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Quantum description of atomic diffraction by material nanostructures
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We present a theoretical model of matter-wave diffraction through a material nanostructure. This model is
based on the numerical solution of the time-dependent Schrodinger equation, which goes beyond the standard
semiclassical approach. In particular, we consider the dispersion force interaction between the atoms and the
material, which is responsible for high energy variations. The effect of such forces on the quantum model is
investigated, along with a comparison with the semiclassical model. In particular, for atoms at low velocity and
close to the material surface, the semiclassical approach fails, while the quantum model accurately describes
the expected diffraction pattern. This description is thus relevant for slow and cold atom experiments where
increased precision is required, e.g., for metrological applications.

DOI: 10.1103/PhysRevResearch.6.023165

I. INTRODUCTION

Atomic interferometry using light pulses [1], magnetic gra-
dients [2], and material gratings [3] is now a mature field of
physics. In particular, advances in the cooling and control of
atoms have turned this field into a versatile tool for precise
measurements with applications in fundamental physics tests
[4] or accurate inertial sensing [5]. In this paper, we focus on
atomic diffraction patterns formed by material gratings where
dispersion forces such as Casimir-Polder play an important
role. These forces between the particle and the grating walls
are created by the ground-state fluctuations of the electromag-
netic fields, generally resulting in an attractive potential [6].
They are of far-reaching importance in chemistry, biology,
cosmology, atomic force microscopy [7] and can be used as
a test of quantum electrodynamics. Interest in understanding
this interaction also stems from its application, e.g., in the
development of atomic lithography [8]. The role of this inter-
action is all the more important since the mechanical gratings
used in atomic interferometry experiments are usually built on
the nanometer scale. Using nanofabricated transmission grat-
ings (called nanograting), the influence of this force has been
studied for alkali atoms [9,10], excited noble gases [11,12],
or even complex molecules [13]. Furthermore, this approach
has recently allowed to distinguish between the nonretarded
and the retarded regime of the Casimir-Polder interaction in
the intermediate range [14]. Such interferometers can also
be configured to measure, for example, atomic polarizability
with high sensitivity [15], dynamic polarizability of large
molecules [16], and inertial signals [17].
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These matter-wave experiments require quantitative sim-
ulations to bridge the gap between theory and experiment.
The current theoretical framework used so far to account
for the dispersion forces is based on a semiclassical approach
in the eikonal approximation [18] and beyond [19]. This
method remains valid if the action S over the classical tra-
jectories through the interaction region is much larger than 7,
if the de Broglie wavelength A of the particle is much shorter
than the spatial variation of the interaction potential V, and
if the spatial variation of the de Broglie wavelength is small.
These approximations fail in close vicinity of the walls, where
the dispersion force is dominant, and for low atom velocities.
In both cases, the interaction potential exceeds the kinetic
energy. Triggered by (i) the increased precision required in
metrology, (ii) the need to probe the dispersion forces close to
the surface, and (iii) the experimental progress in cooling and
slowing atoms to increase the interaction time between the
atoms and the nanograting thus enhancing the sensitivity of
the measurements [14], it becomes necessary to advance the
theoretical description of material matter-wave interference
beyond the semiclassical approach.

We present here a matter-wave diffraction model based
on a numerically efficient solution of the time-dependent
Schrodinger equation. Owing to the fast developments in
the field of matter-wave optics in the last decade, numerical
simulations involving atom-surface interactions have been de-
veloped in the context of quantum reflection [20,21]. Here,
by exploring short atom-surface distances where large energy
variations occur, we reproduce matter-wave diffraction pat-
terns beyond the semiclassical approach.

The structure of the paper is as follows: In Sec. II, we
describe the theoretical approach, introducing the dispersion
forces used and the approximation adopted in the immediate
vicinity of the surface. Section III is devoted to the numerical
performance and to the description of the diffraction pat-
tern in the far-field regime. In Sec. IV, the numerical results
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FIG. 1. On the left, a schematic illustration of the problem considered. A plane wave representing a single particle with velocity v hits a
N-slit nanograting. The detection takes place at a distance Dgp from the slits. The nanograting has the following geometry: slit size a,, wall
slit by, thickness I, and periodicity p, = a, + b,. On the right is the result of a typical time evolution of the wave function inside the slits, with
a;=100 nm, b; = 100 nm, and /; = 100 nm, which are typical dimensions used in experiments. In the back plane a characteristic one-slit wave
function is plotted after free propagation to the detector. This function is the envelope of the N-slit wave function.

obtained are compared with the semiclassical approach. Fi-
nally, summary and conclusion are given in Sec. V.

II. THEORETICAL MODEL

A. Representation of the problem

In this section we outline the matter-wave interference
pattern from a N-slits nanograting in the far-field limit and
show that the problem can be reduced to a single-slit problem.
The system studied is illustrated schematically in Fig. 1. The
coordinate system is chosen such that the grating lies in the
(xy) plane and z is the propagation direction. The incoming
atoms, of mass m, are described by an incident plane wave
Yine(z) = exp(ikz) with k = 27 /A, where A is the de Broglie
wavelength of the atoms [22]. This incident plane wave inter-
acts with a N-slits nanograting of slit size a,= 100 nm, wall
width ;= 100 nm and thickness /[z= 100 nm (see Fig. 1). We
also assume that the slits are large enough along the z axis
to ignore the diffraction pattern along this given direction.
The grating periodicity p, = a; + b, implies that the total
wave function inside the grating can be expressed as the given
quantum superposition

N—1

Y1) =) Yalx, 1), ()

n=0

where ¥, (x, t) represents the wave function of the particle in-
side the nth slit. We also assume that the slits are independent
and identical, allowing us to write v, (x, 1) = Yo(x — npg, t).
After an interaction time ¢, = [5/v inside the grating, where
v = hk/m is the particle velocity, the Fourier transform of
the total wave function at the exit of the grating is simply
given by

sin (N/;p"’)]ei"v”kpg @

bk, t.) = ok, t, 2
Yk, te) = Yol I)[Sm(,%)

Thereafter, the atoms freely evolve to the detector during a
time 7', leading to the following expression of the propagated

wave function in the Fourier domain

Jkote +T) = Pkot) e 7. 3)

Many nanograting experiments take place in the far-field
regime, i.e., after a long propagation time. In this model, the
diffraction signal is therefore computed using the stationary
phase approximation (see Appendix A and e.g., Ref. [23]).
Following this assumption, the wave function in coordinate
space and at the detector position can be expressed as

T -2 .
Yt +T)~ /% w(%,g g A

In the typical cases that we are going to encounter in this
study, this approximation yields negligible error, the error
bound with the second-order correction being below 2 x 10~
(see Appendix A). It also avoids scaling problems in terms of
number of grid points required to numerically compute the
far-field diffraction pattern. Finally, under this approximation
the final probability density can be simply expressed as

o m | sin (Nkyx)
[¥(x, te + T)I |:—sin )

2
T 2
~ o :| 1Yo (ks, 2)] (&)

where
mpg

= 2T ©

In this expression, |1/ (k;, 7.)| is the atomic probability den-
sity diffracted by a single slit. In the limit of large slit numbers
(N > 1), this expression can be further simplified to

WG e+ TP o [k, 1) Za<x - 'ADPGD), )

8

where 6(x) is the Dirac delta function and Dgp the grating-
detector distance. As a result, the problem in the far-field
regime, where the wave pattern is expanded well beyond the
size of the slit ay, is reduced to simulating the propagation
through a single slit.
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B. Potential inside the slits

The existence of forces between the atoms and the slit
surface is due to the Casimir-Polder interaction [24,25]. In
this article, we consider the dispersion force inside the slits for
atoms in the vicinity of a surface, neglecting the retardation ef-
fects resulting from the finite-field propagation time between
the atoms and the surface. In major nonresonant atom-surfaces
cases, such effects become significant at distances larger than
Aopt/(27), where Aoy represents the optical transition wave-
lengths of the species. However, in this study, the maximum
atom-surface distance considered (a;/2 = 50 nm) is generally
smaller, resulting in little retardation effects (around 10% of
the total potential contribution). In this simplified case, the
potential, also called the nonretarded Casimir-Polder or van
der Waals interaction, is written for the two walls of the slits
located at x = £a;/2 as

G _ (65
(as/2 —x)*  (a;/2+x)*

where Cs is a coefficient describing the strength of the interac-
tion. This coefficient depends on the polarizability of the atom
and on the dielectric response of the wall material. Inspired
by the experimental setup reported in [14], we consider argon
atoms in the 3P, state interacting with a SizNy grating, giving
C; = 5.04 meV nm? [26]. This number is within the usual
range of values observed in the majority of atomic diffraction
experiments due to similarity in nanograting materials and
comparable atomic polarizabilities [3]. Furthermore, Aoy =
811 nm (for Ar in its 3P, state) ensures that retardation ef-
fects are negligible for the atom-surface distances examined
in this study. When the wave functions of the atoms start
to overlap with the electrons of the surface, an additional
short-range repulsive contribution arises due to the Pauli re-
pulsion. We model such a contribution with the repulsive part
of a 9-3 Lennard-Jones potential for each wall of the slit
[27,28]

Voaw (x) = —

®)

Crep Crep
(as/2 _x)g (as/2+x)9’

where Cy, is a strength coefficient. Such potential scaling
arises from the pairwise Lennard-Jones interaction in 1/x'?
with the atoms of the surface (see Appendix C). The total
potential is thus Vyor(x) = Vygw (x) + Vry(x) and is repre-
sented in Fig. 2(a). In the following, we fix the position
of the minimum potential at a distance 7y, from the walls.
This implies that the coefficients C3, rpin and Cpp are no
longer independent and are related by 3Crp = C3rS,,. For
the simulation, we use 7y, = 0.35 nm, which corresponds
to the radius of P, argon atoms in a solid sphere model (see
Appendix B).

Vir(x) = 9)

C. Adjustment of the potential and wave function absorption

As seen in Fig. 2(a), the overlapping between the wave
functions of the atoms and the surface occurs for atom-surface
distances shorter than ry,;,, leading to sticking processes [29]
or internal state transfer [30] for the atoms. In all cases,
such atoms are lost and do not contribute to the diffraction
pattern signal. Wave function reflections for the short-range
regime are thus annihilated, and an absorption method must
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FIG. 2. (a) Total potential Vror(x) = Vyaw (x) + Viy(x) (solid-
black line) as a function of the distance x inside the slits. The grey
area represents a wall located at x = a,/2 = 50 nm. The blue dashed
curve represents the modified potential Vi,0q(x). (b) Mask function
M (x) used to absorb the wave function close to the surfaces. Here
d = 0.2 nm and x,,; = 49.75 nm (¢) Zoom on the mask function
M (x). The plots typically use parameters inspired by the experimen-
tal setup described in Ref. [14].

be implemented. Hence, an adjustment of the potential V7 or is
introduced in the model [20]. The underlying idea is to replace
the repulsive part of the potential to improve the absorption
effect. In the simulation we use the modified potential V04 (x)
defined as follows. Inside the slit and far from the surfaces,
i.e., for x| < a5/2 — Tmin> Vinod(x) = Vror (x). In the vicinity
of the slit surface, i.e., for a,/2 — rmin < |x| < as/2 + L,

7 (|x| — as/2 + rmin)
z(lab + rmin)

where Uy = Vror(as/2 — rmin) is the minimum of the poten-
tial and [, is the distance over which the potential Vi0q(x)
goes from Uy to O (see Fig. 2). And finally, for |x| > a,/2 +
Labs Vinod (x) = 0. A typical value for [, in the simulation is I,
= 10 nm. This modified potential, as well as its derivatives,
are continuous at the positions |x| = a;/2 — ryin-

To account for atomic losses near the boundaries |x| =
dg/2 — Fmin, W€ introduce a mask function M(x) to impose

Vinod (x) = Up cos? [ } (10)
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absorbing boundary conditions. In practice, this is done in a
simple way since the wave function ¥ (x, t) is multiplied by
M (x) after each time step of the propagation. This absorption
technique is similar to other absorptions methods such as the
imaginary negative potential [31] or the complex absorption
potential [32]. The mask function has been tailored for our
specific case. It is defined as follows. Inside the slit and far
from the surfaces, i.e., for |x| < xus — d, M(x) = 1. Here x4
is the position where the wave function is absorbed and d is
half the total absorption length. In the absorption region, i.e.,
for x.ps — d < |x| < Xaps + d We have

7T(|x|_xahs+d):| (11)

M(x) = 12
(x) = cos |: 17

And for |x| 2 x4 + d, M(x) = 0. The parameter x,, is cho-
sen so that the absorption occurs at a correct distance from
the wall. For the simulations we use d = 0.2 nm and x,;,; =
49.75 nm [see Fig. 2(b) and 2(c)]. Geometrical grating de-
tails along the depth can also be implemented in the model,
such as opening angles of the slit widths [29], for example
by considering a time-dependent slit size a,. For simplicity,
the slit size ay is kept constant in the following. Finally, we
choose the initial wave function at the entrance of the slit to
be proportional to the mask function

III. NUMERICAL METHOD

The 1D time-dependent Schrodinger equation is solved
numerically using the second-order split-operator technique
[33]. For the simulations performed in this section, the initial
atom velocity is set to v = 20 m/s and the nanograting ge-
ometry properties are a; = 100 nm, by = 100 nm and I =
100 nm. The spatial grid resolution is éx = 2.5 pm and the
time step is §t = 0.25 ps, values for which the simulations
numerically converged. The number of grid points used is
216, The grating-detector distance is fixed at Dgp = 300 mm
such as the detection takes place in the far-field regime with a
Fresnel number F = a2 /(ADgp) < 1073.

A. Probability density inside the slit

Figure 3 shows the square modulus of the wave function at
the exit of the slit |y(x, #,)|*>. We observe that the probability
of finding an atom near the surface is low. This is due to
atom losses when hitting the surface during the propagation.
We can also observe that the absorption of the wave function
occurs over a length of about 0.1 nm, which is smaller than
the absorption length d = 0.2 nm. We can also verify that
the damped part of the wave function is centered around
49.65 nm, which corresponds to rp, = 0.35 nm.

The mask function and the associated absorbing length
d affect the shape of the wave function ¥ (x,?) near the
surface where the absorption occurs. Therefore, to quantify
the influence of both the absorbing length d and the modified
potential Vi,0q4(x) on the wave function v (x, ¢), we introduce
the ratio r(z) between the integral of the square modulus of
the wave function in the absorbing region, with the integral of
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FIG. 3. (a) In the solid-blue line, the square modulus of the wave
function | (x, t,)|? at the exit of the slit. The two grey areas represent
the slit walls. In (b), zoom on [ (x, te)|* close to the surface. The
black-dashed line indicates the modification area of the wave func-
tion due to the absorption region (x > x5 — d). (c) Time evolution
of the ratio r(¢) in a log scale. The graphs utilize parameters based
on the experiment outlined in [14].

the square modulus of the total wave function

Xabs —

L2 o (x, 1)2dx

2 [ 1ox, 1)Pdx

r(t) = 12)

At the entrance of the slit (time r = 0) we have #(0) >~ 0.125%
and at the exit (f =1,) we have r(z,) ~ 4.1 x 10~*%. The
decrease of r(t) is explained by the reduction of the amplitude
of the wave function near the walls due to atoms losses. The
small initial value and rapid decrease of r(z) [see Fig. 3(c)]
justifies that the absorbing length d is sufficiently small to
have a negligible influence on the wave function at the exit
of the slit. Furthermore, it also supports the statement that the
modification of the repulsive part of the potential has a minor
impact.

023165-4



QUANTUM DESCRIPTION OF ATOMIC DIFFRACTION BY ...

PHYSICAL REVIEW RESEARCH 6, 023165 (2024)

1of " ' '

(a) A T |91 stit|?
ch 0.8t ," “. - |UL'117'¢1ting‘2 |
< i \
=00 1
o / !
=04 A
=02 l l ]

0.0 1'r1'rtTl’Tl’TTIT[Tl"I’I/l ] I ] l [ l‘l‘l“[‘l_l\r[]—l—rl’ITr‘l‘rr
—60 —40 —20 0 20 40 60
6 (mrad)
1.07

(b)

60 —40  —20 0 20 10 60
6 (mrad)

FIG. 4. (a) Square modulus of the wave function | (x, t, + T)|?
at the detector for the diffraction by one slit |y, siz|* (dashed-blue
line) and by N > 1 slits |1//gm[ing|2 (solid-black line) as a function of
the diffraction angle 6 = arctan(x/D¢gp) >~ x/Dgp. Both functions
are related to Eq. (7), where |5 is the envelope for |¥gring|?s
in a similar way as in wave optics. (b) Example of the expected
diffraction pattern of a N-slits nanograting obtained with our numer-
ical simulations taking into account incoherence effects. The chosen
angular beam divergence is o = 0.8 mrad.

B. Probability density at the detector and incoherence effects

After an interaction time ¢, with the grating, the wave
function propagates freely to the detector for a time 7. For
the set of parameters chosen, the result is shown in Fig. 4 for
the diffraction by one slit and by N-slits (N > 1). Moreover,
when parameters such as Ry, (ranging from 0.25 to 1.2 nm)
and /,, (ranging from 5 to 25 nm) are varied, the diffraction
picture on the detector remains largely unchanged, with a
relative difference of less than 3 x 10~ (see Appendix D).
The insensitivity of the minimum potential position Ry,
suggests that the surface corrugations resulting from the grat-
ing manufacturing process, which are on the level of 1 nm,
have minimal impact on the diffraction pattern. In order
to simulate a real experiment, incoherence effects must be
taken into account. In general, the incoherence effects come
from the spatial extension of the source, related to the van
Cittert—Zernike theorem, and from the nonmonochromaticity
of the atomic source, related to the Wiener—Khinchin theorem,
leading to longitudinal k, and transversal k, momenta distribu-
tions. In general, both the spatial extension of the source and
the transverse k, momentum distribution can be well approx-

imated by a Gaussian function. Nevertheless, the longitudinal
k, distribution varies significantly from one experiment to
another and is considered as an incoherent sum over all veloci-
ties. As a result, under these assumptions, we can describe the
aforementioned incoherence effects by convolving the ideal
case of the diffraction by N-slits [/ (0 ~ x/D¢p, t. + T)|* by
a Gaussian distribution,

1 62 (13)
exp [ —— |,
202 P\ 7202

where 6 = arctan(x/Dgp) is the diffraction angle and o the
standard deviation of the distribution. In a typical experiment,
o does not exceed 1 mrad, corresponding to a well-collimated
beam. The final diffraction pattern is thus 1(0,t, +7T) =
(8, t, + T)|> * G®) and is shown in Fig. 4 for an angular
beam distribution of 0.8 mrad. The angular beam distribution
being small, we verify that its influence on the wave packet
propagation at normal incidence is negligible.

IV. COMPARISON WITH THE SEMICLASSICAL
APPROACH

In this section, the numerical results obtained are com-
pared with the commonly used semiclassical approach. For
the comparison, we will only consider the diffraction by one
slit [which is related to the N-slits diffraction by Eq. (5)] and
we will not include the incoherence effects. The geometrical
parameters of the nanogratings remain the same as in the
previous sections, as well as the strength of the Casimir-Polder
interaction parameter Cs. In the semiclassical approach, the
diffraction amplitude at the detector Y¥sc(x,f, + T) is de-
scribed with classical waves, which can be developed trough
Kirchhoff’s diffraction formula [34]

cosV + cos V'
2A

2 xx’ ,
X exp l)»DGD dx’, (14)

where (', 7,) is atomic wave function at the output of the
slit, V = arctan(|x — x'|/Dgp) and V' = arctan(v,/v,) are
the geometric correction angles. This expression is valid in
the Fresnel approximation, i.e., as long as the propagation dis-
tance Dg¢p satisfies the inequality Dgp > a,. This condition is
met in the simulations since we study the diffraction pattern in
the far-field regime with a Fresnel number F < 1073, In the
framework of the semiclassical treatment of the atomic center
of mass motion, referred as the time-dependent quasiclassi-
cal approximation, the atomic wave function is estimated by
means of action integrals along classical trajectories [35]. In
this approximation, the phase varies very rapidly along the
different possible paths of the interferometer, and most of the
interference will be destructive, except for the classical path.
In this case, the wave function ¥ (x’, ¢,) writes

IpSC(-xv te+T)0( / < )W()()C/,le)

Yo', 1) = exp <%S(x’, te)), (15)
where

SO 1) = /PL(t)dt (16)
0
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FIG. 5. Comparison between the single-slit diffraction pattern derived from the numerical simulation and the semiclassical model. The
numerical simulations are performed with grating wall size a,= 100 nm, grating thickness /=100 nm, C; = 5.04 meV nm? and a propagation
time from the grating to the detector 7 = 21 ms. These parameters ensure that the far-field regime is reached. In (a), an example of classical
particles motion governed by Newton’s law mi = —VV,4y. The velocity of the incoming particles is set to v = 15 m/s. To include the
absorption effect in the simulation, atoms reaching the coordinate x' = +a,/2 — ry;, during their propagations inside the slit are removed
(dashed lines). This corresponds to an effective slit width W [11]. The fraction F' of atoms leaving the slits is thus given by F' = W /a;.
In (b) and (c) we compare the normalized diffraction pattern obtained by the semiclassical approach with the numerical simulation for atomic
velocities of v = 15 m/s and v =100 m/s. We find a good agreement for the high velocity v = 100 m/s. However, at the low velocity

v=15 m/s a significant disagreement is observed.

is the action integral along the classical trajectories. Develop-

ing Eq. (16) we have
. . 1,
;—hmvfte> X exp (%/0 vi(t)dt)

X exp (—% udW(x/)te>v

1/fo(x/, te) = exp (
(7

where v, (respectively vy) is the particle velocity in the z
(respectively x') axis inside the slits. The first term, which is
independent of x/, acts as a global phase and thus does not
have a contribution to the diffraction pattern. The second term
allows to go beyond the eikonal approximation, i.e., when the
atomic trajectories are not constrained on the z axis. In fast
atom beam experiments, with velocities between 200 m/s and
2000 m/s, this term is generally almost constant and is thus
neglected in the phase estimation [9-11].

In Fig. 5, we compare the diffraction patterns obtained
by the semiclassical approach and the quantum model. We
observe that at high velocity (v = 100 m/s), the two fig-
ures are very similar. On the contrary, at low velocity (v =
15 m/s), the semiclassical approach fails to reproduce the
numerical result. This observation is highlighted by plotting
the following dimensionless quantity

L sc @) = 1y (x0)?] dx
L2 @) dx

as the function of the velocity v of the incoming atoms. A
quantifies the relative difference between the two models.
The result is plotted in Fig. 6. Note that for v > 50 m/s,
A remains small, meaning that both models give similar re-
sults. However, for v < 50 m/s, A increases rapidly as v
decreases, indicating a significant discrepancy between the
two models, especially in the tails of the distribution. To

A= (18)

explain such differences, we can check the validity conditions
of the semiclassical approach at the exit of the slit (t = 1,),
which are

AL i (19a)
pr— a
Voaw x+ay/2
and
1 |dxr
— | — (19b)
21 | dx

The first condition means that the de Broglie wavelength A
of the particle must be much shorter than the scale on which
the potential V,; changes significantly. The second condition
means that the spatial variation of the de Broglie wavelength
must be small. For large velocities, both conditions are well
met, except close to the surfaces of the slit. For example, at v=
100 m/s we have A(VV,uw)/Vyaw = 0.15 and %|Z—i| =0.03
at 2.7 nm from the surface. This explains why the quantity A
saturates at a finite value for large velocities. This feature leads
to a tiny difference in the tails of the quantum and semiclas-
sical diffraction patterns. At low velocities, the conditions of
Eq. (19) are not sufficiently satisfied to find a good agreement
between the two models. For instance, at v = 10 m/s we find
A VVyaw)/Vyaw = 0.36 and %|Z—i| = 0.1 at 6.5 nm from the
surface. Moreover, this discrepancy at low velocity is certainly
increased by the possibility that trajectories other than the
classical ones might play a role in the action integral S(x’, f,)
[36].

In addition to the diffraction pattern, the fraction F of
atoms exiting the slit can be studied and compared for the
two models. For the semiclassical models, atoms reaching
the position x' = t+a,/2 — rp, are considered lost, resulting
in an effective slit size W [see Fig. 5(a)]. The fraction F
can thus be expressed as F = W /a5. In the quantum model,
the norm of the wave packet ¥ (x, t) is computed to extract
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FIG. 6. (a) Dimensionless quantity A as a function of the ve-
locity v of the incoming atoms. A quantifies the relative difference
between the normalized semiclassical |1/sc(x)|> wave function and
the quantum |/ (x)|> wave function. The black-dashed line is a fit
that serves as a guide for the eye. We observe that A decreases
for large velocities, i.e., the higher the velocity the closer the two
models are. Below v = 50 m/s, A increases rapidly as v decreases,
suggesting a threshold in the validity of the semiclassical model with
the parameters considered. (b) Fraction F' of atoms exiting the slit as
a function of the velocity v. Remarkably, almost identical results are
obtained for both models.

the atom losses. The result for the two models is plotted in
Fig. 6. Interestingly, we observe that both models give similar
results, the difference being at the percent level, with the
quantum model giving a slightly higher fraction F. We also
find that, as expected, the lower the atom velocity, the lower
the fraction F, meaning that more and more atoms are lost
during the propagation inside the slits. This result strengthens
our confidence in the validity of the comparison we have made
between the two models.

To conclude, Fig. 6 shows that the two models give similar
results in terms of the fraction of atoms lost. However, in
terms of the diffraction pattern (i.e., when atoms are not lost
during the propagation), at low velocities and in the tails of the
distributions, the semiclassical approach fails and a quantum
simulation must be performed.

V. CONCLUSIONS

In this paper, we have presented quantum numerical sim-
ulations of atomic diffraction by materials nanogratings. Our
simulations are based on a numerically efficient solution of
the time-dependent Schrodinger equation. After describing

the method and model used, we have demonstrated that our
approach goes beyond the semiclassical approach used so far.
In particular, we show that our model is able to describe
interferometers with low atomic velocities and to capture
near-surface effects.

This quantum model could thus be exploited in future
experiments with slow atomic or molecular beams. For exam-
ple, the consequences of long-range quantum reflection [37]
(i.e., tens of nanometers away from the surface, where no
absorption takes place) could be explored. In addition, the in-
creased precision may allow the study of short-range repulsive
interactions, which are difficult to describe theoretically with
accuracy. This could be done by comparing experiments and
numerical simulations based on the present quantum model,
where imperfections of the nanogratings such as geometrical
parameter dispersions or exact slit shape can be easily imple-
mented. Finally, this model going beyond the semiclassical
approach is also relevant to search for possible deviations
from Newtonian gravity that could occur at the submicron
scale [38].
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APPENDIX A: STATIONARY PHASE APPROXIMATION

After a propagation time #, inside the slit, the wave function
¥(x,t,) evolves freely for a time T. Therefore, the wave
function att; =, + T is

vin= = [T E e ar A
X, ) = —— e Jt)e .
! 21 J - ‘
The global phase is stationary for
k=k =X (A2)
- RT

With a second-order Taylor expansion at k = k, we have

Il;(k’ te) = &(km te) + (k - ks) I/‘}/(ks» te)

2
G, O U (ks, 1)

7 (A3)
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FIG. 7. (a) Probability density | (x, ¢;)|* in the stationary phase
approximation (||, blue-solid line) and with the second-order
correction (|,|?, red-dashed line). For the simulations, the initial
velocity is set to v = 15 m/s and the slit geometry is the following:
a; = 100 nm and /; = 100 nm. The strength of the Casimir-Polder
interaction is fixed at C; = 5.04 meV nm’ and the wave function
freely expands during 7 = 21 ms. (b) Relative error between |/, |?
and |y»|>. We observe that the maximum relative error is around
2 x 107*, showing that the stationary phase approximation is an
excellent approximation here.

and Eq. (A1) writes

lﬁ(kxstﬁ) +oe —1 IKX
W(x’tf):T/m o e dk

& dk

) k?’ te too ; k2
+—W‘ )/ (k— ke i T

ek qk. (A4)

HkYﬂte +oo
+w( )/ e

This expression ﬁnally yields

e rf>~\/:T [Tk 1) = i (57 ) § k10|
(AS)

The first term in Eq. (AS) corresponds to the so-called sta-
tionary phase approximation, and the second term is the first
nonzero correction to this approximation. It is by nature a
second-order term. To quantify the validity of the stationary
phase approximation, we plot in Fig. 7 the probability density
[ (x, tf)|2 without and with this second-order correction. We
observe negligible differences between the two functions, the
error bound being below 2 x 10~*. In conclusion, the station-
ary phase approximation yields negligible error and can be
used safely in our development.

(a) x1073
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o o o
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FIG. 8. Maximum relative difference € between the probability
density |Ver @)]? computed with the standard values R;;, = 0.35 nm
and [, =5 nm, and the probability density |y (x)|*> for different
values of R, and /. In (a), the value of R,;, is varied, while in (b),

the length [, is changed. The black square point denotes |y (x)|?
=y

APPENDIX B: ESTIMATION OF THE MINIMUM
ATOM-SURFACE DISTANCE

Throughout the paper we consider argon (Ar) atoms in the
metastable 3P, state interacting with a Si3N, nanograting. For
numerical applications and simulations, the minimum atom-
surface distance ry;, must be evaluated. We assume that Ar
atoms have a spherical electronic configuration with radius R
and that ry,;, = R. Using Bohr’s model, the energy is given

in eV by
AN
E ~ —13.6<—) , B1)
n*

while the radius of the atom is given in atomic units by

(n*)?
Z*

R~

, (B2)

where n* is the effective quantum number and Z* the effective
nuclear charge. For Ar atoms in the 3P, state, Slater’s rules
give n*= 3.7 and Z*= 2.05. The numerical application leads
to E = —11.59 eV for the state 3P», close to the measured
value £ = —11.55 eV [39]. This confirms the hypothesis of
spherical electronic configuration for Ar. For the radius we
find R = rin = 0.35 nm, which is the value used throughout
the paper.
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APPENDIX C: 9-3 REPULSIVE LENNARD-JONES
POTENTIAL

For each wall of the slits, the short-range repulsive poten-
tial due to the Pauli repulsion is modeled with the repulsive
part of the Lennard-Jones potential assuming pairwise inter-
actions. This approximation assumes that the interaction of
an atom with the surface is proportional to the sum of the
interactions with each of the atoms composing the surface.
Multibody interactions are thus neglected. Using a Lenard-
Jones interaction between atoms that scales as 1/x'?, the
pairwise model can be expressed as follows:

pCi2

it )

VLJ(X) = —/ d31'/
v
where p is the atomic density of the surface (which is assumed
to be constant) and Cj, is the atom-atom repulsive interaction
constant. Assuming that the surface grating can be treated as
an infinitely extended plane, the potential for the walls of the
slits located at x = % a,/2 is written as

mwopoo oo Copr'dodr'dx
Vi (x) = 2 /216
o Jo Jo [xxay/2—x)+r"?]
U Cop
50 (a,/2 £x)°°

(C2)

Identifying Crp = 35Csp, this potential is the one imple-
mented in Eq. (9), used for to represent the repulsive part of
the total potential.

APPENDIX D: R, AND I, IMPACT ON THE ONE-SLIT
DIFFRACTION PATTERN

To investigate the influence of parameters such as Ry,
and [,, on the diffraction pattern, we analyze the one-slit
probability density on the detector at time ¢ = ;. Specifically,
we vary Ry, from 0.25 to 1.2 nm and [, from 5 to 25 nm. In
Fig. 8, we plot the maximum relative difference € between
the probability density [Wrer (X)) using the standard values
Ruin = 0.35 nm and /,, = 5 nm and the probability density
|1ﬂ()c)|2 for different values of R;, and [,

et 01> = [Y ()1
X .

€ =Ma
|1/fref(x)|2

DD

We observe small values of €, demonstrating the negligible
influence of Ry, and /;;, on the diffraction pattern.
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