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ABSTRACT

The widespread use of social media platforms has created convenient ways to obtain
and spread up-to-date information during crisis events such as disasters. Time-
critical analysis of crisis-related information helps humanitarian organizations and
governmental bodies gain actionable information and plan for aid response. How-
ever, situational information is often immersed in a high volume of irrelevant content.
Moreover, crisis-related messages also vary greatly in terms of information types,
ranging from general situational awareness - such as information about warnings,
infrastructure damages, and casualties - to individual needs. Different humanitarian
organizations or governmental bodies usually demand information of different types
for various tasks such as crisis preparation, resource planning, and aid response. To
cope with information overload and efficiently support stakeholders in crisis situa-
tions, it is necessary to (a) classify data posted during crisis events into fine-grained
humanitarian categories, (b) summarize the situational data in near real-time.

In this thesis, we tackle the aforementioned problems and propose novel methods
for the classification and summarization of user-generated posts from microblogs.
Previous studies have introduced various machine learning techniques to assist hu-
manitarian or governmental bodies, but they primarily focused on model perfor-
mance. Unlike those works, we develop interpretable machine-learning models which
can provide explanations of model decisions. Generally, we focus on three methods
for reducing information overload in crisis situations: (i) post classification, (ii) post
summarization, (iii) interpretable models for post classification and summarization.
We evaluate our methods using posts from the microblogging platform Twitter, so-
called tweets. First, we expand publicly available labeled datasets with rationale
annotations. Each tweet is annotated with a class label and rationales, which are
short snippets from the tweet to explain its assigned label. Using the data, we de-
velop trustworthy classification methods that give the best tradeoff between model
performance and interoperability. Rationale snippets usually convey essential in-
formation in the tweets. Hence, we propose an integer linear programming-based
summarization method that maximizes the coverage of rationale phrases to gener-
ate summaries of class-level tweet data. Next, we introduce an approach that can
enhance latent embedding representations of tweets in vector space. Our approach
helps improve the classification performance-interpretability tradeoff and detect near
duplicates for designing a summarization model with low computational complexity.
Experiments show that rationale labels are helpful for developing interpretable-by-
design models. However, annotations are not always available, especially in real-time
situations for new tasks and crisis events. In the last part of the thesis, we propose
a two-stage approach to extract the rationales under minimal human supervision.

Keywords: classification, summarization, interpretability, multi-task learn-
ing, semi-supervised learning, crisis events, Twitter



ZUSAMMENFASSUNG

Die weit verbreitete Nutzung von Social-Media-Plattformen hat vielfältige Mög-
lichkeiten geschaffen, um in Krisensituationen wie z.B. bei Katastrophen aktuelle
Informationen zu erhalten und zu verbreiten. Die zeitnahe Analyse krisenbezo-
gener Informationen hilft humanitären Organisationen und weiteren Akteuren dabei,
aktuelle und verwertbare Informationen zu erhalten und Hilfsmaßnahmen zu pla-
nen. Allerdings sind solche situationsbezogenen Informationen in der Regel in einer
großen Menge irrelevanter Inhalte verborgen. Darüber hinaus gibt es auch sehr
unterschiedliche Arten von krisenbezogenen Nachrichten. Diese reichen von all-
gemeinerSituationswahrnehmung - wie Warnungen, Informationen zu Infrastruk-
turschäden und Opfern - bis hin zu Informationen zu individuellen Bedarfen. Für un-
terschiedliche Aufgaben der einzelnen Akteure werden dabei unterschiedliche Arten
von Informationen benötigt. Um die Datenflut zu bewältigen und die Beteiligten
in Krisensituationen effizient zu unterstützen, ist es notwendig, (a) Daten, die in
Krisensituationen veröffentlicht werden, in feingranualare humanitäre Kategorien
zu klassifizieren, (b) die Situationsdaten in Echtzeit geeignet zusammenzufassen.

In dieser Arbeit befassen wir uns mit den oben genannten Herausforderungen
und schlagen innovative Methoden für die Klassifizierung und Zusammenfassung von
nutzergenerierten Inhalten insbesondere von Posts in Microblogging-Plattformen
insbesondere im Kontext von Krisensituationen vor. In früheren Studien wur-
den verschiedene Techniken des maschinellen Lernens zur Unterstützung von hu-
manitären oder Regierungsbehörden zu unterstützen, aber sie konzentrierten sich
hauptsächlich auf die Modellleistung. Im Gegensatz zu diesen Arbeiten entwickeln
wir interpretierbare Machine-Learning-Modelle, die Erklärungen für Modellentschei-
dungen liefern können. Dabei konzentrieren wir uns auf drei Hauptaspekte: (i) Klas-
sifizierung von Posts, (ii) Zusammenfassung von Posts, (iii) interpretierbare Mod-
elle für die Nachklassifizierung und Zusammenfassung. Die entwickelten Methoden
werden mit Daten der Plattform Twitter sogenannten Tweets evaluiert. Zunächst
erweitern wir öffentlich verfügbare, gelabelte Datensätze mit begründenden Anno-
tationen. Jeder Tweet wird mit einem Klassenlabel und Begründungen (Ratio-
nales) annotiert, das sind kurze Ausschnitte aus dem Tweet, um das zugewiesene
Label zu erklären. Anhand dieser Daten entwickeln wir vertrauenswürdige Klas-
sifizierungsmodelle, die den besten Kompromiss zwischen Modelleffektivität und
Interpretierbarkeit erzielen. Rationales vermitteln in der Regel wichtige Informa-
tionen in den Tweets. Daher schlagen wir einen auf ganzzahliger linearer Pro-
grammierung basierenden Zusammenfassungsansatz vor, der die Abdeckung der
Begründungsphrasen maximiert, um Zusammenfassungen von Tweet-Daten auf Kla-
ssenebene zu generieren. Weiterhin schlagen wir einen Ansatz vor, der die la-
tente Einbettung von Tweets im Vektorraum verbessern kann. Unser Ansatz hilft,
den Kompromiss zwischen Klassifizierungseffektivität und Interpretierbarkeit zu
verbessern und Fast-Duplikate zu vermeiden, um ein Zusammenfassungsmodell mit
geringer Rechenkomplexität zu erhalten. Experimente zeigen, dass Die rationale



Annotationen für die Entwicklung interpretierbarer Modelle hilfreich sind. Annota-
tionen sind jedoch nicht immer verfügbar, insbesondere in Echtzeitsituationen, für
neue Aufgaben und in Krisensituationen. Im letzten Teil der Arbeit schlagen wir da-
her einen zweistufigen Ansatz vor, um die Rationales mit minimalem menschlichen
Aufwand zu erlernen.

Schlagwörter: Klassifizierung, Zusammenfassung, Interpretierbarkeit, Multita-

sking Lernen, Halb-überwachtes Lernen, Krisensituationen, Twitter
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• Thi Huyen Nguyen, Tuan-Anh Hoang, Wolfgang Nejdl, Efficient Sum-
marizing of Evolving Events from Twitter Streams, in Proceedings of the
2019 SIAM International Conference on Data Mining, Calgary, Alberta,
Canada, May 2019. [103]

Chapter 4 builds up on the following publications about an interpretable
approach to classify and summarize crisis-related tweets from Twitter:

• Thi Huyen Nguyen, Koustav Rudra, Towards an Interpretable Approach
to Classify and Summarize Crisis Events from Microblogs, in Proceedings
of the ACM Web Conference 2022, April 2022. [108]

Chapter 5 describes a contrastive learning-based approach to improve the
interpretability and robustness of crisis-related classification and summariza-
tion models. The chapter presents the research published in:

• Thi Huyen Nguyen, Koustav Rudra, Rationale Aware Contrastive Learn-
ing Based Approach to Classify and Summarize Crisis-Related Microblogs,
in Proceedings of the 31st ACM International Conference on Information
& Knowledge Management (CIKM), October 2022. [107]

Chapter 6 focuses on a semi-supervised approach to learn faithful attention-
based explanations for the classification of crisis events and builds up on the
following work:

• Thi Huyen Nguyen, Koustav Rudra, Learning Faithful Attention for In-
terpretable Classification of Crisis-Related Microblogs under Constrained
Human Budget, in Proceedings of the ACM Web Conference 2023, May
2023. [109]
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1
Introduction

1.1 Motivation

The recent growth in popularity of microblogging platforms and other social media
platforms has led to a major shift in global communication. Thanks to social media,
information spreads faster, and the world seems to get smaller. People can easily
get updated with the latest news about the world on a daily basis. Social media
offers a fast indicator of currently occurring and developing events, so-called breaking
news events. During these events, a large volume of real-time information is posted.
Acquiring posts related to breaking news in real-time is vital in many important
applications, such as event detection, trend analysis, social sensing, and public opinion
monitoring. However, real-time acquisition of news-relevant posts is challenging due
to the massive volume of irrelevant content, the prevalence of noise, and the wide range
of topics. Besides, long-ranging breaking news often attracts a high number of relevant
posts, making it impossible to understand the events by reading through all the posts.
It is, therefore, necessary to develop automatic systems for filtering and summarizing
news-relevant content of these events. These systems should be interpretable so that
end-users and decision-makers can deploy them for their purposes.

Recently, microblogging platforms have been heavily leveraged to report and ex-
change information about natural disasters. Many previous studies have shown the
vital role of user-generated posts from microblogging platforms in enhancing emer-
gency situational awareness and planning aids during crisis situations [57]. However,
situational data vary greatly in terms of information types, such as infrastructure
damage, caution and advice, affected individuals, rescue, or irrelevant content [55].
These information types are defined and used by United Nations Office for the Co-
ordination of Humanitarian Affairs (UN OCHA). The data of different information
types are utilized for different purposes. For example, information about “caution
and advice” is crucial for both humanitarian organizations and local people to ob-
tain situational awareness and preparation. Meanwhile, posts about infrastructure

1
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damage are beneficial for governmental bodies, NGOs, and rescue agencies to assess
the situation’s seriousness and for aid planning. The availability of information from
social media sources can help decision-making tasks of humanitarian organizations
and governmental bodies be easier. Nevertheless, a huge volume of information also
becomes a bottleneck; hence, a streamlined mode of updating across different cate-
gories is desired by the agencies. It thus requires efficient methods to classify posts
into fine-grained humanitarian classes and then summarize class-level posts in near
real time.

Apart from high performance, interpretability has become an essential component
in model building, which is decisive in the applicability of machine learning models
in real-life scenarios. Tasks that have an impact on society and human lives are cru-
cial, and explainability is an important criterion when designing machine learning
models in such cases. Despite advances in Natural Language Processing [35] and
interpretable Deep Learning models [36, 62] on formal text datasets, previous works
on classification and summarization of crisis events primarily focus on performance
but did not pay attention to the decision-making processes. Such systems need to
be interpretable in nature [124, 125, 127] to increase the trust of end-users for ap-
plication purposes. Hence, interpretable approaches that obtain the best trade-off
between model performance and interpretability need to be developed for tasks in
crisis domain. The European Union General Data Protection Regulation (GDPR)
also extended the automated decision-making rights and regulated ‘right to explana-
tion’ to double or legally related decision [168].

Among microblogging platforms, Twitter is emerging as one of the most popular
network, with over 330 million monthly active users and more than 500 million tweets
posted per day [169]. The platform allows users to express their own opinions in the
form of short messages, known as tweets, on various topics ranging from business
and politics to casual conversation. Twitter is fast in delivering news ,“beating tradi-
tional media”, by providing real-time and eye-witnessed content. Some surveys and
large-scale analyses have shown that a major proportion of Twitter users frequently
tweet and receive information about news [13, 15]. Empirical studies also find that
Twitter often has faster responses and more complete coverage than mass media when
reporting breaking news [159]. In turn, Twitter is increasingly viewed as a crucial
resource for detecting and monitoring breaking news events, especially during crisis
situations such as natural disasters [56].

1.2 Scope of the thesis

Our primary goal is to develop efficient and trustworthy methods to assist human-
itarian organizations in their decision-making processes, mostly during natural dis-
aster events such as earthquakes, typhoons, etc. Due to the availability of Twitter
API [152], it has become common to use the platform as a resource for many re-
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search tasks. In this thesis, we address three core problems: (i) Identification and
summarization of tweets related to breaking events from Twitter, (ii) Developing in-
terpretable classification and summarization approaches for the crisis-related tweets,
and (iii) Adapting the developed models to work under limited human supervisions.
To achieve our overall goal, we lay out the following research questions:

Question 1: Given a large tweet stream of an evolving breaking news event, how
to efficiently identify and summarize relevant tweets in near real-time?

At the onset of breaking news, especially during emergency events, Twitter re-
ceives an overwhelming amount of messages. As an example, approximately one
million tweets containing some COVID-19-related hashtags were posted daily during
the first two weeks of the COVID-19 outbreak in 2020. Then, the event evolved
and attracted more than 6 million tweets daily for a long time [120]. Given a spe-
cific breaking news event, providing a dataset of relevant tweets is helpful for many
further purposes, such as identifying specific needs or estimating damages during
crises. However, event-related tweets are normally immersed in a high volume of
irrelevant messages. Therefore, automatic and efficient tools for the automatic filter-
ing of relevant tweets are demanded. Supervised learning approaches require human
annotations for training. Besides, these methods are often not scalable in case of
evolving events as they require retraining processes to adapt the filters periodically.
Some common keyword-based approaches involve manual effort over time to update
new keywords as events evolve. Our objective is to propose a method that requires
minimum initial human effort and is able to efficiently filter relevant tweets of evolving
events over time.

After the filtering step, there is still a vast number of tweets about an event.
It is impossible for humans to digest the information by reading through all the
tweets. To obtain a quick overview of the situation, an online summary of event-
related tweets is valuable. This helps to handle the content overload and provides
an overall understanding of the situation. Given a breaking news event, tweets can
contain information on diverse sub-events. Some common approaches to capturing
events’ aspects are topic models [32], burst detection [43], or clustering [78]. However,
as events evolve, the number of tweets is skewed toward large sub-events, and these
methods often fail at covering less popular sub-events. Besides, clustering-based
methods usually require the number of clusters or other hyper-parameters in advance,
which is not practical in case of evolving events. Most previous studies focus on the
one-time summarization of static or small-scale data. These methods are not scalable
with large-scale Twitter streams since these models can not be updated incrementally
with new data from evolving events. A few studies have made some first attempts
to propose methods for online summarization of Twitter Streams [113, 140, 163], but
their models still have high computational costs. In this thesis, we focus on a method
that is efficient, scalable, and able to generate informative and diverse summaries of
evolving events.

Question 2: How to design an interpretable model for classification and summa-



4 Chapter 1 Introduction

rization of crisis events?

During crisis events such as earthquakes, typhoons, etc., relevant messages are
drenched in a huge mass of irrelevant posts. Human organizations may want to ob-
tain concise summaries of tweets at fine-grained levels, such as “caution and advice”,
“infrastructure damage”, “volunteering and rescue”, “injuries and death”, etc. To
fulfill this, many studies have provided datasets with humanitarian class labels and
different approaches for the classification and summarization of tweets. However, ex-
isting crisis-specific classification and summarization models mainly focus on model
performance but not model transparency [55, 129, 98, 130]. Advanced deep-learning
models [35, 121] perform better than traditional machine-learning methods on many
tasks, yet it is quite opaque how they come to make output decisions. Recently,
interpretability has arisen as an important topic. Models are interpretable when
humans can understand the cause/reasoning of an output decision. Interpretability
is important for researchers and developers to debug machine learning models and
make informed decisions on how to improve them. Moreover, for tasks that have high
impacts on society, such as in health or crisis domains, interpretability makes sure
that a proposed model is right for the right reasons, increases the trust and confi-
dence of end-users to use machine-based supporting systems or applications. Hence,
we bring the trade-off between model accuracy and interpretability in designing the
classification and summarization models of crisis-related tweets to the forefront.

Question 3: How to learn better representations of crisis-related tweets in vector
space for improvement of interpretable classification and summarization models?

Generally, the performance and applicability of classification-summarization sys-
tems depend on two factors — (i) the representation of posts in latent embedding
space and (ii) understanding the decision-making process of the model. While the first
factor helps in boosting the performance, the second one ensures the interpretability
of the model, which, in turn, helps in the adaptation of such systems in real-life usage.
Some pre-trained language models such as BERT [35], BERTweet [99], RoBERTa [82]
performs well on many downstream tasks. Nevertheless, the pre-trained embedding
representations are unsuitable for unsupervised tasks such as clustering, similarity
detection of tweets, etc. Generally, the cosine similarities between BERT-based em-
bedding representations of any two tweets are skewed toward 1.0. In this thesis, we
propose an approach to advance embedding representations of crisis-related tweets so
that they can be further used to improve tweet classification and summarization per-
formance. Also, we consider interpretability as a primary objective when designing
the classification model of tweets during crisis events.

Question 4: How to learn faithful attention-based explanations with minimal
human supervision?

Over the last few years, various approaches have been proposed in an attempt to
open the black box of deep networks [79, 62]. Neural network models often use atten-
tion mechanisms [9] to improve the performance of various tasks in natural language
processing. Attention produces a probability distribution over input tokens, and the
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vector representation of the entire input sentence is the weighted sum of its constituent
token vectors. Many works have used attention weights as explanations for model pre-
dictions, where tokens with higher attention weights are considered more important
for the output decision. Nevertheless, recent studies illustrate that attention weights
do not always provide faithful explanations [59, 165]. Other works [36, 174] proposed
in-modeling interpretable approaches that make the model inherently interpretable.
However, the authors relied on manual human annotations to train interpretable mod-
els and predict tokens responsible for determining the output labels. This approach
is promising for designing interpretable crisis-related systems, but the human anno-
tation also adds a bottleneck to the scalability of the method and its applications to
unseen crisis events. This motivates us to solve the following question in designing
classification models for crisis events: Can we learn faithful attention-based explana-
tions for interpretable classification of crisis events under a given human budget, i.e.,
limited human annotation of explanations?

1.3 Contributions

This thesis addresses the identified research questions in the previous section. Over-
all, we focus on four principal contributions in the field of crisis-related classification
and summarization. As the first contribution in this thesis, we propose approaches
for online filtering out and summarizing relevant tweets of an evolving breaking news
event, which can be natural disasters, man-made crises, or other popular breaking
news. In the second part, we focus on crisis events only and introduce an interpretable
classification and summarization framework for crisis-related tweets. The third con-
tribution is to learn effective embedding representations of crisis-related tweets for
a better classification (i.e., higher accuracy and interpretability scores) and a more
robust summarization of tweets during crisis events by using a contrastive learning-
based approach. Finally, we propose an attention-based interpretable model for the
classification of crisis events under limited human guidance.

(I). Classification and summarization of evolving breaking news events. We
present an efficient semi-supervised graph-based method for filtering tweets relevant
to a given breaking news from Twitter’s stream. The task is studied in the context
where only a small set of news-related tweets is given at the early stage of the breaking
news, and we have to decide, in real-time, if subsequent tweets in the tweet stream
are relevant to the news. The main idea of our proposed approach is to first represent
relevant tweets to a given breaking news by a graph whose nodes and edges are
defined by words and their co-occurrence in the tweets, respectively. Besides, we also
maintain another graph of background tweets that occur around the same time as
the tracked news. Then, we introduce a method to measure the relevance score of
each incoming tweet to the news for determining the tweet label. Defined in this
way, the graphs can be updated incrementally. Our method only requires minimal
human supervision. It performs better in filtering incoming relevant tweets and is
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computationally more efficient than other baselines.

For summarization, we propose a graph-based method for extractive summariza-
tion of tweet streams. Our method employs a word graph to represent tweets from the
stream. The graph allows us to update the representation in real time. To perform
the summarization at a time point, we first apply an incremental algorithm inspired
by a diversified ranking approach [67] to detect sub-events. This algorithm is totally
unsupervised and able to select a diverse set of words representing sub-events. Lastly,
most representative tweets are carefully chosen from a small set of candidates contain-
ing those selected words and returned as the summary. Our method, therefore, does
not require prior information and is highly scalable while returning more informative,
diverse, and readable summaries.

(II). Interpretable classification and summarization of crisis events. Follow-
ing the ideas from some previous works for tasks on normal text datasets [36, 174],
we introduce an interpretable-by-design multi-task model to classify tweets into fine-
grained humanitarian classes during crisis events. Our classification model can pro-
vide explanations or rationales 1 for its decisions. Rationales are short snippets from
the original text that provide supporting evidence for the output label. For example,
the tweet “RT @USER: Nearly 1,805 dead in Nepaĺs killer quake, India mounts mas-
sive rescue operation” reports information about death, and “Nearly 1,805 dead” is
annotated as a rationale, which captures essential information to classify the tweet
into ”injures and death” class. In the summarization phase, we employ an Inte-
ger Linear Programming (ILP) based optimization technique along with the help of
rationales to generate summaries of event categories.

Our classification model obtains the best trade-off between model performance and
interpretability compared to existing methods. Besides, the summarization model
benefits from rationale data. Our generated summaries are informative regarding
both groundtruth-based and human evaluations.

(III). Learning efficient tweet representation for interpretable classifica-
tion and summarization of crisis events. To obtain good representations of
crisis-related tweets and further boost the performance of classification and summa-
rization tasks, we propose a rationale-aware contrastive learning-based classification
and summarization framework. Our proposed Rationale Aware Contrastive Learning
based Classification (RACLC) model consists of two learning stages. In the first stage,
the model learns rationales by jointly optimizing three loss values, i.e., losses of class
label prediction, rationale extraction task, and an additional contrastive loss [65],
which learns to bring semantically similar tweets closer and dissimilar tweets far
apart. In the second stage, we feed the extracted rationales from the first stage to a
simple BERTweet [99] model with a Softmax output layer on top to classify tweets
into humanitarian classes. This step shows the interpretability of the predicted ra-
tionales. Next, we propose an integer linear programming-based summarization ap-
proach that maximizes the coverage of rationale words and minimizes redundancy

1rationales and explanations are used interchangeably in this thesis
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by discarding duplicate or near-duplicate tweets. Contrastive learning-based latent
representations of tweets help in the detection of near-duplicate tweets. Thus, our
Contrastive Learning-based Tweet Summarization (RACLTS) model can generate in-
formative summaries with low computational complexity. Besides, we evaluate and
show a promising application of our classifier in extracting actionable snippets from
a subset of actionable tweets provided by TREC-IS [90]. Actionable tweets gener-
ally contain immediate and critical alerts useful for crisis response. For example,
the tweet “Just received an email from Paris. Some french people missing in
#Langtangvalley #NepalEarthquake . Any info!! http://t.co/fUbBBCKRhY ” and
the bold texts are the actionable tweet and actionable snippet, respectively.

(IV). Learning faithful attention-based explanations for the classification
of crisis events under a constrained human budget. In previous parts of the
thesis, we consider interpretable-by-design classification models that require human
annotations of rationales to train and extract explanations for the output prediction.
In this part, we focus on the following two contributions: (i). we introduce a two-
stage framework that exploits the power of a semi-supervised learning approach to
learn faithful explanations under a limited amount of human-annotated data. The
first stage is to train and predict rationale snippets under a semi-supervised setup.
The second stage predicts the class label based on the extracted rationales only. (ii).
We try to align the attention weights of tokens with the predicted probabilities of
rationales to make the attention weights faithful. Our model obtains better or com-
parable classification performance to baselines and faithful attention heatmaps using
only 40-50% human-level supervision. Furthermore, we also explore the application of
our classifier in identifying actionable labels and actionable snippets from the dataset
provided by TREC-IS [91] in the transfer-learning setup.

1.4 Thesis Structure

The remainder of the thesis is organized as follows.

In Chapter 2, we review the literature for the thesis. In particular, we focus on
selected theories and techniques for three main problems: Tweet Classification, Tweet
Summarization, and Model Interpretability.

Chapter 3 discusses our proposed approach of filtering and summarizing tweets
relevant to a given breaking news event from large Twitter streams. We consider
graph-based semi-supervised and unsupervised approaches that can efficiently classify
relevant tweets and summarize evolving events in near real-time.

Chapter 4 focuses on interpretable classification and summarization approaches in
the crisis domain. We introduce a multi-task model that can simultaneously classify
tweets into fine-grained humanitarian classes and provide explanations for the output
decisions. The outputs of the classification phase are then used for the summarization
of class-level tweets during crisis events.
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Chapter 5 presents our proposed rationale-aware contrastive learning approach to
classify and summarize tweets during crisis events. The contrastive learning frame-
work helps improve the interpretability of the classification model and results in better
representations of tweets in the embedding space. We make use of the fine-tuned em-
beddings and design a summarization model that performs equally well or better than
existing methods with low computational cost.

Chapter 6 describes our work on improving the faithfulness of attention-based ex-
planations for the classification of crisis events under a constrained human budget. In
particular, we apply a semi-supervised approach to derive faithful machine attention
for the model’s decisions. Further, we employ a zero-shot transfer learning setup in
the identification of rationales in actionable tweets, which contain crucial information
and immediate alert during crisis events.

Finally, we conclude our contributions of this thesis and discuss future research
direction in Chapter 7.



2
Literature Review

This chapter presents an overview of essential backgrounds and recent studies that are
related to our works in this thesis. First, a short description of the Twitter platform
and its practical usage is presented. Next, research works on two important tweet
classification problems, which are the identification of relevant tweets during generic
breaking news events and tweet classification during crisis events, are discussed. Then,
I review works on text summarization and tweet summarization. Finally, I present an
overview of machine learning interpretability and representation learning methods.

2.1 Twitter as Data Source

The microblogging platform Twitter was launched in 2006 as a social networking ser-
vice for users to send and respond to texts, images, and videos, known as “tweets”.
Since its onset, Twitter has experienced rapid growth. As of 2022, the platform has
more than 350 million users and 500 million tweets posted per day [7]. Many studies
have shown the crucial impacts of Twitter in many aspects, such as communication,
education, politics, or emergency management [173, 172, 24]. Twitter’s usage spikes
during prominent breaking news. For example, millions of tweets posted daily dur-
ing the recent COVID-19 outbreak [58]. The real-time functionality makes the site
an effective de facto emergency communication channel for breaking news. Twitter
provides us with an API (application programming interface) [152] that we can use
to easily retrieve tweet data. The data availability and easy accessibility make the
platform a crucial resource for the research community. Sakaki et al. [134] suggested
Twitter as a real-time sensor for the detection of natural disasters such as earthquakes.
The authors proposed models to discover the center and trajectory of earthquakes’
location. A recent work [145] showed that crowdsourced detection of seismic activ-
ity from Twitter provides reliable locations of earthquakes, which are in many cases
faster than seismological protocols. Some studies provided surveys of research works
on processing social media messages in mass emergencies [54].

9
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2.2 Tweet Filtering and Classification

Identification of event-relevant tweets is useful for users and stakeholders to easily
keep track of situational updates for their own purposes. However, at the time of
a specific event, many irrelevant messages are posted along with useful and relevant
information. This section discusses some recent studies on tweet classification to pri-
oritize important information during generic and crisis-related breaking news events.

2.2.1 Tweet classification during evolving breaking news

A series of studies have tried to identify relevant tweets during evolving events. Prior
works on the online extraction of relevant tweets during an evolving generic breaking
news can be grouped by main approaches as follows:

Keyword based approaches: These methods focus on defining and expanding
the set of keywords that capture essential aspects of the event for tweet retrieval.
A tweet is considered relevant to an event if it contains one or more event-related
keywords. Wang et al. [161] proposed to use hashtags as keywords for filtering tweets
related to some evolving event. Starting from an initial set of manually selected hash-
tags, the set is expanded by adding new hashtags most similar to the ones in the set.
Similarly, Li et al. [72] proposed a greedy method for automatically selecting keywords
by estimating the tweet usefulness on recent samples from the Twitter stream. The
proposed method is, however, not incremental. Cotelo et al. [33] proposed to select
the keywords using a graph-based method that can be updated incrementally.

Information retrieval based approaches. These approaches retrieve relevant
tweets to query topics based on information retrieval strategies, where tweets and
queries are transformed into suitable representations (i.e., vectors, matrices, tuples,
etc.) for retrieval. Different retrieval strategies employ different models for their text
representation purposes. Lin et al. [76] examined different smoothing techniques for
language model-based tweet filtering. They, however, only considered broad topics
such as ‘baseball’ and ‘fashion’ with many past relevant tweets for training. Later,
TREC started its microblog track for real-time searching and filtering in Twitter [143].
The track has attracted a number of contributions based on adapting information re-
trieval models for tweet filtering [6, 71]. All approaches rely on extensive external
information sources and/or require manual decisions on some threshold settings. Al-
bakour et al. [4] proposed to use pseudo-relevance feedback techniques for enriching
tweets instead of external sources.

Supervised learning based approaches. These approaches employ labeled
data to train machine learning models and then determine relevant tweets for a
given topic/event. There are proposed supervised models within TREC’s microblog
track for tweet filtering [148, 14]. However, they heavily rely on external informa-
tion sources. Later contributions suggested different methods for engineering features
solely based on tweets’ content [177, 88].
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Unlike the above approaches, we propose the semi-supervised graph-based ranking
approach for measuring terms’ importance in a document as proposed in [19, 126] to
filter relevant tweets of evolving breaking news in real time. Our method is inspired by
the idea of graph-based models for summarization [136, 93]. Previous works, however,
do not consider the importance of edges connecting terms when measuring documents’
similarities as we do. We further devise an intuitive strategy for automatically setting
decision thresholds that neither require domain knowledge nor prior information.

2.2.2 Tweet classification during crisis events.

During mass convergence breaking news, such as natural disasters, tweets can con-
tain information about different humanitarian classes, such as infrastructure dam-
age, caution, rescue, etc. Many previous works have attempted to provide datasets
with humanitarian labels for efficient extraction of tweets into fine-grained cate-
gories [56, 2, 91]. Some popular humanitarian classes that are defined by UN OCHA
and considered in many existing works and also in our thesis are:

• Infrastructure damage: Reports of damaged roads, bridges, buildings, monu-
ments, interrupted or restored services and utilities. This information is helpful
for the severity assessment of the damage.

• Caution and advice: Information about warnings issued or lifted. The data is
crucial for enhancing situational awareness and preparation.

• Rescue, donation, and volunteering efforts: Reports of emergency needs or do-
nations of food, water, money, shelter, clothes, medical supplies, etc. This
information can be helpful for human organizations and volunteers to plan for
relief operations.

• Injuries or death: Reports of injured people, fatality. The data is important to
plan for relief where it is needed and assess the situation’s severity.

• Affected people and evacuations: Reports about missing, trapped, or displaced
people due to the crisis. This information provides human organizations with
essential information to plan for aid support.

• Other useful information: Other information that provides useful information
to understand the situation

• Not related or irrelevant: Emotional, unrelated to the situation, or irrelevant
content.

Recent TREC-IS track [22] has defined a different ontology of 25 tweet informa-
tion types. Among them, six are identified as actionable information that contains
immediate alerts of high importance for emergency responses:
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• Requests for goods/services: Reports of particular service or physical goods
needed, i.e., equipment, shelter, psychiatric needs, etc.

• Requests for search/rescue: User requests on self-rescues or other rescues

• Call to action - move people: Calls on evacuation, asking people to leave an
area and or go to another area

• Reports of emerging threats: Reports of potential problems that can cause
damage or loss of life (i.e., buildings at risk, looting, power outage, etc.)

• Reports of new sub-event: A new occurrence that health organizations or gov-
ernments need to respond to (i.e. trapped people)

• Reports of service available: Providing information on available services (i.e.,
shelters, hospitals)

Generally, the above six actionable information types and humanitarian classes are
overlapped in terms of information. For example, the information type “Reports of
emerging threats” mainly includes tweets of the ‘infrastructure damage’ humanitarian
class. In this thesis, we mainly consider models to classify tweets into humanitarian
classes. However, in the later part of the thesis, we also apply transfer learning to
take steps toward the detection of tweets belonging to actionable information types.

Classification of crisis events has been a topic of increasing interest and has at-
tracted growing research attention. Various methods have been proposed to classify
tweets during crisis events. Approaches range from traditional supervised classifica-
tion methods such as Support Vector Machine (SVM), Näıve Bayes (NB) to recent
deep learning and embedding-based models. Verma et al. [156] applied standard
machine learning models such as Naive Bayes and Maximum Entropy to identify
tweets that contribute to situational awareness during crisis events. The authors
utilized both hand-annotated and automatically extracted features for classification.
Similarly, Rudra et al. [129] used a Support Vector Machine (SVM) but considered
low-lexical and syntactic features. Generally, these studies mainly apply binary classi-
fication methods to identify situational tweets. Some works also employed traditional
methods for the classification of tweets into multiple humanitarian classes during
crisis events [55, 56].

A substantial number of previous works focused on deep learning models with
pre-trained embeddings for crisis-related data classification [98, 89, 64, 80]. Nguyen
et al. [98] employed a Convolutional Neural Network (CNN) with word embeddings
pre-trained on Google news or crisis datasets. Mama et al.[89] compared the perfor-
mance of Neural Network models with pre-trained word embeddings and traditional
machine learning approaches in the classification of crisis-related tweets. Recently,
Transformer-based models [155] have been proposed and archived superior perfor-
mance compared to previous approaches. Liu et al. [80] introduced a robust Trans-
former for crisis classification. The authors ran experiments on two classification
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tasks, namely crisis recognition, crisis detection, and showed that the model achieves
better performance than conventional word embedding-based methods. Moreover,
many classification models were proposed in TREC-IS track [91] to classify tweets
into different information types and predict tweet priorities. The best performing
runs also tend to rely on transformer-based models [22].

All the existing works on the classification of tweets during crisis events primarily
aim at improving model performance. In this thesis, we try to design models with
the best trade-off between model accuracy and interpretability. In other words, our
proposed crisis-related classification models in this thesis can both classify tweets into
fine-grained humanitarian classes and provide human-understandable explanations of
class decisions.

2.3 Tweet Summarization

Automatic summarization is the process of shortening a set of data computationally,
to create a subset that represents the most important and relevant information within
the original content [167]. In this section, we discuss previous studies on short-text
summarization and tweet summarization during crisis events that are closely related
to our works in this thesis.

2.3.1 Short-text summarization

Automatic summarization of short texts has become a topic of increasing interest due
to the recent exponential growth of user-generated content from social media plat-
forms or e-commerce websites. Summarization approaches can be broadly grouped
into two main categories: Abstractive and extractive summarization.

Abstractive summarization. It is the task of generating an informative and
concise summary that captures the essential information from the source text. The
summary may contain new phrases that are not the same as the original text. One of
the typical abstractive methods is Opinosis [40], which was proposed for summariz-
ing short user reviews collected from Tripadvisor, Amazon, and Edmunds. Opinosis
uses a word graph to represent input sentences and generates abstractive summaries
using the most redundant paths on the graph. Adopting the same approach, Sharifi
et al. [138] proposed to use shortest paths instead. Both these algorithms are com-
putationally expensive and not incremental. Later, Olariu [113] proposed TOWGS
algorithm that employs a tri-gram graph to generate online summaries incrementally.
Nevertheless, these abstractive summarization algorithms often require input texts to
be high-overlapping and well-written, hence often returning less informative and less
readable when applied to tweets.

Extractive summarization. Extractive methods work by identifying repre-
sentative text units (e.g., sentences and phrases) from the original text as sum-
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maries. This approach is quite prevalent in prior works of automatic tweet sum-
marization [140, 16, 32, 41, 17, 162]. For short tweets, existing extractive methods
for summarizing events’ tweets generally consist of two steps: (i) sub-event detection,
followed by (ii) tweet selection for each sub-event. The first step is crucial for cap-
turing different aspects of events. This step is often based on either burst detection,
topic modeling or tweet clustering methods [32, 17, 140, 162]. In the second step,
representative tweets or phrases are selected using some variant of PageRank [20] or
LexRank [37] algorithms. Though these methods return highly readable summaries,
they suffer from the diversity challenge and might not capture less prominent aspects
of events. In addition, they are often computationally expensive and/or require prior
knowledge for setting their key engineering parameters.

Generally, previous works on short-text summarization mainly focus on the one-
time summarization of static datasets. To apply these methods for online summariza-
tion of evolving events, we need to re-run the models and make several passes over
the data. This is neither scalable nor suitable for large Twitter streams. Few studies
worked on online summarization of evolving events [140, 113], but they still suffer
from some short-comings such as the requirement of prior knowledge or low diversity.
Inspired by previous works on abstractive graph-based summarization, in this the-
sis, we develop an efficient graph-based summarization method for evolving breaking
news events. However, we generate extractive summaries by scoring and extracting
representative tweets instead. We address the diversity and scalability shortcomings
of previous extractive methods by adapting a scalable, diversified ranking technique
[67] for detecting sub-topics. Our method does not require any prior information and
returns a diverse set of tweets representing different aspects of an evolving event.

2.3.2 Tweet summarization during crisis events

Unlike general breaking news, crisis-related messages contain distinct features which
can be used to design efficient summarization models. Some recent studies have
proposed methods specifically for the summarization of crisis events [63, 129, 131,
128, 101, 133].

Some works applied clustering-based techniques to detect subtopics and generate
diverse summaries of crisis events. Kedzie et al. [63] presented an extractive summa-
rization system that predicts sentence salience and then uses a clustering algorithm to
select updates for disaster events. The authors explored disaster-specific features such
as geo-locations, disaster-specific language modeling, etc., for summarization. How-
ever, the paper focuses on well-written news articles about disasters instead of short,
noisy Twitter texts. Similarly, Nguyen et al. [101] applied a Pagerank-based approach
for the summarization of a disaster event, where each tweet is represented as a set of
important entities, such as subject, event phrase, location, and number. The authors
suggested that the subject answers the question WHAT, which is a cause (such as a
hurricane or a road). Meanwhile, event phrase represents the action or effect of the
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subject (i.e., kill), location specifies WHERE the event occurs, and number answer
the question of HOW MANY (i.e., number of victims). A weighted similarity graph
of tweets is built for ranking and extracting the most informative and diverse tweets
for the final summary.

A few works focus on specific traits of tweet texts posted during crisis events and
develop methods that maximize the coverage of important words. Rudra et al. [129]
proposed an extractive summarization technique to summarize situational informa-
tion from Twitter during disaster events. In this work, some disaster-specific terms
were specified as ‘content words’ such as numerals (i.e., number of injuries, death,
casualties, contact numbers, etc.), nouns (i.e., names of places, hospitals, etc.), and
main verbs (i.e., died, killed, trapped, etc.). A small set of tweets that have the high-
est coverage of essential content words were then included in the summary. Later, the
authors proposed follow-up works in this direction by using the AIDR platform [55]
and introduced extractive methods for summarization of tweets in different humani-
tarian classes during disasters [131, 130].

Some recent studies employed pre-trained language models for summarization.
Saini et al. [133] proposed a multi-objective extractive-based approach for microblog
summarization. Different aspects of summary, such as length, TF-IDF score of tweets,
and tweet dissimilarity, are optimized simultaneously. The dissimilarity between two
texts is calculated using Word Move Distance (WMD) measure, which is the minimum
amount of distance that embedded words [95] of one text need to “travel” to reach the
embedded words of the other one [68]. However, this method may include redundant
tweets in the final summary. For example, two tweets having high TF-IDF scores
and differing by only one word can both be selected since the different embedding
representations of the two words can lead to a high dissimilarity WMD value. A
few works [81, 60, 176] have shown the potential of recent pre-trained models in
summarization tasks of news articles. However, news articles contain well-written
and formal texts whose traits are completely different from Twitter texts. Moreover,
some recently proposed BERT-based models have constraints on the length of input
texts (i.e., number of sentences in input documents) and computation time, so it is
not effective and robust for disaster situations with millions of input tweets.

In this thesis, we try to capture important phrases in tweets and focus on this
content for developing tweet summarization methods. Our goal is to design efficient
models that have high performances in terms of standard measuring metrics and re-
quire computational complexity that can be suitable for the summarization of disaster
events in near real-time.
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(a) A linear model (b) A simple neural network with layers of neurons

Figure 2.1. Visualization of a linear relationship and a simple neural network.

2.4 Interpretability

2.4.1 Interpretable Machine Learning

Machine learning systems have demonstrated remarkable performance in many tasks
of different domains [118]. However, most of the high-accuracy models remain black
boxes whose internal logic workings are hidden, and the reasons for model decisions
are opaque. Machine learning systems can be limitedly applicable in real-life scenar-
ios due to a lack of trust on behalf of users. Nowadays, the interpretation of machine
learning models becomes an important requirement for any kind of task that has an
impact on society or human lives [69]. Interpretability is the degree to which a human
can understand the cause of a decision and correctly predict the method’s results [66].
The objective of machine learning interpretability is to interpret or explain the model
output decisions so that the model’s behaviors can be more transparent and trust-
worthy. Some machine learning models are interpretable by nature. As an example,
for a linear model, the association between input features X and output values Y can
be modeled linearly (Figure 2.1a). Meanwhile, for a simple fully connected neural
network, it is completely opaque which role each neuron plays or which features are
important for model outputs (Figure 2.1b). For this reason, many neural network
models are called “black boxes”.

Depending on the time point of application, interpretable methods can be broadly
categorized into three groups: (i) pre-modeling, (ii) in-modeling, and (iii) post-
modeling approaches [62]. Pre-modeling approaches are independent of the model
and mostly deal with data understanding, visualization, dimensionality reduction,
etc. Some statistical techniques for data visualization include t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) [153], Principal Component Analysis (PCA) [1], and
clustering methods. In-modeling approaches provide explanations for the output deci-
sions by making inherently interpretable models. Some popular approaches are linear
models [135], decision trees [115], and rule-based models [39]. For example, Haufe et
al. [50] interpreted weight vectors of linear models by visualizing the weight and sign
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of features for a specific input. Post-modeling approaches improve interpretability
by applying methods that analyze and explain decisions of a black-box model after
training. Most of the previous interpretability studies fall into this category. Such
post-modeling methods could be further categorized into four categories [62]:

• Feature importance-based explanations : These methods provide explanations
by assigning feature importance scores to input variables. Ribeiro et al. [124]
proposed LIME - Local Interpretable Model-agnostic Explanations, which high-
lights important features that lead to specific decisions. Similarly, Lundberg et
al. [85] introduced SHAP - SHapley Additive exPlanations, which give explana-
tions to specific decisions by computing the contribution of each feature to the
prediction.

• Example-based explanations - these approaches provide interpretability by cre-
ating proxy examples of the model, selecting input instances, and observing
model outputs to explain the system. Multiple example-based approaches were
introduced in the literature. Recently, Wachter et al. [157] proposed a counter-
factual method, which reveals the most important variables for predictions of
individual instances and how slight changes in input variables can lead to a com-
pletely different outcome. Mothilal et al. [96] introduced diverse counterfactual
explanations for explanations of machine learning classifiers.

• Rule-based explanations : These models extract useful information or compre-
hensive rules from trained models by re-tracing their internal processes for in-
terpretability. Hailesilassie [49] reviewed various rule extraction algorithms for
an artificial neural network.

• Visualization-based explanations : These approaches visualize the internal work-
ing of machine learning systems for model interpretation. For example, Casal-
icchio et al. [26] proposed tools to visualize how changes in a feature affect the
model performance.

As per model usage, interpretable models are either model specific, where model
parameters are accessible, or model agnostic (i.e., they don’t have access to model
parameters). Model-specific interpretability methods are limited to a single model or
a specific model family. These approaches exploit the internals of machine learning
models and reverse engineering approach to provide explanations for model decisions.
For example, the interpretation of weight vectors of a linear model is model-specific
interpretability. On the other hand, model-agnostic approaches can be applied to any
machine-learning model and belong to the post-modeling group.

As per the scope of explanation, approaches are categorized into local and global
types. Local interpretability is instance-based, which provides explanations of par-
ticular decisions made by the system. Meanwhile, global interpretability approaches
explore the whole logic and overall decision process of a model. These methods
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provide a general picture of the model and reasonings for output decisions. Global
interpretability is generally challenging to achieve in practice since models with many
parameters are unlikely to fit into human memory.

Interpretability has been widely studied for many tasks on formal texts but not
on noisy, short texts from microblogs. Most of the existing works on the classifica-
tion of crisis events from Twitter only focused on improving model performance. In
this thesis, we develop models that can be both effective and highly interpretable.
As mentioned earlier, post-modeling (post-hoc) interpretability approaches are pop-
ular. However, it is difficult to evaluate the models due to missing groundtruths.
Besides, post-modeling approaches are unreliable and could be easily fooled [142].
Concealed data poisoning attacks can be made to detect the reasoning process of
the trained models [158]. Recent research also showed that counterfactual expla-
nations could be manipulated [141], and risk measurement strategies may be used
to verify the importance of counterfactuals. Alternatively, some recent papers pro-
posed interpretable-by-design models [36, 174] that return explanations/rationales
along with output decisions. Inspired by those works, we introduce datasets and
in-modeling interpretability approaches for classification in crisis domain.

2.4.2 Attention based explanations

The attention mechanism was introduced by Badhanu et al [9] to address the bottle-
neck of compressing input sequences into a fixed-length encoding vector in encoder-
decoder networks. Such compression is problematic in the case of long sentences,
where the decoder would have limited access to the information from the input. Fig-
ure 2.2 illustrates a Recurrent Neural Network (RNN) encoder-decoder with atten-
tion mechanism in machine translation. The RNN encoder takes an input sequence

Figure 2.2. The graphical illustration of attentive attention mechanism [9]
.

of length T : {x1, x2, .., xT} and produces encoder hidden states H: {h1, h2, .., hT}.
At each step i, the decoder takes encoder hidden vectors and the previous decoder
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hidden state si−1 as its inputs and generates outputs yi token by token. The attention
layer allows the decoder to access the encoded input vectors. It induces the attention
weights α over the input sequence, which computes the importance of each source
hidden state hj for predicting the current output.

Attention mechanism has shown remarkable performance gains for deep neural
networks in many natural language processing tasks. Many researchers proposed
attention as a way of modeling explanations [12, 44]. Attention weights over in-
put features have been interpreted as a measure of their contribution to the output
predictions. However, recent studies [165, 59, 119] showed that attention is not an
explanation as attention can noisily predict the overall importance of input compo-
nents. Tutek et al [151] analyzed reasons behind the failure of attention weights as a
transparency tool. On a similar note, Chrysostomou and Aletras [31] tried to improve
the faithfulness of attention-based explanations with task-specific information for text
classification. In this thesis, we propose a model that learns faithful attention-based
explanations for the classification of crisis events. Unlike previous works, we learn
faithful rationales under limited human supervision that take the human comprehen-
sion/readability part into account. Our model tends to give high attention weights
to consecutive phrases that provide supporting evidence for model outputs.

2.5 Representation Learning

The success of machine learning models highly depends on text data representation.
In this section, we present some data representation techniques that are mentioned
and used in this thesis.

2.5.1 Word Representation

Words are typically the smallest units for data representation. Simple techniques usu-
ally treat words as atomic units where words are represented as indices in a fixed-size
vocabulary. However, such a simple method or similar techniques can not capture
the similarity between words. Meanwhile, advanced methods were proposed for com-
puting continuous word vector representation from huge unlabeled datasets. Among
those, Word2Vec [95] gained great popularity and was used for many Natural Lan-
guage Processing tasks, including tasks in the crisis domain [56, 98, 89]. The learned
word representations, called word embeddings, were shown to capture many linguis-
tic regularities between words, and many types of word similarities can be expressed
as linear translations. For example, vector(‘king’) - vector(‘man’) + vector(‘woman’)
results in a vector that is close to vector(‘queen’). Wod2Vec can be obtained using
two neural network techniques: Common Bag-Of-Words (CBOW) and Skip-Gram.

• CBOW: The model takes the context (surrounding words) of each word as input.
It learns the word vector representation and predicts the target word.
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• Skip-Gram: The model tries to predict context words for a given target word.
The training objective is to learn word embeddings that are good at predicting
the surrounding words.

Google research group [95] trained Word2Vec models on part of Google News
dataset (about 100 billion words) and published pre-trained word embeddings for use
of many downstream tasks.

2.5.2 Tweet Representation

The most commonly used document representation technique is sparse Bag-of-Words
vectors. Each document is represented by a sparse vector of high dimensions, where
each dimension corresponds to the occurrence (i.e., binary indicator or weighting fre-
quency) of a specific word from a dictionary. A simple and popular representation
method is TF-IDF, where TF represents the frequency of a word w in a given doc-
ument d, TF(w, d) = count(w, d). A word that appears more often in a document
is more important. IDF counts the number of documents in the corpus D that a
word w appears. Common words are less important in distinguishing documents.
IDF(w,D) = log( N

count(d∈D:w∈d)). The combination shows the tradeoff between the

two scores TF-IDF(w, d,D) = TF(w, d).IDF(w,D).

In case of tweets, each tweet is usually considered as a document, the set of all
tweets forms the corpus. A TF-IDF representation of tweets would be simple, yet
it can not capture the semantic meaning of words in a document. Besides, TF-
IDF ignores word order and suffers from memory inefficiency triggered by the high
dimensionality. Another alternative is to represent documents as the aggregation of
pre-trained word embeddings. However, static word embeddings such as Word2Vec
lack the ability to represent different meanings of a word in context.

Many recent language representation models have been proposed to learn contex-
tualized embeddings of words and documents. Among those, BERT [35] has created
state-of-the-art models for a wide range of natural language processing tasks. BERT
is a bidirectional Transformer encoder [155], which is a deep neural network including
a stack of attention and fully connected layers. The model has a vocabulary of 30,000
tokens. It is pre-trained on huge unlabaled data over two unsupervised tasks. The
first task is masked language model (masked LM), where a small percentage of input
tokens are masked at random, and the model learns to predict those masked tokens.
The second task is next sentence prediction (NSP), which predicts the relationship
between two sentences A and B whether B is the actual next sentence of A. Fig-
ure 2.3 illustrates the BERT pre-training procedure. The inputs are token sequences,
which may be a single sentence or two sentences packed together. The first token
is a special [CLS] token, the final hidden state corresponding to this first token is
used as the aggregation embedding representation for classification tasks. Two input
sentences are separated by a [SEP] token. The pre-trained BERT embeddings can be
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Figure 2.3. BERT pre-training procedures [35].

fine-tuned by appending one additional task-specific layer on top of BERT. Following
this idea, Nguyen et al. [99] presented BERTweet - a large-scale pre-trained model
for English tweets. In some parts of this thesis, we employ BERTweet for tweet
embedding representations and fine-tuning.





3
Efficient Tracking and Summarizing Evolving Events

3.1 Introduction

Twitter has been an extremely popular platform1 for users to report, seek, and share
information about real-world events. It is thus a crucial resource for detecting and
monitoring events, e.g., disasters, incidents, etc. [56, 120]. Real-time acquisition and
summarization of news-relevant tweets are challenging, though. The first challenge
lies in the large scale of the Twitter data stream. The second challenge is due to the
prevalence of noise and the wide range of covered topics in Twitter [11, 170]. These
challenges require efficient methods for filtering and summarizing relevant tweets from
Twitter streams.

Many methods were proposed for the online filtering of tweets during evolving
events, but they suffer from some shortcomings when dealing with evolving events.

• A common approach for tweet filtering is to rely on keyword matching methods,
where a tweet is considered relevant to a topic if it contains some selected
keyword of the topic. The keywords can be frequent words, named entities,
or hashtags [160, 161]. While these methods are computationally simple, their
performance is poor due to the high diversity of the tweets. Moreover, the
selection of keywords requires manual effort, domain knowledge, and/or a large
amount of past relevant tweets.

• Some other works propose to filter tweets based on their relevance score to the
tracked news, i.e., a tweet is considered relevant if its score exceeds some thresh-
old [132, 178, 6]. An appropriate setting of the relevance threshold requires do-
main knowledge, extensive data analysis, and/or prior information from similar
cases. These requirements are either not available or time-consuming hence not
practical when tracking breaking news.

1https://en.wikipedia.org/wiki/Twitter

23
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• Another common approach is to employ supervised learning models for deter-
mining the relevance of tweets to some specific topic [87, 177, 88]. This ap-
proach’s performance greatly depends on the training data, i.e. tweets that are
labeled relevant or non-relevant beforehand. However, when tracking breaking
news, the number of relevant tweets available for training is initially limited,
hence, results are often poor. Moreover, as news evolves over time, existing
supervised learning methods often adapt filters by re-training periodically or
after accumulating enough new relevant tweets. These methods are, therefore,
not scalable due to the high cost of the training process.

After filtering relevant tweets, there is still a vast number of tweets about a specific
event, which makes it impossible to have an overall understanding of the event by
reading through all the tweets. Online summarization of tweet streams is, therefore,
an essential task for studying evolving events. Although there exist many studies on
tweet summarization, there are some common drawbacks as follows.

• Requiring prior information. A common approach to capturing events’
aspects is to apply sub-event detection techniques, which are based on topic
models, burst detection or clustering algorithms [43, 140, 32]. These meth-
ods’ performance highly depends on some pre-defined parameters (e.g., burst-
ing and/or similarity thresholds, numbers of clusters, or topics) whose settings
require insights from data and/or prior information, which are not available and
not practical in the context of evolving events.

• Diversity. As events evolve, their sub-events are often highly skewed in the
number of tweets: at a given time point, some are prominent and attract many
more tweets than others. Sub-event detection-based methods, therefore, usually
result in summaries biased toward major and more mature sub-events, while
less popular and/or emerging sub-event might not be detected. Moreover, these
methods further assume that tweets written around the same time are about
the same sub-event [112, 32], which is not practical in the context of evolving
events.

• Readability. Another common approach is to summarize tweets by frequent
n-grams, phrases, and their concatenations [113]. This allows generating ab-
stractive summaries that are not the same as any original tweet. However, it
is only suitable for high-overlapping and well-written short texts but not for
diverse and often grammatically incorrect ones like tweets. Our experiments
show that these abstractive algorithms when applied in our context of highly
noisy tweets, return low-quality and less readable phrases.

• Scalability. Most existing models mainly focus on one-time summarization
of static datasets using complex algorithms [32, 45]. To apply these methods
for generating summaries of evolving events, we need to re-run the models and
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make several passes over the data. This is neither scalable nor practical when
working with large data streams.

In this thesis, we overcome the shortcomings of previous works by developing
novel graph-based methods for online filtering and summarizing tweet streams. Our
methods employ word graphs to represent tweets. The graphs allow us to update
the representation in real time. Our classifier is a lightweight semi-supervised model
that requires minimal human supervision. For summarization, we first apply an
incremental algorithm inspired by a diversified ranking approach [67] to detect sub-
events from a word graph. This algorithm is totally unsupervised and able to select
a diverse set of words representing sub-events. Lastly, most representative tweets
are carefully chosen from a small set of candidates containing those selected words
and returned as the summary. Our summarization model, therefore, does not require
prior information and is highly scalable while returning more informative, diverse,
and readable summaries.

3.2 Efficient Tracking Evolving Breaking News

3.2.1 Methodology

Overview. We consider an infinite tweet stream S in which tweets arrive in the order
of their published time, and computing infrastructure with limited resources that can
store in its primary memory only a small chunk of the stream. Given a breaking news
event happening at time tN , and a small set of tweets relevant to the news TN that
are published within the time duration [tN , t0] where t0 = tN + ∆t is a time point
shortly after tN , we want to filter out from S tweets that are relevant to the news
and published after t0. Precisely, when a new tweet arrives, the filter has to instantly
decide if the the tweet is relevant to the news.

The main idea of our proposed method is to employ a graph-based approach
for measuring tweets’ relevance to the breaking news and to the background. With
background, we refer to a representation of all topics in the tweet stream S that
occur at around the same time as the news. As the stream consists of tweets in
a vast variety of topics, we assume that incoming tweets are mostly relevant to the
background and irrelevant to the news we want to track and that news-relevant tweets
are outliers. We, therefore, adopt a simple outlier detection approach to distinguish
the news-relevant tweets based on the ratio of their relevance scores to the news and
background. The overview of our proposed method is depicted in Figure 3.1. The
method consists of two phases: initialization and filtering.

In initialization phase, we initialize the filter by first building the term graph GN

from the set of initial relevant tweets TN - which is given as input (line 2, Figure 3.1).
We then compute the importance of terms in GN using a ranking method (line 3). To
capture the background of the stream at around the time when the news happens, we
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Input:

• TN - relevant tweets that are published before t0 ( - the start filtering timepoint)

• TB - randomly sampled tweets published within a short time window before t0

• S - stream of tweets published after t0
Output: relevant tweets in S

1: //Initialization phase
2: GN ← BuildTermGraph(TN ) ▷ Build term graph for the news

3: ComputeTermImportance(GN ) ▷ Compute importance of terms in GN

4: GB ← BuildTermGraph(TB) ▷ Build term graph for background

5: ComputeTermImportance(GB) ▷ Compute importance of terms in GB

6: (µN , σN )← StatRelevanceScore(TN , GN ) ▷ Compute mean & standard deviation of relevance scores of relevant

tweets

7: (µR, σR)← StatRelevanceRatio(TN ∪ TB , GN , GB) ▷ Compute mean & standard deviation of ratios of tweets’

relevance scores to news and background

8: //Filtering phase
9: (µ̄N , σ̄N , µ̄R, σ̄R)← (µN , σN , µR, σR) ▷ Record current means & standard deviations

10: while True do
11: m← GetTweet(S) ▷ Read a tweet from stream

12: rN ← RelevanceScore(m,GN ) ▷ Measure m’s relevance to the news

13: rB ← RelevanceScore(m,GB) ▷ Measure m’s relevance to background

14: if rB > 0 then
15: UpdateRatioStats(µ̄R, σ̄R, rN/rB)▷ Update mean & standard deviation of tweets’ ratio of relevance scores

to news and background

16: end if
17: if IsRelevant(rN , rB , µN , σN , µB , σB) then ▷ Determine if m is relevant

18: Output(m) ▷ return m as a relevant tweet

19: UpdateTermGraph(m,GN ) ▷ Update GN with terms and edges induced by m

20: UpdateStats(µ̄N , σ̄N , rN ) ▷ Update mean & standard deviation of relevance scores of relevant tweets

21: AddTweet(m,TN ) ▷ add m into TN

22: else if IsSampled(p) then ▷ Determine if m is sampled for updating background

23: UpdateTermGraph(m,GB) ▷ Update GB with terms and edges induced by m

24: AddTweet(m,TB) ▷ add m into TB

25: end if
26: if IsToUpdate(m) then ▷ Check if it is time to update, based on m’s published time

27: RemoveOldTweets(TN , GN ) ▷ Remove old tweets in TN and update GN accordingly

28: RemoveOldTweets(TB , GB) ▷ Remove old tweets in TB and update GB accordingly

29: ComputeTermImportance(GN ) ▷ Re-compute importance of terms in GN

30: ComputeTermImportance(GB) ▷ Re-compute importance of terms in GB

31: (µN , σN , µR, σR)← (µ̄N , σ̄N , µ̄R, σ̄R)▷ Update means & standard deviations of relevance scores and ratios

32: end if
33: end while

Figure 3.1. System overview

randomly sub-sample a sub-set of tweets TB from all tweets published within a short
time window before the start filtering time t0. The term graph GB is built from TB to
represent background (line 4). We also compute the importance of terms in GB using
the same way as in GN (line 5). The construction and updating of term graphs and
the computation of terms’ importance will be described in detail in the subsequent
sections of this paper. Lastly, we compute the mean µN and standard deviation σN

of relevance scores of tweets in TN - i.e., the relevant tweets - to the news (line 6), and
compute mean µR and standard deviation σR of relevance ratio of tweets in TN ∪ TB

(line 7). Here, a tweet’s relevance ratio is the ratio between its relevance scores to
the news and background. The means and standard deviations will then be used for
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deciding incoming tweets’ relevance label.

In filtering phase, we first use utility variables µ̄N , σ̄N , µ̄R, and σ̄R to record
the current means and standard deviations of relevance scores and relevance ratios
(line 9, Figure 3.1). These utility variables are updated after each incoming tweet
while µN , σN , µR, and σR will be updated periodically. This makes the filter robust
against extremely abnormal tweets. Tweets from the stream S are processed in turn
as follows. For each incoming tweet m, its relevance scores to the news rN and to
background rB are measured based on GN and GB respectively (lines 12, 13). We will
describe in detail the computation of the scores in subsequent sections. If rB > 0, the
ratio rN/rB is used to update the relevance ratio mean µR and standard deviation
σR by employing Welford’s algorithm [164] whose complexity is constant. Next, m’s
relevance label is determined based on rN , ratio rN/rB, and their means and standard
deviations µN , σN , µR, and σR (line 17). If m is relevant then it is emitted as output
(line 18); GN is updated using terms and edges induced by m (line 29); µ̄N and σ̄N

are updated using rN (line 20); and m is added into TN (line 21). If m is irrelevant,
with some probability p < 1, it is chosen for updating GB (line 23) and added into TB

(line 24). Finally, m’s is used for checking if updating of terms’ importance is needed
(line 26). The condition for this can be either time difference or number of (relevant)
tweets found since the last update. If an update is needed, the oldest tweets in TN

and TB are removed, and GN and GB are updated accordingly to the removed tweets
(lines 27 - 28). Also, term importance in the graphs is re-computed (lines 29 - 30),
and µN , σN , µR, and σR are updated (line 31).

Term Graph. Given a set of tweets T , we preprocess each tweet by removing
stopwords, punctuation marks, and special symbols (e.g., braces and quotations). The
remaining tokens, which we call terms, are converted to lower-case, except the URLs
embedded in tweets that are case-sensitive. The term graph G of T is then defined
as follows. The node set of G consists of all terms appearing in some preprocessed
tweet(s) in T . For two terms u and v, if they both appear in some window size L of
a preprocessed tweet m ∈ T , then an undirected edge is drawn between u and v in
graph G. Here, a window size L of m is a sequence of at most L consecutive terms
in m. We also say m contains the edge (u, v), or the edge is induced by m. The
weight of edge (u, v) is the summation of weights of all preprocessed tweets in T that
contain the edge. In this work, we assume that all tweets have the same weight of 1
though our proposed method works smoothly with a more complex weighting scheme
for tweets.

Figure 3.2 shows an example term graph constructed from tweets given in the
figure’s upper part when the window size L is set to 3. In this example, edges are
drawn between #breaking and gun, and #breaking and fire as these terms appear in
a window of size 3 of Tweet-1. Edges are also drawn between #knife and palace, and
palace and grounds as these terms appear in a window of size 3 of Tweet-2. The edge
(man, knife) has weight 2 as it is contained in both the two tweets and the other
edges have weight 1 as they are contained in only one tweet.
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(Tweet-1) #BREAKING: Gun fire has been heard outside Westminster after a man wielding a knife was seen in the area. https://t.co/JrorcAOb72
(Tweet-2) Man with knife was "inside Palace of Westminster" grounds.

(Tweet-1) #breaking gun fire heard westminster man wielding knife seen area https://t.co/JrorcAOb72
(Tweet-2) man knife palace westminster grounds

Preprocessing

Graph building

Figure 3.2. Example term graph with window size L = 3

Given the term graph G built from the set of tweets T as above, when a new tweet
m is added into T , G is updated as follows. We preprocess m in the same way as
preprocessing tweets in T . The remaining terms in m are added to G’s node set. For
each edge (u, v) induced by m, if the edge does not exist in G, it is assigned weight
1 and added into G’s edge set. Otherwise, if edge (u, v) is already in G’s edge set,
its edge weight is increased by 1. When a tweet m is removed from T , the graph G
is updated by reducing the weight of edges induced by m by 1. Edges with weight 0
are removed from G’s edge set. Terms without edges are removed from G’s node set
as well.

Computing Terms’ Importance. Following prior work on graph-based keyword
extraction [94, 37] and information retrieval models [19, 126], we employ Pagerank
algorithm [21] for computing the importance of terms in a term graph. Given a
term graph G = (V,E) where V and E are node set and edge set respectively, the
importance of a term v is a non-negative value that satisfies the following equation
for ∀v ∈ V .

π(v) =
1− d

|V |
+ d×

∑
(u,v)∈E

[
π(u)

w(u, v)

w(u, ·)

]
(3.1)

where π(u) and π(v) are importance score of u and v respectively; w(u, v) is the
weight of edge (u, v), w(u, ·) =

∑
(u,v̄)∈E w(u, v̄); and d < 1 is a constant that is often

set to 0.85. Defined in this way, terms’ importance can be computed very efficiently
using incremental random walk methods [34, 10] or power methods [46].

Computing Tweets’ Relevance Score. Given a term graph G = (V,E) and a
tweet m, our approach for measuring m’s relevance to the topic(s) represented by G
leverages both importance of terms and of edges in G. Formally, the relevance score
r of m is computed as follows.

r =
∑

(u,v)∈Em∩E

[
π(u)

w(u, v)

w(u, ·)
+ π(v)

w(u, v)

w(·, v)

]
(3.2)

where Em is the set of edges induced by m; π(u), π(v), w(u, v), and w(u, ·) are defined
in Equation 3.5; and w(·, v) =

∑
(ū,v)∈E w(ū, v). Since both term importance and edge

weights are non-negative, tweets’ relevance score is also non-negative.
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Defined by Equation 3.2, our scoring function gives high relevance scores to in-
coming tweets that contain not only important words of the input news but also other
words which often appear close to such important words in past relevant tweets. On
the other hand, tweets where important words appear close with other less frequent
words in past relevant tweets are assigned low scores. For example, when filtering
tweets relevant to an attack in London, tweets containing London together with words
like victims, shot, etc. are assigned higher scores than tweets containing London to-
gether with words like music, match, traffic, etc. Our scoring function thus improves
the precision of keyword-based approaches, while relaxing the strict conditions on
consecutive words/terms of language-based approaches, resulting in better recall.

Determining Tweets’ Relevance Label. Given an incoming tweet m, if m’s
relevance score to background rB = 0, we decide that m is irrelevant as we expect
that topic evolution is generally smooth, and only noise or tweets about new topics
have 0 relevance score to background. Otherwise, we determine the relevance label of
m as follows. Assuming that news evolves smoothly, incoming relevant tweets should
have relevance scores rN that do not deviate too much from their mean. We also
assume that, since tweets in the stream cover a large number of topics, most tweets
are more relevant to background than to the news. Hence, the relevance ratio rN/rB
is generally small, and only the news-relevant tweets would have large ratios that
highly deviate from their mean.

We assume that rN follows a Gaussian distribution with mean µN and standard
deviation σN , while the ratio rN/rB follows a Gaussian distribution with mean µR

and standard deviation σR. We therefore measure the deviation dN of respectively
rN and deviation dR of rN/rB from their means as follows.

dN =
rN − µN

σN

and dR =
(rN/rB)− µR

σR

(3.3)

Then, m is assigned relevance label if dN ≥ −1.3 and dR ≥ 1.05. That means only
tweets whose relevance score is out of the bottom 10% and whose relevance ratio is
among the top 15% are considered relevant to the news 2.

3.2.2 Datasets

To the best of our knowledge, there is no existing dataset with groundtruth that
fits the context of this work3. We therefore conducted our experiments on synthetic
datasets with groundtruth, and real datasets with proxy groundtruth.

Synthetic datasets with groundtruth. These datasets are synthesized following
the procedure shown in Figure 3.3. Given an event E and a collection of both tweets
relevant and irrelevant to the event, we first use the collection to simulate a tweet
stream, called labeled stream. We then fuse this stream with a real tweet stream,
called carrier stream, to obtain fused stream. The fusion is performed based on the

2https://en.wikipedia.org/wiki/Standard normal table

3The datasets provided by TREC-2012’s microblog track are too small: there are only few tens relevant tweets for each dataset



30 Chapter 3 Efficient Tracking and Summarizing Evolving Events

…

…

… time

Labeled stream

Carrier stream
Fused stream

Relevant tweets

Irrelevant tweets (in labeled stream)

Irrelevant tweets (in carrier stream)

Fusing

Figure 3.3. Procedure for generating synthetic datasets.

Event #relevant tweets #irrelevant tweets Duration
Sandy Hurricane 6,138 3,870 3 days

Boston Marathon Bombing 5,648 4,364 5 days

Table 3.1. Set of tweets used for generating synthetic datasets.

published time of tweets. The fusion also satisfies the condition that tweets in the
labeled stream are located within a time duration ∆ of the fused stream that is
significantly far from the time of E . This large time gap makes most of carrier stream
streams’ tweets within ∆ not relevant to E . Hence, within ∆, we can confidently
use the set of relevant tweets in the original collection as the groundtruth of relevant
tweets for the fused stream.

In this work, we re-use two sets of tweets about the Sandy Hurricane4 and Boston
Marathon Bombing5 events that were collected by [114] to simulate labeled streams.
Basic statistics of these tweet sets are shown in Table 3.1. As the events happened
in 2012 and 2013, we crawled tweets in 2017 to simulate the carrier stream. We used
Twitter’s real-time sample API6 which gives us about 1% of the whole Twitter stream
around the time when the API is called. We kept calling the API through the year
2017 to obtain a consistent sample. This resulted in a stream of around 5 million
tweets per day. For each event, the labeled stream is fused into 15 different time
durations of the carrier stream. The durations are carefully selected as to minimize
the overlap between the topics of the streams (e.g., not around the date of the events,
not within the hurricane seasons, etc.). Finally, we obtained 15 datasets for each
event. In our experiments, each event is tracked for the duration of its tweet set as
shown in Table 3.1. That means a Sandy Hurricane dataset has around 5 × 3 = 15
millions tweets, and a Boston Marathon Bombing dataset has around 5 × 5 = 25
millions of tweets.

Real datasets with proxy groundtruth. Our real datasets consist of two recent
breaking news and tweet streams that are formed by crawling Twitter using its sample
API as above. The first news, 2017 Westminster Attack 7, is about the terrorist attack

4https://en.wikipedia.org/wiki/Hurricane Sandy

5https://en.wikipedia.org/wiki/Boston Marathon bombing

6https://developer.twitter.com/en/docs/tweets/sample-realtime/overview/GET statuse sample

7https://en.wikipedia.org/wiki/2017 Westminster attack
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that took place in the vicinity of the Palace of Westminster in London, UK on March
22nd, 2017. The second news, Flight 3411 Incident8, is about the incident in which a
passenger was forcibly removed from United Express’ flight 3411 on April 09th, 2017.
These are highly dynamic events with many sub-events and topics and have attracted
a large number of tweets. In our experiments, each breaking news is tracked for a
duration of 3 days. That means each real dataset also has around 15 million tweets.

For real datasets, we employ a pooling approach to construct the groundtruth.
That is, tweets returned by any comparative method are judged for relevance. The
union set of relevant tweets returned by all the methods is then considered as the
groundtruth. Manual assigning labels to tweets requires much human effort due to
a large number of tweets. We, therefore, adopt an automatic method for mining
topics of the tweets returned by each method and manually judge if the topics are
relevant to the news. Then, a tweet is considered relevant to the news if its topic is
judged relevant. We used the union set of these tweets as the proxy groundtruth for
evaluating the methods.

3.2.3 Experimental Settings

Baselines. We choose the following state-of-the-art methods9 of keyword-based and
supervised learning-based approaches as baselines for evaluating our method. Sim-
ilar to our proposed method, these methods do not require manual effort nor prior
information, hence are suitable baselines.

• KW: It is a keyword-based method proposed by Cotelo et al. [33].

• SL: It is a supervised learning-based method proposed by Magdy et al. [87, 88].

For each synthetic dataset, its first 50 relevant tweets are given to the filtering
methods as input. The remaining relevant tweets are used as groundtruth for evaluat-
ing the performance of the filtering methods. For the real datasets, we scan the input
streams for tweets around the time when the relevant news happened which contains
any of the manually selected strings/ string pairs. These strings/ string pairs are
{#westminsterattack, #londonattack, pairs of westminster or london with car, ter-
ror, or pedestrian} for 2017 Westminster Attack, and {united airlines, 3411, #ua,
#unitedairlines, @united, pairs of overbook with united, plane, flight, passenger, or
drag, and pairs of passenger or man with drag or remove} for Flight 3411 Incident.
We manually examine these tweets and select the first 50 relevant tweets for each
event as input. Tweets returned by the filtering methods are used for constructing
the proxy groundtruth for evaluating the methods. For all the datasets, the tracking
starts from the published time of the last input relevant tweets.

8https://en.wikipedia.org/wiki/United Express Flight 3411 incident

9We consider state-of-the-art methods at time of our experiments
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In our experiments, for each dataset and each filtering method, the filter is updated
after every time step of 30 minutes. For our proposed method, we set window size
L = 4 (refer to term graph construction). We use p = 10% of determined-irrelevant
tweets to update the background’s term graph (refer to line 23, Figure 3.1). Tweets
published earlier than twelve time steps are considered old and removed from the
term graphs (lines 28 - 29).

Evaluation Metrics. We measure the performance of the filtering methods at
different time points across the tracking duration, with respect to the groundtruth
relevant tweets up to the time points. That is, if m is the K-th truly relevant tweet,
and tm is the published time of m, then the performance of filtering methodM at K
is measured as F1 score ofM up to tm. Formally, We denote this score by F1(M, K),
and denote the sets of all tweets and truly relevant tweets returned by M up to tm
by A(M, K) and R(M, K) respectively, then F1(M, K) is computed as follows.

F1(M, K) =
prec(M, K)× rec(M, K)

prec(M, K) + rec(M, K)
(3.4)

where
prec(M, K) =

|R(M, K)|
|A(M, K)|

and rec(M, K) =
|R(M, K)|

K

F1(M, K) is hence in [0, 1]. F1(M, K) = 1 only when |R(M, K)| = |A(M, K)| = K,
i.e, up to tm the method M perfectly returns all and only relevant tweets.

3.2.4 Results
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(b) Boston Marathon Bombing datasets

Figure 3.4. Experimental results on synthetic datasets.

Synthetic Datasets. Figure 3.4 (a) shows the F1 scores over time of the filter-
ing methods on 15 Sandy Hurricane datasets. Since all the datasets have the same
groundtruth, we average their scores. Similarly, Figure 3.4 (b) shows the average
F1 scores of the filtering methods on 15 Boston Marathon Bombing datasets. The
figures show that both the two baseline methods have better performance than ours
- denoted by GRAPH - in a short time duration after the news happens when there
are not many relevant tweets. However, their performance decreases rapidly later
when there are much more relevant tweets. This is due to the fact that, at first,
the baseline methods’ filters are unigram-based and weakly trained by datasets with
only a small number of truly relevant tweets (i.e., the set of input relevant tweets).
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Therefore, they often inaccurately classify all incoming tweets that contain a frequent
word in input relevant tweets to be relevant. For example, they classify all tweets
containing the word Boston to be relevant to Boston Marathon Bombing. Hence, they
may have good recall but rather low precision. This inaccuracy is amplified when the
filters are re-trained in subsequent steps using inaccurately classified tweets obtained
from the previous steps. This also makes the baseline methods not robust against the
evolution of the news in subsequent stages, hence their performance drops dramat-
ically. The figures also show that our method obtains lower performance at earlier
stages but significantly outperforms the baseline methods to obtain much higher per-
formance consistently across subsequent states. This is expected as our proposed
method combines the advantages of both unigram- and bigram-based approaches to
measure tweets’ relevance, hence may have lower recall at first but much higher pre-
cision. Consequently, the method is much more robust against the news’ evolution,
thus effectively filtering incoming relevant tweets.

Results on Real Datasets. We used a Twitter-LDA topic model [175] to mine
topics of tweets returned by the filtering methods10. This model takes as input a set
of tweets and a number of topics Z and returns a set of Z topics and probabilities
P (z|m) that tweet m is about topic z. Each topic is represented as a probabilistic
distribution over terms.

For each filtering model, we run Twitter-LDA on the set of tweets returned by
the method with the number of topics Z set to 10, 20, and 30. For each value of Z,
the obtained topics are manually judged for relevance based on their top terms and
top tweets. Three independent annotators were recruited to judge the topics. These
annotators were chosen among our colleague researchers who are knowledgeable about
the news and social media but did not participate in this work. The final relevance
label for each topic is then decided based on the majority vote of the three annotators.
We obtained a Fleiss’ Kappa agreement among the annotators of κ = 0.852 reflecting
a high agreement.

A tweet m is considered relevant at threshold θ > 0.5 if p(z|m) ≥ θ for some
annotated-relevant topic z. Relevant tweets at θ of all filtering methods are pooled
to form the proxy groundtruth for evaluating the methods at Z and θ.

Figure 3.5 shows the performance of the methods on 2017 Westminster Attack
dataset as evaluated at different values of Z and θ, and Figure 3.6 shows similar
results on Flight 3411 Incident dataset. Again, the figures show that our method has
lower performance at early stages but significantly outperforms the baseline methods
later in subsequent stages. Moreover, this pattern consistently holds across different
settings of Z and θ, which implies the reliability of the evaluation.

10We group tweets by time steps instead of users as in the original Twitter-LDA model.
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(b) Z = 20, θ = 0.6
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(c) Z = 30, θ = 0.6
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(d) Z = 10, θ = 0.9
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(e) Z = 20, θ = 0.9
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(f) Z = 30, θ = 0.9

Figure 3.5. Experimental results on 2017 Westminster Attack dataset at different
number of topics Z and threshold θ.
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(f) Z = 30, θ = 0.9

Figure 3.6. Experimental results on Flight 3411 Incident dataset at different number
of topics Z and threshold θ.

3.2.5 Complexity Analysis

Computational Complexity. In our implementation, each term graph is repre-
sented by a hashmap whose <key,value> elements are pairs of terms and the terms
adjacency list. The terms’ adjacency lists are also represented by hashmaps whose
<key,value> elements are pairs of the term’s neighbor and the weight of the cor-
responding edge. These hashmaps allow us to update each term/edge of the term
graph in O(log(|V |)) operations where |V | is the number of terms in the graph. Term
frequency is highly skewed [29], hence |V | << |T | × lavg where T is the set of tweets
used to construct the graph, and lavg is the average number of terms in a tweet -
which is quite small as tweets are short11. The computational cost of maintaining the
term graph is therefore of order log-scale in the number of tweets.

The main cost in processing an incoming tweet includes the cost for preprocessing

11https://blog.twitter.com/engineering/en us/topics/insights/2017/Our-Discovery-of-Cramming.html
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the tweet, and that for computing its relevance score. The former is O(lavg), the
latter is O(lavgL log(V )) as the tweet induces O(lavgL) edges, and each edge needs
O(V ) for updating the graph. L is the window size used to extract edges from tweets,
which is a small number. The cost for processing a tweet is therefore also of order
log-scale in the number of tweets. For computing terms’ importance, we employ the
power method which converges quickly after a few iterations and has cost O(|E|) per
iteration. |E| is the number of edges in the graph. Again, as term frequency is highly
skewed, the term graph is sparse. That is, in most cases |E| = |V |davg << |V |2 where
davg is the average number of edges of the term in the graph, which is a small number.
Hence, the cost of updating term importance usually scales linearly in the number of
tweets.

Finally, the main spatial cost of our proposed method is in storing the term graphs.
As we use hashmaps to represent the graphs, this cost is O(|E|), so the spatial cost
also scales linearly in the number of tweets.

Running Time. We theoretically analyzed the complexity of our proposed method
in the previous section. We now empirically examine the method’s efficacy by compar-
ing its running time with that of the baseline methods. Table 3.5 shows the running
time of the methods on experimental datasets. For the synthetic datasets, the run-
ning time is averaged over all 15 datasets for each event. The table shows that, for
most of the cases, our proposed method is slightly faster than KW method. This is
expected as our method has complexity for updating the filter similar to that of KW
method but has much higher performance in filtering relevant tweets, hence has to
deal with a smaller amount of data when updating the filter. The table also shows
that our method is much faster than SL method. For example, for 2017 Westminster
attack dataset, our method takes around 27 minutes for filtering from a stream of
around 1% sample of Twitter in 3 days while SL method takes around 9 hours. Our
method, therefore can cope well with the large volume of Twitter stream.

3.3 Summarization of Evolving Breaking News

In this section, we describe our proposed method for the online summarization of
tweet streams in detail. We start by presenting the principles of our method and
sketching its main steps. Then, we discuss the details of each step and analyze the
complexity of the method.

3.3.1 Methodology

We consider the summarization task in the following context. We are given a large
tweet stream S in which tweets arrive in order of their published time, and all tweets
are assumed to be relevant to a certain event. As the event evolves, at each regu-
lar time step, we would like to generate concise summaries of tweets published so
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Algorithm 1 Online summarization on tweet streams

Input: Event’s tweet stream S
Output: Summaries of event at every time step

1: G← (∅, ∅) ▷ Initialize term graph
2: while !S.end() do
3: t← S.next();
4: UpdateGraphByAddingNewTweets(t, G)
5: if IsTimeToReGenerateSummary(t) then
6: UpdateGraphByRemovingOldTweets(G)
7: DetectSubEvents(G)
8: ExtractRepresentativeTweets(G)
9: end if

10: end while

far. For simplicity, we focus on the summarizing of the most recent tweets in S -
precisely, tweets published within the sliding time window consisting of the current
time step and several previous steps. This is also practical as provided computing
infrastructures are usually limited in resources and hence cannot handle the whole
stream history, and people are often more interested in recent updates of the event.

In this work, we adopt an extractive approach for the above summarization task.
That is, at each time step, the summary is formed by selecting a certain number
of most representative tweets in the corresponding sliding time window. Also, as
the windows are highly overlapping and events often evolve smoothly, we aim at
designing an incremental method for the task. Similar to our proposed approach for
tweet filtering task in the previous section, our main idea is to employ a term graph
for representing co-occurrence relationship among words in tweets. By using graph
based ranking algorithms, we are able to identify terms that represent sub-events
described by the tweets. These algorithms are highly scalable and allow incremental
update. For dealing with diversity of the sub-events, we further refine the top ranked
terms based on diversified ranking algorithms. A small set of tweets containing the
terms are then carefully chosen as candidates for the summary. Lastly, a text rank
method is applied to select top ranked candidates and output as the summary at
desired length.

The main steps of our method are depicted in Algorithm 1. Whenever a new tweet
arrives, it is first used for updating the term graph (lines 3-4, Algorithm 1), and then
for checking if it is time for generating a new summary (line 5). Before generating a
new summary, old tweets (which are published before the current time window) are
removed from the graph (line 6). We then detect sub-events (line 7), extract the most
representative tweets based on these detected sub-events and return these tweets as
summary (line 8).

Term Graph. The term graph G is initialized empty and is updated when a
new tweet t arrives as follows. Firstly, t is preprocessed by tokenizing and removing



3.3 Summarization of Evolving Breaking News 37

stopwords, punctuation marks, and special symbols (e.g. quotations or braces). The
remaining words are converted into lowercase except URLs, which are case-sensitive.
The remaining words in t are considered as terms and added into G node set. An
edge between two nodes u and v with weight 1 is drawn if u and v appear within a
window of L continuous words of the preprocessed tweet t. If the edge is already in G,
we increase its weight by 1. An example of a term graph is illustrated in Figure 3.2.

Sub-event Detection. Given the term graph G, one may detect sub-events men-
tioned in tweets by performing PageRank [20] on G and return top-ranked terms as
sub-events [83, 27]. Formally, let V and E are node set and edge set of G respectively,
the PageRank score of nodes in V is the solution of following equation.

πv =
1− d

|V |
+ d×

∑
(u,v)∈E

[
πu

w(u,v)
w(u,·)

]
(3.5)

where πu and πv are PageRank score of u and v respectively; w(u, v) is the weight
of edge (u, v), w(u, ·) =

∑
(u,v̄)∈E w(u, v̄); and d < 1 is a constant which is often

set to 0.85. There are highly scalable algorithms for computing π and also allowing
incremental updates when G is changed [8, 10]. However, the top-ranked nodes
by PageRank are often dominated by closely related ones without caring about the
diversity [92, 67]. Hence, the sub-events identified by PageRank are likely to be
redundant and less diverse. We, therefore, employ a re-ranking approach to adjust
the PageRank scores of terms in G when selecting top-ranked terms so as to reduce the
redundancy while increasing the diversity. Specifically, we first adapt the algorithm
proposed in [67] for selecting top representative and diverse terms that most cover
the graph. We then refine the selected terms by removing the ones that appear in
most tweets and do not represent any sub-event. In the following, we describe these
in detail.

Let N(S) denotes the neighborhood of S ⊂ V - i.e. N(S) consists of nodes in S
and all other nodes adjacent to some node in S. The marginal utility u(v, S) when
adding a node v into S is the coverage that v adds to N(S)∪{v} and is measured as
below.

u(v, S) =
∑

u∈U πu where U = N({v})\N(S) (3.6)

In [67], the authors proposed to find diversified top k nodes by iteratively selecting a
node that maximizes the marginal utility when added to the set of previously selected
nodes. However, for an evolving event, its number of sub-events varies across time.
Hence, we propose to keep adding nodes until the relative marginal utility of the
added node falls under a threshold. Specifically, our procedure to detect sub-events is
shown in Algorithm 2. In the algorithm, the value of u(v∗, S) decreases significantly
after each node added to S as both nodes’ number of neighbors and Pagerank scores
are highly skewed [77]. Therefore the threshold ϵ can be set to be a small value to
stop adding nodes when the new node does not add much coverage increment.

Moreover, for each event, most of its tweets contain some extremely popular terms
(e.g., the event’s hashtags or entities). These terms should not be used to represent
any sub-event though they dominate both the top nodes by PageRank and the top
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Algorithm 2 Best coverage set detection

Input: Term graph G, PageRank scores π, a relative marginal utility ϵ ∈ (0, 1)
Output: a list of representative nodes S

1: S ← ∅
2: utilitySum← 0
3: while true do
4: v∗ ← arg.maxv(u(v, S))
5: utilitySum← utilitySum+ u(v∗, S)
6: if u(v∗, S)/utilitySum < ϵ then
7: break
8: end if
9: S ← S ∪ {v∗}

10: end while
11: return S

nodes by Algorithm 2. Therefore, we propose the following greedy solution to exclude
these popular terms. We measure v’s marginal popularity p(v,R) when added to node
set R by the number of tweets that contain v but do not contain any term in R.

p(v,R) = |T ({v})\T (R)| (3.7)

where T (R) = {tweets containing some u ∈ R} for any node subset R ⊂ V . Now, we
modify Algorithm 2 to filter extremely popular terms by keep ignoring nodes until
the relative marginal popularity of the node falls under a threshold. Precisely, our
procedure to detect sub-events is shown in Algorithm 3. In the algorithm, the value
of p(v∗, R) also decreases significantly after each node added to R as terms’ number
of tweets is highly frequency [29]. Hence, the threshold θ can be set to be a small
value to stop ignoring nodes when the new node does not add much popularity.

Summary Extraction. Given the sub-events S detected as above, we extract K
representative tweets using the procedure shown in Algorithm 4. For each sub-event
v ∈ S, we iteratively select its n representative tweets Ov from all tweets that contain
v (lines 3-15, Algorithm 4). To do that, we first choose from the (remaining) tweets
containing v the one that has the highest average PageRank score over its unique
terms (line 6). We then check if the chosen tweet has enough number of unique terms
(lines 8-10). This condition is to ensure that the chosen tweet is more likely well
written, not just consisting of a few keywords and not informative. Next, we check if
the chosen tweet does not highly overlaps with some previously chosen one (lines 11-
13). Here, overlapping(t∗, Ov) is the maximum overlap between t∗ and any tweet in
Ov as measured by Jaccard coefficient12. This condition is to reduce the redundancy
in the set of tweets selected for each sub-event. Finally, the set of tweets chosen for all
the sub-events is ranked using LexRank algorithm [37], and the K top-ranked tweets
are returned as the summary.

12https://en.wikipedia.org/wiki/Jaccard index
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Algorithm 3 Sub-event detection

Input: Word graph G, PageRank scores π, relative marginal utility threshold ϵ ∈ (0, 1),
relative marginal popularity θ
Output: a list of representative nodes S

1: R← ∅
2: popularitySum← 0
3: S ← ∅
4: utilitySum← 0
5: while true do
6: v∗ ← arg.maxv(u(v, S))
7: popularitySum← popularitySum+ p(v∗, R)
8: if p(v∗, R)/popularitySum ≥ θ then
9: continue

10: end if
11: utilitySum← utilitySum+ u(v∗, S)
12: if u(v∗, S)/utilitySum < ϵ then
13: break
14: end if
15: S ← S ∪ {v∗}
16: end while
17: return S

3.3.2 Datasets.

Since we have found no publicly available dataset of events’ tweets with groundtruth
summaries, we use tweets related to highly popular events as experimental datasets
and employ a well-studied offline summarization approach for building the groundtruth.

We conducted experiments on the Twitter datasets related to the following events.

• Westminster Attack : the terrorist attack that took place in London on
March 22nd, 201713.

• Travel Ban : US’s president Donald Trump signed the executive order banning
citizens from seven countries from entering US14.

• UA Incident : the incident in which the aviation security officers forcibly
removed a passenger from United Express’s flight 341115 on April 09, 2017.

• DNC 2016 : the national convention of US’s democratic party in July, 201616.

13https://en.wikipedia.org/wiki/2017 Westminster attack

14https://en.wikipedia.org/wiki/Trump travel ban

15https://en.wikipedia.org/wiki/United Express Flight 3411 incident

16https://en.wikipedia.org/wiki/2016 Democratic National Convention
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Algorithm 4 Summary Extraction

Input: Term graph G, PageRank scores π, set of nodes S as sub-events, number of tweets
selected for each sub-event n, minimum number of unique terms d, overlapping threshold
δ, number of tweets selected for output summary K
Output: Set of K representative tweets O as a summary

1: O ← ∅
2: for v ∈ S do
3: Ov ← ∅;
4: Tv ← getAllTweetsContaining(v)
5: while (|Ov| < n) do
6: t∗ ← arg.maxt∈Tv

averageUniqueWordPageRank(t)
7: Tv ← Tv\{t∗}
8: if nUniqueWords(t∗) < d then
9: continue

10: end if
11: if overlapping(t∗, Ov) ≥ δ then
12: continue
13: end if
14: Ov ← Ov ∪ {t∗}
15: end while
16: O ← O ∪Ov

17: end for
18: O ← LexRank(O,K)
19: return O

• Hurricane Harvey : the hurricane Harvey that landed south-east USA and
its subsequent flooding in late August 201717.

We collected the first three datasets by filtering their events’ relevant tweets from
Twitter’s one-percent sample stream. That is, we continuously crawled tweets during
the events’ duration using Twitter’s sample API18 to simulate tweet streams. For
each event, several modest tweet stream filtering algorithms (i.e., [33, 88]) were then
applied to filter out tweets related to the targeting event. The returned tweets are
unified and further refined. Specifically, we first mine topics of the tweets using topic
modeling techniques [175] and manually judge if topics are relevant to the events,
then remove tweets about irrelevant topics. The last two datasets were collected by
University of North Texas Libraries [116, 117]. The basic statistics of the datasets
are shown in Table 3.219. The table shows that these datasets are diverse in size and
duration. Furthermore, the events are also diverse in nature and pace of evolution.
These diversities allow us to evaluate the proposed model comprehensively.

17https://en.wikipedia.org/wiki/Hurricane Harvey

18https://developer.twitter.com/en/docs/tweets/sample-realtime/overview/GET statuse sample.html

19For each DNC 2016 and Hurricane Harvey dataset, we used only tweets published in a sub-duration of the original dataset, which
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Table 3.2. Basic statistics of the experimental datasets.

Dataset #tweets Duration (days)
Westminster Attack 20,694 3

Travel Ban 123,385 7
UA Incident 18,876 3
DNC 2016 2,196,766 9

Hurricane Harvey 5,895,516 10

Groundtruth construction. For each dataset, as the comparative methods gen-
erate summaries periodically for every sliding time window (as shall be presented in
the following section), we construct a groundtruth summary for each of the windows.
To do that, we employ a topic modeling approach for mining topics in the whole
dataset and then select the most representative tweets for each window’s major top-
ics as groundtruth summary for the window. This approach has been shown to give
high-quality summaries when applied on tweet datasets [32, 147, 17, 30]. Here we use
TwitterLDA model [175] to mine the topics. This model takes as input the number
of topics and returns as output, among the others, the learned topic for each tweet.
The proportion of a topic in a sliding time window is then defined by its number of
tweets divided by the total number of tweets in the window. The major topics of
a window are chosen from the ones having highest proportion in the window until
their accumulative proportion exceeds 0.95. Following the previous works, we select
from all tweets of the window, the most representative tweet(s) for each major topic
based on the tweets’ perplexity given the topic20 as computed from the learned topic
model. Lastly, the set of all these top representative tweet(s) selected for a window
is considered as its groundtruth summary.

3.3.3 Experimental Settings.

Baselines. We evaluate our proposed method by comparing it against the following
methods for text summarization and tweet stream summarization.

• LexRank [37]. This is a typical extractive method for text summarization. It
ranks sentences by their representativeness using an adaptation of PageRank
algorithm [20] for the graph whose nodes are sentences and edges are weighted
by pair-wise similarity among the sentences.

• Opinosis [40]. This is a typical method for abstractive summarization of short
texts. It works by finding prevalent paths on the graph whose nodes POS tagged
words and edges are formed between consecutive words in sentences.

consists of continuous days whose number of collected tweets are significantly larger. Hence, the statistics of these datasets are slightly
different from their origins

20https://en.wikipedia.org/wiki/Perplexity
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• TOWGS [113]. This is state-of-the-art method for abstractive summarization
on tweet streams. It maintains a graph whose nodes are bi-grams in tweets and
edges are formed between overlapping bi-grams. The summaries are generated
by finding prevalent paths starting from some keywords.

• Sumblr [140, 162]. This is the state-of-the-art method for extractive sum-
marization on tweet streams. This method performs stream clustering using
nearest neighborhood strategies and maintains a set of representative tweets for
each cluster. The summaries are generated by using LexRank on the set of all
clusters’ representative tweets.

In our experiments, for each dataset and each method, the summaries are produced
after every time step of 1 hour, and each summary is generated for a sliding window
of 12 time steps (i.e., 12 hours). For our proposed method, we set window size L = 4
(refer to term graph construction). Also, we set the marginal utility threshold ϵ = 0.05
and the popularity threshold θ = 0.1 (refer to sub-events detection - Algorithm 3),
and set the number of tweets selected for each sub-event n = 50, minimum number
of unique terms d = 7, and overlapping δ = 0.3 (refer to summary extraction -
Algorithm 4). For the baselines, we reused and adapted the implementations released
by their authors and keep all the parameter settings as originally recommended by
the authors.

Evaluation Metrics. Both our proposed methods and the above baselines return the
summaries in form of ranked lists of representative tweets or sentences. We, therefore,
evaluate these models by examining their length-K summaries - i.e., the top K
tweets/sentences in each summary. This allows us to evaluate both the conciseness
and diversity of the summaries consistently across the methods.

• Groundtruth based evaluation. Based on the groundtruth summaries con-
structed as above, we evaluate the length-K summaries returned by the methods
using ROUGE metrics21. As suggested by previous studies [75] and following
the baselines [140, 162], we choose to use ROUGE-1 scores as it has shown to
be most consistent with human judgment. Basically, these scores measure how
well the generated summaries cover uni-grams of the groundtruth summary.

• Human evaluation. We also recruited students to manually assess the length-
K summaries. The students were first educated about the events. They are
requested to carefully read the events’ Wikipedia page, major timelines, and
related articles published on large news sites, as well as scan through the topics
mined from the datasets. For each dataset and each sliding time window, each
student was then given pairs of length-K summaries - one generated by our
method and the other generated by one of the baselines - and asked to choose
which summary is more informative about the event. To avoid bias toward any

21https://en.wikipedia.org/wiki/ROUGE (metric)
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Figure 3.7. Average ROUGE-1 scores of length-K summaries generated by compar-
ative methods across time steps.

method, the student was not informed about which summary is generated by
which method. Also, we randomly order the summaries in pairs and randomly
order the pairs given to each student so that consecutive given pairs are mostly
independent.

3.3.4 Results

Groundtruth based evaluation. For each dataset, we constructed different sets of
groundtruth summaries by varying the input numbers of topics Z of the TwitterLDA
model (refer to groundtruth construction - Section 3.3.2) from 2 to 20. This allows us
to evaluate the comparative models comprehensively across different granularities of
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topics assumed to be presented in the dataset. For each value of Z, at each time step,
ROUGE-1 scores of all length-K summaries of all methods are computed against the
obtained groundtruth summary.

Figure 3.7 shows the ROUGE-1 scores of the length-K summaries generated by
comparative methods on the experimental datasets with K = 5 and K = 10. For
each dataset, the scores are averaged across all its time steps. Though ROUGE-
1 scores consist of precision, recall, and F1-score, we observe qualitatively similar
patterns in all these scores across the datasets and therefore report here only the
F1-scores to save space. We also do not report the performance of the TOWGS
method on DNC 2016 and Hurricane Harvey datasets as the method could not finish
the work on these datasets within the time budget of two weeks. The figure clearly
shows that, in most cases, our proposed method, denoted by Inc, outperforms the
baselines by a large margin. It is expected that, on UA Incident dataset, our proposed
method outperforms the baselines significantly when K = 5 but slightly worse than
the LexRank baseline when K = 10. This is due to the low diversity of the event:
the event has only a few sub-events. Hence, at each time step, the event can be
well summarized by a few representative tweets. Therefore, our proposed method’s
length-K summaries for the event are concise and less redundant when K is small,
but get redundant when K is increased. On the other datasets with highly evolving
events containing many more sub-events, our proposed model consistently generates
better summaries. Overall, the result demonstrates both the outperformance and the
robustness of our proposed method over the baselines.

Human evaluation. As Opinosis and TOWGS often return much less readable and
less informative summaries (as illustrated case studies below), for human evaluation,
we only compare our proposed method against LexRank and Sumblr. Also, since the
events evolve smoothly, the summaries of consecutive time steps are largely overlap-
ping. We, therefore, do not manually evaluate summaries of all time steps but for
only one after every two consecutive time steps - i.e., one-third of all the time steps.
This helps us to reduce the cost of human evaluation work to be manageable while
still obtaining a qualitatively consistent result. In the end, the comparative methods’
summaries on each dataset were manually assessed by 3 to 5 judges. We got a high
agreement among the judges: across the datasets, at least 70% of times the judges
have mutual choices22.

Table 3.3 shows the proportion of evaluated pairs where the length-K summaries
generated by our proposed method are judged more informative than those by baseline
methods. The proportion is averaged across all the judges of the same dataset. The
table clearly shows that, for most cases, our method’s summaries are consistently
more informative than those of the same length of the baseline methods. This implies
that our method is able to extract more diverse sub-events.

22We do not report Kappa measures here as they might be misleading in cases with imbalanced choices like ours. Please refer to
https://en.wikipedia.org/wiki/Cohen%27s kappa#Limitations for a more illustrative explanation

https://en.wikipedia.org/wiki/Cohen%27s_kappa#Limitations
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Table 3.3. Proportion of evaluated pairs where Inc’s length-K summaries are judged
more informative.

LexRank Sumblr
K = 5 K = 10 K = 5 K = 10

Westminster Attack 0.69 0.75 0.56 0.53
Travel Ban 0.80 0.80 0.89 0.89
UA Incident 1.00 0.94 1.00 0.92
DNC 2016 0.99 0.97 0.86 0.91
Hurricane Harvey 0.93 0.96 0.82 0.88

3.3.5 Discussions

Case Studies. We now present here case studies to illustrate how our proposed
method works differently from the baselines. Table 3.4 shows the length-5 summaries
generated by all the comparative methods on UA Incident dataset at time step 20,
which is around one day since the event happened. As expected, the summaries
generated by the Opinosis and TOWGS methods are the least readable and do not
contain much information. The former consists of the most frequent phrases while
the latter even does not have any meaningful sentence or phrase. The summaries
generated by the Lexrank and Sumblr methods are also not very informative. They
include short tweets containing some keywords and emotions expressed toward the
subject. This is also expected as these tweets have high cosine similarity to many
other tweets containing the same keywords, and hence often highly ranked by the
similarity-based ranking algorithm used in these two baseline methods. Lastly, the
table clearly shows that the summary generated by our proposed method is much
more informative than those of the baselines.

Computational Complexity. We use hashmaps to store the word graph’s nodes
and adjacency lists. These hashmaps allow us to update the graph in O(log(|V |))
operations where |V | is the number of words in the graph. Since word frequency is
highly skewed [29], |V | << |T | × lavg where T is the set of tweets in the current time
window, and lavg is the average number of words in a tweet - which is quite small as
tweets are short. Hence, the computational cost of maintaining the word graph is the
log scale of the number of tweets.

The computation of PageRank scores from scratch is rather expensive. Since
tweets arrive in the stream and events are assumed to evolve smoothly, the word graph
should also change gradually over time. We, therefore, employ random walk based
methods to update the scores incrementally [10]. These methods have been shown
to have almost constant cost and extremely low running time for each incremental
update [51]. Moreover, they also allow us to update the scores frequently, i.e., over
sub-intervals of each time step, hence do not require much workload whenever we
need to generate the summaries.
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Table 3.4. Example length-5 summaries

Method Summary

LexRank

A passenger was forcibly dragged off an overbooked flight. The United CEO
says he is sorry for having to “re-acco
@united I’m still never flying with United again.
@united Never flying United again!! You should be ashamed.
Yeah fuck @united flights
@united If you take someone’s money for a certain flight; they have a right
to be in that flight.

Opinosis

Friendly Skies.
overbooking problem.
airlines frequent flyer.
united airlines.
United card .

TOWGS

jimmy kimmel goes off on united united airlines
@united i can be a @united flight
watch jimmy kimmel rips into united airlines
people are not in that flight they have a flight
pay for a @united flight that was united airlines

Sumblr

United Passenger Dragged From Overbooked Flight: A man on an
overbooked United Airlines flight...
@united Fuck your airline ,
Here’s a statement from United Airlines on the man who was dragged off an
overbooked flight in Chicago
@united No. It’s totally unacceptable. You overbooked the flight so paying
customers should NOT BE REMOVED. FULL STOP.
United airlines “fly the friendly skies” ... somehow I don’t think so

Inc

Video appears to show a man being forcibly removed from a United plane
by law enforcement in Chicago.
@united beat a passenger for doing but sitting in the seat he paid for when
they overbooked the flight. I hope he sues the
@United “Fly The Friendly Skies” we throw N a BEATING 4 free! Hey we
were not airborne yet!!! We R trying 2 figure out how 2 beat MORE!
How can #united deplane (violently more so) a random passenger who has
paid for his ticket & sitting on his assigned seat
VIDEO: United Airlines passenger dragged off overbooked flight at O’Hare
Airport; officer placed on leave - WLS-TV https://t.co/XCdzpV8EJu

The major computation of our method in each time step is in detecting sub-events
based on nodes’ PageRank scores - Algorithm 3, and selecting representative tweets
in the final summary - Algorithm 4. The former has a cost of O(|S| × |V | × deg),
where |S| is the number of sub-events detected, and deg is the average number of
edges in the word graph [67]. The latter has a cost of O(|S| × T v∈S × n + CLexRank),
where T v∈S is the average number of tweets of each sub-event, n is the number of
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representative tweets extracted for each sub-event, and CLexRank is the cost for the
tweet ranking at line 18, Algorithm 4. Again, as word frequency is highly skewed,
deg is often a small number. Similarly, since nodes’ neighbors and Pagerank scores
are highly skewed, Algorithm 3 terminates quickly after a few iterations, i.e., |S| is
a small number. Moreover, T v∈S < |T |, and CLexRank is almost a small constant as
we run LexRank on a small set of tweets. All these make the cost of generating the
summary for each sliding time window linear to its number of tweets. Our method
is, therefore, scalable to large-size tweet streams.

Running Time. We now empirically examine the method’s efficacy by comparing
its running time with that of the baseline methods. Table 3.5 shows the running
time of the methods on the experimental datasets. In the table, the “-” notation in a
cell denotes that the corresponding method cannot handle the corresponding dataset
within two weeks. The table shows that, for all the cases, our proposed method is
much faster than LexRank, Opinosis, and TOWGS methods. Also, on small datasets
(refer to Table 3.2 for the datasets’ size), our method is slightly slower than the
Sumblr method - the only scalable method among the baselines. However, on a large
dataset, our method is much faster. Our method is therefore more scalable than
Sumblr and can cope well with large volume streams.

LexRank Opinosis TOWGS Sumblr Inc
Westminster Attack 300+ 400+ 200+ 6 10
Travel Ban 1K+ 17K+ 18K+ 15 20
UA Incident 100+ 200+ 200+ 5 8
DNC 2016 100K+ 800K+ - 7.9K+ 3.5K+
Hurricane Harvey 500K+ 1.1M+ - 9.6K+ 6.6K+

Table 3.5. Running time, in seconds, of the comparative methods on the experimental
datasets.

3.4 Chapter Summary

In this chapter, we introduced graph-based methods for online filtering and summa-
rizing relevant tweets of evolving events from large-scale Twitter streams. Our clas-
sification and summarization methods are highly scalable while efficiently classifying
relevant tweets and generating diverse and informative summaries. Experimental
results on diverse datasets show that (a) our classifier has better performance in fil-
tering incoming relevant tweets and is more computationally effective than baselines,
(b). the proposed summarizer outperforms typical and state-of-the-art baselines as
measured by ROUGE-1 scores and human judgment.

In the next chapter, we develop models specifically for the classification and sum-
marization of crisis events. Unlike generic breaking news, messages posted during cri-
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sis events can be grouped into fine-grained categories such as infrastructure damage,
affected individuals, rescue, etc. We aim to support stakeholders such as governments
or health organizations to obtain situational updates and plan for rescue actions. For
tasks in crisis domain, interpretability is an important criterion when designing ma-
chine learning models, where it is transparent to users how models come to make a
specific decision. Hence, we focus on models that obtain the tradeoff between model
performance and interpretability.



4
Interpretable Classification and Summarization of

Crisis Events

4.1 Introduction

Crisis events work as a trigger for a large volume of real-time information over social
media such as Twitter. Local people and authorities post a lot of updates from the
ground. Some previous studies [156, 23, 154] have shown the vital role of the Twitter
resource in enhancing emergency situational awareness and planning aids. However,
in disaster situations, crisis-related messages are immersed in massive sentimental
and irrelevant tweets. Besides, humanitarian organizations usually want to obtain
information in multiple categories, such as infrastructure and utility damage, caution
and advice, injured and dead people, etc. Besides, Twitter users also want to quickly
get brief information about events without being overwhelmed with massive data.
To fulfill the needs of these organizations and effectively cope with large-scale disas-
ters, it is necessary to develop automated methods to classify tweets into different
humanitarian categories and then summarize those tweets in real time.

All existing crisis-specific classification and summarization approaches primarily
focus on performance measures, but they did not pay any attention to their decision-
making processes. However, such critical systems need to be interpretable in na-
ture [124, 125, 127] so that decision-makers can use them for the purpose. Models are
interpretable when humans can understand the reasonings behind output predictions.
Besides, in many applications, users prefer simple models with high interpretability.
It, therefore, brings to forefront the trade-off between accuracy and interpretability
of a model. Despite advances in Natural Language Processing [35] and interpretable
Deep Learning models [124, 36, 127, 174], interpreting classification of short, noisy
tweets has not been explored. In this work, we aim for a classification model in cri-
sis domain to be interpretable by design. We observe that there are short snippets
in tweets, so-called explanations/rationales1 [36], which provide sufficient evidence

1These two terms are used interchangeably throughout the thesis.
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to support classification outputs. For example, “03 Dec 2012 – At least 475 people
are killed after Typhoon Bopha, makes landfall in the Philippines”, the phrase “At
least 475 people are killed” captures essential and sufficient information to classify the
tweet to a category about injuries and death. Furthermore, we show that the use of
rationales helps improve summarization results of crisis events.

In this chapter, we present an interpretable classification and summarization
framework2 to classify and summarize tweets during disaster events. In the clas-
sification phase, we develop a crisis-related microblog classifier based on the idea
proposed by Zhang et al. [174]. First, we extract rationales based on a BERT-based
multi-task learning approach [25]. Then, the extracted rationales are used to predict
the class labels of tweets. Our model is interpretable by design, which is transpar-
ent to users about the interpretability of predicted rationales. In the summarization
phase, the categorized tweets and rationales are used as the input of an Integer
Linear Programming (ILP) framework to summarize tweets. Our summarizer opti-
mizes multiple criteria with flexible constraints, which aim to satisfy different needs
of end-users. Experiments on two long-ranging natural disaster events show that
our multi-task learning approach achieves high classification performance along with
high-quality rationales for the model decisions. Besides, the proposed summarization
method surpasses various state-of-the-art baselines in terms of ROUGE-1 F-score
and informativeness with human judgment. To the best of our knowledge, this is the
first study on interpretable classification-summarization approach on crisis-related
microblogs.

4.2 Dataset

Humanitarian Class THagupit NEquake
Caution and advice 467 NA

Infrastructure damage 421 425
Injured or dead people NA 451

Affected people and evacuations 495 508
Rescue, donation efforts 409 636
Other useful information 434 433

Emotional support and irrelevant 500 500

Table 4.1. Labeled data of two disaster events. NA indicates that the class is absent
or merged with another class.

We consider tweets posted in three days of the following two publicly available
crisis datasets from CrisisNLP [56].
i. Typhoon Hagupit (THagupit): an intense tropical cyclone, known as Typhoon

2Our code is available at https://github.com/HPanTroG/Bert2Bert.

https://github.com/HPanTroG/Bert2Bert
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Class Event Tweet text
Caution and advice THagupit @USER: Super Typhoon Hagupit strength-

ens with 178 mph max winds as storm tracks
toward Philippines.

Infrastructure damage NEquake Nepal Earthquake: RT @USER: Kath-
mandu airport closed following 7.8
#NepalEarthquake.

Injured or dead people NEquake RT @USER: Nearly 1,805 dead in Nepaĺs
killer quake, India mounts massive rescue
operation

Affected people and evacuations NEquake RT @USER: We are a local tampa fam-
ily and my son is #missing due to the
#NepalEarthquake [url]

Rescue, donation efforts THagupit #WorldVision is prepared to respond to
55,000 people with emergency essentials.
#RubyPH [url]

Other useful information THagupit NOW ON ANC: Pagasa update on Typhoon
#RubyPH via ANC Alerts

Emotional support or irrelevant THagupit R-evenge of the\nU-nfinished\nB-usiness
of\nY-olanda\n\nHAHAHAHAHAHA xD
stay safe mo guys

Table 4.2. Examples of tweets from various humanitarian classes, the highlighted
snippets are rationales.

Hagupit in Philipines. The dataset includes 0.21M tweets posted between December
06 and 08, 2014.
ii. Nepal Earthquake (NEquake): a devastating earthquake in Nepal. This
dataset consists of 1.19M tweets posted between April 25 and 27, 2015.

Around 2000 tweets from each dataset are labeled by crowd workers into different
humanitarian categories [56], such as “injured or dead people”, “infrastructure and
utility damage”, “caution and advice”, etc. These categories are defined and used
by United Nations Office for the Coordination of Humanitarian Affairs (UN OCHA).
Nevertheless, we have observed many tweets that are wrongly annotated in those
datasets. For example, the tweet “*In real time * #NepalEarthquake India : So sad
.. Bangladesh : That wasn’t No ball..” is marked as “infrastructure and utilities
damage” in Nepal Earthquake, or “RT @MyJaps: Stay safe everyone. ὤFὤFὤF
#RubyPh” is labeled as “caution and advice” in Typhoon Hagupit dataset. Besides,
such annotations do not contain any rationale labels. Our rationales are short snippets
that convey important information for the classification decision. A tweet can contain
multiple non-consecutive snippets as rationales. All in all, we perform another round
of annotation to revise labels, make them more accurate and annotate rationales.

Unlike some previous works that only consider classes with a sufficient number of
tweets [131, 133], we take into consideration tweets of all classes. However, we merge
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Figure 4.1. An overview of our interpretable classification and summarization frame-
work.

some small classes that report similar information and create a new label for the tweets
as “affected people and evacuations” so as to capture all important information. In
THagupit, three classes “missing, trapped and found people”, “displaced people
and evacuations” and “injured and dead people” are merged (there are not so many
reports of injuries or death in flood events). Similarly, in NEquake, two classes,
“missing, trapped and found people” and “displaced people and evacuations” are
merged (reports about injuries and death are prevalent in such events and should be
kept as a separate class). The final set of classes is listed in Table 4.1. We illustrate
examples of tweets in the pre-defined classes, along with rationales in Table 4.2.

4.3 The Proposed Method

This section presents our proposed method for interpretable classification and sum-
marization of disaster events.

4.3.1 Overview

We consider our classification-summarization approach in the following context. Given
a large stream of tweets in chronological order during disaster events, we aim to
classify incoming tweets into humanitarian classes with human-understandable ex-
planations and generate summaries of class-level tweets. Figure 4.1 presents the
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overview of our framework. Tweets are pre-processed and fed into a BERT-based
multi-task learning model that jointly trains two tasks: tweet classification and ra-
tionale/explanation extraction of the classifier. Next, the extracted rationales are
employed to again classify tweets into humanitarian classes. The second classifica-
tion step ensures that the model relies on extracted rationales to make predictions.
Finally, the set of labeled tweets along with rationales are utilized as inputs of our
summarization model. In this paper, we use an Integer Linear Programming (ILP)
algorithm to extract salient, non-redundant tweets as summaries. Due to the large-
scale disaster events, we allow users to generate snapshot summaries of a specific time
interval and a defined length limit.

4.3.2 BERT based Multi-task Classification Pipeline

Data preparation

Our initially labeled data is imbalanced, the majority of tweets belong to the “emo-
tional support or irrelevant” class, while some other classes have only a few tweets.
To efficiently supervise our BERT-based interpretable classifier, we decide to gather
more data for small classes and annotate rationale information. Firstly, we randomly
sample and manually label new data of each event so as to obtain roughly 400 la-
beled tweets in each class. Next, rationales are annotated. Besides, we sub-sample
irrelevant tweets to make our data more balanced. The final classes and number of
labeled tweets used for our training process are shown in Table 4.1.

Rationale Identification and Classification

Our pipeline model is a BERT-based supervised encoder-decoder network with two
learning stages. In the first stage, we extract rationales based on a multi-task learning
structure that jointly classifies tweets into humanitarian classes and identifies ratio-
nales in the tweets using a BERT encoder and two decoders. The second stage ignores
classification labels in the first stage and applies another BERT encoder to generate
the classification prediction based on the extracted rationales alone. We formalize
the classification as follows:

Input: Given a set of tweets T , each t ∈ T is represented as t =< t1, t2, .., tn >,
where ti is a BERT-based tokenized token in t.

• Stage1 Output (Tweet class + Rationale tokens):

– Output Task 1 (Classification decoder): Label l ∈ L of any given
tweet t ∈ T , where L: set of humanitarian classes in Table 4.1.

– Output Task 2 (Rationale decoder): Token label r =< r0, r1, .., rn >,
where ri ∈ {0, 1} to specify whether a token ti is a part of rationales
(ri = 1).
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• Stage2 Output (Classification decoder): Final label l ∈ L of any given
tweet t ∈ T , where L is the set of humanitarian classes.

BERT Encoder. We employ BERTweet model [99] to encode input data. Our
input tweets are first tokenized and split into a sequence of tokens of the form [CLS]
t1 t2 .. tn, where [CLS] is a special token added to mark the beginning of a tweet. We
also keep the correspondence between a word and its tokens to later retrieve original
words. Rationale labels are assigned to each tokenized token. BERTweet trains a
masked language model to generate encoding vectors. Input tokens are padded to
a maximum length of 128 - maximum sequence length of BERTweet [99], in each
mini-batch. The final hidden state corresponding to the first token [CLS] is used as
the aggregate representation of a tweet. BERT Encoder generates embeddings of size
768 dimensions for input tokens. An example of a tokenized tweet in BERT Encoder
and our pipeline model is illustrated in Figure 4.2.

Classification Decoder. Our classification decoder generates a class label for each
input tweet. The model is trained by appending a fully connected layer with Softmax
on top of the final hidden vector in the encoder, corresponding to the first input token
[CLS]. We compute a standard cross-entropy loss between the predicted probability
p and the true labels y.

Losscd = −
|L|∑
l=1

yllog(pl) (4.1)

where, —L— is number of class labels, yl ∈ {0, 1} - binary indicator if the current
tweet t belongs to class label l ∈ L. pl is the predicted probability that tweet t is of
class label l.

Rationale Decoder. The rationale extraction task is formalized as a binary clas-
sification task over input tokens. Given a sequence of tokens in an input tweet, the
rationale decoder assigns a binary label to each token, which indicates whether the
token is a part of the rationales. In this step, we append a Gated Recurrent Unit
(GRU) layer followed by an output layer with Sigmoid function to the last hidden
token embedding layer of the shared encoder. The GRU layer helps to capture the
dependency between input tokens, yet has fewer parameters than a long short-term
memory (LSTM). The presence of rationales can be sparse in some classes, i.e., around
20%-30% words (excluding mentions, URLs) in tweets of “caution and advice” con-
tribute rationale information. To address the class imbalance, we use a weighted
binary cross-entropy loss function [28], in which weights are proportional to token
probabilities in the input tweets. The loss value of the rationale decoder is as follow:

Lossrd = −
|N |∑
i=1

|N |
|Nyi |

(yilog(pi) + (1− yi)log(1− pi)) (4.2)

where yi and pi are the true label and prediction value of i-th token respectively,
yi ∈ {0, 1}, |N | is the length of the tweet, |Nyi | is the number of tokens with label yi.
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Figure 4.2. Our BERT2BERT model with example of an input tweet. FC indicates
a fully connected layer.

Stage1 Prediction. In the first stage, our BERT-based multi-task classifier jointly
optimizes losses in the above two decoders. Formally, the overall loss function is
defined as follow:

Loss = Losscd + αLossrd (4.3)

where, α is the weight value to regulate losses of the two tasks.

The output of the rationale decoder is at token level. We merge split sub-tokens
to retrieve the original words and word-level labels through max-pooling.

Stage2 Prediction. In this stage, we only consider rationale tokens of the tweets,
mark other ones with a special character ‘*’ and feed them to the second BERT
classifier. The classification decoder of stage 2 generates the final class labels of
tweets.

4.3.3 Tweet Summarization

In this section, we propose a method to summarize tweets of different humanitarian
classes. First, we apply our trained classification model to generate labels and ratio-
nales on data of our three event dates. We observe that the extracted rationales cover
the essential content of tweets. Side by side, numerals also play a key role. Thus, our
summarization method aims to optimize the coverage of the rationales and numerals.

Given a stream of tweets along with tweet labels and rationale snippets in a
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humanitarian class, we build a model to generate summaries of any user-specified
time window. We employ an Integer Linear Programming (ILP) framework for our
summarization task. Considering a time window of T tweets, a summary of a desired
length M words is generated by optimizing the following ILP objective function:

max(
T∑

j=1

tj +
U∑
i=1

S(i).ui) (4.4)

where: tj ∈ {0, 1} indicates whether a tweet j is chosen. U is the number of unique
rationale words and numerals in T tweets, ui ∈ {0, 1} specifies whether a rationale
word or numeral i is chosen. S(i) indicates the importance of a word i computed
using logarithm of document frequency.

The objective function is optimized with following constraints:

• The summary length should contain at most M words, where M is specified by
users.

T∑
j=1

tj · Length(j) ≤M (4.5)

• If the objective function selects a rationale word or numeral i in the summary,
i.e., if ui = 1, then it should select at least one tweet containing that word i.∑

j∈Zi

tj ≥ ui, i = [1 · · ·U ] (4.6)

where Zi is the set of tweets containing the word i.

• All rationale words/numerals in a tweet j must be included in the summary if
tweet j is selected for the summary.∑

i∈Rj

ui ≥ |Rj| × tj, j = [1 · · ·T ] (4.7)

where Rj is the set of rationale words/numerals in tweet j.

The above constraints consider both number of tweets (through the tj variables)
and number of important rationale words or numerals (through the ui variables).
Hence, our ILP-based summarizer takes care of multiple requirements, i.e., informa-
tiveness, diversity, redundancy, etc. We ensure that the most important informative
words get selected in summary, and the optimization function does not get any ben-
efit by selecting the same word multiple times. Overall, this process selects a set of
tweets that form an informative and diverse summary. We validate our results in
Section 4.5.

We employ the GUROBI Optimizer [48] to solve the ILP. After that, the set
of tweets j such that tj = 1, represent the summary at the current time window.
We define our proposed RAtionale word-based Tweet SUMmarization approach as
RATSUM.
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4.4 Classification Results

4.4.1 Baseline models

There exist no previous work on the interpretable classification of crisis-related tweets
that is similar to our study. Hence, we compare the performance of our disaster
classification model with the following previous baselines:

1. SVM: A strong and supervised baseline [23, 56, 98] for the classification of
crisis events. AIDR [55] also adopted a similar strategy.

2. RoCNN [98]: A robust classification of crisis-related data on social networks
using Convolutional Neural Network (CNN) with pre-trained word embeddings.

3. BERT-CLS [99]: BERTweet model with a sequence classification head on
top [53].

4. BERT-GRU: BERTweet model combined with a GRU + Attention layer
and a final output layer with Softmax. We apply the additive attention for-
mulation proposed by Bahdanau et al. [9] and extract top-k tokens with the
highest attention weights as rationales. The value k is set to the average ratio-
nale length of human groundtruth for each category in each dataset. Tokens are
then merged into original words to obtain final rationales through max-pooling.

5. BERT-MTL: Our model with only first stage prediction.

4.4.2 Evaluation Metrics

We use Macro F1 score to evaluate prediction results of the classification models.
Besides, we report how well our generated rationales agree with those marked by
humans (rationale groundtruth) using Token-F1 metric. Basically, token precision
measures the fraction of relevant rationale tokens (words) among the generated tokens,
while token recall is the fraction of correctly retrieved rationale tokens among the
groundtruth tokens. The Token-F1 reports the trade-off between token precision and
token recall.

4.4.3 Experimental settings

We evaluate our model and baseline methods using a 5-fold cross-validation set-
ting. We follow pre-processing or other setting steps in original papers for SVM
and RoCNN. For BERT-based models, we pre-process tweets by removing mentions,
URLs and then convert tweets to lower case. At each cross-validation run, we sample
training, validation, and test sets with ratios 70%, 15%, 15%, respectively. The val-
idation set is used for early-stop settings and hyper-parameters tuning of our model
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and all the baselines. BERT-based models are trained with the same setting of 10
epochs, AdamW optimizer [84] with an initial learning rate of 2e-5, and batch size
of 16. The bidirectional GRU layer has a hidden size of 128. We specify a grid of
candidate values in the range [1e-2, 4e-1] for our hyper-parameter α and compute
average F1-scores of classification and rationale extraction tasks with respect to each
candidate on validation sets. We select the hyper-parameter that results in the high-
est mean F1-score (average of Macro-F1 and Token-F1) over five runs on validation
sets for test evaluation and new data prediction. The best hyperparameters α on
both THagupit and NEquake are 0.07.

4.4.4 Classification Results

We report average scores on test sets over 5-fold cross-validation in Table 4.3. It is
not surprising that BERT-based models return superior performance than the tra-
ditional machine learning approaches, such as SVM and RoCNN. BERT-GRU
achieves high Macro F1, yet low Token-F1 scores on both the datasets. It is con-
sistent with conclusions of previous studies [59, 137] that attentions do not provide
a faithful explanation for classification decisions. BERT-MTL and BERT2BERT
have the same Token-F1 score since they share the same encoder-decoder structure.
Among all the methods, BERT-MTL has the highest classification Macro F1. How-
ever, one cannot surely say whether the model relies on rationales for its prediction.
BERT2BERT gets high classification performance, and it is transparent to users
that the model is interpretable by design, extracted rationales alone are sufficient for
correct classification prediction. Our model also performs well (F1 ≥ 0.80) for each
individual class.

Model
THagupit NEquake

Macro F1 Token-F1 Macro F1 Token-F1
SVM 0.802 - 0.799 -

RoCNN 0.814 - 0.834 -
BERT-CLS 0.852 - 0.865 -
BERT-GRU 0.850 0.508 0.875 0.642
BERT-MTL 0.857 0.820 0.880 0.856
BERT2BERT 0.847 0.820 0.869 0.856

Table 4.3. Average F1 score over 5 fold cross-validation, ‘-’ indicates that rationales
are not extracted by a given method.

4.4.5 Faithfulness of Rationales

In this section, we evaluate the faithfulness of our rationales in terms of comprehen-
siveness and sufficiency [36]. We run the second stage of BERT2BERT with two
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Dataset Comprehensiveness↑ Sufficiency↓
Human Predicted Human Predicted
Rationales Rationales Rationales Rationales

THagupit 0.218 0.294 -0.066 0.005
NEquake 0.283 0.406 -0.097 -0.004

Table 4.4. Faithfulness of rationales.

different input settings and compute the two metrics as follows:

• Comprehensiveness: Earlier, we train the classifier with the input tweet ti.
In this part, we train the classifier again with 5-fold cross-validation using ti\ri,
that is, the original input with ri (rationales) replaced by a special character
*. Finally, we evaluate the performance of both the input settings on the test
set. For example, “at least 13 dead after avalanches at mount everest” and
“* * * * after avalanches at mount everest” present the original and modified
data. Next, we measure comprehensiveness as Macro F1(ti) - Macro F1(ti\ri).
High comprehensiveness indicates that rationales highly influence the model
performance.

• Sufficiency: In this case, we train the classifier using only rationales ri (other
tokens are replaced by *). Finally, we apply the model trained on the original
text and the current one on test data and measure sufficiency as follows: Macro
F1(ti) - Macro F1(ri). A low sufficiency score means our rationales are adequate
for the model to make predictions.

In Table 4.4, the comprehensiveness score shows that our predicted rationales
are important for classification. Specifically, the prediction performance drops sig-
nificantly on both datasets when we mask rationales in the input text. Besides, the
sufficiency scores are 0.005% and -0.004% on THagupit and NEquake, respectively.
This ensures that extracted rationales are adequate for the model to make predictions.
Compared to human rationales, higher comprehensiveness and the higher sufficiency
of predicted rationales reflects that our extracted rationales are covering more tokens,
yet some are false positive. The average ratio of extracted rationale words in input
tweets is higher than that of human rationale words by 11%. The token-precision on
THagupit and NEquake are 77% and 83%, respectively. Meanwhile, the token-
recall are 95% and 94% correspondingly on THagupit and NEquake. Thus, there
is still the scope for token-precision improvement.

4.4.6 Agreement between first and second stage prediction

Our BERT2BERT returns two different classification outputs - one in stage 1 and
the other in stage 2. We measure the agreement/similarity between the two predicted
label sets in terms of accuracy. The average agreement/accuracy scores between the
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the two predicted label sets are 90.7% and 92.2% on THagupit and NEquake
respectively. The disagreement cases are mainly from tweets with mixture of infor-
mation, i.e, “RT @USER: In Sindhupalchok alone, death reaches 1,300. 90% homes
destroyed, desperate wait for help. [url] #NepalE. . . ”. The high agreement shows
that our rationale extraction in stage 1 is effective for the final classification.

4.5 Summarization Results

In this section, we evaluate our generated summaries in both quantitative and quali-
tative ways.

4.5.1 Groundtruth summaries

We employ five volunteers to prepare class-level summaries for each day of the events.
In the summarization step, we ignore two classes that are not important from a
situational point of view, such as “other useful information” and “emotional support
and irrelevant”. In total, we need to create 4 (class) x 3 (day) = 12 class-level
summaries for each event. Volunteers were first asked to prepare summaries of 200
words (excluding #, @, URLs) independently. Next, we iteratively choose tweets
selected by most volunteers until we reach a length limit of 200 words to form the
groundtruth.

4.5.2 Baseline models

We consider both disaster-specific and recent deep learning-based neural summariza-
tion methods as baselines.
1. TSum4Act [101]: A Pagerank-based extractive summarization method for Twit-
ter disaster events. It uses LDA to detect sub-topics before summarizing tweets.
2. APSAL [63]: An affinity clustering-based extractive summarization method for
summarization of disaster-related news articles.
3. COWTS [129]: An unsupervised, extractive summarization model of crisis events
on Twitter.
4. MOO [133]: An extractive summarization method for Twitter disaster events by
jointly optimizing several objective functions.
5. BERTSUM [81]: The recent supervised summarization model for news articles.
It formulates the summarization problem as a classification task to identify sentences
in the final summary.
6. PACSUM [176]: The strong unsupervised summarization method for news arti-
cles. It builds a sentence similarity graph using fine-tuned BERT embeddings and
selects sentences with the highest centrality scores in the summary.
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7. BERT-GRU: Our summarization model using the extracted rationales of the
BERT-GRU classifier.

The first four strategies are disaster-specific approaches, PACSUM and BERT-
SUM are neural BERT embedding-based approaches. For all the models, we generate
summaries of length M = 200 words.

4.5.3 Evaluation metrics

We measure the summarization performance in both quantitative and qualitative
ways.

Groundtruth based evaluation: We use a popular ROUGE toolkit for evalua-
tion [74]. Following baselines and previous works on Twitter summarization [63, 129,
140, 179, 103], we choose ROUGE-1 F-score for evaluating summaries. ROUGE-1
score has shown to be the most consistent with human assessments [75].

Human evaluation: We asked five volunteers to evaluate summaries generated by
our model and all the baselines by answering two questions. Q1. For each summa-
rization method, we generate 12 summary instances per dataset (hence, 24 instances
in total). We give volunteers summaries returned by different methods and ask:
Which summary is more informative about the event. This measures the coverage of
information in summaries. A summary that contains more informative sentences is
considered to have higher information coverage. Q2. We give two versions of RAT-
SUM summaries (i). with highlighted rationale words, (ii). without highlighting,
and ask volunteers which version they prefer. This evaluates whether the highlighted
text reflects important content and helps end-users comprehend the situation better.

4.5.4 Summarization Results

Groundtruth-based evaluation. Table 4.5 shows the ROUGE-1 scores for 24
summary instances returned by our model and all the baselines. Though ROUGE-
1 metric includes precision, recall, and F-score, we observe quantitatively similar
patterns in all these scores. Hence, we report only F-score in the table. In most
cases, RATSUM performs better than all the baseline approaches. On average, our
summarization model outperforms COWTS, BERT-GRU, PACSUM by 5%, 8%,
14% respectively. The remaining baselines such as APSAL, TSum4Act, MOO and
BERTSUM fall behind RATSUM with a large margin of more than 18% in term of
average ROUGE-1 F-score. We also perform Wilcoxon signed-rank test [166] between
RATSUM and other baselines. The performance of RATSUM turns out to be
significantly better than the baselines with 95% confidence interval (p−value < 0.05).
Side by side, this trend also holds for ROUGE-2 and ROUGE-L.

Human Evaluation. As MOO and BERTSUM shows low performance compared
to other models, and BERT-GRU applies the same method as ours, we do not give
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Model

ROUGE-1 F-score (THagupit)
Caution & advice Affected people Infrastruture Rescue efforts
06/12 07/12 08/12 06/12 07/12 08/12 06/12 07/12 08/12 06/12 07/12 08/12

RATSUM 0.574 0.647 0.516 0.642 0.615 0.641 0.516 0.483 0.609 0.528 0.657 0.535
TSum4Act 0.327 0.419 0.461 0.314 0.356 0.253 0.328 0.303 0.363 0.485 0.401 0.376
APSAL 0.333 0.370 0.423 0.434 0.369 0.383 0.397 0.439 0.421 0.447 0.412 0.317
COWTS 0.544 0.621 0.561 0.639 0.574 0.624 0.487 0.469 0.526 0.465 0.594 0.552
MOO 0.330 0.297 0.343 0.386 0.340 0.290 0.337 0.274 0.292 0.394 0.262 0.324

BERTSUM 0.352 0.364 0.431 0.397 0.397 0.368 0.395 0.345 0.398 0.415 0.383 0.327
PACSUM 0.417 0.378 0.467 0.392 0.333 0.408 0.424 0.396 0.389 0.512 0.538 0.545

BERT-GRU 0.465 0.408 0.515 0.454 0.417 0.335 0.442 0.366 0.440 0.567 0.511 0.602

Model
ROUGE-1 F-score (NEquake)

Injuries & death Affected people Infrastruture Rescue efforts
25/04 26/04 27/04 25/04 26/04 27/04 25/04 26/04 27/04 25/04 26/04 27/04

RATSUM 0.521 0.564 0.404 0.529 0.526 0.556 0.581 0.580 0.472 0.644 0.651 0.576
TSum4Act 0.336 0.295 0.294 0.446 0.359 0.346 0.422 0.347 0.231 0.390 0.383 0.314
APSAL 0.372 0.336 0.376 0.329 0.307 0.291 0.448 0.323 0.246 0.382 0.363 0.312
COWTS 0.539 0.476 0.359 0.548 0.439 0.390 0.538 0.409 0.386 0.456 0.459 0.549
MOO 0.372 0.303 0.339 0.278 0.355 0.238 0.333 0.273 0.297 0.300 0.228 0.300

BERTSUM 0.377 0.393 0.379 0.350 0.326 0.421 0.415 0.391 0.380 0.418 0.309 0.305
PACSUM 0.409 0.345 0.327 0.515 0.389 0.446 0.402 0.492 0.460 0.473 0.440 0.300

BERT-GRU 0.501 0.536 0.422 0.451 0.506 0.554 0.441 0.556 0.373 0.553 0.608 0.522

Table 4.5. ROUGE-1 F-score of summarization models. The best scores are in bold,
the second bests are in brown color.

the results of these models to volunteers to reduce workload. For each dataset, we get
60 responses to a given question (5 volunteers x 12 summary instances). Table 4.6
illustrates the fraction of responses. In THagupit dataset, 47% of respondents find
our generated summaries more informative. The second and third informative models
are COWTS and PACSUM. It is generally consistent with the above groundtruth-
based evaluation results. In NEquake dataset, 83% of respondents prefer our model
in terms of informativeness. It is significantly higher than the evaluation on TH-
agupit dataset. We observe that the NEquake dataset is much bigger, each cat-
egory covers more sub-events. The human evaluation and our observation indicate
that RATSUM tends to work well on large datasets with many sub-topics. Table 4.6
also illustrates the high preference of highlighted text. 100% of volunteers think the
highlighting is useful and more user-friendly. We illustrates an example of 100-word
summaries generated by RATSUM and COWTS in Table 4.7. RATSUM is shown
in the format with highlighted rationales.

4.5.5 Discussion on Performance

In this section, we discuss possible reasons why our model is superior to the baseline
methods. The disaster-specific summarization baselines generally perform worse than
RATSUM due to various reasons. TSum4Act [101] clusters tweets to sub-topics
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Datasets Model Q1 Q2

THagupit

RATSUM 47% 100%
COWTS 19% NA
APSAL 6% NA

TSum4Act 11% NA
PACSUM 17% NA

NEquake

RATSUM 83% 100%
COWTS 8% NA
APSAL 3% NA

TSum4Act 3% NA
PACSUM 2% NA

Table 4.6. The fraction of responses that a method is preferred by users. NA indicates
that the question is not asked for a given method.

Reports indicate 80% homes near #Nepal #Earth-
quake epicenter collapsed. CARE’s responding.
Some of Nepal’s world heritage sites are dam-
aged or destroyed in earthquake. India Flights to
Kathmandu put on hold: Domestic airlines to-
day put on hold their services t... #business #ker-
ala. The 7.9 earthquake dat hit nepal has dstroyed
buildings, cellphone netwrks r down nd power
is out #MSGHe. . . Initial pictures after #Nepalquake
show major damage to buildings and structures.
Nepal earthquake devastation could cost bil-
lions: Here’s how to help. #Tibet severely affected
by #NepalEarthquake; houses collapsed, commu-
nications cut off. Nepal declares state of emer-
gency after killer quake.

Reports indicate 80% homes near #Nepal #Earthquake
epicenter collapsed. CARE’s responding Terrible news
from Nepal. Donations here. Pic of devastated Palace
area taken 10 days ago. Witnesses: Some buildings
collapse in Nepal capital after 7.7 quake: By Gopal
Sharma and Ross Adkin KATHMANDU (Reuters) -
Nepal urged... Devastating visuals of destruction in
Nepal....thoughts,prayers and all protective energies for
this tragic loss of life.... . . Katmandu’s poorly con-
structed buildings worsen quake outcome. Nepal earth-
quake devastation could cost billions: Here’s how to
help. Nepal Earthquake: Extensive Destruction, Ris-
ing Death Toll. Still can’t believe what I witnessed in
#NepalQuake today. History crumbling, a nation in
despair.

Table 4.7. An example of 100-word summaries (excluding #, @, URLs) generated
from tweets in “infrastructure damage” class (NEquake 26/04) by RATSUM and
COWTS.

and selects the most informative ones in each cluster using a Pagerank-based method.
The model assumes that all clusters are equally important and select the same number
of tweets in each cluster. This assumption might not be valid in disaster scenarios,
in which some sub-topics might cover more critical information than others. AP-
SAL [63] selects tweets based on specific features of sentences in news articles such
as sentence position or language models representing the language of disasters. These
features are usually missing in noisy, short texts of Twitter datasets. BERT-GRU
falls short behind our model due to the low quality and instability of extracted ra-
tionales, as we discussed in Section 4.4.4. It obtains the best performance for a few
summaries, and the remaining cases are significantly worse than RATSUM. Finally,
COWTS [129] considers nouns, numerals, and main verbs as important words and
tries to cover these words in summaries. However, in some cases, other words (i.e.,
adjectives) also play an essential role in disaster-related tweets. RATSUM works
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better because it does not only look at words separately but considers informative
phrases of rationales in the context of tweets. COWTS behaves quite competitive
with RATSUM model on small or less diverse datasets.

Our embedding-based summarization baselines show high computational complex-
ity and low performance in the summarization of large-scale short texts. MOO [133]
generally prefers long sentences with high TF-IDF scores. The extracted tweets by
MOO are also redundant due to the drawback of Word Move Distance (WMD) based
dissimilarity strategy. Besides, the computation of WMD scores is expensive. Next,
the supervised model BERTSUM [176] falls short in our experiment due to the dif-
ference in specific traits of well-written news articles and tweets. BERTSUM and
some supervised neural summarization models [97] grow parameters with the length
of the input documents. Therefore, it fits well for news articles, but not large tweet
sets. We adapt the model by breaking down our tweet datasets into sub-documents.
However, BERTSUM faces another challenge of highly imbalanced data, with only a
few tweets are in the groundtruth summary. Another embedding-based summarizer,
PACSUM generates less diverse summaries than RATSUM. PACSUM is specifi-
cally designed for news articles, it learns similarity between input texts by fine-tuning
BERT on news articles datasets. The model builds a directed graph for sentence selec-
tion under the assumption that relative positions of sentences influence the centrality,
i.e., preceding sentences are more central. However, the assumption is not true for
a set of equally important tweets on Twitter. Besides, it is also computationally ex-
pensive to extract BERT-based similarity scores for all pairs of tweets when building
the PACSUM graph.

4.5.6 Discussion on generalization.

Our model requires intensive initial labor work for rationale annotation. However, it
can generalize well on new data. To observe the ability of our approach for generaliza-
tion, we download 1000 labeled tweets of the recent Mexico earthquake event [2] and
evaluate both classification performance and rationale extraction. We first manually
check labels and then annotate rationale snippets. Then, we train BERT2BERT
model on 100% NEquake dataset with 10 epochs and predict class labels and ex-
tract rationales for evaluation. The performance on new data is shown in Table 4.8.
Although we do not use any in-domain data of Mexico dataset for training, our model
achieves good performance on both tweet classification and rationale extraction tasks.

4.6 Chapter Summary

This chapter presents an interpretable classification and summarization framework
for disaster events on Twitter. We leverage an interpretable by design approach to
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Class #Tweets Macro F1 Token-F1
Infrastructure damage 164

83.95 86.09

Injured or dead people 166
Affected people and evacuations 157

Rescue, donation efforts 161
Other useful information 168

Emotional support or irrelevant 185

Table 4.8. Performance of BERT2BERT on new Mexico dataset.

develop BERT2BERT classifier for crisis-related microblogs. Our evaluation shows
the efficacy of BERT2BERT over baseline methods. We also show that the ex-
tracted rationales are beneficial for the summarization of tweets. Our RATSUM
summarizer turns out to be good for both informativeness and human understand-
ing. The model is robust and simple, yet able to generate informative summaries in
near real-time. We observe that the performance of the classification-summarization
model depends on the latent representations of tweets. Hence, in the next chapter,
we focus on methods that can learn good tweet representations in vector space for a
better classification performance-interpretability tradeoff and a less computationally
expensive summarization method.





5
Contrastive Learning based Interpretable

Classification and Summarization of Crisis Events

In the previous chapter, we develop a BERTweet-based interpretable approach for
tweet classification during crisis events. However, it is observed that the language
model BERTweet model was not pre-trained on similarity tasks, and tweets are not
well represented in vector space. For example, semantically dissimilar tweets may have
high cosine similarity scores. In this chapter, we propose an interpretable classification
approach that has a better classification performance-interpretability tradeoff, and
results in better embedding representations. Thenceforth, we develop an equally good
summarization model with the one from the previous chapter but has significantly
lower computational complexity.

5.1 Introduction

Classification and summarization of crisis events have attracted great attention from
researchers [98, 128, 133, 150]. In general, the performance and applicability of
classification-summarization frameworks depend on two factors — (i). the representa-
tion of tweets in latent embedding space and (ii). understanding the decision-making
process of the model. While the first factor helps in boosting the performance, the
second one ensures the interpretability of the model that, in turn, helps in the adapta-
tion of such systems in real-life usage. Some recent studies have shown the success of
contrastive learning approaches in advancing data representation and further boost-
ing task performance on image and formal text datasets [144, 65, 42, 73]. Inspired by
these studies, we employ a contrastive loss to learn better embedding representations
of tweet data for improving our classification and summarization performance.

In this chapter, we present a classification and summarization framework1 to
classify tweets into different humanitarian classes and summarize this information.

1Our code is available at https://github.com/HPanTroG/RACLC
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Our proposed Rationale Aware Contrastive Learning based Classification (RACLC)
model is generally an advanced rationale-based interpretable-by-design model from
the previous chapter. It can both classify tweets into fine-grained humanitarian classes
and extract short snippets, so-called rationales as explanations for model decisions.
The model consists of two learning stages. In the first stage, RACLC learns ra-
tionales by jointly optimizing three loss values, i.e., losses of class label prediction,
rationale extraction task, and an additional contrastive loss [65]. In the second stage,
we feed the extracted rationales to a simple BERTweet model with a Softmax out-
put layer on top to classify tweets into humanitarian categories. This step shows the
interpretability of the predicted rationales.

Next, we propose an integer linear programming-based summarization approach
that maximizes the coverage of rationale words and minimizes redundancy by dis-
carding duplicate or near-duplicate tweets. Contrastive learning-based latent repre-
sentations of tweets help in the detection of near-duplicate tweets (Section 5.3.2).
We call our summarization approach as RAtionale Aware Contrastive Learning-based
Tweet Summarization (RACLTS).

5.2 Datasets

We download tweets posted on two consecutive dates of four publicly available Twitter
datasets from CrisisNLP [56, 2].

(i) Nepal Earthquake (NEquake): The dataset consists of 0.83M tweets on April
25 and 26, 2015 during Nepal earthquake.
(ii) Mexico Earthquake (MEquake): The dataset contains 0.08 tweets on July
20 and 21, 2015 during Mexico earthquake.
(iii) Typhoon Hagupit (THagupit): The dataset contains 0.16M tweets on De-
cember 06 and 07, 2014 of Typhoon Hagupit disaster.
(iv) Cyclone PAM (CPam): We download 0.11M tweets on March 15 and 16, 2015
during Cyclone PAM.

Class Label
#Tweets

THagupit CPam NEquake MEquake
Infrastructure damage 421 396 425 390

Rescue and donation efforts 411 398 636 381
Affected people and evacuations 502 396 508 399

Injured or dead people NA NA 451 395
Caution and advice 469 404 NA NA

Other useful information 431 364 433 399
Emotional support and irrelevant 493 411 497 438

Table 5.1. Our labeled datasets. NA indicates an absent class.
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Each of the above datasets contains roughly 1000-2000 tweets annotated by crowd-
workers into different humanitarian classes [56, 2]. In the previous chapter, we re-
vised class labels and provided annotated rationales for NEquake and THagupit
datasets. Following this, we annotate rationales for MEquake and CPam datasets.
Recall that rationales are short phrases that provide evidence for class labels. A tweet
can contain multiple non-continuous rationale phrases. The final labeled datasets are
shown in Table 5.1.

5.3 Methodology

5.3.1 Tweet Classification

In this section, we present our Rationale Aware Contrastive Learning based Classification
of crisis events (RACLC). Figure 5.1 illustrates the overview of our RACLC model.
We aim to build a classifier that is interpretable by design. Our model consists of a
pipeline with two learning stages. The first stage applies a multi-task learning ap-
proach with the help of a contrastive loss [65] to extract rationales. The second stage
employs the extracted rationales as inputs and predicts final class labels. This stage
shows that the extracted rationales are explanations for the class labels and makes
our model interpretable by design. We illustrate the structure of RACLC in Figure
5.2, and describe stages in the following parts.

Figure 5.1. RACLC Overview.

Stage 1: Rationale Extraction

Our rationale extraction task is formalized as follow: Given a tweet set T , each t ∈ T
is represented as t =< w1, w2, .., wm >, where wi is a word in t. Our model learns
to assign label l =< l1, l2, .., lm >, li ∈ {0, 1} indicates whether a word is a part of
rationale (li = 1).

The first stage is a multi-task learning classifier with a shared BERT encoder,
two decoders, and a Contrastive Learning Head (CL-head). We want the rationale
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Figure 5.2. Our RACLC model. CL Loss is a contrastive learning loss. FC and GRU
indicate fully connected and Gated Recurrent Unit layers, respectively.

extraction process to be influenced by the label prediction task. Thus, the two tasks
are learned jointly. Besides, we also leverage the beneficial properties of CL loss to
learn better latent representations of tweets and improve the model performance.

BERTweet encoder. We use BERTweet model [99] to encode input texts.
BERTweet has the same architecture as BERT [35], but it is trained on Twitter
datasets. Each tweet is tokenized and represented as [CLS] t1 t2 .. tn, where ti is
the ith token of the tweet, [CLS] is a special token added at the beginning, and it
is used as aggregate embedding representation of the input tweet. Rationale labels
are assigned at token level. We pad input tokens to a maximum length of 128 [99].
BERTweet encoder encodes tweets and generates embeddings of 768 dimensions.

Rationale decoder. The rationale decoder predicts a binary label for every
token in input tweets. This decoder consists of a GRU (Gated Recurrent Unit) layer
followed by a Sigmoid output layer. The number of rationale/non-rationale tokens
in tweets can be highly imbalanced. To address this problem, we apply a weighted
cross-entropy loss function [28], in which weights are inverse probabilities of token
labels in the input tweets. The loss is then computed as follows:

Lossrd = −
|S|∑
i=1

|S|
|Syi |

(yilog(pi) + (1− yi)log(1− pi)) (5.1)

where yi ∈ {0, 1} - correct label of i-th token, and pi - predicted probability that
i-th token is of label yi, |S| - tweet length (token count), |Syi | - number of tokens of
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label yi .

Classification decoder. The classification decoder classifies tweets into pre-
defined humanitarian classes. We apply a sequence classification head on top of
BERTweet encoder for prediction. The decoder optimizes the following cross-
entropy loss:

Losscd = −
|C|∑
c=1

yclog(pc) (5.2)

where, |C| - number of labels, yc ∈ {0, 1} - an indicator whether a considering tweet
t is of label c ∈ C. pc - predicted probability that the tweet t has label c.

CL Head. The CL approach aims at pulling semantically close sentences to-
gether and pushing apart non-neighbors. We follow the self-contrastive learning (SCL)
framework [65], which optimizes an SCL loss with in-batch negatives. Given N in-
stances in a training mini-batch, SCL requires augmenting positive examples for each
original instance. Different from images, data augmentation remains inherently dif-
ficult in NLP due to the discrete nature of texts. In this study, we suggest that the
original tweet and its rationale snippets are semantically close and employ rationales
as augmented data. During training, rationale snippets of a tweet are concatenated
and fed to the shared BERTweet encoder. The CL Head maps BERTweet-based
embeddings of rationales and tweets to vectors {zi} by a single linear layer. The
additional CL loss is then computed as follows:

Losscl = −
∑
i∈I

log
exp(zi • zj(i)/τ)∑
a∈A(i) exp(zi • za/τ)

(5.3)

where i ∈ I ≡ {1...N} is the index of an arbitrary input in the batch, j(i) is the index
of the corresponding augmented positive sample. The • symbol denotes the inner dot
product, τ ∈ R+ is a scalar temperature parameter, and A(i) = I\{i} are negative
samples.

Overall, our final loss function is:

Loss = Losscd + αLossrd + βLosscl

The rationale decoder returns predictions at token level. We retrieve the labels
of original words through max-pooling. A word is predicted as rationale if any of its
constituent tokens is a rationale.
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Stage 2: Label Classification

This step takes rationales returned by the first stage for class prediction. Specifically,
the input data is the original tweets with extracted non-rationales masked by a special
token ‘*’, and the word order is maintained. We also employ a BERTweet encoder
to encode data. The embedding representation corresponding to the first token [CLS]
is then fed to a fully connected Softmax layer to determine tweet labels.

5.3.2 Tweet Summarization

In this section, we use tweets along with class labels and rationales predicted by
RACLC to generate class-level summaries. Near-duplicate tweets of each class label
are first removed. Then, the remaining tweets are fed into an optimization model for
summarization. In this part, we ignore two classes which are ‘emotional or irrelevant’
and ‘other useful information, since they do not provide important and actionable
information in crisis events.

Temporal evolution and near-duplicate removal

Generally, messages posted at the time of crisis events are highly overlapped in terms
of information. To reduce memory overload and computation time, we remove highly
similar tweets for our summarization. Typical deduplication methods are usually
based on word overlap. However, many tweets report the same or similar informa-
tion, but have no or few words in common. For example, two tweets ‘500K people
flee #nepal earthquake’ and ‘half million residents evacuate the quake area’ are se-
mantically similar, but expressed in different ways. Some previous works [42, 123]
have proposed fine-tuned embeddings for similarity tasks. However, these studies
were designed for formal texts and not suitable for Twitter datasets. As observed
in many recent works [65, 144, 42] and our experiments (section 5.4.4), pre-trained
contrastive-based embeddings can generate good semantic representations of the input
data. Therefore, we propose a temporal graph method based on RACLC embedding
representations for near-duplicate removal. We expect that the deduplication based
on semantic similarity can help remain good performance but reduce the computation
time significantly.

Tweets to be summarized are fed to our RACLC model, and embeddings are
extracted at CL Head. All the tweets are considered in time order. We build a
temporal graph G = (V, E), where V is the set of all considering tweets. An edge
(t0, t1) ∈ E if cosine similarity between RACLC embeddings of the two tweets close to
1.00, tweet t0 is posted before t1. Then, we select tweets/nodes gradually. Whenever
a node is selected, all its adjacent nodes in the graph are removed from consideration.
In this way, we obtain the minimum set of nodes that are reachable to all the nodes
in the graph by direct edges. The set of selected nodes forms a deduplicated set of



5.3 Methodology 73

Figure 5.3. Near-duplicate removal. Nodes in red are selected.

tweets. An example of tweet selection is shown in Figure 5.3.

Summarization

We define the summarization task under the following context. After the classifica-
tion phase, we have a set of tweets, their class labels, and rationales. Besides, we
obtain a set of deduplicated tweets from our near-duplicate removal step. Our tweet
summarization can be generated over any pre-defined time period. We apply an Inte-
ger Linear Programming (ILP) based framework that jointly optimizes a set of tweets
(N), and rationales to generate a summary of length L. We observe numerals are
equally important; hence, we also consider numerals along with the rationales. Hence-
forth, we use the term rationale for both original predicted rationales and numerals.
The ILP objective function is computed as follows:

max(
T∑
i=1

zi +
R∑

k=1

I(k).rk) (5.4)

where: zi ∈ {0, 1} - an indicator whether a tweet i is selected. R - number of unique
rationale words in T , rk ∈ {0, 1} indicates whether a rationale k is selected. I(k)
specifies the importance score or weight of a rationale word k computed using the
logarithm of the document frequency of k. We also tried other PageRank-based weigh-
tage methods, but it does not give any significant benefit over document frequency
based scheme. Note that, while computing the weights, we consider the entire tweet
set corresponding to a specific disaster class and date, not just the deduplicated set.

The objective function is optimized with the below constraints:∑
i∈Xk

zi ≥ rk, k = [1 · · ·R] (5.5)∑
j∈Yi

rk ≥ |Yi| × zi, i = [1 · · ·T ] (5.6)
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T∑
i=1

zi · Length(i) ≤ L (5.7)

Where Xk - set of tweets containing a rationale k, Yi - set of rationales in tweet i.

Our model considers both number of tweets (zi variables) and number of important
rationales (rk variables) in our objective function. We want to ensure in Eqn. 5.5 that
if the rationale word k is selected by the objective function in the summary, i.e., if
rk = 1, then at least one tweet containing rationale word k must be selected. Eqn. 5.6
ensures that if the objective function selects a tweet i for the summary, i.e., zi = 1,
then all the rationale words present in tweet i must be included in the summary.
Finally, Eqn. 5.7 guarantees that at most L words (user-specified) are present in the
summary.

The above ILP formulation takes care of summarization requirements, i.e., infor-
mativeness, diversity, redundancy, etc. The optimization function gets benefits by
discarding the selection of the same word multiple times. Deduplication step helps
the ILP method by reducing the number of tweets that need to be processed by the
optimization function. Our ILP problem is solved using Optimizer [48]. The set of
tweets i, with zi = 1, forms our summary at the current time window. Our pro-
posed RAtionale Aware Contrastive Learning-based Tweet Summarization approach
is defined as RACLTS.

5.4 Classication experiments and results

5.4.1 Baseline Models.

We employ the following models on Twitter classification tasks as baseline models.
1. SVM: A strong classification baseline on many Twitter problems [23, 56, 98].
2. Robust-CNN [98]: A CNN model with pre-trained word embeddings for Twitter
classification of crisis events.
3. BERT [35]: BERTweet transformers with a classification layer on top of the
pooled output.
4. BERT-GRU: BERTweet model combined with a bidirectional GRU layer +
additive attention [9]. Top k tokens with the highest attention weights are extracted
as rationales. k is set to be the average length of human rationale tokens in the
considering category.
5. LCL [146]: Label-aware contrastive loss based classification model.
6. BERT2BERT(-2stg) [108]: It is similar to RACLC model without CL Head
and second stage.
7. BERT2BERT: It is similar to our model without CL head
8. RACLC(-2stg): Our RACLC model, without the second stage.
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5.4.2 Evaluation Metrics.

We evaluate both label prediction and rationale extraction tasks based on human
groundtruth. The label prediction task is measured using Macro F1. For rationales,
we compute token-level precision, recall, and F1-score of the extracted rationales
using human groundtruth. Here, we report only F1-score for brevity.

Besides, we measure the faithfulness [36] of the extracted rationales to ensure that
the rationales cover all important evidence and are sufficient for model prediction
using the following metrics:

Comprehensiveness. It measures whether all supporting evidence is covered.
We run experiments with two contrast input settings X and X\R, that is, the orig-
inal tweets with the predicted rationales marked by a special token ‘*’. Then, we
observe the difference in performance. Comprehensiveness = Macro F1(X) - Macro
F1(X\R). A high score indicates a high impact of rationales on model performance.

Sufficiency. It measures the performance difference of a model on original data
and the input data with non-rationales marked by ‘*’. Sufficiency = Macro F1(X) -
Macro F1(R). A low sufficiency value indicates that rationales alone are adequate to
make predictions.

5.4.3 Experimental Settings.

In this study, we evaluate our model in both in-domain and cross-domain setups.

In-domain evaluation. The models are trained and evaluated on the same
dataset with a 5-fold cross-validation setup. At each fold, we sample the train/validation/
test set with the ratio 70%-15%-15%, respectively. The validation set is used to tune
hyperparameters for the baselines and our model. Input tweets are first converted
to lowercase, then URLs and mentions are removed. We conduct a grid search for
hyper-parameters and choose values that return the highest average Macro F1 and
Token F1 on validation sets to evaluate results on test sets. Our RACLC is trained
for 10 epochs with learning rate 2e-5, a batch size of 8 and Adam optimizer [84]. The
GRU and CL Head output size is 128. We set the temperature parameter τ to 0.05.
The best α and β are α = 0.17, β = 0.05 on NEquake and MEquake datasets,
α = 0.15, β = 0.07 on the other two datasets.

Cross-domain evaluation. We evaluate the performance of classification mod-
els on a new dataset. We train the models on one dataset and evaluate them on
another dataset (i.e., models trained on NEquake are used to generate class labels
and evaluate results on MEquake). However, we do not use models trained on
earthquake datasets for the evaluation of THagupit and CPam datasets due to the
mismatch between class label sets.

To make new predictions on unlabeled datasets for further purposes (i.e, summa-
rization), we use our RACLC model trained on both NEquake and MEquake for
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Model
In-domain

NEquake MEquake THagupit CPam
Macro F1 Token F1 Macro F1 Token F1 Macro F1Token F1Macro F1Token F1

SVM 0.799 - 0.738 - 0.802 - 0.768 -

Robust-CNN 0.833 - 0.787 - 0.817 - 0.843 -

BERTweet 0.864 - 0.851 - 0.852 - 0.888 -

LCL 0.865 - 0.850 - 0.856 - 0.864 -

BERT-GRU 0.876 0.640 0.857 0.592 0.850 0.513 0.879 0.577

BERT2BERT(-2stg) 0.874 0.857 0.855 0.826 0.857 0.820 0.891 0.868

BERT2BERT 0.862 0.857 0.836 0.826 0.847 0.820 0.861 0.868

RACLC(-2stg) 0.890 0.871 0.869 0.874 0.865 0.847 0.896 0.893

RACLC 0.869 0.868 0.842 0.874 0.845 0.847 0.871 0.893

Model
Cross-domain(Train//Test)

NEquake//MEquakeMEquake//NEquakeTHagupit//CPamCPam//THagupit
Macro F1 Token F1 Macro F1 Token F1 Macro F1Token F1Macro F1Token F1

SVM 0.679 - 0.661 - 0.524 - 0.523 -

Robust-CNN 0.683 - 0.730 - 0.602 - 0.671 -

BERTweet 0.837 - 0.851 - 0.853 - 0.822 -

LCL 0.835 - 0.849 - 0.800 - 0.819 -

BERT-GRU 0.852 0.636 0.852 0.622 0.841 0.540 0.816 0.610

BERT2BERT(-2stg) 0.829 0.862 0.842 0.839 0.818 0.873 0.815 0.831

BERT2BERT 0.841 0.862 0.847 0.839 0.851 0.873 0.808 0.831

RACLC(-2stg) 0.849 0.862 0.855 0.851 0.858 0.867 0.829 0.833

RACLC 0.832 0.862 0.850 0.851 0.813 0.867 0.819 0.833

Table 5.2. Classification Performance. The best results are in bold. - if a model does
not extract rationales.

earthquake-related tweets. Similarly, RACLC model trained on both THagupit
and CPam are employed for the prediction of typhoon-related datasets.

5.4.4 Results

Model Performance

Table 5.2 shows the results of classification methods for both in-domain and cross-
domain evaluation.

In-domain evaluation. BERT-based models achieve better results than SVM or
RoCNN by a large margin. BERT-GRU classifies tweets well on our four datasets
(i.e., 0.876 and 0.850 Macro F1 on NEquake and THagupit respectively). However,
the model does not obtain high Token-F1. BERT-GRU is unable to identify proper
rationales marked by humans, so it is not interpretable in that sense. For example, the
model correctly classifies the tweet “Typhoon #Hagupit Triggers Massive Evacuation
In #Philippines #news HTTP” to “affected people and evacuation”, but words with
highest attention weights in highlights are not covering the important content to
explain the decision. Our observation is on par with some previous works [59, 137,
108]. All the models obtain pretty good performance, so the LCL approach does not
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Dataset Comprehensiveness↑ Sufficiency↓
Human Predicted Human Predicted
Rationales Rationales Rationales Rationales

NEquake 0.288 0.352 -0.097 -0.005
MEquake 0.331 0.259 -0.070 0.009
THagupit 0.225 0.349 -0.051 0.007
CPam 0.325 0.403 -0.029 0.017

Table 5.3. Faithfulness RACLC.

give benefits in our case. RACLC(-2stg) and BERT2BERT(-2stg) outperform all
the other methods on both label prediction and rationale extraction tasks. However,
these models are not transparent to users whether they rely on the extracted rationales
to make predictions. RACLC has the same Token-F1 score with RACLC(-2stg) due
to the same shared first learning stage. Having the second learning stage in RACLC
drops Macro F1 scores, but the models become interpretable by design. The use of CL
loss boosts the performance of both classification and rationale extraction tasks. For
example, RACLC and RACLC(-2stg) significantly outperform variants without CL
loss, which are BERT2BERT(-CL) and BERT2BERT(-CL-2stg) respectively.

Cross-domain evaluation. SVM and RoCNN falls short for cross-domain eval-
uation. Meanwhile, BERT-based models perform quite well in cross-domain. Our
RACLC (-2stg) shows superior performance on both Macro F1 and Token-F1 met-
rics. RACLC (-2stg) obtains the best performance, and RACLC has the best trade-
off between classification performance and interpretability.

Correlation between first and second stage prediction

Our RACLC model outputs two different classification results, which are from the
1st and 2nd stages. However, we observe a high agreement between the two outputs
of the two stages. Specifically, the average accuracy scores of the two outputs over
5 folds on NEquake, MEquake, THagupit and CPam are 92.6%, 88.5%, 91.0%
and 90.5%, respectively.

Faithfulness of rationales

Table 5.3 illustrates the faithfulness of machine extracted and human rationales. The
low sufficiency shows that our extracted rationales alone are adequate for prediction.
Negative scores indicate that non-rationale masking helps remove distractors (noise)
and improve performance. However, the sufficiency of human-annotated rationales
is better than machine-predicted ones, although they fall short in terms of compre-
hensiveness. We observe that machine-predicted rationales are generally longer than
human-annotated ones. Some of these machine-predicted tokens are not rationales.
However, RACLC is able to maintain the trade-off between precision and recall.
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Misclassification Results

Tweet Correct Label Predicted La-
bel

RT @USER: Typhoon #Hagupit heading to #Philip-
pines http://t.co/MkZSuymDzW Oxfam team preparing
contingency stocks in case we need to respo. . .

caution and ad-
vice

rescue and do-
nation efforts

RT @USER: Situation critical in rural areas near epicen-
ter where 90% of the people have lost homes, livestock
and have no way of getting foo. . .

infrastructure
damage

injured or dead
people

RT @USER: Center of Typhoon #Hagupit #RubyPH
NOWmoving over Dolores on Samar Island #Philippines
http://t.co/qDXS82JtE0

other useful in-
formation

caution and ad-
vice

Table 5.4. Examples of misclassified tweets, the highlighted snippets are generated
rationales by RACLC.

From Table 5.2, it can be seen that our model generally misclassifies about 15% of
tweets and misspecifies roughly 15% of rationale tokens in case of in-domain evalua-
tion. We observe that most classification errors are due to the mixture of information
in tweets or the similarity of the information reported in different classes. Sometimes,
a tweet contains information from more than one class, i.e., many tweets about cau-
tion also report rescuing or assistance activities. In this case, humans also struggle
to choose a more suitable label for the tweet. We suggest that using NLP tools to
fragment tweets in pre-processing step, and assigning a label for each fragment might
help in this case. Besides, many tweets of caution and other useful information are
misclassified to each other due to the similarity of information in tweets, i.e., the
“other useful information” class gives updates on location or the current status of
floods, but some tweets showing caution about the important movement of storm eye
are misclassified to this class. This type of error should be solved when there are more
labeled data for the observation. The low performance in the “emotional support or
irrelevant” category is mainly caused by noisy tweets, i.e., tweets reporting evacuation
efforts but talking about another event/situation. Examples of misclassified tweets
are illustrated in Table 5.4.

Embedding Representations

In this part, we show that our contrastive learning-based approach is able to bring
semantically similar tweets together, and pushes different tweets apart in embedding
space. Generally, the recent BERT model and its variants can capture the contextual
semantics of sentences. However, these original BERT models are not trained directly
on semantic similarity problems. Therefore, the output BERT embedding representa-
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Figure 5.4. Histograms of cosine similarity between 30,000 random tweets in
MEquake dataset.

tions are unsuitable for unsupervised tasks such as clustering. Our RACLC model,
which is a fine-tuned BERT on small labeled datasets, allows generating semanti-
cally meaningful representations of crisis-related tweets. The output embeddings can
be compared using similarity metrics such as cosine, Euclidean and are suitable for
semantic similarity tasks such as clustering.

Figure 5.4 shows the histogram of the cosine similarities between 30,000 random
tweets from unlabeled MEquake dataset using several embedding techniques such
as BERTweet [99], SimCSE [42], BERT2BERT[108] and our RACLC in Figure
5.4. For RACLC and BERT2BERT, we use models trained on NEquake dataset
to extract representations. The RACLC embeddings are extracted from CL Head.
Meanwhile, the BERTweet, SimCSE and BERT2BERT embeddings are output
representation of the first [CLS] token. All the histograms tend to have normal
distributions. However, BERTweet based similarity scores are skewed towards 1.
Many tweets are semantically different, yet have high BERTweet similarity scores.
BERT2BERT tends to give high similarity scores to tweets belonging to the same
class, even if the reported information is highly different. SimCSE is a contrastive-
based embedding trained on normal text datasets, our RACLC embeddings work
better than SimCSE on similarity tasks with Twitter texts. Table 5.5 shows that
RACLC returns a high cosine similarity score for two tweets with the same meaning,
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Tweet 1: half a million evacuate from #Nepal #earthquake
Tweet 2: 500000 people flee Nepal quake

BERTweet SBERT SimCSE BERT2BERT RACLC

0.969 0.655 0.797 0.998 0.972

Tweet 1: praying for people in Nepal earthquake
Tweet 2: When many people cares about Thirst being cancelled,
how about Nepal earthquake

BERTweet SBERT SimCSE BERT2BERT RACLC

0.954 0.437 0.574 0.997 0.190

Table 5.5. Examples of tweet cosine similarity with different pre-trained embedding
representations

though they have no common words. Besides, it returns a low similarity score for
tweets that are not similar.

Figure 5.5 illustrates tweets in our labeled MEquake dataset in 2-D vector space.
In Figure 5.5.a, BERTweet embeddings do not show any separation between tweets
of different classes. However, when we use RACLC model trained on NEquake and
generate embeddings for tweets of MEquake, tweets belonging to the same class
tend to move closer to each other.
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Figure 5.5. Embedding representation of MEquake tweets in 2-D vector space.

We also evaluate our embeddings on a cluster task. First, we extract tweet repre-
sentations using multiple methods such as Tf-idf, BERTweet, SBERT [123], Sim-
CSE, and RACLC. Then, we employ KMeans model to cluster tweets of MEquake,
CPam into six clusters and use labeled data in Section 5.2 for evaluation. Note that
we employ models trained on NEquake and THagupit to extract embeddings on
the two corresponding datasets. Table 5.6 shows the clustering results. RACLC ob-
tains a good separation of class labels, which is not much worse than the supervised
classification results in Table 5.2.
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Model
MEquake CPam

Macro F1 Purity NMI Macro F1 Purity NMI
Tf-idf 0.258 0.352 0.157 0.333 0.379 0.164

BERTweet 0.257 0.299 0.089 0.372 0.384 0.177
SBERT 0.394 0.408 0.229 0.412 0.446 0.216
SimCSE 0.397 0.415 0.239 0.461 0.465 0.289
RACLC 0.794 0.800 0.628 0.828 0.830 0.651

Table 5.6. Clustering performance

5.5 Summarization experiments and results

5.5.1 Baseline models

The below disaster-specific and deep learning-based methods are considered as our
summarization baselines.

• COWTS [129]: An unsupervised, ILP-based extractive crisis-related tweet
summarization model.

• APSAL [63]: A clustering-based extractive summarizer of disaster-related news
articles.

• TSum4Act [101]: A PageRank-based method for extractive summarization of
Twitter disaster events.

• MOO [133]: An extractive summarization approach for disaster events on Twit-
ter that jointly optimizes multiple objectives.

• PACSUM [176]: A recent unsupervised approach for summarization of news
articles.

• RATSUM [108]: A crisis-related tweet summarization approach that does not
have a contrastive learning setup and uses a word-overlap based deduplication
strategy.

• RATSUM TG: A RATSUM variant with temporal graph based deduplica-
tion. Tweet representations are fine-tuned embeddings of the first [CLS] token.

• RACLTS W: Our RACLTS variant with rationales are extracted from RACLC
model. The temporal-based deduplication is based on word overlap.
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Model

ROUGE-1 F-score

NEquake MEquake THagupit CPam

Infrastructure Injuries/death Infrastructure Injuries/death InfrastructureAffected people InfrastructureAffected people

25/04 26/04 25/04 26/04 20/09 21/09 20/09 21/09 06/12 07/12 06/12 07/12 15/03 16/03 15/03 16/03

APSAL 0.421 0.325 0.368 0.353 0.436 0.414 0.501 0.444 0.381 0.396 0.376 0.359 0.366 0.441 0.459 0.426

TSum4Act 0.446 0.383 0.380 0.273 0.394 0.435 0.478 0.504 0.438 0.300 0.382 0.447 0.422 0.401 0.424 0.389

MOO 0.336 0.239 0.277 0.329 0.389 0.398 0.601 0.358 0.278 0.265 0.310 0.302 0.254 0.396 0.323 0.318

PACSUM 0.447 0.421 0.462 0.418 0.569 0.644 0.52 0.615 0.432 0.422 0.400 0.374 0.592 0.475 0.428 0.435

COWTS 0.447 0.387 0.524 0.425 0.621 0.631 0.638 0.667 0.419 0.614 0.587 0.484 0.565 0.477 0.472 0.549

RATSUM 0.501 0.431 0.448 0.519 0.602 0.607 0.610 0.701 0.514 0.624 0.701 0.585 0.504 0.487 0.469 0.539

RATSUM TG 0.374 0.368 0.444 0.377 0.394 0.434 0.397 0.575 0.407 0.367 0.379 0.38 0.446 0.4 0.334 0.418

RACLTS W 0.539 0.478 0.499 0.525 0.629 0.720 0.607 0.660 0.538 0.639 0.732 0.597 0.513 0.451 0.504 0.534

RACLTS 0.539 0.478 0.504 0.520 0.629 0.720 0.646 0.678 0.544 0.639 0.735 0.592 0.523 0.439 0.494 0.575

Table 5.7. Summarization results. The highest and second highest results are in bold
and brown, respectively.

5.5.2 Groundtruth summaries

We ask five volunteers to prepare class-level groundtruth summaries. First, we gen-
erate 1000-word summaries by our method and all the baseline models. Tweets are
pooled together, exact duplicates are removed. Then, we give this set of tweets to
users and ask them to pick tweets and prepare 200-word summaries. The final sum-
mary is formed by gradually selecting tweets voted by most users until we reach the
length limit of 200 words. In total, we have to prepare 8 summaries (4 classes x 2
days) for each event.

5.5.3 Evaluation Metrics

Our summarization results are evaluated using ROUGE toolkit [74]. We report
ROUGE-1 F score of all summarization methods.

5.5.4 Results

Table 5.7 shows ROUGE-1 F scores of 8 summary instances extracted by all summa-
rization models. We do not show the results of the other summaries in the table due
to the space limit, but they generally obtain similar patterns. It is clearly seen that
RACLTS performs the best in the majority of cases. On average RACLTS performs
equally well as RACLTS W and better than RATSUM, COWTS, PACSUM by
1.4%, 4.5%, 6% and the remaining methods by large margin (>8%).

Generally, due to the advances of fine-tuned embeddings, PACSUM can perform
well in some cases. The model was proposed for news articles summarization, so it
performs worse than RACLTS and some other crisis-related summarizers such as
COWTS and RATSUM. MOO tends to return long and redundant summaries.
The original MOO paper also points out that drawback. APSAL is designed for
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RATSUM_TG
COWTS

RATSUM
RACTLS_W
RACTLS

ROUGE-1 F score

Figure 5.6. Pairwise Friedman test. Models with lower ranks have better perfor-
mance. Models grouped by a thick horizontal line show insignificantly different (p-
value>0.05).

summarization of new articles during crisis events. It relies on some specific features
of articles that can be missing in short, noisy tweets. TSum4Act clusters tweets
into sub-topics and select the same number of informative tweets in each sub-topic for
summaries. However, some sub-topics might be more important than others during
crisis events.

For the best models such as COWTS, RATSUM and RACLTS, we compute
a pairwise Friedman significance test [38] of ROUGE-1 F scores on all the datasets.
The result is illustrated in Figure 5.6. All these models employ the ILP optimization
approach, yet in different setups. By using rationales for optimization, RACLTS
and RATSUM perform better than COWTS with 95% confidence interval (p-value
< 0.05). RACLTS and its variant RACLTS W outperforms RATSUM, though
the statistical test does not show significant difference. It means that our rationales
extracted by the contrastive-based approach slightly help improve the performance
compared to the rationales extracted by RATSUM. Besides, the use of temporal
graph-based deduplication results in slightly better performance of RACLTS com-
pared to its variant RACLTS W. In contrast to this, RATSUM TG with temporal
graph-based deduplication returns much worse performance than RATSUM. It il-
lustrates the positive influence of our contrastive-based embeddings.

Computational complexity analysis

As shown in the previous part, ILP based optimization approaches such as COWTS,
RATSUM, RACLTS obtain the best performance. We now compare the complexity
of these methods. All the models run on the same CPU machine under no other load
condition. Figure 5.7 shows the average computation time and average number of
words to be optimized for each summary. Our RACLTS optimizes significantly
less number of words than COWTS, RATSUM and RACLTS W by 65%, 45%
and 38% respectively. Therefore, RACLTS is much faster than the other methods.
Specifically, the average running time of COWTS, RATSUM and RACLTS W are
2.0, 1.6 and 1.5 times faster than RACLTS.
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Figure 5.7. Average summarization time and average number of words to be optimized
by summarization methods.

5.6 Application of RACLC in detection of action-

able phrases

In this section, we observe how well our RACLC can identify actionale phrases in
actionale tweets. Recently, TREC-IS track [90] has made available a large set of
crisis-related messages. Around 20,000 tweets have been manually annotated into
25 information types and 4 priority levels. Among the labels, six information types
are identified as “actionable”. We download actionable tweets that are of typhoon
and earthquake events. As our objective is to test the zero-shot setup, we remove
all the tweets that belong to four events that we have used to train our model and
obtain 3466 tweets. Among them, 177 and 1146 tweets are annotated with ‘critical’
and ‘high’ priority labels, respectively. We randomly sample 50 tweets with high or
critical priority and employ RACLC to predict class labels of tweets and extract
rationales. We define the rationales of actionable tweets as actionable phrases.

The tweets are given to five users for a study as follows:

• We evaluate to what extent users agree with our extracted actionable
phrases: For the first twenty-five tweets, users are asked to select the label of
each tweet from a checklist and judge whether the extracted rationales report
short and actionable information for the chosen label. If the extracted rationales
are redundant or too short, users will help us to rewrite them.

• We evaluate how good users can understand machine behavior in pre-
dicting actionable phrases: For the last twenty-five tweets, we ask users to
identify class labels and extract actionable snippets for the chosen labels (this
time, machine-extracted actionable snippets are not provided).

Table 5.8 shows the average agreement between user annotations and machine-
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Macro F1 Token-F1
First 25 tweets 0.888 0.906
Last 25 tweets 0.873 0.741

Table 5.8. Agreement between user annotations and machine-generated labels.

generated labels. Overall, in 88% of cases, users and RACLC choose the same class
labels. For 25 tweets, when rationales are given, users highly agree that the extracted
rationales report all important/actionable information for the class labels. For the
last 25 tweets, when users are asked to choose class labels and write the rationales,
the average Token-F1 is 74%. We observe that this low agreement is mainly due to
the difference in extracted rationales in the case of tweets with multiple information.
Users struggle to choose the class label when a tweet reports multiple information.
For example, ‘New cyclone #kills 3 in #Mozambique; #UN warns of flooding - Apr
26 @ 10:23 AM ET URL’, our machine assign the tweet to ‘affected people and
evacuation’ and extract ‘#kills 3 ’ as the rationales. However, some users select the
label ‘caution and advice’ and extract ‘#UN warns of flooding ’ as actionable phrases.
The mismatch in labels of a tweet leads to completely different extracted rationales
and low Token-F1. This issue was also mentioned in Section 5.4.4.

5.7 Chapter Summary

This chapter introduces a rationale-aware contrastive learning-based classification and
summarization framework of crisis events from microblogs. Rationales play quite a
significant role in both phases. RACLC shows that trustworthiness in prediction
may be achieved without significant compromise in performance. Subsequently, our
summarizer RACLTS also gets the benefits of the identified rationales to generate
informative summaries with low computational complexity. Our RACLC model
can be helpful for TREC-IS [90] tracks. The model helps identify meaningful and
actionable phrases in tweets and brings more comprehensive research with TREC-IS
tasks. In the next chapter, we develop a semi-supervised approach to learning faithful
attention-based explanations for the classification of tweets from limited rationale
annotations.





6
Semi-Supervised Attention-based Interpretable

Classification of Crisis Events

6.1 Introduction

In previous chapters, we employ supervised approaches for interpretable classification
of tweets in to into different humanitarian classes during crisis events. Our methods
identify the class information and words/phrases responsible for determining that
class. We asked humans to provide explanation tokens, so-called rationales, along
with class-level annotations for training. For example, the tweet “RT @USER: Three
people from #Taiwan died in #MexicoEarthquake, Chinese embassy in Mexico
confirms https://t.co/2Ig19YnCbs” is labeled as ‘injuries or death’ and words in bold
are annotated as rationales. While these approaches show a promising direction
toward interpretable crisis systems, human-level annotation also adds a bottleneck
toward the scalability of the method and its application toward new unseen events.
On the other hand, some sets of approaches tried to use attention weights as a mode
of explanation [12, 44]. However, recent studies pointed out the flaws in considering
attention weights as a proxy for explanation [59, 165]. The debate is still ongoing [18].
This brings two open challenges into the framework — (a). How could we learn
faithful attention weights that could represent explanations with high confidence,
and (ii). How to develop interpretable models under the given human budget, i.e.,
limited annotated data.

In this chapter, we try to address the above-mentioned challenges and design
a two-stage framework that exploits the power of semi-supervised learning. Next,
we incorporate the distance between attention weights and predicted probabilities of
rationales into our customized loss function to make the attention weights faithful.
Evaluation on four different disaster events shows that this would help to alleviate
almost 50% human annotation budget and learn faithful attention weights. Further,
we extend the idea of zero-shot learning to directly transfer the knowledge acquired
in the humanitarian classification model to the actionable tweet detection problem.

87
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Figure 6.1. Example of actionable tweets, actionable labels are in bold, rationales are
in blue.

Results suggest that if the source and target tasks are related and from a similar
application area (e.g., crisis), such zero-shot learning setup can be directly applied
to the target task. This direct transfer helps to identify the actionable classes and
related rationale tokens from the tweets. Examples of actionable tweets, class labels,
and rationale snippets are illustrated in Figure 6.1.

6.2 Methodology

This section describes the detailed architecture of our faithful attention-based classi-
fication model.

6.2.1 Problem Formulation

Given a small set of tweets T = {twt1, twt2, .., twtm}, along with labels L = {l1, l2, .., lm},
li ∈ C, where C is the set of humanitarian classes (i.e., infrastructure damage, affected
people, rescue, etc.). We assume that we also have access to human rationales for a
small set of tweets S = {twti} ⊂ T . Rationales are short snippets from original texts
that are marked as having supported the class label. Here, we consider each tweet
twt as a list of words twt = {w1, w2, .., wk}. If the tweet twt is provided with human
rationales, we then have labels y = {y1, y2, .., yk} assigned for every word, yi ∈ {0, 1}
specifies whether a word is a part of rationales (yi = 1). Our aim is to take the
limited human rationales as little supervision to design a Faithful Attention-based
Classification model (FAC-BERT) of tweets during crisis events.

6.2.2 Overview

As discussed above, our goal is to develop an interpretable classification approach
with little supervision of human rationales. Many previous works [59, 165, 137] have
argued that attention is not explanation. Hence, we also aim at finding a way to
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Figure 6.2. FAC-BERT - Our faithful attention-based classification model

make the attention become a faithful explanation. Our model learns a mapping
from the annotated rationales to machine attention. We achieve this by proposing
a hierarchical learning structure that predicts the probabilities of each word being
rationales. Then we align these probabilities with attention weights to inform tweet
classification.

As a first step, we apply BERTweet [99] to tokenize input tweets and generate to-
ken embeddings. These embeddings are fine-tuned on a token classification task that
predicts whether a token is a part of rationales with probabilities. These values are
used to guide machine attention. Then, we apply a weighted sum of token vectors to
obtain tweet vectors for tweet-level classification. The weights are learned to reflect
the importance of each token to the output decision. Our model is able to obtain
high classification performance and faithful attention. We refer the model as Faithful
Attention-based BERTweet Classification (FAC-BERT). The detailed training pro-
cess of our FAC-BERT classifier is described below.

6.2.3 Model architecture

Figure 6.2 illustrates the architecture of our FAC-BERT model. It consists of two
training phases with a shared BERTweet encoder. Note that our approach is different
from muti-task learning setups in some previous work [108, 107]. Our two phases
are not trained simultaneously. The second phase takes the information and last
checkpoint from the first phase and continues to train its own task.

BERTweet encoder [99]. We use BERTweet as a shared encoder for our learning
phases. BERTweet is a language model pre-trained on a large-scale dataset of English
tweets. First, each tweet is tokenized into tokens of the form [CLS]tok1tok2..tokn,
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where [CLS] is a special symbol added in front of every input instance. An unknown
word from BERTweet vocabulary can be split into several tokens. Input sequences are
padded to the same length, which is the maximum length of tweets in each learning
batch. Then, we feed the tokenized data to the BERTweet encoder and obtain token
embeddings of size 768 dimensions xij

tok for each token toki in tweet twtj. The token
representations are fine-tuned in the first learning phase and then aggregated to form
tweet representation for classification in the second training phase.

Token-level training (Phase 1). This step takes token embeddings as inputs
and trains a binary classifier to predict which tokens are part of rationales. We
append a GRU (Gated Recurrent Unit) followed by a fully connected layer with a
Sigmoid function on top of BERTweet token embeddings. Initially, rationale labels
are assigned at the word level. To train our model, we map labels to token level, where
each tokenized token has the same label as its original word. Later, at the evaluation
step, we retrieve word-level labels by applying max pooling on token labels. We
employ the binary cross-entropy loss function for token-level classification.

Losstok = BCELoss(yi, pi) (6.1)

where yi is the true label, pi is the predicted probability of token toki to be
rationale. Recall that we aim at learning with little supervision of human rationales.
Hence, the above loss function is only averaged over k% of tweets in training set
with human rationales. After the training completes, we obtain fine-tuned token
embeddings and the probabilities of tokens to be rationales for all tweets in the
training set.

Tweet-level training (Phase 2). This step predicts the class label of input
tweets. Token vectors are summed up to obtain tweet representations. In our FAC-
BERT, the sum of token vectors is the attention-based weighted sum. Specifically,
we apply an attention layer [9] on top of fine-tuned BERTweet token embeddings.
The attention weights αij are computed by a softmax function as follow:

αij =
exp(eij)∑|N |
k=1 exp(eik)

(6.2)

Where eij is the output score of a feedforward neural network model [9], which
captures the alignment between input at position j and output i, —N— is the length
of the considering tweet. The representation of each tweet twti is then the weighted
sum over token embeddings:

xi
twt =

|N |∑
j=1

αijx
j
tok (6.3)

The tweet embeddings are fed into a fully connected softmax layer to predict class
labels. Besides, we want attention weights to mimic human rationales so that the
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attention accurately reflects the true reasoning behind a prediction (i.e., tokens with
high attentions highly influence the model decision). Hence, we minimize the distance
between attention weights αj in a tweet twt and probabilities pj of tokens to be a
rationale that is learned in the first phase:

d(αj, pj) = max(0, 1− cosine(αj, pj)) (6.4)

The above distance is interpolated with the weighted cross-entropy classification loss
to form the final loss function of the tweet-level training step:

Lossc = −
|L|∑
l=1

wj ∗ yjllog(pjl) + λ

|N |∑
i=1

d(αi, pi) (6.5)

where |L| is the number of unique class labels, yjl and pjl are the true label and
predicted value of tweet twtj having class label l, wj is the inverse weighted probability
of label occurrence in the dataset. In case of a balanced dataset, wj is set to 1 for all
classes. —N— is the token length of the tweet.

When training the class label prediction task, we fix parameters of top layers
(GRU+FC) at the token-level training phase.

6.3 Experimental Setup

6.3.1 Datasets

We consider four natural disasters, which are Nepal Earthquake (NEquake), Mexico
Earthquake (MexQuake), Typhoon Hagupit (THagupit), Cyclone PAM (CPam).
Each dataset contains about 2000 tweets with humanitarian classes and rationales.
The details of datasets and annotations is described in Chapter 5. The size of the
datasets is shown in Table 5.1 of the previous chapter.

6.3.2 Baseline methods

We compare our model with the following classification models, which include both
typical classification approaches and our proposed interpretable crisis-related classi-
fication models in Chapter 4 and Chapter 5.

• SVM: An effective classification baseline for classification of crisis events [23, 56].

• Robust-CNN [98]: A Convolutional Neural Network based approach with pre-
trained word embeddings for classification of crisis events.

• BERTweet [99]: BERTweet with a linear classification on top of the first [CLS]
token embedding.
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• LCL [146]: A classification model that relies on label-aware contrastive loss.

• BERT2BERT [108]: An interpretable by design approach for classification of
crisis events. The model employs a multi-task learning strategy to train and
predict class labels and rationales simultaneously. BERT2BERT(-2stg) is the
variant BERT2BERT, which is not interpretable by design.

• RACLC [107]: A contrastive learning-based approach for classification of cri-
sis events. It applies a contrastive multi-task learning approach to boost the
performance of class label and rationale prediction tasks. RACLC(-2stg) is a
variant of RACLC, which is not interpretable by design.

6.3.3 Evaluation Metrics

Groundtruth based evaluation

We evaluate how good our predicted class labels and rationales are compared to hu-
man annotations. For classification performance, we measure Macro-F1 score. Simi-
larly, we measure the agreement between extracted rationales and human rationales
using Token-F1 metric. First, Token-precision is computed to show the fraction of
relevant rationale words among all predicted rationales. Next, Token-recall measures
the fraction of correctly extracted rationale words among the total number of human
rationale words. Then, we combine the two scores by taking their harmonic mean
Token-F1.

Model Faithfulness

One might argue that a model can have a high agreement with human rationales
(plausibility), but does not reflect the true internal reasoning. Similar to previous
chapters, measure to what extent the extracted rationales influence the model decision
by using the following metrics.

Comprehensiveness [36]. This metric measures how much the classification
performance drops when extracted rationales are removed/masked from the origi-
nal inputs. Given X, R and X\R are original examples, predicted rationales (non-
rationales are marked by ‘*’), and predicted non-rationales (rationales are marked by
‘*’), respectively. We compute comprehensiveness score as follows.

Comprehensiveness = Macro-F1(X) - Macro-F1(X \ R)

The higher comprehensiveness shows the high influence of the predicted rationales
on the classification performance.

Sufficiency [36]. This metric evaluates performance differences when using only
rationales and the original input texts.
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Sufficiency = Macro-F1(X) - Macro-F1(R)

The lower sufficiency is better since it shows that only predicted rationales are
sufficient for a model to make predictions.

6.3.4 Model Details and Hyperparameters

We evaluate our model and all the baselines using a 5-fold cross-validation setup. At
each run, we apply a stratified sampling method to obtain train/valid/test sets with
ratios 70%/15%/15% respectively. All the baseline models are run with configurations
from original papers. To train our FAC-BERT, we pre-process data by converting
tweets to lowercase and removing mentions, URLs. Our method is trained for 10
epochs, and the batch size is 16. The GRU layer has a hidden size of 128. We optimize
the model using AdamW optimizer [84] with a learning rate of 2e-5. Besides, we
specify a list of candidates for the hyper-parameter λ and select the one that obtains
consistently good performance (average Macro-F1 and Token-F1) with a 5-fold setting
on validation sets. After fine-tuning, we set λ = 0.5 for all the datasets since it
generally performs the best in the majority of cases across different validation runs.
Another hyperparameter is k, i.e., the percentage of human-annotated rationales
required to successfully train the model. We set k = 50% to compare performance
with other baseline models. Further, we also observe FAC-BERT performance with
varying k.

6.4 Classification Results

This section presents the performance of our proposed approach. We consider both in-
domain and cross-domain evaluation. In in-domain classification, training and testing
data come from the same event. For cross-domain evaluation, we train the model on
one dataset and apply it to another dataset of the same event type. For example,
the model trained on NEquake dataset is used to predict class labels and human
rationales on MexQuake dataset. Recall that FAC-BERT consists of two-phase
learning. In the first phase (p1), it predicts binary labels for tokens, i.e., whether a
token is a rationale or not. The second phase (p2) learns faithful attention weights,
it does not predict any binary classification of tokens (rationale/not rationale). To
evaluate Token-F1 of the second phase, we extract the same number of rationale
tokens as in the first phase prediction. Note that the objective of this paper is not to
improve class labels or human rationale prediction tasks. Rather, we want to answer
the following two questions:

1. How well our FAC-BERT performs under limited human supervision?

2. How to learn faithful machine attention?
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Model
In-domain

NEquake MexQuake THagupit CPam
Macro-F1 Token-F1 Macro-F1 Token-F1 Macro-F1 Token-F1 Macro-F1 Token F1

SVM 0.799 - 0.738 - 0.802 - 0.768 -
Robust-CNN 0.833 - 0.787 - 0.817 - 0.843 -

LCL 0.865 - 0.850 - 0.856 - 0.864 -
BERTweet 0.864 - 0.851 - 0.852 - 0.888 -

BERT2BERT(-2stg) 0.874
0.857

0.855
0.826

0.857
0.820

0.891
0.868

BERT2BERT 0.862 0.836 0.847 0.861
RACLC(-2stg) 0.890

0.868
0.869

0.874
0.865

0.847
0.896

0.893
RACLC 0.869 0.842 0.845 0.871

FAC-BERT-50%-p1
0.876

0.848
0.851

0.845
0.853

0.826
0.871

0.873
FAC-BERT-50%-p2 0.850 0.844 0.822 0.869

Table 6.1. In-domain evaluation. - if a model does not extract rationales

In the following sections, FAC-BERT-k%-p1 and FAC-BERT-k%-p2 are used
to indicate the performance of FAC-BERT with rationales extracted from the first
phase and second phase respectively. The value k specifies the percentage of human
rationales used during the training process.

6.4.1 In-domain evaluation

We evaluate the performance of classification models on the test set of the same event
on which the models are trained on. Table 6.1 compares the performance between
different classification models. We show the prediction results of FAC-BERT using
k = 50% human annotated rationales. FAC-BERT achieves competitively equal
Macro-F1 with other baselines such as BERT2BERT or RACLC. Compared to the
best Token-F1 returned by RACLC [107] with 100% human rationale supervision,
FAC-BERT that uses 50% human rationales only get a slight drop (i.e., < 3%). It
is also interesting that adding the regularization part in the loss function of phase 2
helps to align the rationale tokens learned in phase 2 with phase 1. That’s why we
get almost similar Token-F1 scores between the two phases.

6.4.2 Cross-domain evaluation

This section evaluates the classification performance when the prediction is made on
a similar event dataset that was not used for training. We compare the cross-domain
performance between FAC-BERT using 50% rationale supervision with baseline
methods in Table 6.2. The Macro-F1 is equal to or slightly worse than some other
baselines. Both the two phases of FAC-BERT return similar Token-F1 values. It
is observed that FAC-BERT-50%-p2 got 6%, 1.6%, 2.8% and 2% drops than the
best Token-F1 (RACLC) on NEquake, MexQuake, THagupit and CPam re-
spectively.
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Cross-domain (Train//Test)

MexQuake//NEquakeNEquake//MexQuakeCPam//THagupitTHagupit//CPam

Macro-F1 Token-F1 Macro-F1 Token-F1 Macro-F1 Token-F1 Macro-F1 Token F1

SVM 0.661 - 0.679 - 0.523 - 0.524 -

Robust-CNN 0.730 - 0.683 - 0.671 - 0.602 -

LCL 0.849 - 0.835 - 0.819 - 0.800 -

BERTweet 0.851 - 0.837 - 0.822 - 0.853 -

BERT2BERT(-2stg) 0.847
0.839

0.841
0.862

0.808
0.831

0.851
0.873

BERT2BERT 0.842 0.829 0.815 0.818

RACLC(-2stg) 0.855
0.851

0.849
0.862

0.829
0.833

0.858
0.867

RACLC 0.850 0.832 0.819 0.813

FAC-BERT-50%-p1
0.834

0.794
0.826

0.844
0.794

0.806
0.832

0.854

FAC-BERT-50%-p2 0.791 0.846 0.805 0.853

Table 6.2. Cross-domain evaluation. - if a model does not extract rationales

6.4.3 How does performance of FAC-BERT vary with bud-
geted human rationales (k)

Table 6.1 and Table 6.2 show the performance of FAC-BERT with k = 50% human
annotated rationales. In this section, we would like to explore the variation in model
performance under different human budgets.

Variation in in-domain scenario: Figure 6.3 shows the Token-F1 scores of our
second phase prediction with varying percentages of human rationales. Interestingly,
when we use only 10% human rationale labels, we obtain pretty good performance
(i.e., 83.1% Token-F1 on CPam dataset). The Token-F1 increases significantly when
we vary the percentage of human rationales from 10% to 50%. Then, the Token-
F1 gets improved slowly when more human rationales are added. The result shows
that by using 10% or around 200 instances with human rationales, our FAC-BERT
can obtain more than 75% Token-F1 for all the datasets. Besides, FAC-BERT
obtains 80% Token-F1 for all the datasets when 20% or around 400 instances with
human rationale supervision are used for training. Unlike previous chapters which
we focus on improve the model performance-interpretability tradeoff, this evaluation
gives a guideline on how much rationale data is needed to train a good interpretable
classification model on crisis domain.

Varying the human rationales doesn’t harm the performance of the humanitarian
class label prediction task. FAC-BERT obtains similar Macro-F1 score as shown in
Table 6.1 with different k% human rationales. Side by side, the Token-F1 performance
also reaches a quite stable point with 50% human rationale labels. The gain is not
significant beyond this point, and results only slightly improve when more human
rationales are added.

Variation in cross-domain scenario: Similar to the in-domain scenario, we feed
FAC-BERT with an increasing percentage of human rationales for supervision and
observe the performance change in cross-domain. Figure 6.4 illustrates Token-F1
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Figure 6.3. In-domain evaluation with various percentages of human rationales

Figure 6.4. Cross-domain evaluation with various percentages of human rationales

values extracted from the second phase of FAC-BERT. Using 10% human rationales
archives more than 75% Token-F1. The rationale prediction results improve when
more human rationales are added, but not as significant as in case of in-domain
evaluation. Starting from 50%, adding more human rationales slightly boost the
Token-F1.

6.4.4 Influence of the alignment between human rationales
and machine attention

So far, we observe the variation in performance under different annotated rationale
budgets. In this section, our objective is to learn the role of alignment regularizer in
the loss function (Eqn. 6.5). We observe how our loss function with the alignment
between rationale prediction and attention weight helps to improve the faithfulness
of machine attention. First, we take predicted rationales from the second phase
learning (attention weight-based rationales), namely FAC-BERT-p2, with % human
rationales vary in range k ∈ [10, 20, .., 100]. This is done for both cases, which are with
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Figure 6.5. In-domain average Token-F1 with/without weights alignment in the loss
function. Vertical black lines indicate drops in the performance/Token-F1.

and without distance alignment between attention weight and rationale probability
in FAC-BERT loss function. Here, we report the average result over different k
values. Figure 6.5 illustrates the impact in in-domain evaluation. We also obtain
similar patterns in cross-domain evaluation. When there is no attention alignment
in the loss function (λ = 0 in Section 6.2), the average Token-F1 score returned by
FAC-BERT-p2 decreases significantly. More specifically, it drops by 10.9%, 14.5%,
16.2% and 39.3% on MexQuake, THagupit, NEquake and CPam, respectively,
compared to ones using attention alignment. Besides, the prediction of FAC-BERT-
p2 without attention alignment varies greatly across datasets. It predicts rationales
poorly on CPam dataset with an average of 47.4% Token-F1. We observe that without
alignment, the standard attention might give high attention weights to unimportant
words that are not supportive evidence for output labels. As an example, for the
tweet “50k children at risk in #vanuatu after devastation of #cyclonepam . please
help respond . . . ”, FAC-BERT-p2 without attention alignment correctly predicts the
tweet as “affected people & evacuation”; however, it assigns the highest weights to
words in bold. By using our regularized loss, the model reassigns the highest weights
to the following bold words ”50k children at risk in #vanuatu after devastation
of #cyclonepam please help respond . . . ”.

6.4.5 Model Faithfulness

We evaluate whether the extracted rationales can be seen as explanations for the out-
put decision of FAC-BERT. There is a high overlap between the rationales obtained
in two phases (p1 and p2). For brevity, we only show the comprehensive and suffi-
ciency of predicted rationales from the second phase (p2), which is based on attention
weights (λ = 0.5, k = 50%). The scores are computed when we learn rationales from
50% rationale supervision. Generally, FAC-BERT obtains high comprehensiveness
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Dataset
Comprehensiveness ↑ Sufficiency↓

RACLC FAC-BERT RACLC FAC-BERT
NEquake 0.352 0.378 -0.005 0.017
MexQuake 0.259 0.365 0.009 0.025
THagupit 0.349 0.265 0.007 0.018

CPam 0.403 0.352 0.017 0.002

Table 6.3. Comprehensiveness and Sufficiency

scores for all datasets. This illustrates the huge drop in Macro-F1 when the predicted
rationales are removed from the original inputs. In other words, the predicted ratio-
nales are important for FAC-BERT to make decisions. Besides, the low sufficiency
of FAC-BERT indicates that the predicted rationales alone are sufficient for FAC-
BERT to classify tweets. Compared to the best classification model RACLC, which
uses 100% human rationales, FAC-BERT obtains better comprehensiveness on two
earthquake datasets. However, FAC-BERT has higher sufficiency than RACLC,
but the difference is only less than 2%. By using 50% human rationale supervision,
FAC-BERT attention is competitively faithful compared to RACLC using 100%
rationale supervision.

6.5 Application of FAC-BERT in detection of ac-

tionable tweets

In this section, our objective is to explore the power of transfer learning over the
related tasks of the same application area. In Section 6.4, we observed that FAC-
BERT gives promising results under a given amount of annotated rationale data.
This section tries to answer the question, “what would happen if we deploy the
humanitarian classification model over actionable tweet detection?”.

6.5.1 Data Collection

The recent Text Retrieval Conference (TREC) Incident Streams track [22] has re-
leased datasets for the classification of crisis-related tweets into fine-grained informa-
tion types. Besides, the track identifies six actionable information types: Requests for
Goods/Services, Requests for Search and Rescue, Calls to Action for Moving People,
Reports of Emerging Threats, Reports of Significant Event Changes and Reports of
Services becoming available. An ‘actionable’ tweet contains crucial information and
immediate alert that might be useful for individuals and stakeholders to pay more
attention. Those actionable information types/classes are the most difficult ones for
classification models to predict due to the scarcity of labeled data.
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We consider all tweets of earthquake or typhoon events from TRECIS 2021 train-
ing data [22]. Actionable tweets that belong to no more than one actionable class are
selected. This set is quite small in number, which consists of 10% of the collected
data. There are six actionable classes in the dataset. Apart from that, we randomly
sample 100 tweets that do not contain any actionable labels for each event type and
filter out the other tweets from our dataset. The details of the collected dataset are
shown in Table 6.4. The last column shows the size of each class in our final actionable
dataset. Generally, the dataset is quite imbalanced, classes such as ‘EmergingThreats’
or ‘ServiceAvailable’ have more tweets. Meanwhile, only a few tweets report infor-
mation about ‘MovePeople’ or ‘GoodsService’. This imbalance poses a challenge for
classification models.

6.5.2 Actionable tweet classification using FAC-BERT

In this section, we study the application of our proposed model FAC-BERT in two
aspects:

1. How well FAC-BERT is able to extract actionable snippets from actionable
tweets?

2. How well our proposed FAC-BERT performs on a new dataset with a new
problem setup?

The major bottleneck that hinders the direct application of FAC-BERT over
actionable tweet classification is the nonavailability of human-annotated rationales.
TREC-IS does not have rationale snippets of tweets. Hence, to answer the first
question, we apply the idea of transfer learning, i.e., directly apply FAC-BERT-
p1 on the actionable tweets to gather the rationales. We train the model using the
100% rationale dataset provided for the humanitarian class identification problem.
We trained two different models for two different events (earthquake and typhoon),
i.e., NEquake and MexQuake datasets are used to train (FAC-BERT-100%-p1)
and extract the rationale snippets from the actionable tweets of an earthquake event.
Similarly, typhoon datasets (THagupit and CPam) are used to train and extract
rationale snippets from the actionable tweets of typhoon category. The two phases of
FAC-BERT obtain similar rationale prediction performance; hence, we just simply
predict rationales on the actionable dataset from the first FAC-BERT learning phase
(FAC-BERT-p1).

Now, we have the actionable class labels of tweets, and rationale snippets for each
of the tweets gathered using FAC-BERT-p1 trained on humanitarian class-related
rationales. Next, we directly follow the model architecture (described in Section 6.2)
to detect the class of actionable tweets and learn faithful attention-based rationale
snippets. As we obtained the rationales through transfer learning, we used 100% of
the rationale data in phase 1 and tried to align attention weights in phase 2. FAC-
BERT will assign to each tweet an actionable class label.
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Information Type/Class Earthquake Typhoon Total
ServiceAvailable 747 397 1144

SearchAndRescue 168 4 172
MovePeople 6 66 72

EmergingThreats 545 1632 2177
NewSubEvent 126 561 687
GoodsServices 56 45 101

Others 100 100 200

Table 6.4. A dataset of actionable information types

X X\R R
Macro-F1 0.599 0.353 0.529

Table 6.5. Macro-F1 FAC-BERT - classification of actionable tweets with different
input settings.

6.5.3 Results and Evaluations

We evaluate the performance of FAC-BERT on the classification of actionable tweets
under the same configuration as in Section 6.3.4. Our FAC-BERT obtains 0.599
Macro-F1 in classification of actionable tweets. This result is significantly better than
the leaderboard performance of 0.2784 Macro-F1. Although it is not a fair comparison
since the test set is different. However, the results suggest that the task itself is quite
difficult, and transfer learning-based applications such as FAC-BERT would help in
getting good performance and learning faithful attention-based rationales.

Faithfulness of Actionable Rationales: As we don’t have any human annotation
for rationales, we used transfer learning to gather the rationale snippets in actionable
tweets. As mentioned above, we trained the models based on humanitarian class-
based rationales and retrieved the rationales for actionable tweets. Here, we evaluate
“how well our FAC-BERT is able to extract actionable snippets from the actionable
tweets”. For that, we simply consider rationales extracted by the FAC-BERT-p1
trained on previous earthquake or typhoon and feed the second learning phase with
three different input settings when classifying actionable tweets, which are original
texts (X), input texts with rationales marked by ‘*’ (X\ R) and input texts with
non-rationales marked by ‘*’(R). This is similar to comprehensiveness or sufficiency
evaluation.

Table 6.5 shows that when we mask out rationales, Macro-F1 score significantly
decreases (i.e., from 59.9% to 35.3%). That means the zero-shot predicted rationales
cover important content of the original tweets that FAC-BERT relies on to make
predictions. Besides, when we replace non-rationales with a wild character ‘*’, FAC-
BERT performs slightly worse than the setting with original input texts. Using only
rationales is sufficient to obtain decent performance.
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6.6 Chapter Summary

This chapter introduces a faithful attention-based classification model. We learn
to derive high-quality and faithful attention heatmaps from little human rationale
supervision. We conduct experiments on different datasets of short texts from mi-
croblogs during crisis events. Experimental results show that our attention heatmaps
are highly aligned with human rationales. Besides, the learned attention weights can
be considered as faithful explanations, which effectively reflect the reasons for the
model’s decision. We also vary the size of human rationales supervision to observe
the effectiveness of our model in both in-domain and cross-domain classification. Fur-
ther, we show the application of our proposed model in a new setup, i.e., the detection
of actionable tweets and actionable snippets. As the next step, we will evaluate the
faithfulness of our attention-based explanations as a gray-scale measure of attention
weights using decision flips. Besides, we aim to investigate and improve the faith-
fulness of attention-based explanation with a zero-shot learning setup (i.e., without
human rationale supervision). We believe this kind of zero-shot learning setup helps in
contributing data and new problems to TREC-IS [149] and crisisFACTS [150] tracks.
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Conclusion

7.1 Conclusions and Discussions

This thesis has focused on the three main problems in supporting relevant information
from microblooging platforms in crisis situations (1) tweet classification, (2) tweet
summarization, (3) model interpretability.

In chapter 3, we propose methods for online tracking and summarization of generic
breaking news events from Twitter streams. Our filtering model is a semi-supervised
graph-based classification approach, that requires minimal human guidance at early
stage of an event. Similarly, we develop an unsupervised extractive graph-based
method for summarization of tweets in real time. As events evolve, our models
automatically takes into consideration new data from incoming tweets, efficiently
filter and summarize relevant information without having to re-run from scratch.
The proposed models are, therefore, more scalable than previous approaches, and thus
can scale up to evolving large data streams. Experiments reveal that the proposed
classifier significantly outperforms other methods in filtering relevant tweets, while
being as fast as the most efficient state-of-the-art method. Besides, our summarizing
method obtains better performance than baselines qualitatively (in terms of human
evaluation) and quantitatively (in terms of groundtruth based evaluation).

In Chapter 4, Chapter 5 and Chapter 6, we specifically focus on tweet classification
and summarization challenges in the context of crisis situations. We aim at supporting
humanitarian organizations and governmental bodies to obtain crucial information for
situational awareness and actions. During crisis events, stakeholders usually request
information of various humanitarian classes for efficient emergency assistance purpose.
Besides, highly interpretable models are demanded so that the model decisions can
be trusted for real-life application scenarios.

In Chapter 4, we provide human annotations of “rationales” on two crisis datasets.
Rationales are supporting evidences for tweet class labels. Using the annotated data,
we develop an interpretable classification-summarization framework that first clas-
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sifies tweets into different humanitarian classes and then summarizes those tweets
near real-time. Our classifier is an multi-task learning model which learns to clas-
sify incoming tweets from Twitter streams into different humanitarian classes and
extract rationale snippets as explanations for the model decisions. In the summa-
rization phase, we employ an Integer Linear Programming (ILP) based optimiza-
tion technique that jointly optimizes the tweets and extracted rationales to generate
summaries for different humanitarian classes. Experiments show that our classifier
achieves high performance and interoperability. The generated summaries have 5-
25% higher ROUGE-1 F-score than baseline methods and are more informative in
terms of human evaluation.

In Chapter 5, we further focus on improving the performance-interpretability
tradeoff of the tweet classification model and learning an efficient summarizer with
low computational complexity. Many recent studies highlighted the importance of
learning a good latent representation of tweets for several downstream tasks. Follow-
ing the idea of previous works, we take advantage of state-of-the-art methods, such
as transformers and contrastive learning to build an interpretable classifer. Experi-
ments show the superior performance of our proposed model. Meanwhile, the trained
classifier results in better latent representations/embeddings of tweets that help in un-
supervised downstream tasks such as clustering, similarity detection, etc. Further, we
propose a rationale-aware contrastive learning-based tweet summarization approach.
The model utilizes learned embeddings and extracted rationales from the classifica-
tion phase for an efficient summarization. Our summarizer performs equally well
or better than other baseline models in terms of ROUGE-1 F score, while reducing
computational complexity to a great extent.

Chapter 6 studies interpretable models under constrained human rationale anno-
tations. The previous chapters rely on human rationales to train and extract short
snippets as explanations for model interpretability. However, the rationale annota-
tions are not always available, especially in real-time situations for new tasks and
events. In this chapter, we propose a two-stage approach to learn the rationales un-
der minimal human supervision and derive faithful machine attention. In the first
stage, our classifier learns to predict rationales under limited human annotation in
a semi-supervised setup. Next, the second stage utilizes the extracted rationales for
class label prediction. This prediction stage consists of an encoder followed by an
attention layer and a classification decoder. We incorporate the attention weights
at this stage and predicted probabilities of rationales from the first stage into our
customized loss to make attention weights faithful. Experimental results suggest that
40-50% human annotated rationales are good enough to get a performance similar
to a fully supervised model (100% annotated rationales). Our customized loss helps
learning faithful attention heatmaps. We obtain an average 20% improvement across
our four datasets in learning faithful attention weights through the customized loss
over the generic cross-entropy-based loss function.
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7.2 Open Research Direction

This section discusses some promising future research directions following our studies
in this thesis.

Interpretable multimodal classification. In this thesis, we primarily focus on de-
veloping interpretable classification models using textual content from Twitter during
crisis events. However, a large number of tweets also contain images. Some previous
works revealed the usefulness of image data in supporting human organizations during
crisis events. For example, Nguyen et al. [100] showed that images posted on social
media are helpful for severity assessment of emergency events such as natural disas-
ters. Jing et al. [61] investigated the potential of image features for enhancing the
efficiency of emergency management. Recently, Alam et al [3] provided crisis-related
datasets with different annotations, such as informativeness vs. non-informative, hu-
manitarian classes, and damage severity labels, for both textual content and images
of tweets. Despite extensive research that focuses on the textual content of tweet to
identify situational information or different humanitarian information types, works
that use image content is limited. Hence, it is a potential future direction to focus
both on textual and image content for developing multi-modal interpretable classifica-
tion approaches. Similar to text data, the interpretability of image classification can
be obtained by studying methods that highlight pixels or areas supporting/explaining
the model outputs.

Zero-shot transfer learning for interpretable classification and summariza-
tion. In this thesis, we extend previously published datasets with humanitarian class
labels by giving rationale annotations. Using the labels dataset, we develop super-
vised interpretable classification approaches. Further, we make attempts to evaluate
our models under transfer learning setups. For example, in Chapter 5, we apply
the classification model trained on one crisis event (i.e., Nepal earthquake 2015) to
classify tweets and extract rationales of another crisis event of the same type (i.e.,
Mexico earthquake 2017). Chapter 6 studies the effectiveness of the proposed model
(FAC-BERT) in (a) extracting actionable snippets from actionable tweets and (b)
performing on a new dataset with a new problem setup. Generally, despite promising
results, we still use the annotated datasets to some extent. Recent studies on zero-shot
transfer learning [171, 122] have shown the success of pre-trained language models
in getting a machine to do a task that it was not explicitly trained to do. Radford
et al. [122] investigated the capacity of language models in zero-shot task transfer.
Specifically, the language model GPT achieves state-of-the-art results on downstream
tasks such as machine translation and text summarization without fine-tuning these
tasks directly. Inspired by these studies, we would like to investigate the modern zero-
shot task transfer in learning interpretable classification and summarization tasks of
tweets during crisis events from zero human annotation.

Handling misinformation. Messages posted on social media platforms during crisis
events are highly valuable for situational awareness and humanitarian aid. However,
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not all the content obtained from these online platforms is correct or trustworthy.
Many tweets are misleading or just rumors. User interaction with false content has
increased steadily on social media [5], and many people share information without
first checking its authenticity. For example, there was a storm of misinformation
and fake news during Hurricane Harvey and Hurricane Irma, such as the false rumor
“immigration status is checked at shelters”, or another rumor about flood waters
carrying a plague. Gupta et al. [47] revealed that 29% of the most viral content
on Twitter during the Boston Marathon Blasts were rumors and fake content. In
this thesis, we propose models to extract and summarize information from various
humanitarian classes. It may be interesting to integrate the credibility check into our
classification and summarization framework.

Multi-platform classification and summarization. In this thesis, we only em-
ploy Twitter data to extract useful information of different categories and generate
event summaries. During crisis events, an enormous amount of situational informa-
tion is also posted on other social media such as Facebook, Instagram, etc [86, 139].
Obtaining data from different sources helps increase the information coverage, i.e.,
some information about missing people, fatality rates, volunteering efforts, etc., is
available on one media channel but not on other platforms. Besides, multi-media
usage can be useful in the verification of information consistency/authenticity.
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