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ABSTRACT 
In the coming years, decentralized power generation 

systems with renewables are expected to take a leading role, and 
micro gas turbines will serve as backup sources to compensate 
for times of low inputs from other sources. In order to deal with 
the unpredictable energy inputs from renewables, the micro gas 
turbine must be capable of running under varying load conditions 
and making fast transitions between them. 

The operation of a micro gas turbine in an integrated 
microgrid has the potential to reduce operational costs and 
ensure the delivery of demanded heat and power to consumers. 
This paper investigates the operation of a micro gas turbine in a 
microgrid, serving as a supplementary power source for a 
municipal building. The building's required energy is initially 
provided by wind turbine power, and the micro gas turbine serves 
as a backup source during times of wind power deficiency. The 
micro gas turbine can operate using a natural gas/hydrogen fuel 
blend ranging from zero to 100% hydrogen. Furthermore, a 
water electrolyzer with a hydrogen tank is available to operate as 
a storage system within the microgrid. The study's results 
demonstrate the economic and environmental benefits of using 
hydrogen storage and optimizing operational planning in the 
microgrid. The primary objective of the paper is to highlight the 
feasibility and benefits of employing micro gas turbines and 
hydrogen storage systems within a microgrid as a renewable 
energy backup power source. 

Keywords: Microgrid, micro gas turbine, hydrogen storage, 
hydrogen-enriched fuel, operation optimization, AI, Data-
driven. 

NOMENCLATURE 
Alphanumeric Variables 
C Cost (EUR) 
D Direction (deg) 
Inc Incentive (EUR) 
LHV Lower heating value (kJ/kg) 

ṁ Mass flow rate (g/s) 
n Number of hours in the window of optimization 
P Power (kW or MW) 
p Pressure (Pa) 
Pen Penalty (EUR) 
pr Price (EUR) 
Q Heat exchange (MW) 
R Revenue (EUR) 
S Speed (m/s) 
T Temperature (K) 
t Time (s) 
V Valve position (%) 
X Optimization parameters series 

Greek Symbols 
η efficiency 

Indices 
amb Ambient 
dem Demand 
eg Exhaust gas 
el Electricity 
f Fuel 
mnt Maintenance 
opt Optimum 
W wind 

Abbreviations 
AI Artificial intelligence  
ANN Artificial neural network 
CL Catalyst layers 
DEM Demand 
ELZ Electrolyzer 
FR Fuel ratio 
GE Grid export 
GI Grid import 
HE Heat exchanger 
MAE Mean absolute error 
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ME Maximum error 
MG Microgrid 
MGT Micro gas turbine 
MSE Mean squared error 
NG Natural gas 
PEM Proton exchange membrane 
PTL Porous transport layers 
PV Photovoltaic 
TOT Turbine outlet temperature 
WT Wind turbine 

 

1. INTRODUCTION 
 The global energy demand is increasing with the 

growing population and urbanization which will result in high 
CO2 emissions if the power generation scheme does not shift 
away from fossil fuel-dependent technologies [1]. The 
consequences of carbon-based emissions are warmer climates 
with extreme weather events such as a dryer climate in one 
region and more floods in others [2], sea level rise, and 
vegetation changes. Other than global warming consequences, 
the emissions are associated with air pollution which also has 
destructive effects on living beings [3]. 

The power generation sector is accountable for a 
considerable share of CO2 emissions. Power generation is 
responsible for 33 billion tonnes of CO2 production in 2019 
which was 77% of the whole emissions that year [4]. In fact, 
finding cost-efficient solutions to decarbonize power generation 
is one of the biggest challenges of the EU energy sector. Energy 
transition, i.e. the replacement of fossil fuel-based power 
producers with low-carbon or carbon-free resources has been 
enforced by international climate policies [5]. The energy 
transition leads to a paradigm shift from production in 
centralized power plants to a decentralized generation of 
renewables in distributed locations. In this transformation, the 
governing forces (regulations, policy implementations, and 
incentives) emphasized the importance of efficiency, flexibility, 
and reliability [6]. These concerns require improved grids with 
higher efficiency of production, more flexibility in operation, 
and low chances of interruptions. The microgrid concept is the 
consequence of such drives [7]. 

A collection of interconnected power and heat resources and 
consumers located in close proximity to a defined electrical 
boundary form a microgrid (MG) [7]. MGs are able to operate 
independently from the traditional grid when the demanded 
power and heat by the consumers (residential, industrial, etc.) are 
supplied by different types of sources available inside the MG, 
i.e., island mode. MG could also connect to the grid and import 
or export power from other MGs i.e., grid mode [8].  

In the island mode, the MG is isolated from the sources 
outside of its boundary, and is therefore controlled by a system 
independent from the grid [9]. The management of power and 
heat generation inside a microgrid is dependent on the enclosed 
resources, however, in case of surplus or deficiency, power could 
be transferred through the point of common coupling, the 
connection point of the microgrid to the grid.  

MGs offer efficiency and flexibility as the production 
depends on localized heat and electricity generation systems, 
such as solar PV, solar thermal, wind turbines, small hydro 
turbines, etc. [10]. The development of dispatchable generators 
is also directed towards small-scale units, gas-fired with an 
option to use both fossil fuels as well as environmentally friendly 
alternatives such as bio-fuels, ammonia, hydrogen, etc. A micro 
gas turbine is a small-scale turbine with a power rate below 300 
kW that could be driven by a variety of fuels to cogenerate 
electricity and heat. Their quick load-following and flexibility of 
operation in a range of power rates from minimum load to full-
load condition make them an advantageous choice as a 
dispatchable backup unit inside a renewable-based microgrid.  

Another backup strategy for the microgrid is the storage 
concept that could save the surplus power for the time of 
deficiencies in the grid. Storage technologies and backup 
generators are necessary for a microgrid to maintain a reliable 
operation and prevent failures [11]. Storage refers to the 
conversion of electrical energy to potential energy in different 
forms such as chemical, mechanical, electrical, electrochemical, 
and thermal [10]. Power-to-Hydrogen is one way of power 
storage in chemical form, where renewable energy is used for the 
electrolysis of water to produce hydrogen. In this case, a 
generator unit that is capable of running with the stored hydrogen 
fuel for power (and/or heat) production should be present inside 
the MG as well. 

Changing the power production paradigm from a centralized 
scheme to a decentralized form could increase the reliability of 
the power generation system. The dependency of a large number 
of consumers on a single power plant (centralized), will 
transform into a smaller group of consumers depending on 
various types and numbers of generators, i.e. decentralized. 
Microgrids are able to isolate the failing part of the system from 
the rest and rely on other generators and assure uninterrupted 
operation [7]. As the flexibility of MG operation is increased due 
to the various technologies in the system, managing the 
operation becomes increasingly intricate. The non-dispatchable 
units of MGs’ dependency on the ambient conditions (weather) 
bring significant challenges to the power management system. 
The small size of the distributed generators and the lack of 
control over their power production may lead to episodes of 
insufficient production as well as oversupply.  

Intelligent management of MG operation enhances the 
power quality in an MG through proper control of the generators. 
Optimizing the control and operational schedule of MGs has 
been pursued by researchers, aiming for lower operational costs, 
maintenance costs, and environmental impacts of the MG. A 
systematic overview of the literature on the optimization of the 
energy management system of microgrids in island mode has 
been provided in [12]. Optimization with different approaches in 
terms of time-frame, optimization objectives, and employed 
optimization methods are categorized [12]. The authors of 
reference [13] suggest the use of artificial intelligence (AI) to 
address the challenges of distributed energy generation and 
microgrid systems. They introduce a simulation framework and 
identify relevant data sources that can facilitate the development 
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of AI capabilities in utility systems. Despite the difference in the 
methods, the common approach for the studies is to provide a 
representative model of the microgrid and search for an 
optimized operational strategy by evaluating the model's 
reaction to different operational strategies. 

A microgrid model consists of integrated models of the 
subsystems, i.e., the generator and consumer units inside the 
MG. The accuracy of subsystems' model prediction and its 
ability to capture the operational traits, especially during load 
transitions has a significant effect on the reliability of the method 
and the outcomes. A common approach for microgrid modeling 
is to represent the subsystems with simplified polynomial 
regression models [14], [15]. To increase the accuracy of the 
subsystems' performance predictions, physics-informed models 
have been employed by researchers, usually using modeling 
software such as SIMULINK. The efforts made throughout the 
current work were to increase the fidelity of the microgrid model 
by employing AI that could provide highly accurate predictions. 
In this approach, data collected from actual subsystems (wind 
turbine, micro gas turbine, etc.) is used for training a model, so 
it fits best with the data and will be able to provide predictions. 
A data-based model does not incorporate physical correlations, 
unlike a physics-based model. However, the data used to train 
the model contains information about the physics of the 
subsystem, which can be inferred by the trained model [16]-[18]. 

Utilization of Al-based tools is beneficial for micro-grid 
optimization purposes for several reasons: 

Accuracy: with simplified correlations or even elaborated 

physics-based models, deviations of model predictions from 

outcomes of the actual element is expected. In such cases, 

an elaborated adaptation of the physics-based model to real 

components will be required which is a time-consuming task 

[19]. 

Prediction speed: for optimization purposes, an iterative 

procedure will be conducted to search for an optimized 

control strategy. Therefore, employing a high-speed model 

has a significant advantage, especially when operational 
planning for a close future is intended. 

The Al-based models provide the possibility of online 

condition monitoring for an asset. Giving highly accurate 

predictions, the deviations of the model and the system 

outputs at any point of MG operation could be realized as 

degradation or fault in the system. This is beneficial in two 

regards: for small deviations, a quick refit of the model to 

the data will update the model to the new system and 

therefore maintain the performance of the optimization 

algorithm. For high rates of deviation with the chance of 

shutdowns, the model could be employed to estimate the 

time of failing and prevent abrupt stops. Also, the system 
could be rapidly updated to pursue optimized operation 

without the faulty subsystem. Such a condition monitoring 

system facilitates maintaining the microgrid and lowers 

costs [20]. 

A data-based approach is also beneficial when data 

accessibility is provided between microgrids. The 

operational strategy and microgrid performance from one 

system could be useful for others, by AI-interpreted 

operational guidelines. In other words, the experience with 

one system could be useful for another one, and an efficient 

way to convey the information is to provide a shared 

database which Al-based models could benefit from [20]. 

In the following sections, a description of the MG system 
studied is provided and the developed model is presented. The 
MG is operated with different scenarios, with and without 
storage and the outcomes of different operations are discussed. 

2. SYSTEM DESCRIPTION 
An autonomous MG system composed of a wind turbine, a 

water electrolyzer, and a micro gas turbine is assumed in this 
work. The heat and power generated in the MG are to satisfy the 
demand for a municipal office building. Power from wind 
turbines is the main source to satisfy the needs of the consumer 
and the micro gas turbine running with natural gas/hydrogen 
blended fuels works as the backup system. 

FIGURE 1 illustrates the schematic view of the MG with the 
fuel lines, electricity line, and heat line. The direction of transfer 
through these lines is demonstrated with arrows close to each 
subsystem. The electricity line is connected to the grid outside of 
the MG boundary, where the electricity could be imported to or 
exported from the MG. The MG operation is controlled by an 
energy management system where the satisfaction of consumer 
demands is the primary goal. 

-----------------------� 
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FIGURE 1: SCHEMATIC REPRESENTATION OF THE 

MICROGRID CASE STUDY. 

In this system, the combination of the electrolyzer and H2 
storage tank work as a storage system, where the excess power 
generated could be used to generate hydrogen and store it in a 
tank. The hydrogen could be later used for heat and power 
generation by driving the MGT unit. All components of this 
microgrid have a specific operational behavior with dependency 
on various features. For instance, wind turbine operation is 
dependent on ambient conditions, especially wind speed. The 
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micro gas turbine's operation is also dependent on the 
environment, but the power output is controlled by the operator. 
An accurate model for each of these subsystems is required to 
enable the simulation and techno-economic optimization of the 
micro grid. 

3. MICROGRID MODEL DEVELOPMENT 

The MG model consists of data-driven models for each 
subsystem shown in FIGURE 1, except for the consumer. The 
consumer's heat and power demands are imported to the 
microgrid model as tabulated data. For other subsystems, i.e., the 
wind turbine, the micro gas turbine and the electrolyzer, AI
based models based on operational data are constructed. The 
chosen approach for modeling the subsystem is artificial neural 
networks (ANN). 

ANN have proven to be a powerful tool for modeling 
complicated physical systems [21]. ANN is comprised of 
connected layers of nodes called artificial neurons. The simplest 
structure of neural networks is layers of fully connected neurons, 
in which each neuron of a layer is connected to all of the neurons 
of the previous layer. Every connection line is an indicator of 
value transmitted while multiplied by a weight. Inside an 
artificial neuron, all weighted inputs are summarized and passed 
as input to a function called the activation function. The output 
of the neuron is the output of the activation function, which can 
be a linear or nonlinear form. In FIGURE 2 (A), the structure of 
an artificial neuron is depicted. The inputs (x) are from the 
upstream neurons (located at the upstream layer). Other than the 
inputs from the upstream layer, a bias term (b) is added to the 
summation of inputs, which is been shown to improve the 
performance of ANNs. The Bias term has a value of unity and is 
also multiplied by a weight. In FIGURE 2 (A), wi is the weight 
associate with each input, b is the bias term and f is the activation 
function. 

The simplest ANN model consists of two layers, one input 
layer and one output layer. By adding layers in between (called 
hidden layers) the model becomes more complicated and at the 
same time more flexible to imitate complex physical systems. As 
an example, FIGURE 2 (B) shows a multilayer perceptron with 
two hidden layers. There are 8 neurons in the first hidden layer 
and 6 in the second. The network has four inputs and two outputs 
which impose the number of neurons in the input and output 
layers. 

After identifying the physical system's input and outputs, 
which will be model's inputs and outputs, the data is sorted as 
independent variables (inputs) and targets (outputs). Building an 
ANN model for physical systems begins with choosing a 
configuration (number of layers, number of neurons, activation 
functions) for the model that suits the physical system, in terms 
of the ability to capture complex system behavior. Then, the 
training begins which includes optimizing all the weights in 
ANN so that feed-forwarding the independent variables to the 
trained model gives the results in the last layer that are very close 
to the targets of the system. For all ANN models in this study, 
80% of the whole data was used for training and the remaining 
20% was used to verify the performance of the model. 

b 

(A) 

_y, 

-Y2 

input layer hidden layers output layer 

(B) 

FIGURE 2: STRUCTURE OF (A) AN ARTIFICIAL NEURON 
AND (B) A MULTILAYER PERCEPTRON. 

The following section provides a description of the 
subsystems along with the chosen configuration for those with 
an ANN model. Prediction accuracy evaluation is also presented. 
The models are based on 80% of real operational data, and their 
performance is validated using the remaining 20%. The high 
accuracy of the models, derived from real operational data, 
ensures the reliability of the micro grid model. 

In ANN models, hyperparameters are used to control the 
behavior of the algorithm, training process, and model structure. 
Examples include learning rate, number of hidden layers, and 
activation functions. To achieve optimal performance, 
hyperparameters are either set through prior knowledge or by 
searching over a range of values. Hyperparameter tuning can be 
done manually or through automated methods, such as Bayesian 
optimization, which involves building a probabilistic model of 
the function to be optimized and refining it as objective function 
evaluations are gathered. This method is highly efficient for 
solving complex and costly optimization problems. in the current 
work, hyperparameters for every ANN model constructed were 
derived from performing Bayesian optimization. 

3.1 Heat and Power Consumer 

The microgrid demand is based on operational demand data 
from a municipal building located in Stavanger, Norway. The 
building houses the main city public pool on the ground floor, 
and the municipal administration is located on floors 1 - 3. The 
building was equipped with several new electric and thermal 
energy meters during refurbishment in 2017-2019. The research 
group responsible for this work has been given access to all 
operational data in the building. 
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Historical data for electricity and heat consumption as input 
to the microgrid was captured at a five-minute time interval. The 
selected electricity meter measured the complete consumption of 
the building, except for the electricity used in the operation of 
the building’s thermal energy production system. Thus, the 
electric demand in the microgrid simulation is not directly 
coupled with the heat demand.  

The heat consumption data was measured at a thermal meter 
in the thermal distribution system. The building houses an 
advanced thermal energy plant, which was established as part of 
the EU lighthouse project Triangulum [22]. Thus, the building 
has already been an objective of the research, and the 
investigation of a microgrid operation will provide the municipal 
energy department with a relevant perspective on advanced 
modeling and optimization methods.  

In the simulated MG, the heating system of the building is 
represented by a waterborne distribution system primarily heated 
from the micro gas turbine heat exchanger. Additionally, an 
electric boiler is set as the peak load and backup unit for heating 
the water. The efficiency of the boiler is set constant to 85%, 
taken from the Norwegian Standard for the calculation of the 
energy performance of buildings [23]. Data for heat and power 
demand is resampled and total demand per hour is provided, and 
together with ambient condition data is delivered to the 
microgrid model in a tabulated format. The ambient condition is 
prepared as averaged values over each hour. Data from fuel and 
electricity market (price of electricity and natural gas) is also 
imported to the model as tabulated data.  

 

3.2 Wind Turbine 
The wind turbine power comes from two WTN250 units 

installed nominal output of 250 kW [24]. Turbine output and 
ambient conditions were measured at the Norwegian 
meteorological institute (MET) station 44560 at Stavanger 
airport Sola, which included the hourly estimations of power 
production. The model was built based on 10 full years of 
recorded data for wind speed and direction, from 2007-2016. 
From the power curve of the wind turbine shown in FIGURE 3, 
the cut-in wind speed for the selected turbine is 4 m/s, while the 
cut-off speed is 25 m/s. The maximum rated capacity of the 
production is reached at 14 -15 m/s, which is 250 kW. 
 

 
FIGURE 3: WTN 250 POWER CURVE [24]. 
 

The ANN model constructed for the wind turbine includes 
ambient temperature (T"#$), ambient pressure (p"#$), wind 
speed (S%), and wind direction (D&) as inputs and produced 
power (P%') as an output. The configuration of the ANN model 

with three hidden layers and an overview of the errors are 
provided in TABLE 1. FIGURE 4 presents a comparison 
between a month of operational data and the model’s predictions, 
indicating the precision of the model. The Adadelta optimizer 
and a learning rate of 0.57 are used to train the model. 
 

TABLE 1: CONFIGURATION AND ERROR OF ANN FOR THE 
WIND TURBINE. 

ANN Configuration ANN prediction Error 
inputs T!"#, p!"#, S$, D$ ME 27.2 

outputs P$% MAE 6.67 
No. of neurons hidden layers [45,100,22] MSE 11.35 

Activation function hidden layers [selu,relu,linear]   
 

 

FIGURE 4: WIND TURBINE PERFORMANCE PREDICTION IN 
COMPARISON TO REAL DATA. 
3.3 Fuel-flexible Micro Gas Turbine 

The micro gas turbine implemented in the microgrid is a 
heat and power co-generator unit, running with blended natural 
gas/hydrogen fuel. The original engine was a commercial Turbec 
T100 (T100PH), which was redeveloped to enable operations 
with hydrogen blended fuels. To this end, the fuel train system, 
combustion chamber, and controller were modified to provide 
stable operation of the unit in the full range of power output and 
the full range of hydrogen/methane blend [25].  

T100 micro gas turbine is a single-shaft engine with a 
single-stage compressor, single-stage turbine, and one tubular 
combustor. The engine generates power through a regenerative 
Brayton cycle where the excess heat from the turbine leaving gas 
is used for preheating the air entering the combustor via a 
recuperator. The hot gas leaving the recuperator is still warm 
enough to warm up recirculating water for district heating 
purposes. Therefore, a water-gas heat exchanger (HE) is 
installed at the bottom of the cycle, where the warm gas leaving 
the recuperator enters it. The amount of gas entering the heat 
exchanger is controlled by a valve (HE valve); at a fully open 
position whole gas flow passes the heat exchanger and in close 
condition, it bypasses the heat exchanger and discharges to air.  

The engine is equipped with a high-speed permanent magnet 
generator which enables the operation of the engine with variable 
rotational speed. When the operator sets a demand power, the 
controller sets the rotational speed and fuel flow rate to meet the 
demanded power while keeping the turbine outlet temperature 
(TOT) below and close to a certain value. Running the MGT with 
almost constant TOT, which is close to its maximum allowed 
value, protects the hot components (combustor, turbine, and 
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recuperator) from damage. Moreover, the turbine inlet 
temperature will remain close to its maximum value which is 
beneficial for cycle efficiency.  

During the redevelopment process of the MGT to enable 
hydrogen injection, the original fuel delivery system was 
replaced by a new fuel supply and a new fuel train. An additional 
controller is employed to operate beside the engine governor. 
The flow rate of each fuel type is controlled by the fuel train 
controller, which regulates the valves based on the fuel ratio 
demanded by the engine operator. Methane and hydrogen enter 
a mixing station and then, the well-mixed fuel is divided into 
main and pilot valves controlled by the governor. The operation 
of the governor is also modified to accommodate a full range of 
natural gas/hydrogen mixtures [25]. The modified engine and 
fuel system is shown in FIGURE 5.  

The ANN model of the MGT has 3 hidden layers, with 
demanded power (P()#), fuel ratio (FR), and ambient 
temperature (Tamb) as input and fuel flow rate (ṁ*) and exhaust 
gas temperature (T)+) as the outputs. The inputs and outputs of 
the model have been chosen based on the real engine’s inputs 
and outputs. The configuration of the trained model and 
prediction errors are provided in TABLE 2. The Adadelta 
optimizer was utilized with a learning rate of 0.82 to train the 
model. A comparison between actual operation data for two 
hours and model predictions is provided in FIGURE 6 and 
FIGURE 7. The temperature of the exhaust gas is used for 
calculating the heating capacity of the heat exchanger.  

 

 
FIGURE 5: TURBEC T100 UNIT WITH MODIFIED 
COMBUSTOR AND FUEL TRAIN FOR FLEXIBLE FUEL 
OPERATION [25]. 
 

TABLE 2: CONFIGURATION AND ERROR OF ANN FOR THE MICRO 
GAS TURBINE. 

ANN Configuration ANN prediction Error 
inputs P&'%,)*", FR, T!"# ME - ṁ+ 2.3 
outputs ṁ+, T*, MAE - ṁ+ 0.14 
No. of neurons hidden layers [36,65,59] MSE - ṁ+ 0.38 
Activation function hidden layers [sigmoid,tanh,selu] ME - T*, 24.0 

  MAE - T*, 7.4 
  MSE - T*, 11.9 

 

 
FIGURE 6: MICRO GAS TURBINE FUEL FLOW RATE 
PREDICTION IN COMPARISON TO REAL DATA. 
 

 
FIGURE 7: MICRO GAS TURBINE EXHAUST GAS 
TEMPERATURE PREDICTION IN COMPARISON TO REAL 
DATA. 
 

3.4 Electrolyzer 
The electrolyzer is constructed based on a stack of cells 

shown in FIGURE 8. In the middle of the cell, a proton-
conducting membrane serves as the electrolyte. Additionally, it 
separates the two half-cells. The catalyst layers (CL) follow on 
both sides. Within those the half-cell reactions take place: 
Anode: 
2H,O → 4H- + 4e. + O, (1) 
Cathode: 
4H- + 4e. → 2H, (2) 
Total: 
2H,O → 2H, + O, (3) 

 
FIGURE 8: TYPICAL PEM-WATER ELECTROLYSIS SETUP 
FOR ELECTROCHEMICAL WATER SPLITTING. 

A commercially available catalyst-coated membrane based 
on Nafion 212 was assembled in the cell. For the anode side, a 
porous transport layer (PTL) made of sintered titanium fibers 
was ultra-sonicated for 10 min in de-ionized water before usage. 
A carbon paper with hydrophobic treatment was used as the 
cathode PTL.  
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Anode PTLs are made from Titanium, cathode side is 
normally carbon-based. Those serve as the electric contact 
between end plates and CLs and transport the reactants to and 
from the CL. Finally, the end plates provide the required 
clamping pressure and can be equipped with flow channels for 
better fluid transport. 

 The electrolyzer model developed in this study is based on 
scaled-up data from a singular cell designed by Fraunhofer ISE 
[26], specialized for lab tests with equipment/material for proton 
exchange membrane (PEM) electrolyzers. The collectors and 
flow fields are made of gold-coated titanium. The contact force 
is applied with an adjusting screw perpendicular to the cell’s base 
area and is monitored with a load cell between the screw and the 
cell. The applied force after thermal conditioning for a single cell 
unit was 2,5 kN. For means of isolation and proper positioning 
of both PTLs, each electrode block is equipped with a frame 
made of polyetheretherketone.  

The ANN model built for the electrolyzer is described 
together with the prediction error assessments in TABLE 3 
which predicts the rate of hydrogen production (ṁ/!) based on 
the power consumption inside the electrolyzer (P012). The 
training process of the model utilizes the Adamax optimizer and 
a learning rate of 0.05. In FIGURE 9 the power and hydrogen 
production rate from electrolyzer’s operation and model 
prediction is presented.  
 

TABLE 3: CONFIGURATION AND ERROR OF ANN FOR THE 
ELECTROLYZER. 

ANN Configuration ANN prediction Error 
inputs P-./ ME 6.0e-4 

outputs ṁ0! MAE 7.1e-7 
No. of neurons hidden layers [98,9,59] MSE 1.9e-6 

Activation function hidden layers [selu,elu,linear]   
 

 
FIGURE 9: ELECTROLIZER PERFORMANCE PREDICTION IN 
COMPARISON TO REAL DATA. 
 

4. MICROGRID OPERATION OPTIMIZATION 
The management system of the MG is in charge of 

controlling the power and heat source(s) with volatile power 
inputs and different dynamic behaviors, in order to provide 
energy for consumers which also has a non-constant demand 
profile. A smart management system controls the operation of 
dispatchable units to maintain a reliable source for consumers 

with an economically beneficial approach. In this section, two 
operational strategies for the dispatchable units inside the MG 
are discussed: one, following rules based on the condition of 
demand and renewable supply units (called condition-based), 
and another using an optimization algorithm. Both approaches 
use demands, weather, and price data that are assumed to be 
available from forecasting for the next 24 hours [27]. The data 
used in this study, however, is actual data from the dates and 
hours of the study case. 

 

4.1 Condition-based Operation 
In the case of energy management without any optimization 

involved, a condition-based operation scenario is followed, 
which focuses on the power and heat balance during each time 
step. This operational scenario works as follows: 
- If wind production is higher than the electrical demand, the 

remaining power (P3 = P%' − P405) is utilized in 
electrolysis: 
- If P3	 is higher than the electrolyzer’s capacity, the 

remaining power (P, = P%' − P405 − P012) will be 
used for heat generation. 
- If P, is higher than the demanded heat, it is 

exported to the grid. 
- If P, is lower than the demanded heat, power is 

imported from the grid for heating purposes. 
- If wind production is lower than the demand, then the micro 

gas turbine is used to compensate for power.  
- If the remaining power demand (P6 = P405 − P57') is 

higher than the micro gas turbine’s capacity, then power 
is imported from the grid for power purposes. 

- If the heat produced by the micro gas turbine is lower 
than the heat demand, power is imported from the grid 
for heating purposes. 

When running the micro gas turbine, the combination of the 
fuel mixture is based on the highest value of hydrogen available, 
and the positioning of the HE valve is based on the heat demand. 
The condition-based scenario is illustrated in a diagram shown 
in FIGURE 10. 

 
FIGURE 10: CONDITION-BASED OPERATION SCENARIO. 
 

The microgrid operates to provide power and heat to meet 
the demand within the grid. In situations where there is a deficit 
of either power or heat, the microgrid imports electricity from 
the larger grid. The cost of electricity to import is variable, based 
on the date and the hour of the day. On the other hand, in case of 
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surplus power, the electricity will be exported to the grid and sold 
with a value close to the spot price, according to the energy 
regulatory authority of Norway [28]. 

 

4.2 Optimization of MG operation 
To determine the optimized performance of the microgrid in 

the course of one day, hourly data has been utilized and the 
operation command is provided on an hourly basis as well. 
Weather data (including pressure, temperature, wind speed, and 
wind direction), as well as electricity price data, is provided on 
an hourly basis. The price data for natural gas is provided which 
changes on a daily basis. The goal of optimization is to operate 
the dispatchable units of the MG in a manner that together with 
non-dispatchable inputs, satisfies the heat and power demand in 
the most economically efficient way. The wind turbine is the 
only non-dispatchable unit, while the micro gas turbine and 
electrolyzer are the dispatchable units of the current MG. The 
optimization parameters are MG power over 24 hours (24 
number of parameters, Eq.4), the fuel ratio of the micro gas 
turbine over 24 hours (24 number of parameters, Eq.5), and the 
electrolyzer power 24 hours (24 number of parameters, Eq.6). 
The optimization parameter series X contains all control 
variables over the course of the management time span (Eq.7). 
The control parameters are confined between maximum and 
minimum values, determined by the capacity of each subsystem. 
P57' = [P57'3	, P57',, … , P57'8], 
 P57'#!8 <	P57'! < P57'#"9 

(4) 

FR57' = [FR57'3	, FR57',, … , FR57'8],  
FR57'#!8 <	FR57'! < FR57'#"9 

(5) 

P012 = [P0123	, P012,, … , P0128] 
P012#!8 < P012! < P012#"9 

(6) 

X = [P57'	, FR57', P012] (7) 
 

The weather condition is read at each time step (1 hour) and 
the ANN model for the wind turbines is used to determine their 
power output. The power and output of the micro gas turbine and 
the power consumption of the electrolyzer are also calculated 
based on the respective models of each unit and the inputs from 
X. The heat production from the micro gas turbine is regulated 
by choosing the HE valve position. Then, the balance of heat and 
power is assessed, to determine the value of power to be 
transferred through the microgrid boundaries.  

The cost of operation to minimize includes the cost of MGT 
and electrolyzer operation. There is a maintenance cost 
associated with wind turbine operation as well, however, in this 
study, the wind turbine is assumed to be always running (in times 
of windy weather) and therefore it does not have a controllable 
cost to minimize. The cost of maintaining the electrolyzer is also 
neglected due to its low value compared to its operational cost. 
The cost of electrolyzer’s operation is included in the power 
allocated to it at each time step.  

Micro gas turbine operation cost includes fuel cost and the 
cost associated with maintenance, as stated in Eq. 8. The cost of 
natural gas consumption is correlated with the daily price of the 
fuel (Eq. 9) and the maintenance cost is the effect of the 

operation on the lifetime of the micro gas turbine which is 
correlated with the power output over the time of operation (Eq. 
10) according to the reference [29]. In Eq. 10, C57',#8;,< is the 
annual maintenance cost of the micro gas turbine per kJ of power 
production, and Δt is the time step which is 1 hour in this study.  

At the beginning of the operation, the amount of hydrogen 
available is assumed to be zero and for the MGT to operate with 
hydrogen in a time step, it is necessary that hydrogen was 
produced by the electrolyzer in previous time steps of that week. 
Since the hydrogen used as a fuel was produced via the 
electrolyzer, the cost of its production is already considered in 
the electrolyzer’s power consumption, therefore the MGT fuel 
cost is reduced to natural gas cost.  
C57' = C=7 + C57',#8; (8) 
C=7 = ṁ=7 × LHV=7 × pr=7 × Δt (9) 
C57',#8; = C57',#8;,< × P! × Δt   (10) 

After balancing the heat and power, the cost of imported 
electricity from the grid in case of deficiency or the revenue from 
exporting electricity to the grid in case of overproduction, is 
calculated via Eq. 11 and Eq. 12 based on the hourly electricity 
price data per kJ. 
C>"# = pr)?,$@< × P7A × Δt (11) 
R>"# = pr)?,B)?? × P70 × Δt (12) 

The optimization process seeks for a set of inputs to the 
microgrid that reduces its operational cost. The cost of operation 
includes the cost of running the subsystems plus the cost of 
electricity imported from the grid, minus the revenue from 
exporting the electricity to the grid. The objective function of the 
optimization is shown in Eq. 13. Other than the costs and 
revenues, an incentive term is subtracted from the objective 
function to direct the optimizer to more favorable results. This 
term is correlated with the amount of hydrogen remaining in the 
tank at the end of the course of operation. The optimization 
searches for the optimum input series that results in the minimum 
of the objective function.  

 

XCD; = argminX∑ XC57',! + C>"#,% − R>"&,%Z
8
!E3 	− IncZ 	 (13) 

The reason behind the hydrogen reserving incentive is that 
when the optimizer is focusing on a specific time span, (e.g., 24 
hours) it will aim for reducing the cost within the same time span. 
Therefore, it is possible that the hydrogen produced during the 
day will be consumed during the same day. This is still 
beneficial, both economically and environmentally. For instance, 
if there is high wind power and low demand in the first half of a 
day and low wind power and high demand in the second half, the 
optimizer will find the best solution as producing and saving 
hydrogen in the first half and consuming it in the second. If the 
hydrogen content is more than enough for the demand, then it 
will be used for exporting the excess power to the grid in 
exchange for the selling price.  

Moving on to the next day, the hydrogen tank will be empty 
and if the day begins with high demands and low wind power 
inputs, the cost of MGT operation will be higher and if required, 
power should be imported at the expense of electricity bidding 

8 Copyright © 2023 by ASME; 
reuse license CC-BY 4.0

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/G

T/proceedings-pdf/G
T2023/87035/V009T18A017/7044927/v009t18a017-gt2023-104145.pdf by Technische Inform

ationsbibliothek (TIB) user on 21 June 2024



 

 

price. Looking at two consecutive days might lead to the 
conclusion that saving hydrogen from one day to another could 
be beneficial. The definite decision could only be made if the 
data (ambient, demand, and prices) was available for two days, 
which is unlikely, and even it was possible, then the relation 
between the first two days with the next two days will become 
an issue. Therefore, an acceptable approach could be to pursue 
the optimization within the chosen time span and direct the 
optimizer to save some hydrogen for the next time span. 

In this study, the time span of the optimization is one day 
but the whole investigation time is a week of operation, and the 
incentive is useful for saving hydrogen from one day to the next. 
The hydrogen saving incentive is calculated based on Eq. 14. In 
this correlation, the worth of hydrogen is calculated based on the 
potential power output from the MGT using the hydrogen fuel. 
The price calculation is based on the power production from 
running the MGT with the reserved hydrogen and η57' is the 
mean efficiency of the MGT from minimum to maximum load. 
The electricity price is from the last hour of the same day of 
optimization (as the best guess), since the data from day 2 is 
unknown when the optimization for day 1 is under process. In 
fact, all tabular data is made available for 24 hours, and the next 
24-hour data will be available at the end of the current day. 
 

Inc = m*,/! × LHV/! × η57' × pr)?,B)??	 (14)	
The optimization process with the objective function 

described is pursed with a constraint, that is also related to the 
hydrogen tank. The amount of hydrogen consumed at each time 
step is confined to the amount of hydrogen available.  
[ṁ*,/! × Δt\! ≤ [m/!,;"8F\!	 (15)	

The amount of hydrogen present in the tank at any given 
step is determined by the initial content of the tank and the 
changes in it over the previous steps. These changes are 
determined by the operational strategy in the previous steps, 
which involves the production of hydrogen (related to the power 
of the electrolyzer (Eq. 6) and the consumption of hydrogen 
(related to MGT power and fuel ratio, Eq. 4, and Eq. 5). 
Therefore, the controlling parameters at each time step and their 
degree of freedom are confined by the control parameters in 
previous time steps, which adds complexity to the optimization 
process: 
[m/!,;"8F\! = f(	[m/!,;"8F\;EG, (P012)H;EG~!.3, 

(P57');EG~!.3, (FR57');EG~!.3)  
(16)	

 

The methodology presented here allows for the operation 
optimization of various configurations of MGs, with different 
subsystems. If operational data from a subsystem were available, 
a data-based model could be built based on it and easily 
implemented in the process of performance analysis and 
optimization. In this paper, the prepared MG optimization code 
is utilized for the MG configuration presented in FIGURE 1, in 
two cases of electrolyzer running and shutdown. 
 

5. RESULTS AND DISCUSSION 
The data available for the demands of the consumer was 

limited to 28 weeks, from the 13th of May to the 24th of 

November 2022. To investigate the performance of the optimizer 
on a week of MG operation, first, an assessment of the price 
condition of the 28 weeks is conducted. Based on the authors’ 
experience, the performance of the optimizer improves as the 
difference between natural gas and electricity price grows. This 
is because of the micro gas turbine’s capability to convert 
chemical energy to electricity, i.e., MGT’s operation makes a 
profit by converting cheap energy to an expensive one. While the 
optimizer identifies the price difference and takes advantage of 
the price situation, the condition-based scenario operates with no 
regard to the prices, and therefore, the difference between 
condition-based operation and optimized operation increases as 
the price difference grows.  

Therefore, the week of study was chosen to have a price 
difference between natural gas and electricity close to the 
average, to avoid over or underestimation of the performance of 
the optimizer. According to FIGURE 11, week 10 has an El-NG 
price difference close to the median value throughout the 28 
weeks, with a maximum at week 16 and a minimum at week 27. 
Therefore, investigating the optimizer’s performance on week 10 
will give results that are not optimistic or pessimistic. 

The ambient conditions over the course of the week are 
provided in FIGURE 12, FIGURE 13 and FIGURE 14. These 
conditions have an impact on the power and heat demand as well 
as the wind turbine power output. Moreover, the ambient 
pressure and temperature affect the performance of the micro gas 
turbine; although the MGT provides the power that was 
demanded (almost), the fuel flow rate and exhaust temperature 
could be affected by ambient temperature. Variations in fuel flow 
rate have an impact on the cost of operation and the turbine 
exhaust temperature affects the capacity of heat production. 
Therefore, the ambient condition data is provided on hourly 
bases and imported into the modeling module. All ambient data 
is extracted from Norwegian meteorological institute (MET) 
station 44560 at Stavanger airport Sola.  
 

  
FIGURE 11: DIFFERENCE BETWEEN ELECTRICITY PRICES 
(SELL) AND NATURAL GAS PRICES FOR 28 WEEKS. 
 

The total value of demanded power, demanded heat, and 
produced power by the wind turbine for each day is presented in 
FIGURE 15. As it is shown, the amount of wind turbine power 
production on days 2 and 7 exceeds the demanded power, and on 
day 7 exceeds the combined amount of heat and power. 
However, these are aggregated values; on hourly bases periods 
of power demand exceeding the wind power supply could be 
expected during these days. 
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FIGURE 12: AMBIENT TEMPERATURE OVER THE WEEK OF 
STUDY 
 

 
FIGURE 13: AMBIENT PRESSURE OVER THE WEEK OF 
STUDY 
 

 
FIGURE 14: WIND SPEED OVER THE WEEK OF STUDY 
 

The relationship between ambient conditions and heat and 
power demand can be observed by comparing FIGURE 12 to 
FIGURE 15. As the weather gets colder, the heat and demand 
increase, therefore beginning days of the week have higher 
demands compared to day 6 when the temperature is maximum. 
Moreover, the high wind speed during days 2 and 7 (FIGURE 
14) resulted in high wind turbine power production (FIGURE 
15). 

The investigation for week 10 with both operation scenarios 
(condition-based and optimization) were pursued. At the 
beginning of the week, times slot was chosen for optimization, 
which required 24 × 3 number of variables to optimize the 
performance of the MG for a day (Eq. 7). The amount of 
available hydrogen on day one is set to zero, and when the 
optimized operation for day 1 is achieved, the amount of 
hydrogen left from production and consumption of day 1 is 
transferred to the next day. This is continued until the last day of 
the week. The optimizer attempts to find the best combination of 
the parameters distributed over 24 hours. Along with 
optimization, the condition-based operation is performed and 
provided for each day, with the same initial condition (zero 
amount of hydrogen available). 

 
FIGURE 15: POWER AND HEAT DEMAND AND WIND 
TURBINE PRODUCTION OVER THE WEEK OF STUDY. 

 

Genetic algorithm was implemented for the optimization of 
the MG performance using SciPy differential evolution toolbox 
[30]. Genetic algorithm is an optimization method that is 
inspired by the process of natural selection and evolution. It uses 
techniques such as mutation and crossover to generate new 
solutions from existing ones. Unlike traditional optimization 
techniques, such as gradient descent, genetic algorithms can 
explore a much larger search space and can explore multiple 
local optima at the same time and find the global optimum. The 
goal of a genetic algorithm is to find optimal or near-optimal 
solutions to complex problems by mimicking the process of 
natural selection. The average time consumed for optimizing the 
operation of each day was about 15 minutes, which gave a total 
of less than 2 hours of optimization time for the whole week. 
This fast optimization was due to the fact that the modeling 
module has a very short response time thanks to the data-driven 
models utilized. 

To realize the effect of hydrogen storage in the microgrid, 
the study was conducted in two cases, one with the configuration 
suggested in FIGURE 1, and another case with removing the 
electrolyzer and the hydrogen tank from the microgrid, leaving 
the system with a wind turbine and a micro gas turbine running 
on natural gas.  

To discuss the results, first, an overview of the cost and 
revenue of the two MG configurations, for condition-based 
operation and optimized operation is provided in TABLE 4. The 
results show how optimized operation improves the economical 
outcome of the operation. In the case of the electrolyzer 
involved, 57 percent of the loss is saved by reducing from 170 
EUR to 73 EUR by the optimizer. In MG without the 
electrolyzer, the optimizer reduced the loss from 141 EUR to 82 
EUR which equals 42% savings. Moreover, the electrolyzer and 
hydrogen storage saved about 11 % from loss, reducing 82 EUR 
to 73 EUR in optimized scenarios. 

 

TABLE 4: COST OVERVIEW OF OPERATIONAL SCENARIOS 
OVER THE WEEK. 

 Condition-based Operation Optimized Operation 

Case Cost 
[EUR] 

Rev. 
[EUR] 

Loss 
[EUR] 

Cost 
[EUR] 

Rev. 
[EUR] 

Loss 
[EUR] 

MG w ELZ 170.12 0.00 -170.12 135.48 62.25 -73.23 
MG w/o ELZ 173.56 32.52 -141.04 148.48 66.55 -81.93 
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Assessment of financial state of the operation in daily bases 
is provided in FIGURE 16. The first observation is that on all 
days of the week, the optimizer improved the economic 
performance of the MG compared to the condition-based 
scenario, whether by lowering the loss or increasing the profit. 
Moreover, on all days of the week, the microgrid configuration 
with the electrolyzer performs equally or better than the 
microgrid without the electrolyzer in optimized operation. 
However, the condition-based scenario seems to work better 
without the electrolyzer than with the electrolyzer involved. This 
indicates that saving all surplus energy from wind will not assure 
economically beneficial results.  

 

 
FIGURE 16: PROFIT AND LOSS EVALUATION OVER THE 
WEEK. 

On the other hand, from FIGURE 17 displaying the daily 
hydrogen consumption, it appears that the condition-based 
scenario may have generated and consumed a greater quantity of 
hydrogen, potentially resulting in a more eco-friendly solution. 
At first, it seems that the condition-based operation has a 
significant advantage over the optimized case, in terms of 
hydrogen consumption, which also means that more hydrogen 
was produced by the electrolyzer the day(s) before. However, a 
look at FIGURE 18 reveals that micro gas turbine’s power 
production in condition-based operation was higher that of the 
optimized case. A comparison between the amount of natural gas 
consumed is reported in FIGURE 19 which proves that although 
the amount of hydrogen fuel produced and consumed in 
optimized operation is considerably lower than in the condition-
based scenario, the amount of natural gas consumed is lower and 
in sum the micro gas turbine operated less. The amount of 
hydrogen produced during day 2 was consumed on day 3 in the 
optimized operation, which reduced the cost of micro gas turbine 
operation during day 3 and in comparison with the optimized 
operation of MG without the electrolyzer.  

An overview of total fuel consumption for all studied 
scenarios is provided in TABLE 5. The amount of natural gas 
consumed with condition-based operation is about 380 kg higher 
than the optimized operation in the case of MG with the 
electrolyzer. Without the electrolyzer, the optimizer consumes 
about 370 kg less natural gas than the condition based. Looking 
at the total power produced by the MGT it seems that the 
optimizer controls the MG in a way that MGT has to operate less 
and consume less fuel. Note that during the first two days of the 

week, the MGT power is negative, this is because, below 5 kW 
of power demand, the MGT works as a consumer to avoid 
turning off. This was considered during the optimization to avoid 
repeated shutdowns and startups and cold restarts of the engine 
which has destructive effect on its lifetime. The consumed fuel 
is to run the MGT at minimum load and prevent its components 
from cooling down. However, no load in two consecutive days 
was foreseen. The engine could be shut down during these days 
and it will improve the results as MGT is working as a consumer, 
especially since only keeping the MGT warm is consuming up 
to 120 kg of natural gas consumption (FIGURE 19, day 1, 
optimized operations).  
 

TABLE 5: MGT POWER AND FUEL CONSUMPTION OVER 
THE WEEK. 

 Condition-based Operation Optimized Operation 

Case H2 Con. 
[kg] 

NG Con. 
[kg] 

PMGT 
[MW] 

H2 Con. 
[kg] 

NG Con. 
[kg] 

PMGT 
[MW] 

MG w ELZ 24.03 944.41 2.12 1.56 555.63 0.23 
MG w/o ELZ 0 1009.66 2.12 0 636.85 0.75 

 

 
FIGURE 17: HYDROGEN FUEL CONSUMED BY THE MGT 
OVER THE WEEK. 
 

 
FIGURE 18: POWER PRODUCED BY THE MICRO GAS 
TURBINE OVER THE WEEK. 

The power balance inside the microgrid for each day is 
depicted in FIGURE 20. Positive values indicate that the 
production of power inside the microgrid was higher than the 
MG demand and the excess power is exported (sold) to the grid. 
Negative values indicate that power has been imported (bought) 
to the microgrid as the resources inside did not cover the demand. 
This demand includes both the consumer and the electrolyzer.  
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FIGURE 19: NATURAL GAS FUEL CONSUMED BY THE MGT 
OVER THE WEEK. 
 

The power balance for condition-based operation with an 
electrolyzer being present is close to zero on all days. When there 
is no electrolyzer, the chance of exporting power is higher, as 
occurred on days 1, 2, 5, 6, and 7 according to FIGURE 20. This 
happened when the wind turbine power is higher than the power 
demand and heat demand (FIGURE 10). It is also notable that 
although the total power demand plus heat demand for day 1 is 
higher than the wind power (FIGURE 15), the operation is 
conducted on hourly bases and has led to such results. To 
elaborate, the power balance throughout day 1 of the microgrid 
running without the electrolyzer is depicted in FIGURE 21.  
 

 
FIGURE 20: POWER BALANCE OF THE MICROGRID OVER 
THE WEEK. 
 

Another observation from the microgrid power balance is 
that optimizer operation decided on exporting power on days 2 
and 7 for both microgrid configurations, and also on day 6 for no 
electrolyzer configuration. The main reason is the surplus of 
wind power on days 2 and 7 that the optimizer decides to sell to 
the grid for profit. It is worth mentioning that an alternative 
choice for the optimizer was to use the excess power for water 
electrolysis to save for hydrogen (similar to condition-based) for 
the next days which may be prone to low power income from the 
wind. However, the optimizer is not able to conduct in such a 
manner since the optimization is confined to 24 hours of 
operation only, and aims to maximize the economical benefit of 
only that day. To improve the results, one can increase the 
window of optimization, but the computational cost for even 2 

days is several times higher than 1 day due to the curse of 
dimensionality. Another way is to modify the hydrogen saving 
incentives (Eq. 14) to influence the optimizer for dividing the 
excess power into export and storage, and then overview the 
results for the whole week to decide how much incentive should 
be used for hydrogen saving. The produced amount of hydrogen 
is reported in FIGURE 22. The optimizer realized that on day 2 
running the electrolyzer is beneficial. This was anticipated as the 
wind turbine power was higher than the demanded power and 
heat (FIGURE 15), however, on day 7 decided to export all the 
excess power from the wind.  

 

 
FIGURE 21: THE POWER BALANCE OVER DAY 1 FOR THE 
MICROGRID WITHOUT ELECTROLYZER. 

 
FIGURE 22: PRODUCED AMOUNT OF HYDROGEN OVER 
THE WEEK. 
 

 
FIGURE 23: ELECTRICITY PRICE DIFFERENCE OVER THE 
WEEK. 
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Another observation from the results is the performance of the 
optimizer in terms of balancing between importing power and 
running the micro gas turbine. For instance, during day 1, the 
power required for the microgrid is imported (FIGURE 20) 
rather than running the micro gas turbine (FIGURE 18). One 
reason could be the price condition on each day, depicted in 
FIGURE 23. The price of buying and selling electricity is equal 
on day 1, so, buying electricity would be beneficial. On day 7 
however, the difference is higher, and exporting electricity will 
be advantageous.  
 
6. CONCLUSION 

The operation of a microgrid composed of a wind turbine 
power generator as the main source of power generation and a 
fuel flexible micro gas turbine running with blended 
methane/hydrogen fuel is investigated for optimization. A water 
electrolyzer and hydrogen tank are present inside the microgrid 
to operate as a storage system. The operation of the microgrid 
was studied with and without the electrolyzer connected to the 
circuit to evaluate the influence of hydrogen storage. Two 
scenarios were conducted for each configuration: condition-
based and optimized. The condition-based scenario works based 
on power and heat balance inside the microgrid. The 
optimization scenario, on the other hand, seeks for highest 
economical results by controlling the dispatchable units inside 
the microgrid; i.e. the micro gas turbine and the electrolyzer. All 
of the components of the microgrid are modeled by artificial 
neural networks based on real operational data, which provided 
a fast-responding model with accurate results. 

The study was conducted in hourly bases for 24 hours of 
optimization window. Optimization was performed 7 times to 
complete a study of a week. A summary of the results for the 
selected a week is presented as follows: 
- Optimization of operation reduced the expense of operation 

by 57% in comparison to condition-based, in the case of 
electrolyzer present. In the configuration without the 
electrolyzer 42% of the loss was saved.  

- The optimized operation of the microgrid with electrolyzer 
reduced the loss by 11% compared to the optimized 
operation without the electrolyzer and hydrogen storage. 

- The optimized scenario reduced the consumption of natural 
gas fuel by 41% for a week of operation, for the 
configuration with electrolyzer. For the configuration 
without the electrolyzer 37% of natural gas was saved. 
Lower natural gas consumption improves both the 
economical and environmental outcomes of the microgrid.  

- The amount of hydrogen produced and consumed in 
condition-based operation was higher than in optimized 
operation. However, the optimized scenario had an 
environmentally more suitable operation as it managed to 
run the microgrid with lower power of micro gas turbine 
which led to less fuel, natural gas as well as hydrogen. 

- The pricing situation for electricity could affect the 
optimized operation and making a decision towards 

balancing, importing, or exporting power. The condition-
based scenario operates regardless of the information about 
pricing and therefore oversees the potential. 
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