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Abstract 

In today’s rapidly evolving landscape of automation and manufacturing systems, the efficient resolution of 
productivity losses is paramount. This study introduces a data-driven ensemble approach, utilizing the cyclic 
multivariate time series data from binary sensors and signals from Programmable Logic Controllers (PLCs) 
within these systems. The objective is to automatically analyze productivity losses per cycle and pinpoint 
their root causes by assigning the loss to a system element. 

The ensemble approach introduced in this publication integrates various methods, including information 
theory and machine learning behavior models, to provide a robust analysis for each production cycle. 

To expedite the resolution of productivity losses and ensure short response times, stream processing becomes 
a necessity. Addressing this, the approach is implemented as data-stream analysis and can be transferred to 
batch processing, seamlessly integrating into existing systems without the need for extensive historical data 
analysis. This method has two positive effects. Firstly, the result of the analysis ensures that the period of 
lower productivity is reduced by identifying the likely root cause of the productivity loss. Secondly, these 
results are more reliable due to the ensemble approach and therefore avoid dependency on technical experts. 

The approach is validated using a semi-automated welding manufacturing system, an injection molding 
automation system, and a synthetically generated test PLC dataset. The results demonstrate the method's 
efficacy in offering a data-driven understanding of process behavior and mark an advancement in 
autonomous manufacturing system analysis. 
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1. Introduction

Context and Motivation. Within the Digital Transformation in manufacturing, the integration of cyber-
physical systems (CPS) stands out as a pivotal development. CPS, characterized by the convergence of digital 
and physical elements, are augmented by digital services that fulfill the ‘cyber’ aspect of the concept. These 
services cover particular areas such as maintenance or optimization, with growing relevance for operations 
[1]. The optimization of automated production systems faces an additional challenge as production processes 
become increasingly dynamic. For instance, while order-related potential for improvement may be 
identified, it might remain unused since the production order with a small lot size has already been 
completed. This dynamic results in narrower windows of opportunity for intervention and emphasizes the 
urgency of an adequate response time. Furthermore, the criticality of response time is evident, as highlighted 
by metrics such as Mean Time To Repair (MTTR) [2]. The most time-consuming task within optimization is 
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diagnostic analysis. Due to its reliance on expert knowledge and contextual understanding, the diagnostic 
analysis is predominantly conducted manually. This dependence on manual tasks shows unexploited 
potential that will allow an automated system to evolve into a CPS. The aim of diagnostic analysis is to 
determine which component of the system causes the detected loss of productivity. With this, losses can be 
allocated at component level, and conversely, countermeasures can be taken for optimization. 
This paper aligns with the overarching research work on identifying productivity losses in automated 
production systems using behavioral models [3,4]. This publication specifically focuses on the diagnostic 
analysis performed by an automated, unsupervised ensemble method, adapting to the dynamic nature of 
modern manufacturing systems. By employing an ensemble approach, root cause identification becomes 
more reliable since the approach seeks to cover a wide spectrum of possible solution paths. This is in line 
with the overall problem definition, as the optimization itself is less idealistic and more pragmatic [5]. 

Contributions. 
An ensemble framework for analyzing cyclic multivariate time series data from manufacturing systems 
sensors and PLCs is proposed, automatically pinpointing root cause features for cycles with high productivity 
loss in manufacturing settings. 

The ensemble’s architecture is engineered to ensure robustness and reduce false-positive outputs, leveraging 
behavioral modeling, as well as incremental and continual learning. 

The framework allows for parallelization of its components and offers a customizable balance between 
response times and depth of contextual analysis. The method is validated across diverse manufacturing and 
automation system settings, demonstrating the potential for broad application in the manufacturing industry. 

2. Related Work 

2.1 Explaining causality of productivity losses in manufacturing systems 

In the exploration of the causality behind productivity losses in manufacturing systems, this work has drawn 
from foundational works in operational performance assessment. The field of research is well developed as 
depicted in the work of Muchiri et al. [6]. However, recent activities have been sparked by the digital 
transformation. Notably, the fundamental work of Slack et al. [2] and the contributions of Tangen [7] and 
Ungern-Sternberg et al. [8] offer comprehensive insights into the assessment and categorization of 
operational performance. Slack et al. provide a holistic view of performance assessment, elucidating 
operational objectives derived from the strategic and societal considerations of an organization. These 
objectives, encompassing quality, speed, dependability, flexibility, and cost, serve as fundamental 
benchmarks for evaluating operational effectiveness. A challenge in application is that these objectives do 
not share the same measurement units. This is substantiated by Tangen's contribution, which introduces three 
dimensions of measurement for assessing operational performance: output-based, time-based, and monetary-
based measures. In combination, five objectives are defined, namely: performance, considering factors such 
as output quantity, production time, and associated costs. Ungern-Sternberg et al. provide a framework for 
performance measurement that integrates both, the five objectives and the three dimensions. The result of 
this framework is a unified performance assessment based on time-series. Central to Ungern-Sternberg's 
framework is the classification of operational states, facilitating the identification and categorization of 
productivity losses. By partitioning total time into distinct categories such as order processing time, 
downtime, idle time, and non-disposable time, the framework provides a structured approach to assessing 
system performance and identifying areas for improvement. Furthermore, the classification scheme offers 
insights into the nature of productivity losses, distinguishing between technical and organizational factors 
contributing to inefficiencies. Through this framework, the distinction between productivity and 
performance becomes visible, as efficiency can only be evaluated by fulfilling the third requirement of the 
framework, namely: versatile data integration. Nevertheless, this framework does not specify which data 
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sources are intended. Thus, the resolution of the accuracy of the findings remains undetermined. The highest 
resolution of data can be found at the PLC level of the automation pyramid. This paper examines whether 
and to what extent data from the PLC level offers an added value for this framework. 

2.2 Machine Learning in root cause analysis for anomalies in multivariate time series data 

Machine- and Deep Learning techniques have gained increasing importance in identifying and explaining 
anomalies in diverse time series applications. This publication focuses on leveraging these techniques for 
root cause analysis of productivity losses in manufacturing environments. To achieve this, specifically data 
from PLC and sensor systems is analyzed, both being quintessential examples of time series data. As outlined 
previously, the research gap can be found in the application. Consequently, comparable data characteristics 
must be included in the methodological research. The structure of these PLC data streams is analogous to 
those found in other domains, such as cyber security or health care. Hence, an overview about significant 
research and development in time series analysis for different applications should be given.  

With the research conducted by Chen et al., high-order dynamic behaviors are separated from static process 
characteristics. By implementing a dynamic fault isolation strategy for each dynamic node, their model offers 
an understanding of the root causes for targeted interventions [9]. Perepu et al. introduced an unsupervised 
method for root cause analysis of anomalies in dynamic manufacturing systems, utilizing sparse optimization 
techniques. This approach generates insights without the need for extensive labeled data, which is often a 
bottleneck in machine learning applications [10]. To further address interpretability, leveraging causal data 
structure, root cause analysis based on a causal graph being inferred from the data was proposed by 
Budhathoki et al. The root cause contributions were quantified using information-theoretic outlier scores and 
Shapley values [11]. In 2023, Assaad et al. present a method for root causes identification of anomalies, 
utilizing an acyclic summary cause graph representing causal relations in a dynamic system. Based on 
dividing the root cause identification task into multiple sub-problems, the graph is used to directly identify 
root causes. Their research focuses specifically on root cause analysis with a focus on interpretability [12]. 
Modeling available manual information in manufacturing through a knowledge graph, Wehner et al. combine 
data driven root cause analysis with expert knowledge. The Causal Bayesian Network employed is improved 
through iterative feedback loops and available domain expertise, while its search space is pruned by 
utilization of the knowledge graph [13].  

2.3 Ensemble methods in data-driven analysis of manufacturing systems 

Focusing back only on the application field of manufacturing and automation systems, research and 
development utilizing ensemble models needs to be outlined. In the manufacturing domain, adopting 
ensemble models has shown great potential for improving the analysis and optimization of various processes. 
The following section outlines the key research in ensemble methods that has significantly contributed to 
advancements. Ensemble models for optimizing machining processes in IoT systems were highlighted by 
Garrido-Labrador et al. (2020). Due to the ability to extract various different information streams from the 
IoT system, the great performance of ensemble models for the optimization of machining processes was 
demonstrated [14]. An ensemble approach built from multiple machine learning models was utilized by Jose 
et al. to analyze vibration data for machine fault diagnosis. They also built a voting classifier to address the 
problem of weighing multiple single statements within the ensemble, which would otherwise induce high 
output variance depending on the weights [15]. Kaupp et al. take a novel approach with an AutoEncoder-
ensemble framework for unsupervised variable selection to improve focus in fault diagnosis in 
manufacturing processes. By identifying key variables, their method enhances the precision of unsupervised 
fault diagnosis systems without knowledge based pre-selection [16]. Lately, ensemble methods have been 
combined with active learning contextual bandits in the field of decision-making for manufacturing systems 
by Zeng et al. Here, the ensemble enhances prediction robustness due to aggregating multiple models. Active 
learning combined with ensemble methods additionally boosts learning efficiency by combining multiple 
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insights to label the most informative data points, achieving higher accuracy [17]. With ensemble methods, 
analytical results reach higher levels in reliability, a frequently addressed shortcoming of data-driven 
applications in manufacturing. 

3. Method 

This work presents a method for analyzing cyclic manufacturing time series, combining linear and non-linear 
feature importance, incremental learning within dynamic manufacturing systems, and the integration of 
behavioral and structural modeling for root cause analysis of productivity losses. It utilizes ensemble learning 
to provide fast and robust feedback for manufacturing systems. 

3.1 Data and Descriptive Analysis 

The foundation of this data-driven analysis of manufacturing systems is based on the aforementioned binary 
PLC and sensor data. Following the principle of automation, a recurring pattern is inherent in the data record, 
and the duration of this repetition is dependent to a production order [18]. The data encapsulates the 
operational dynamics of a manufacturing system, with each cycle consisting of a complete set of operations 
needed for a manufacturing step. Mathematically, the cyclic multivariate time series PLC data is defined as 
!! = (!"! , … , !#!) ∈ ℝ#$% with ) time steps, dimensionality * and cycle number + all being part of the 
natural numbers ℕ. The cyclic behavior varies in duration of cycles and operations, but not in the order of 
operations within each cycle. Table 1 in the appendix demonstrates the structure of the data visually. 

The focus of this work lies in the root cause analysis of such cycles, with a measured productivity loss 
exceeding the norm, to detect potential responsible signals. The outlined approach relies on a manufacturing 
productivity flag - = {0,1} per cycle to be analyzed, but it does not necessarily have to be the exact same 
measurement in every system. - = 0 indicates a low productivity loss cycle, - = 1 a high-loss cycle. The 
flag can be assigned based on descriptive analysis, expert knowledge or data-driven via time series analysis. 

3.2 Automatic identification of root causes 

To thoroughly analyze the cycles with high productivity loss and pinpoint potential root causes, an ensemble 
approach is developed. Since ensemble methods aggregate the statements of various models, the effect of 
noise or outliers on the final output is reduced, enhancing its robustness [19]. This is also important to reduce 
false positive statements due to single model sensitivity, potentially causing downtime in manufacturing. 
Figure 1 displays the ensemble approach developed. 

 
Figure 1: Overview of the ensemble model used to determine root cause features in high productivity loss cycles 
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The AutoEncoder (AE) with Incremental Learning (IAE) is a variant of AutoEncoders adapted for data-
streams and environments with a dynamic data distribution over time. Analogous to conventional AE, the 
IAE is designed to learn a non-linear function to encode and subsequently reconstruct input data. During 
inference, the reconstruction error serves as an anomaly score, indicating manifestations of deviations from 
the learned and expected normal data structure. The AutoEncoder is defined by [20] as: 

! = #(%; '!) = )(*!% + ,!)    (1) 

Where 2 represents the latent encoding of the input ! by the encoder function 3, parametrized by  
4& = {5& , 6&} with the weight matrix 5& and the bias vector 6&. The activation function is denoted by 7. 

%- = .(!; '") = )(*"ℎ + ,")    (2) 

Where !8 represents the reconstructed input obtained from the latent representation 2 by the decoder function 
9, parametrized by 4% = {5% , 6%} with the weight matrix 5% and the bias vector 6%. The activation function 
is denoted by 7. 

To still address fast response times and granular analysis but enable the AutoEncoder to learn temporal 
dependencies between manufacturing processes, : cycles will be concatenated into a batch ;' =
[!' , !'()*"] ∈ ℝ()#)$% starting from a specific cycle + = > where > is a natural number indicating the 
starting cycle for the batch. The number of cycles : within each batch depends on the cycle time and 
customer needs. 
The uniqueness of the IAE is the training on segments of cyclic time data, one batch at a time. For each 
batch, the IAE updates its parameters in a training iteration to incorporate the new information without 
forgetting and overwriting the previously learned patterns. This incremental training enables learning long-
term behavior while still strongly weighing the newest cycles and not being reliant on historical data.  
To ensure continual learning over progressing cycles without catastrophic forgetting [21], two different 
techniques are applied. The replay buffer ℛ stores up to 100 previously analyzed batches. Every @ ∈ ℕ seen 
batches, the model undergoes a selective training iteration on A-&#(ℛ)/ B + 3 batches randomly sampled from 
ℛ, where EF)(ℛ) denotes the current number of batches stored in ℛ. 

Additionally, Elastic Weight Consolidation (EWC) [22] loss ℒ012  is employed to retain previously acquired 
knowledge when updating the model parameters during training. The EWC approach leverages the Fisher 
Information matrix H, described in [23], which quantifies the importance of each model parameter with 
respect to the performance on previous batches through the parameter I which balances the trade-off between 
fitting new data and retaining former knowledge. The Fisher matrix represents a second-order approximation 
to the model's error surface around the optimal parameters, thus providing a way to penalize significant 
deviations from these parameters during new learning phases. This helps in preventing catastrophic 
forgetting by adding a regularization term that constrains the parameter updates, particularly those 
parameters crucial for previous tasks' performance. 

Based on this, the AutoEncoder loss function ℒ30 calculates the reconstruction loss between the original 
input ;' and the reconstructed output	BK# and is combined with ℒ012 , incorporating the Fisher matrix H and 
the weighing parameter I to prevent forgetting important information. 

ℒ = ℒ$%23& , 3-&5 + ℒ%'( = )
*∑ 73+ − 3-+7

,*
+-) + ∑ .

,/ 9/('/ − '$,/∗ ),   (3) 

θ2∗  denotes the approximate Gaussian distribution of the model parameters and L represents the labels per 
parameter. For each learning step, the model tries to minimize ℒ and updates its parameters accordingly. 
After each training iteration, and only for cycles with high productivity loss, the IAE reconstructs the latest 
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cycle during inference. The reconstruction error per feature can potentially be linked to productivity losses, 
while definitely revealing deviations from previously learned behavior [24]. The use of IAE addresses the 
dynamic nature of manufacturing data, adapting to new patterns or changes in operational behavior. This 
adaptability is essential for accurately identifying anomalies over time, which are potential indicators of root 
causes for productivity losses. Based on the most significant anomaly scored features, the interim results M")!  
containing the top N anomaly locations and M"4!  containing the next N features are returned. 

Within the dependency analysis, Pearson's Correlation Coefficient (PCC) helps the ensemble filter out 
irrelevant features per cycle !!, as well as capturing linear relationships between features. 
Mutual Information (MI) quantifies the information gained about one random variable through another. 
MI helps the ensemble uncover nonlinear pairwise relationships between sensor readings or PLC signals, 
going beyond the linear correlations that PCC captures. For discrete features per cycle !5! and !5("!  it is 
defined by Shannon [25] as: 

;(%+; %+3)) = ∑ ∑ <(=+ , =+3))>?@	(4"#$∈6"#$4"∈6"
7(4",4"#$)
7(4")7(4"#$)

)   (4) 

Where <(=+ , =+3)) is the joint probability distribution function, <(=+) and <(=+3)) denote the marginal 
probability distribution functions for =+ and =+3) respectively. The goal is to compute the features with the 
highest information overlap in the data and the highest amount of dependable other signals. These consist of 
representative features in the data structure, potentially pinpointing bottlenecks and other important parts in 
the underlying systems structure. To achieve this, the union of the most significant features from the PCC 
and MI is taken as the first ensemble step and returned as the interim result of feature indices M6!. 
Lastly, Principal Component Analysis (PCA) for structural embedding and eXtreme Gradient Boosting 
(XGBoost) for cycle behavior modeling was utilized. PCA is computed per cycle !! and reduces the 
dimensionality of the data by transforming it into a set of linearly uncorrelated principal components that 
capture maximum variance. This transformation highlights the underlying structure of the data through a 
low-rank structure matrix, emphasizing the most significant features [26], potentially correlating with 
productivity losses. 

XGBoost is an advanced implementation of gradient boosting, an ensemble technique which uses multiple 
decision trees sequentially. Each tree in XGBoost is built to minimize a loss function, with focus on 
correcting the mistakes of the preceding tree. This is achieved by gradient descent on the loss function, 
allowing the model to incrementally improve and adapt to the complex patterns in the data. The algorithm 
was originally introduced by [27] and developed further by [28]. The model is trained on the same time 
series batch ;' as the AutoEncoder, with the addition of each cycle within the batch being labeled based on 
the productivity loss flag - = {0,1}. In this way, the model learns to distinguish between these two states 
and learns normal behavior, not leading to productivity loss. XGBoost is capable of handling complex 
relationships within high-dimensional data in a supervised way, and thus builds a complement to the simpler 
approach of correlation analysis introduced previously. The model updates its parameters as shown in 
equation 5. 

B,C(D) = ∑ >(E+ , EF+) + ∑ G(H/):
/-)

*
+-)     (5) 

With Θ representing the parameters of the model, E being a differentiable convex loss function measuring 
the difference between the predicted label E;I , and the actual label Q5 per data point. Ω being the regularization 
term, penalizing the model’s complexity, S the number of trees, and T7 the individual trees in the model. 
To identify a feature set for the root cause analysis, feature importance is computed after each XGBoost 
modeling per batch of cycles. The feature importance metric is derived from a combination of factors as 
outlined in the implementation of [28]. Per high loss cycle, the intersection of these XGBoost behavior model 
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important features with the most prominent PCA structural modeling features is computed to return M8!, 
consisting of features pivotal for modeling the datasets structure as well as the productivity loss behavior 
over the cycles. Based on the three subsets of features with a high impact in cycle-based root cause analysis, 
a mutual root cause output is formed. The initial root cause score per feature per cycle is denoted as U!(T) =
0. The ensemble model output is given by this score based on equation 6.

J<(H) = ∑ 2 ∗ M=,>=∈?$%& + ∑ 1 ∗ M=,>=∈?$'& +∑ 1 ∗ M=,>=∈?(& + ∑ 1 ∗ M=,>=∈?)&  (6) 

δ@,A is the Kronecker delta, equal to 1 if W = T and 0 otherwise. Depending on the index subset a feature 
belongs to, the score for feature T increases by 2 for I)BC  and by 1 for the others. 
A feature T is considered a potential root cause if U!(T) ≥ 2, with higher scores indicating a higher 
importance of the feature T in the analysis. 

4. Validation and Discussion

4.1 Case Study: Semi-automated welding manufacturing system 

This system with multiple PLC’s and manual workstations has been observed for one week. 20 relevant 
signals have been recorded, over 2381 cycles with 94 seconds ideal cycle time and each cycle consisting of 
13 different states. The extended observation period, paired with the systems inherent process variance and 
planned downtimes as well as disruptions and anomalies, presents a complex scenario with high variance 
for analysis. This complexity is indicative of many semi-automated manufacturing systems where human 
intervention is still highly significant. Figure 2 displays the root cause analysis using the proposed ensemble 
method, highlighting significant features with scores ≥ 2 in high-loss cycles of complex manufacturing 
systems. The graph uses color-coding to identify key features likely cause productivity losses, correctly 
pinpointing the anonymized features 12 and 15 as the main contributors. These two sensors are associated 
with critical manual processes, each leading to high waiting times for the automation system.  

Figure 2: Assigned feature root cause scores over the duration of all cycles: The number of signals holding that score 
would be represented by larger circles. The color encoding shows the different features being detected as root cause. 

This shows that the approach can detect potential root causes in high loss cycles. 

4.2 Case Study: Injection molding automation system 
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This fully automated injection molding machine has 83 associated binary signals, recorded over 40 minutes. 
The data log captures 32 cycles with each cycle comprising 18 different states and an expected cycle time 
of 70 seconds. This process represents highly automated manufacturing environments where precision and 
speed are paramount and the margin for error as well as process variance are minimal. The limited 
observation cycles, high signal precision and low downtimes offer a contrasting scenario to the semi-
automated system. Figure 3 in the appendix shows the root cause assignment per high loss cycle of this 
system, identifying key root cause features. This demonstrates the ability of the model to isolate a feature 
group that most likely causes high productivity loss in high precision automation systems. 

4.3 Automation system simulation via synthetic PLC data 

This automation system was simulated by observing 26 PLC signals over 36 hours. The log consists of 400 
cycles, with an ideal cycle time of 140 seconds and 14 different operational steps per cycle. The dataset 
serves as a controlled environment to test the robustness and versatility of the ensemble machine learning 
approach. By designing a synthetic dataset, the method is validated against known parameters and 
conditions, providing a labeled baseline for the effectiveness of the analysis. The operational and cycle 
variance was guaranteed by altering the sensor and state conditions within each sequence and causing 
occasional anomalies within the process around 10% of the time. Table 2 in the appendix illustrates the 
performance of the root cause assignment using the ensemble model compared to its individual components 
(Incremental AutoEncoder, Principal Component Analysis and Mutual Information MI) as well as other 
machine learning techniques, namely  One-Class Support Vector Machine (OC-SVM) [29], Isolation Forest 
[30], and k-Nearest Neighbors (kNN) [31]. This evaluation highlights a significant advantage in true positive 
detection for both the ensemble and the Incremental AutoEncoder over the other models. Due to the 
Incremental AE detecting way more false positives than the ensemble, the validation shows the benefit of 
the ensemble scoring over singular models. Nonetheless, there remains room for improvement in the 
ensemble’s performance, as indicated by its F1-Score of 75.3%. 

5. Conclusion

This research addresses productivity loss diagnostics in manufacturing systems through an ensemble 
machine learning framework. It offers a robust solution for pinpointing the root causes of inefficiencies, by 
leveraging cyclic multivariate time series data from available PLC data. The methods capacity for near-real-
time analysis ensures a fast response in interventions against productivity issues, consequentially reducing 
manufacturing downtime and associated financial losses. By automating the root cause diagnosis process, 
the model not only accelerates the resolution of productivity issues but also reduces the reliance on extensive 
and expensive expert consultation, further driving efficiency and bottleneck resolving in the production 
process. 

The proposed approach also opens up potential for further research and development. The individual parts 
of the ensemble can be revisited and optimized, perhaps identifying more capable modeling approaches. The 
Incremental AutoEncoder still leaves room for improvement, as the field of Deep Learning generates new 
insights with high frequency. Additionally, the hyperparameter configuration can be automated and adapted 
to the data to be analyzed, improving versatility and potentially even precision.  

In order to further validate the framework and obtain feedback for future developments, an application in a 
wider range of manufacturing and automation systems should be carried out. 
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Appendix 

Data and Descriptive Analysis 

Table 1: Cut-out from a manufacturing systems dataset. The dataset follows two key characteristics: a) Multivariate 
Binary Time Series: Sensor readings and PLC signals are time-stamped, allowing for temporal analysis. b) Cyclic: 

Each cycle contains a set of operations repeated over time, providing a structured framework for analysis 

Timestamp Signal 1 Signal 2 Signal 3 Signal 4 Signal 5 … Cycle State 

19:04:15.0684 0 1 1 1 1 
 

1 1 

19:04:15.9605 0 1 1 1 1 
 

1 1 

19:04:42.8403 1 0 0 0 0 
 

1 2 

19:04:43.2353 1 0 0 0 0 
 

1 2 

19:05:13.2559 1 0 0 1 1 
 

1 3 

19:05:17.1166 1 0 0 0 1 
 

1 4 

19:05:50.6370 0 1 0 0 1 
 

1 5 

19:06:07.4969 1 0 0 1 0 
 

1 6 

19:06:27.6087 0 0 0 0 1 
 

1 7 

19:06:53.4058 0 0 1 1 1 
 

2 1 

19:09:14.7522 0 1 1 1 0 
 

2 2 

 

Further visualization for the injection molding automation system in 4.2 

 
Figure 3: Root cause score assignment for non-zero scored features during the observed high loss cycles. 
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Numerical evaluation of the proposed model on the 4.3 synthetic PLC data 

Table 2: Numerical validation of the proposed ensemble model, its singular parts and three benchmark machine-
learning models on the labeled synthetic PLC dataset. 

Model F1-Score Recall Precision True 
Positive 

False 
Positive 

False 
Negative 

Ensemble 0,753 0,695 0,822 430 93 189 
Incremental AE 0,528 0,564 0,496 349 355 270 
PCA 0,317 0,294 0,345 182 346 437 
MI 0,194 0,179 0,210 111 417 508 
OC-SVM 0,159 0,147 0,172 91 437 528 
Isolation Forest 0,157 0,145 0,170 90 438 529 
KNN 0,139 0,129 0,152 80 448 539 

 

Hyperparameters chosen for the validation 

A few architectural details and hyperparameters have been necessary to conduct the above validation.  
The most significant feature threshold N mentioned in chapter 3 for selecting M")!  and M"4!  has been chosen as 
the highest 3.75% of scores. For M6! the highest 6.5% have been selected, for the PCA in M8! the top 7.5% 
and for the XGBoost the top 10% of features. 

The Autoencoder model implemented is comprised of three linear encoding layers with a non-linear ReLU 
activation function each. The latent dimension of neurons for the Encoder layer one is 32, for layer two 16 
and for the final encoding layer 8. It includes L1 and L2 Regularization with coefficients of 0.01 to mitigate 
overfitting by penalizing large weights as well as a Dropout of 0.2 between layers. The training has been 
realized with two epochs per cycle batch and an additional five epochs per replay training. 

The Decoder is reversed to the Encoder, being built from a linear layer mapping the encoded 8 Neurons back 
to 16 and finally 32, employing non-linear Activation, Regularization and Dropout mirroring the Encoder. 
The final output layer of the Decoder maps the data back to its original shape and is combined with a Sigmoid 
Activation Function. The ADAM algorithm was utilized as optimizer. The I weighing parameter of the EWC 
loss was chosen to be 0.4, the Fisher matrix was computed every 50 observed cycles. 

For the XGBoost model training, logarithmic loss was selected. 

The benchmark OC-SVM model was deployed with the ‘rbf’ kernel.  

The Isolation Forest benchmark model was validated with an approximated anomaly contamination value of 
0.1. 

For the L neighbors to be consider in the kNN algorithm, L = 10 was chosen.  
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