⋅ cos�
)

Ln

(17)Pn−1,s = Pn −

Wn

(

tan�b ⋅ cos� − sin�
)

1 − tan�b ⋅ tan�j

(18)Pn−1,t =

Pn

[

(Mn − r) − tan�j ⋅ (Δx − r)
]

+
Wn

2

(

Yn ⋅ sin� − (Δx − 2r) ⋅ cos�
)

Ln + r(tan�j − 1)

(19)

Pn−1,t =

Pn

(

Mn − tan�j ⋅ Δx
)

+
Wn

2

(

Yn ⋅ sin�cos� − Δx ⋅ cos�
)

Ln

(20)Pn−1,s = Pn −

Wn

(

tan�b ⋅ cos� − sin�cos�
)

1 − tan�b ⋅ tan�j

Fig. 15   Experimental critical toppling angles represented against 
theoretical critical toppling angles for the eight studied rock models. 
Plotted are results compared with straight (blue) and rounded corners 
(red), with rc = 2/3 rc

av



	 Bulletin of Engineering Geology and the Environment (2024) 83:153153  Page 16 of 20

Equations (16) and (17) in the one hand and Eqs. (18) 
and (17) in the other, were tested by Alejano et al. (2018b) 
for the case of a physical model, which will also be used 
here. In what follows, we will extend this testing for the 
case of an orientation of the basal planes different than 
that of the slope; that is, we will check Eqs. (19) and (20), 
and (21) and (20), for the case of sharp-edged blocks 
and rounded blocks, respectively, by comparing physical 
model results to analytical ones.

Two groups of 10 sharp-edged and 10 round-cornered 
blocks each were initially prepared as described and pre-
sented in Alejano et al. (2018b) to physically represent a 
small physical model of a block toppling slope (Fig. 17a, 
b). Additionally, a stepped surface with steps of the same 
size of these blocks’ breadth was also prepared (Fig. 17c). 
Using this material and a tilting table, both assemblies 
were tilt tested (Fig. 17d, e) and results were reported by 
the mentioned authors.

In this study, and with the aim of ensuring reproduc-
ibility, the geometries produced by these assemblies 
are measured and fit for the simplest case (sharp-edged 
blocks oriented normal to the tilting table rotation axis) 
that can be computed by means of a standard Goodman 
and Bray approach and therefore also by means of the 
program Roc-Topple (Rocscience 2021). This geometry 
in the form of angles is represented in Fig. 17 f. Other 
relevant parameters include the width of the block Δx, its 

(21)

Pn−1,t =

Pn

[(

Mn − r
)

− tan�j ⋅ (Δx − r)
]

+
Wn

2

(

Yn ⋅ sin� ⋅ cos� − (Δx − 2r) ⋅ cos�
)

Ln + r(tan�j − 1)

specific weight, and the friction angles of the contacts 
between blocks, and between block bases and wood of the 
stepped surface. All these values are presented in Fig. 17 
f. Remark that the friction angle of the bases (contact 
granite-wood) varies significantly from the sharp-edged 
blocks (less friction) to the rounded blocks (more fric-
tion). For the case of the rounded blocks, the average 
operating radius, r, has been computed to be 2.09 mm 
following the procedure described in the “Basic previous 
studies” section.

Based on these geometries and always for the stand-
ard case, by inputting the corresponding parameters and 
varying the inclination of the tilting table (α), we have 
looked for the value of αcrit. that produces the instability 
of the assembly. This value corresponds to a FoS < 1.00 
(FoS = 0.999 in this case), which according to Roc-Topple 
(Fig. 18) and to a spreadsheet prepared by the authors 
with the pertinent calculations corresponds to an incli-
nation angle α = 18.75° that will basically coincide with 
the observed critical angle. The same result is obtained 
with a dedicated Excel sheet implementing the standard 
Goodman and Bray’s (1976) approach, which will be later 
adapted to the cases to be studied, including round corners 
and different orientations of table and planes according to 
Eqs. (19) to (21).

Once checked, these results in line with those obtained 
by Alejano et al. (2018b) and specifically for this study, both 
assemblies have been tilted, locating them forming γ angles of 
0° (standard case as tested in 2018b), 10°, 20°, and 30° respec-
tively in relation to the axis of rotation of the tilting table by 
means of plastic wedges, as illustrated for two cases in Fig. 19.

Fig. 16   Geometry and forces 
acting on a standard block 
within the block toppling ones, 
modified from Goodman and 
Bray (1976)
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The average angles (based on three tilt tests) at which 
instability was observed for every type of tests are presented 
in Table 6. Also included are the corresponding critical 

angles analytically derived based on the corresponding Eqs. 
(16) to (21) implemented in Goodman and Bray’s (1976) 
approach by means of different dedicated spreadsheets for 

Fig. 17   Physical model images: a group of sharp-edged blocks, b 
group of round-edged blocks, c stepped base, d test of the assem-
bly of sharp-edged blocks when toppling, e test of the assembly of 

rounded blocks when toppling, and f geometry and parameters, where 
α refer to the tilt table dip

Fig. 18   Results and images of the application of the program 
Roc-Topple to the case of the assembly of sharp edge blocks for 
α = 18.75°, indicating instability (FoS < 1). Remark that in this case, 
due to geometry constraints 14 blocks appear, but the last six ones 

remain stable, which coincides mechanically with the ten blocks of 
the model with the two higher ones stable. It is relevant to note that 
minor changes in geometry may produce important variations on the 
FoS
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the cases of standard and rotated (10, 20, and 30°) assem-
blies, for sharp-edged and rounded blocks. In particular, for 
the sharp-edged case without rotation (γ = 0°), the Goodman 
and Bray (1976) approach was used (Eqs. 16 and 17). For the 
round corner case non-rotated (γ = 0°), the approach by Ale-
jano et al. (2018b) was resorted to (Eqs. 18 and 17). For the 
rotated cases, the approach presented in this study is used. In 
this way, for sharp-edged rotated cases (γ = 10 to 30°), Eqs. 

(19) and (20) were used, and for the equivalent round-edged 
cases, Eqs. (21) and (20) were resorted to.

The errors taken as the difference between the critical 
angle obtained from experiments and from the analytical 
approach are also included in Table 6, showing values in 
the range of − 0.2° to 0.6°, which can be considered rather 
accurate in rock engineering terms. Also, the difference in 
critical angles for the sharp-edged and rounded assemblies 
are tabulated for each case, being around 2° in average.

As an indicative example, if we are analyzing in practice 
a case with the orientation of the base planes rotated 30° in 
relation to the slope, it will be generally more stable (2.5° 
steeper critical angle) than the standard case (equal orienta-
tion) as derived from the values of critical angles obtained 
for γ = 30° and 0° (standard case), respectively.

The presented results put forward the fact that neglecting 
a possible misalignment of the main toppling prone block 
forming a joint set with the slope strike may produce (con-
servative) changes in the estimate of the critical angle or the 
FoS obtained (one to some tenths of unit). So it is recom-
mended to apply this corrected approach, when analyzing 
the stability of these types of slopes. Indeed, the range of 
application of the method presented widely exceeds the more 
stringent assumptions required for a rigorous application of 
the Goodman and Bray’s (1976) method.

Examples of these slopes include for instance, the east-
ern slope of the Meirama mine (NW Spain) where toppling 
related problems were reported (Bassa et al. 2014) or the 

Fig. 19   Assemblies of blocks ready to be tilt tested. a Sharp-edged group rotated 30° in relation with the axis of rotation of the tilting table and 
b rounded edge assembly rotated 20° in relation with the tilt table rotation axis

Table 6   Experimental and analytical critical angles for two different 
block setups experimentally obtained as the average of three tilt tests 
and analytically computed

*Error refers to the difference between the obtained critical angle val-
ues for the physical model tests and the analytical calculations
**Difference refers to the difference in critical angle of the sharp-
edged and the rounded corner cases

Edge Deviation angle, γ (°)

0 10 20 30

Sharp-edged Lab (tilt test) 19.3 19.6 19.7 21.6
Analytical 18.7 19.0 19.9 21.4
Error* 0.6 0.6  − 0.2 0.2

Rounded Lab (tilt test) 17.0 17.8 18.2 19.6
Analytical 17.1 17.3 18.0 19.3
Error*  − 0.1 0.5 0.2 0.3

Difference** Lab (tilt test) 2.3 1.8 1.5 2.0
Analytical 1.6 1.7 1.9 1.9
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slopes prone to toppling of the Melbur Pit in Cornwall 
(Vanneschi et al. 2019), where the basal planes are mis-
aligned in relation to slope faces. This would be a more rig-
orous but less conservative approach. It is obviously better 
to have an accurate computation method. For slope design 
purposes, the FoS used will be decided by the engineer based 
on experience, knowledge and reliability of available data, 
assumptions, and used approach.

Conclusions

In this study, the authors revisit the equation for stability 
analysis against toppling of single block blocks with straight 
edges and with rounded edges. These equations do not take 
into account the possible deviation (γ) between the dip direc-
tion of the slope and that of the basal plane of the potentially 
toppling block. An updated version of this equation is pro-
posed, by including the aforementioned deviation (γ). Ana-
lytical results estimated with this equation are comparable 
with those observed from physical models of blocks tilted 
in the laboratory.

Furthermore, it has been observed that the results 
obtained by means of the equation considering a certain 
rounding of the edges better fit with the experimental ones 
obtained with test specimens without previous artificial 
alteration (apparently, straight edges). In this line, the geo-
metric defects (parallelism between faces or defects on the 
edges and corners) attributed to the cutting process can be 
represented by means of a positive radius of curvature. The 
relationship r = 2/3·rc

av considered has shown to reasonably 
represent average results with sufficient accuracy.

The formulation has been extended to the case of block 
toppling, complementing classic approaches, for scenarios 
where the basal planes of the blocks are rotated with respect 
to the slope strike. Physical tilt tests of convenient sharp-
edged and rounded block assemblies have demonstrated that 
the formulations herein presented are appropriate to obtain 
reasonably accurate results of critical toppling angles.

Both for single and multiple block toppling, it is seen that 
when the orientation of the basal planes deviates up to 10° 
or 15°, the results are scarcely affected, but when this strike 
difference is over 20°, the results of critical angle or factor or 
safety can be relevantly affected. Such consideration could 
be appropriate to fine-tune stability analysis of precariously 
balanced rock boulders.

Even if previous studies have analyzed altogether the role 
of different orientation parameters (rear, basal, and lateral 
surface of toppling blocks) and lateral release surfaces, the 
presented approach allows to analyze, independently and in 
a rigorous manner, the relevant influence of the orientation 

of the basal plane. This can be of help to individuate the 
different impacts on the stability of various geometrical and 
geomechanical features. Moreover, the orientation of the 
foliation planes is relevant too for flexural toppling cases, 
where cracks will tend to open normally to these planes, 
so an extension of this approach could also contribute to 
analyze such cases in a more rigorous manner.
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