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ABSTRACT: In stochastic model updating, hybrid uncertainties are typically characterized 
by the distributional p-box. It assigns a certain probability distribution to model parameters 
and assumes its hyper-parameters as interval values. Thus, regardless of the updating method 
employed, the distribution family needs to be known a priori to parameterize the distribution. 
Meanwhile, a novel class of the random variable, called staircase random variable, can dis
cretely approximate a wide range of distributions by solving moment-matching optimization 
problem. The first author and his co-workers have recently developed a distribution-free sto
chastic updating framework, in which model parameters are considered as staircase random 
variables and their hyper-parameters are inferred in a Bayesian fashion. This framework can 
explore an optimal distribution from a broad range of potential distributions according to the 
available data. This study aims to further demonstrate the capability of this framework 
through a simple numerical example with a parameter following various types of distributions.

1 INTRODUCTION

Model updating has been widely accepted as a fascinating technique to mitigate the discrep
ancy between model outputs and measurements (Mottershead and Friswell, 1993). The con
ventional deterministic model updating aims to calibrate model parameters to find their 
optimal values from a single set of the measurement data. It has been successfully employed in 
a wide range of practical applications, including the correction of complex finite element 
models. However, this approach considers the model and measurement data as deterministic, 
ignoring uncertainties in both modeling and measuring processes.

In contrast, the stochastic model updating aims to calibrate not parameters themselves but their 
probability distributions, so that corresponding model outputs reproduce the uncertainty charac
teristics of the multiple sets of the measurement data (Mares et al., 2006). This can be achieve by 
finding the optimal values of the distribution hyper-parameters that minimize a stochastic distance 
between model outputs and measurement datasets. Bi et al. (2019) employed the Bhattacharyya 
distance and developed a Bayesian updating framework that utilizes a distance-based approximate 
likelihood. The capability of this framework has been demonstrated upon complex applications, 
e.g., the first edition of NASA UQ problem (Crespo et al., 2014).

More recently, the latest edition of NASA UQ problem (Crespo and Kenny, 2021) has posed 
a challenge in the stochastic model updating to calibrate the parameter distributions without prior 
information about their distribution families. Motivated by this, the first author and his co-workers 
have developed a distribution-free stochastic updating framework, where the parameter distributions 
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are approximated by staircase density functions (SDFs) (Kitahara et al., 2022a; Kitahara 
et al., 2022b). SDF is a discrete probability density function (PDF) defined for the staircase 
random variable (SRV) which has a bounded support set and prescribed values for the first 
four moments (Crespo et al., 2018). It has no analytical solution but enables to discretely 
approximate a broad range of distributions by solving moment-matching optimization prob
lem. This distribution-free stochastic updating framework has been demonstrated that it 
enables to calibrate the parameter distributions with no constraining hypothesis on the dis
tribution formats. However, its capability to estimate various types of distributions has not 
been thoroughly investigated. Hence, this study aims at further demonstrating the feasibility 
of this framework through a simple numerical example with a parameter following various 
types of distributions, including heavy-tailed and multi-modal distributions.

2 OVERVIEW OF DISTRIBUTION-FREE STOCHASTIC UPDATING 
FRAMEWORK

2.1  Bhattacharyya distance

In the stochastic model updating, the stochastic discrepancy between model outputs and 
measurement datasets needs to be quantified and minimized. Let YD ¼ y ið Þ; i ¼ 1; � � � ;ND

� �

be ND sets of the measurement data y 2 R m. Let also YS ¼ M x ið Þ
� �

; i ¼ 1; � � � ;NS
� �

be the 
corresponding NS model outputs parameterized through a model parameter vector x 2 R n. In 
this study, the stochastic discrepancy between YS and YD is quantified as the Bhattacharyya 
distance, and its theoretical definition is given as:

where f �ð Þ yð Þ represents the PDF of y; � denotes the support domain y which comprises 
the m-dimensional space. Equation (1) indicates that the Bhattacharyya distance measures the 
degree of overlap between two different distributions. However, the direct evaluation of Equa
tion (1) is generally impractical because the PDF of YD often cannot be precisely estimated 
due to the very limited number of available measurement datasets. Hence, Bi et al. (2019) pro
posed the so-called binning algorithm to discretely evaluate the Bhattacharyya distance as:

where Nbin indicates the total number of bins; P(·),i represents the probability mass function of 
y at the ith bin. Nbin is set as Nbin = 10n in this study.

2.2  Staircase density functions

Let the model parameters x be independent random variables having the support set ½x; �x� and 
prescribed values for the hyper-parameters θx ¼ μ;m2; m3;m4½ � that consists of the mean 
vector μ 2 R n, variance vector m2 2 R n, third-order central moment vector m3 2 R n, and 
fourth-order central moment vector m4 2 R n. Note that, in practice, the third- and fourth- 
order central moments are normalized by the variance as the skewness em3 and kurtosis em4, 
respectively, in the updating procedure. Any such variables must satisfy the feasibility condi
tions g θxð Þ � 0 given in Crespo et al. (2018). The realizations of θx that satisfies these condi
tions constitute the feasible domain � ¼ θx : g θxð Þ � 0f g.

Let also the support set ½x; �x� partitioned into nb sub-intervals with the equal length of 
κ ¼ x � xð Þ=nb, x can be then considered as SRVs the PDF of which is expressed as:
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where l jð¼ �n
i¼1 l j

i Þ is the PDF value at the jth bin; xj ¼ xþ j � 1ð Þκ. nb = 25 is utilized in this 
study, The marginal staircase densities are obtained by solving the optimization problem: 

where J denotes the cost function; Al = b are moment matching constraints. This optimization 
problem is convex when the cost function is a convex function. In this study, the cost function 
is defined as follows based on the principle of maximum entropy:

2.3  Approximate Bayesian computation

In the proposed stochastic model updating framework, approximate Bayesian computation 
(ABC) (Beaumont, 2019) is employed. ABC is based on the well-known Bayes’ theorem:

where P θxð Þ denotes the prior distribution of the hyper-parameters θx that reflects one’s initial 
beliefs on θx; P θxjYDð Þ is the posterior distribution of θx that represents the posterior state of 
knowledge on θx; ~L YDjθxð Þ; is the so-called approximate likelihood function that serves as 
the connection between the measurement datasets YD and θx; P(YD) means the evidence 
ensuring that the integral of the posterior distribution equal to one.

Given the support set ½x; �x�, the support set of θx can be obtained based on the feasibility 
conditions as:

In this study, the hyper-parameters θx are assumed to be independent each other and the 
prior distribution is expressed as:

where U4n Ωð Þ denotes the PDF of 4n independent multivariate uniform distribution on Ω; I�

denotes the indicator function that equals to one if θx 2 � and otherwise equals to zero.
The approximate likelihood function is defined using an arbitrary kernel. The principle behind it 

is that it should return a high value when the stochastic discrepancy between the model outputs 
and measurement datasets is small and, conversely it penalizes θx that leads to a large stochastic 
discrepancy. In this study, the Gaussian kernel is utilized and the stochastic discrepancy is measured 
by the Bhattacharyya distance. Thus, the approximate likelihood function is defined as:

where ε indicates the scaling parameter which controls the centralization degree of the poster
ior distribution. A smaller ε provides a more peaked posterior distribution, which is more 
likely to converge to the true values, but needs more computation burden for convergence. In 
this study, it is set as ε ¼ 0:02.

The posterior distribution in Equation (6) generally has no analytical solution and thus needs to 
be estimated using advanced sampling techniques. In this study, the transitional Markov chain 
Monte Carlo (TMCMC) sampler (Ching and Chen, 2007) is employed. TMCMC is a sequential 
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approach sampling from a series of intermediate distributions which will progressively converge to 
the true posterior distribution. The jth intermediate distribution is expressed as:

where βj indicates the so-called reduction coefficient. Its value starts from βj ¼ 0 in the initial 
step and gradually increases until βm ¼ 1 in the final step. βj is adaptively computed from the 
samples of the previous step. Markov chains then propagate new samples starting from the 
ones in the previous step with higher likelihood values. The reader can refer to Ching and 
Chen (2007) for details of the TMCMC sampler.

3 NUMERICAL EXAMPLES

3.1  Problem descriptions

The proposed stochastic model updating framework is demonstrated upon a simple three 
degree-of-freedom (DOF) spring-mass system shown in Figure 1. The stiffness coefficients k1, 
k2, and k3 are supposed to be uncertain with the uncertainty characteristics summarized in 
Table 1. k1 and k2 follow Gaussian distributions, whose hyper-parameters, i.e., means and 
standard deviations, are not fully determined but fall within given intervals as listed in the third 
column of Table 1. On the contrary, the distribution family of k3 is unknown before model 
updating and only the support set is given as [5.0, 7.0]. Hence, it is assumed to be characterized 
as a SRV and its hyper-parameters are fall within the intervals computed as Equation (7). As 
a consequence, in total eight hyper-parameters are treated as interval-valued parameters and 
updated through the proposed procedure. Besides these uncertain parameters, the remaining 
parameters (i.e., stiffness coefficients k4 to k6 and masses m1 to m3 ) are set to be constants with 
determined values: ki = 5.0 N/m (i = 4, 5, 6), m1 = 0.7 kg, m2 = 0.5 kg, and m1 = 0.3 kg.

In addition to the prior information on the uncertainty characteristics, target values of the hyper- 
parameters in k1 and k2 are shown in the last column of Table 1. On the other hand, to investigate 
the capability of the proposed approach calibrating a wide range of distributions without the prior 
knowledge about their distribution families, five different distributions presented in Figure 2 are 

Figure 1.  3-DOF spring-mass system.

Table 1. Uncertainty characteristics of the model parameters.

Parameter

Uncertainty characteristics

Target values of  
hyper-parametersDistribution family

Support set/ 
hyper-parameters

k1 Gaussian μ1 2 3:0; 7:0½ �; σ1 2 0:0; 0:5½ � μ1 ¼ 4:0; σ1 ¼ 0:3
k2 Gaussian μ2 2 3:0; 7:0½ �; σ2 2 0:0; 0:5½ � μ2 ¼ 5:0; σ2 ¼ 0:1
k3 Unknown k3 2 ½5:0; 7:0� Given in Table 2
k4–k6, m1–m3 Deterministic – –
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considered as the target distribution of k3. Properties of these distributions are also provided in 
Table 2. The first distribution is a (truncated) Gaussian distribution of which hyper-parameters 
θ1 ¼ ½μ11;m21; ~m31; ~m41� are given in Table 2. While the distribution is truncated because the support 
set of k3 is a closed interval, its mean and variance are determined such that the support set covers 
more than the 99.99 % confidence interval of the original Gaussian distribution. The remaining distri
butions are given by SDFs with the hyper-parameters, θi ¼ μ1i;m2i; ~m3i; ~m4i½ �; i ¼ 2; � � � 4 
The second distribution is a (left) skewed one having a positive skewness. The third distribution is 
a flat one having a larger variance and smaller kurtosis compared to the Gaussian distribution. The 
fourth distribution is a heavy-tailed distribution having a larger kurtosis. Finally, the fifth distribution 
is a bi-modal distribution.

The outputs of the system are the three eigen-frequencies f1, f2 and f3. The measurement 
datasets consisting of these eigen-frequencies are generated through multiple model evaluations 
with multiple sets of the model parameters sampled from their target distributions. In this 
study, the number of datasets are set as ND = 1000. Figure 3 depicts the measurement datasets 
in the plane of the first and third frequencies for the case where the truncated Gaussian distri
bution is employed as the target distribution of k3. The reference range in the figure means the 
95 % confidence interval of the sample distribution. Moreover, 1000 samples of the model 
parameters are generated by assigning a set of randomly selected initial values of the hyper- 
parameters, and subsequently 1000 initial model outputs are obtained through the model 
evaluations. These outputs are also presented in Figure 3. As can be seen, the scatters of the 
initial outputs are clearly apart from the measurement datasets; thus, model updating is neces
sary to obtain the model outputs as close as the measurement datasets.

3.2  Model updating results

For the case where the target distribution of k3 is the truncated Gaussian distribution, totally 
17 TMCMC iterations are executed to reach convergence. Figure 4 illustrates histograms of 

Table 2. Target distributions of k3.

Distribution format Hyper-parameters

Truncated Gaussian μ11 ¼ 6:0; m21 ¼ 0:04; ~m31 ¼ 0:0; ~m41 ¼ 3:0
Skewed μ12 ¼ 5:7; m22 ¼ 0:06; ~m32 ¼ 0:5; ~m42 ¼ 3:0
Flat μ13 ¼ 6:0; m23 ¼ 0:14; ~m33 ¼ 0:0; ~m43 ¼ 2:25
Heavy-tailed μ14 ¼ 6:0; m24 ¼ 0:04; ~m34 ¼ 0:0; ~m44 ¼ 4:2
Bi-modal μ15 ¼ 6:0; m25 ¼ 0:10; ~m35 ¼ 0:8; ~m45 ¼ 2:0

Figure 2.  PDF for the target distributions of k3.

674



1000 posterior samples of the eight hyper-parameters, i.e., μi and σi (i = 1,2) as well as θ1. The 
ranges of the horizontal axes are identical to the intervals of the prior uniform distribution. It 
can be observed that all the hyper-parameters are significantly updated from the prior distri
bution. The means of the posterior samples are obtained as the posterior estimates of the 
hyper-parameters and presented in Table 3. The posterior estimates show good agreement 
with the target values. It should be noted that a relatively large error in m21 can be caused due 
to its very small target value. The updated distribution of k3 is then obtained as a SDF with 
the posterior estimates of the hyper-parameters θ1. Figure 5 illustrates the updated distribu
tion as the histogram of samples generated from the SDF. As can be observed from the figure, 
the updated distribution coincides well with the target truncated Gaussian distribution.

Figure 6 shows a relative position of the measurement datasets and updated model outputs. 
The updated outputs are obtained through the model evaluations with 1000 sets of the model 
parameters sampled from their updated distributions. Compared to the initial model outputs 
presented in Figure 3, the updated model outputs fit well with the measurement datasets, 

Figure 3.  Target relative position of the measurement datasets and initial model outputs.

Figure 4.  Posterior distribution of the hyper-parameters in histograms.
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which demonstrates that the proposed updating procedure enables to calibrate the model so 
that its outputs represent wholly the uncertainty characteristics of the measurement datasets.

Similarly, the proposed updating procedure is also performed for the remaining cases with 
the different target distributions of k3. For all the cases, the obtained posterior estimates of 
the hyper-parameters are summarized in Table 3. All the posterior estimates of the hyper- 
parameters show good agreement with the target values, including the higher-order moments 
such as the skewness and kurtosis in the SDFs, and the maximum percentage error compared 
to the target values is less than 20 %. The updated distributions of k3. which assign the poster
ior estimates of the hyper-parameters are also illustrated in Figure 5 for these cases. It can be 
seen that the updated distributions coincide well with the target distributions, indicating that 
the proposed updating procedure can quantify the parameter uncertainty as an appropriate 
probability distribution including heavy-tailed and multi-modal distributions. Finally, the 
updated model outputs are obtained through the model evaluations with the updated param
eter distributions and compared with the measurement datasets. While relative positions of 
the updated model outputs and measurement datasets are not further provided for the sake of 
brevity, it is confirmed that the updated model outputs are properly tuned for all the cases 
and fit well with the measurement datasets.

Table 3. Posterior estimates of the hyper-parameters.

Hyper-parameters Target values Posterior estimatesa

μ1 4.0 4.01/4.00/3.98/4.01/4.04 (1.0)b

σ1 0.3 0.322/0.328/0.329/0.327/0.346 (15.3)b

μ2 5.0 5.01/4.99/5.00/5.00/4.99 (0.2)b

σ2 0.1 0.100/0.098/0.094/0.098/0.088 (12.0)b

μ11=m21=~m31=~m41 6.0/0.04/0.0/3.0 6.02 (0.3)/0.046 (15.0)/0.05/2.94 (2.0)
μ12=m22=~m32=~m42 5.7/0.06/0.5/3.0 5.69 (0.2)/0.064 (6.7)/0.402 (19.6)/3.36 (12.0)
μ13=m23=~m33=~m43 6.0/0.14/0.0/2.25 5.99 (0.2)/0.155 (10.7)/-0.006/2.30 (2.2)
μ14=m24=~m34=~m44 6.0/0.04/0.0/4.2 6.00 (0.0)/0.045 (12.5)/0.174/4.05 (3.6)
μ15=m25=~m35=~m45 6.0/0.1/0.8/2.0 6.01 (0.2)/0.106 (6.0)/0.740 (7.5)/2.01 (0.5)

a Percentage errors compared to the target values in parentheses.
b Posterior estimates for all the five cases in a row and their maximum percentage errors in parentheses.

Figure 5.  Updated distributions of k3.
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4 CONCLUSIONS

In this study, we present a distribution-free stochastic model updating framework to quantify the 
parameter uncertainty that forms a broad range of probability distributions, including heavy- 
tailed and multi-modal distributions, without the prior knowledge about their distribution fam
ilies. The unknown parameter distribution is characterized by SDF, and it is assumed that only 
its support set is known a priori. Its hyper-parameters, i.e., the first four moments, are then 
inferred through the ABC procedure aiming at minimizing the Bhattacharyya distance between 
the model outputs and measurement datasets. The proposed updating framework is demon
strated on a simple 3-DOF spring-mass system, in which five different distributions are assumed 
as the target distribution of a model parameter. The results demonstrate that the proposed pro
cedure has a potential to calibrate the arbitrarily parameter distribution as appropriate so that 
the model outputs recreate wholly the uncertainty characteristics of the measurement datasets.
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