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A B S T R A C T

The Bayesian failure probability inference (BFPI) framework provides a well-established
Bayesian approach to quantifying our epistemic uncertainty about the failure probability
resulting from a limited number of performance function evaluations. However, it is still
challenging to perform Bayesian active learning of the failure probability by taking advantage
of the BFPI framework. In this work, three Bayesian active learning methods are proposed under
the name ‘partially Bayesian active learning cubature’ (PBALC), based on a cleaver use of the
BFPI framework for structural reliability analysis, especially when small failure probabilities are
involved. Since the posterior variance of the failure probability is computationally expensive
to evaluate, the underlying idea is to exploit only the posterior mean of the failure probability
to design two critical components for Bayesian active learning, i.e., the stopping criterion and
the learning function. On this basis, three sets of stopping criteria and learning functions are
proposed, resulting in the three proposed methods PBALC1, PBALC2 and PBALC3. Furthermore,
the analytically intractable integrals involved in the stopping criteria are properly addressed
from a numerical point of view. Five numerical examples are studied to demonstrate the
performance of the three proposed methods. It is found empirically that the proposed methods
can assess very small failure probabilities and significantly outperform several existing methods
in terms of accuracy and efficiency.

1. Introduction

Structural reliability analysis plays a critical role in assessing the ability of engineering structures and mechanical systems to
perform their expected functions of safety, serviceability, durability, etc. One of the central problems in probabilistic reliability
analysis is the computation of the so-called failure probability:

𝑃𝑓 = P (𝑔(𝑿)) = ∫
𝐼(𝑔(𝒙))𝑓𝑿 (𝒙)d𝒙, (1)
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where 𝑿 =
[

𝑋1, 𝑋2,… , 𝑋𝑑
]

∈  ⊆ R𝑑 is a vector of 𝑑 random variables with known joint probability density function (PDF) 𝑓𝑿 (𝒙);
𝑔(⋅) ∶ R𝑑 → R is the performance function (also known as the limit state function), which takes a negative value when a failure
occurs; 𝐼(⋅) ∶ R → {0, 1} is the indicator function: 𝐼(𝑔(𝒙)) = 1 if 𝑔(𝒙) < 0 and 𝐼(𝑔(𝒙)) = 0 otherwise. For a typical reliability analysis
roblem in practice, it is most unlikely to be possible to obtain the solution of Eq. (1) analytically. This is because, for example, the
erformance function 𝑔 has a complicated mathematical structure or is even an implicit function. Therefore, one has to resort to a
umerical method.

Over the past few decades, various numerical methods have been developed to approximate the failure probability. Existing
ethods can be roughly divided into five categories: (1) stochastic simulation methods, (2) asymptotic approximation methods, (3)
oment based methods, (4) probability conservation based methods and (5) surrogate-assisted methods. Stochastic simulation meth-

ds include direct Monte Carlo simulation (MCS) and its various variants (e.g., importance sampling [1,2], subset simulation [3,4],
irectional simulation [5,6] and line sampling [7]). The MCS method is considered to be a universal reliability analysis method that is
obust to the dimensionality and non-linearity of the problem at hand. However, it requires a significantly large number of 𝑔-function
valuations to evaluate a small failure probability. While other variants of MCS may have improved computational efficiency,
hey are still computationally prohibitive for many real-world problems and have limited applicability. Asymptotic approximation
ethods make use of asymptotic analysis to approximate the failure probability integral [8]. Two representatives of such methods

re the first-order reliability method (FORM) [9] and second-order reliability method (SORM) [10]. These methods have received
onsiderable attention from researchers and practitioners and have shown to be efficient in many practical applications. Nevertheless,
t is still challenging to apply FORM and SORM to problems with, e.g., strong nonlinearity and multiple failure regions. Moment
ased methods approximate the failure probability by estimating the probability distribution of the output variable of the 𝑔-function
rom knowledge of its statistical moments. Examples of such methods are the fourth-order moment methods [11,12] and fractional
oments based maximum entropy methods [13,14]. Compared to FORM and SORM, they are more convenient to use because they
o not require searching for the most probable point. However, moment based methods need to estimate the statistical moments
sing numerical integration techniques and assume the distribution type of the output variable of the performance function, making
t difficult to assess the underlying numerical errors. Probability conservation based methods also aim to capture the probability
istribution of the output variable of the 𝑔-function, but based on the principle of probability conservation without knowing its
tatistical moments. Such methods consist of the probability density evolution method [15,16] and direct probability integral
ethod [17,18]. These methods have a sound theoretical basis, but depend on the partitioning of probability space in the numerical

mplementation, which becomes difficult in high dimensions. To reduce the computational cost, surrogate-assisted methods attempt
o construct a simplified model as a substitute for the original performance function. A representative example in this group is the
ctive learning Kriging methods [19,20]. In fact, active learning methods have received a lot of attention in the reliability analysis
ommunity in the last decade.

More recently, the first author and his collaborators have developed a special class of active learning methods that emphasize
he use of Bayesian principles. For convenience, we will refer to this type of methods as Bayesian active learning methods, although
hey may also have the characteristics of Bayesian probabilistic integration [21]. The Ref. [22] initialized the idea of turning the
roblem of the failure probability integral estimation into a Bayesian active learning problem. Specifically, a Bayesian approach was
irst developed to express our epistemic uncertainty about the true value of the failure probability resulting from a limited number of
bservations of the performance function. In this context, by assigning a Gaussian process prior over the performance function, the
osterior mean and an upper bound of the failure probability were derived in analytic form. Then, based on these posterior statistics
f the failure probability, a learning function and a stopping criterion were proposed to facilitate active learning. The resulting
ethod was called ‘Active Learning Probabilistic Integration’ (ALPI). It was further improved by the ‘Parallel Adaptive Bayesian
uadrature’ (PABQ) method [23] in order to estimate small failure probabilities and enable parallel computing. Note that the upper
ound of the posterior variance may overestimate the true variance in most cases. The Bayesian approach developed in [22] was
hus enriched by the ‘Bayesian Failure Probability Inference’ (BFPI) framework [24], where the exact expression of the posterior
ariance of the failure probability was derived. However, it is computationally prohibitive to use in an active learning context.
s a compromise, we developed a Bayesian active learning method called ‘Parallel Bayesian Probabilistic Integration’ (PBPI) [25],

n which a pseudo posterior variance inspired by the upper bound was proposed. In addition to these studies, the Bayesian active
earning idea has also been successfully pursued in the context of line sampling, see for example [26,27]. The Bayesian active learning
aradigm has demonstrated many attractive features over several existing paradigms, including the active learning paradigm, but
onsiderable effort is needed to make it an effective tool for practical reliability analysis.

The main objective of this work is to develop a novel Bayesian active learning method through a clever use of the BPFI
ramework [24] for assessing extremely small failure probabilities, which is one of main challenges in the context of structural
eliability analysis. To achieve this goal, the key lies in developing the two critical components for Bayesian active learning from
he posterior statistics of the failure probability, namely the stopping criterion and the learning function. Since the posterior variance
f the failure probability is computationally expensive to evaluate, our key idea is to leverage only the posterior mean, in contrast
o the previous studies [22,23,25]. On this basis, we first propose three new stopping criteria that can decide when to stop the
ctive learning process. The intractable integrals involved are then tackled by a robust numerical integration scheme. In addition,
hree new learning functions are extracted from the proposed stopping criteria. These developments form three reliability analysis
ethods under the name of ‘Partially Bayesian Active Learning Cubature’ (PBALC). The proposed methods are expected to further

dvance the use of Bayesian active learning in the field of structural reliability analysis.
The rest of this paper is organized as follows. Section 2 is devoted to a general overview of the BFPI framework. The three

roposed PBALC methods are introduced in Section 3. Several numerical examples are examined in Section 4 to demonstrate the
2

erformance of the proposed methods. Section 5 concludes the main findings of this study.
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2. Bayesian failure probability inference

This section gives a brief overview of the BFPI framework developed in [24]. Note that the original framework is defined in
he physical space, i.e.,  . Here it is presented in the standard normal space (denoted as  ) to facilitate the development of the

proposed methods in the next section. To this end, we first introduce a transformed performance function (𝑼 ) = 𝑔(𝑇 −1(𝑼 )), where
= [𝑈1, 𝑈2,… , 𝑈𝑑 ] ∈  ⊆ R𝑑 is a vector of 𝑑 independent standard normal variables and 𝑇 ∶ 𝑼 = 𝑇 (𝑿) is an appropriate

transformation that can transform the physical random vector 𝑿 into the standard normal vector 𝑼 . The joint PDF of 𝑼 is denoted
s 𝜙𝑼 (𝒖).

.1. Prior distribution

The essence of the BFPI framework is that the transformed performance function (⋅) should be treated as an unknown function.
his is reasonable in the sense that very often the -function is complicated in its inner structure, and even is a black box in practical
roblems. Moreover, the value of the -function at a given location 𝒖 is not even known until we actually evaluate it. To express our
pistemic uncertainty, we can therefore formulate a prior distribution for the -function. Among many possible options, a Gaussian
rocess (GP) prior can be adopted such that:

0(𝒖) ∼ (𝑚0 (𝒖), 𝑘0 (𝒖, 𝒖
′)), (2)

here 0 denotes the prior distribution of ; 𝑚0 (𝒖) and 𝑘0 (𝒖, 𝒖
′) are the prior mean and covariance functions, respectively. Without

oss of generality, the prior mean and covariance functions can be assumed to a constant and a Gaussian kernel, respectively:

𝑚0 (𝒖) = 𝛽, (3)

𝑘0 (𝒖, 𝒖
′) = 𝜎20 exp

(

−1
2
(𝒖 − 𝒖′)⊤𝜮−1(𝒖 − 𝒖′)

)

, (4)

where 𝛽 ∈ R; 𝜎0 > 0 is the standard deviation of the process; 𝜮 = diag
(

𝑙21 , 𝑙
2
2 ,… , 𝑙2𝑑

)

with 𝑙𝑖 > 0 being the length scale in the 𝑖th
dimension. The 𝑑 + 2 parameters collected in 𝝑 =

[

𝛽, 𝜎0, 𝑙1, 𝑙2,… , 𝑙𝑑
]

are referred to as hyperparameters.

.2. Estimating hyperparameters

Suppose that now we have an observation dataset  = { ,}, where  =
{

𝒖(𝑗)
}𝑛
𝑗=1 is an 𝑛 × 𝑑 matrix with its 𝑗th row being

𝒖(𝑗) and  =
[

𝑦(1), 𝑦(2),… , 𝑦(𝑛)
]⊤ is an 𝑛×1 vector with its 𝑗th element being 𝑦(𝑗) = (𝒖(𝑗)). The hyperparameters in 𝝑 can be specified

by maximizing the log-marginal likelihood:

log 𝑝( | ,𝝑) = −1
2

[

( − 𝛽)⊤𝑲−1
0
( − 𝛽) + log |𝑲0 | + 𝑛 log 2𝜋

]

, (5)

where 𝑲0 is an 𝑛 × 𝑛 covariance matrix with (𝑖, 𝑗)th entry being 𝑘0 (𝒖
(𝑖), 𝒖(𝑗)).

2.3. Posterior statistics

The posterior distribution of  conditional on the data  is again a GP:

𝑛(𝒖) ∼ (𝑚𝑛 (𝒖), 𝑘𝑛 (𝒖, 𝒖
′)), (6)

where 𝑛 stands for the posterior distribution of  after seeing 𝑛 observations; 𝑚𝑛 (𝒖) and 𝑘𝑛 (𝒖, 𝒖
′) are the posterior mean and

covariance functions respectively, which can be expressed as:

𝑚𝑛 (𝒖) = 𝑚0 (𝒖) + 𝒌0 (𝒖, )⊤𝑲−1
0

(

 −𝒎0 ( )
)

, (7)

𝑘𝑛 (𝒖, 𝒖
′) = 𝑘0 (𝒖, 𝒖

′) − 𝒌0 (𝒖, )⊤𝑲−1
0
𝒌0 ( , 𝒖′), (8)

in which 𝒎0 ( ) is an 𝑛× 1 mean vector with 𝑗th element being 𝑚0 (𝒖
(𝑗)); 𝒌0 (𝒖, ) and 𝒌0 ( , 𝒖′) are two 𝑛× 1 covariance vectors

with 𝑗th element being 𝑘0 (𝒖, 𝒖
(𝑗)) and 𝑘0 (𝒖

(𝑗), 𝒖′), respectively.
Through some mathematical derivation, we can obtain the posterior mean and variance of the failure probability:

𝑚𝑃𝑓,𝑛 = ∫
𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖, (9)

𝜎2𝑃𝑓,𝑛 = ∫ ∫

[

𝛷2

(

[0, 0]⊤;𝒎𝑛 (𝒖, 𝒖
′),𝑲𝑛 (𝒖, 𝒖

′)
)

−𝛷

(

−𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝛷

(

−𝑚𝑛 (𝒖
′)

𝜎𝑛 (𝒖
′)

)]

𝜙𝑼 (𝒖)𝜙𝑼 (𝒖′)d𝒖d𝒖′, (10)

where 𝑃𝑓,𝑛 denotes the posterior distribution of the failure probability 𝑃𝑓 conditional on ; 𝛷 is the cumulative distribution
function (CDF) of the standard normal variable; 𝜎 (𝒖) is the posterior standard deviation function of , i.e., 𝜎 (𝒖) =

√

𝑘 (𝒖, 𝒖); 𝛷
3

𝑛 𝑛 𝑛 2
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denotes the bivariate normal CDF, which is not analytically available; 𝒎𝑛 (𝒖, 𝒖
′) is the posterior mean vector of , i.e., 𝒎𝑛 (𝒖, 𝒖

′) =
[

𝑚𝑛 (𝒖), 𝑚𝑛 (𝒖
′)
]⊤

; 𝑲𝑛 (𝒖, 𝒖
′) is the posterior covariance matrix of :

𝑲𝑛 (𝒖, 𝒖
′) =

⎡

⎢

⎢

⎣

𝜎2𝑛 (𝒖) 𝑘𝑛 (𝒖
′, 𝒖)

𝑘𝑛 (𝒖, 𝒖
′) 𝜎2𝑛 (𝒖

′)

⎤

⎥

⎥

⎦

. (11)

The posterior distribution 𝑃𝑓,𝑛 provides a probabilistic descriptor for our uncertainty about the true value of the failure probability
𝑃𝑓 . This uncertainty arises from the fact that the -function is only observed at a finite number of discrete locations. Although the
analytical solution of 𝑃𝑓,𝑛 is not yet known, several numerical investigations in [24] suggest that it can be well approximated by a
normal distribution  (𝑚𝑃𝑓,𝑛 , 𝜎

2
𝑃𝑓,𝑛

). In fact, one might be more interested in the posterior mean and variance of the failure probability
than its full distribution in practical applications. This is because that the posterior mean 𝑚𝑃𝑓,𝑛 can be used as a failure probability
predictor, while the posterior variance 𝜎2𝑃𝑓,𝑛 can provide a measure of the prediction uncertainty. Note, however, that both 𝑚𝑃𝑓,𝑛 and
𝜎2𝑃𝑓,𝑛 cannot be solved analytically, and a numerical integrator must be used. Compared to 𝑚𝑃𝑓,𝑛 , 𝜎

2
𝑃𝑓,𝑛

is much harder to approximate
numerically due to its underlying complexity.

3. Partially Bayesian active learning cubature

In this section, we further frame the failure probability estimation in a Bayesian active learning setting based on the BFPI
framework. To achieve this, the key is to develop two crucial components: stopping criterion and learning function. The stopping
criterion is used to determine when to stop the learning process, while the learning function is used to suggest where to evaluate the
-function if the stopping criterion is not met. Therefore, they both can significantly affect the performance of the resulting method.
Our basic idea is to use only the posterior mean of the failure probability to construct the stopping criterion and the learning function
because the posterior variance is not easy to handle from a numerical perspective. Along this line of thought, three sets of learning
functions and stopping criteria are creatively proposed, leading to three novel methods, called PBALC1, PBALC2 and PBALC3.

3.1. Three stopping criteria

The posterior mean of the failure probability (𝑚𝑃𝑓,𝑛 defined in Eq. (9)) represents the updated average value of the failure
probability, given both some observed data  and a GP prior of the -function. Therefore, it alone cannot give any information
bout its accuracy as a predictor of the failure probability. However, it is still possible to make strategic use of the structure of 𝑚𝑃𝑓,𝑛
o construct a measure of the accuracy of our predictor.

Note that the integrand of 𝑚𝑃𝑓,𝑛 involves a term 𝛷
(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

, which is related to both the posterior mean and standard derivation

functions of . If 𝑚𝑛 (𝒖) on the numerator is replaced by the upper and lower credible bounds of 𝑛, then we can define two new
quantities:

𝑚𝑃𝑓,𝑛
=∫

𝛷

(

−
𝑚𝑛 (𝒖) + 𝑏𝜎𝑛 (𝒖)

𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖

=∫
𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

− 𝑏

)

𝜙𝑼 (𝒖)d𝒖,
(12)

𝑚𝑃𝑓,𝑛 =∫
𝛷

(

−
𝑚𝑛 (𝒖) − 𝑏𝜎𝑛 (𝒖)

𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖

=∫
𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

+ 𝑏

)

𝜙𝑼 (𝒖)d𝒖,
(13)

where 0 < 𝑏 < ∞ implies that
[

𝑚𝑛 (𝒖) − 𝑏𝜎𝑛 (𝒖), 𝑚𝑛 (𝒖) + 𝑏𝜎𝑛 (𝒖)
]

is a 100(1− 2𝛷(−𝑏))% credible bound of 𝑛. We have the following
proposition:

Proposition 1. For 𝑏 > 0, there exists 𝑚𝑃𝑓,𝑛
< 𝑚𝑃𝑓,𝑛 < 𝑚𝑃𝑓,𝑛 .

roof. We first prove that the first inequality 𝑚𝑃𝑓,𝑛
< 𝑚𝑃𝑓,𝑛 holds true. For this purpose, the following equation is given:

𝑚𝑃𝑓,𝑛
− 𝑚𝑃𝑓,𝑛 =∫

𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

− 𝑏

)

𝜙𝑼 (𝒖)d𝒖 − ∫
𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖

=∫

[

𝛷

(

−
𝑚𝑛 (𝒖) − 𝑏

)

−𝛷

(

−
𝑚𝑛 (𝒖)

)]

𝜙𝑼 (𝒖)d𝒖.
(14)
4

 𝜎𝑛 (𝒖) 𝜎𝑛 (𝒖)
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Recall that 𝛷 is a monotonically increasing function and 𝜙𝑼 (𝒖) > 0 for ∀𝒖 ∈  . Under the condition 𝑏 > 0, we have the following
nequality:

[

𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

− 𝑏

)

−𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)]

𝜙𝑼 (𝒖) < 0. (15)

Combining Eq. (14) and inequality (15) leads to 𝑚𝑃𝑓,𝑛
− 𝑚𝑃𝑓,𝑛 < 0. Hence, 𝑚𝑃𝑓,𝑛

< 𝑚𝑃𝑓,𝑛 is proved.
Analogous to the proof of the first inequality, the second inequality 𝑚𝑃𝑓,𝑛 < 𝑚𝑃𝑓,𝑛 can also be proved. Combining 𝑚𝑃𝑓,𝑛

< 𝑚𝑃𝑓,𝑛
and 𝑚𝑃𝑓,𝑛 < 𝑚𝑃𝑓,𝑛 completes the proof. □

Proposition 1 suggests that as long as 𝑏 > 0, 𝑚𝑃𝑓,𝑛 is always larger than 𝑚𝑃𝑓,𝑛
and smaller than 𝑚𝑃𝑓,𝑛 . Therefore, we shall refer to

𝑃𝑓,𝑛
as the ‘left-shifted posterior mean (LSPM) of the failure probability’, and to 𝑚𝑃𝑓,𝑛 as the ‘right-shifted posterior mean (RSPM) of

the failure probability’. One might be interested in the asymptotic properties of 𝑚𝑃𝑓,𝑛
, 𝑚𝑃𝑓,𝑛 and 𝑚𝑃𝑓,𝑛 . We first give the asymptotic

roperty of 𝑚𝑃𝑓,𝑛 by the following proposition:

roposition 2. When 𝜎𝑛 (𝒖) → 0+ and 𝑚𝑛 (𝒖) → (𝒖), there exists 𝑚𝑃𝑓,𝑛 → 𝑃𝑓 .

roof. In case that 𝜎𝑛 (𝒖) → 0+ and 𝑚𝑛 (𝒖) → (𝒖), it is easy to show that:

𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

→ 𝐼((𝒖)), (16)

where

𝐼((𝒖)) =
{

1,(𝒖) < 0
0, otherwise

. (17)

It follows immediately that

𝑚𝑃𝑓,𝑛 = ∫
𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖 → 𝑃𝑓 = ∫
𝐼((𝒖))𝜙𝑼 (𝒖)d𝒖. (18)

This completes the proof. □

Proposition 2 implies that the failure probability predictor 𝑚𝑃𝑓,𝑛 can theoretically approach the true value of the failure
probability. The asymptotic properties of 𝑚𝑃𝑓,𝑛

and 𝑚𝑃𝑓,𝑛 can be given by the following proposition:

Proposition 3. When 𝜎𝑛 (𝒖) → 0+, 𝑚𝑛 (𝒖) → (𝒖) and 0 < 𝑏 < ∞, there exist 𝑚𝑃𝑓,𝑛
→ 𝑚−

𝑃𝑓,𝑛
and 𝑚𝑃𝑓,𝑛 → 𝑚+

𝑃𝑓,𝑛
.

Proof. We first prove that 𝑚𝑃𝑓,𝑛
→ 𝑚−

𝑃𝑓,𝑛
holds true. Given that 𝜎𝑛 (𝒖) → 0+, 𝑚𝑛 (𝒖) → (𝒖) and 0 < 𝑏 < ∞, it is easy to know that

𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

− 𝑏

)

→ 𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)−

. (19)

hen it follows immediately that:

𝑚𝑃𝑓,𝑛
= ∫

𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

− 𝑏

)

𝜙𝑼 (𝒖)d𝒖 → 𝑚−
𝑃𝑓,𝑛

= ∫
𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖 (20)

Therefore, 𝑚𝑃𝑓,𝑛
→ 𝑚−

𝑃𝑓,𝑛
is proved.

Analogous to the proof of 𝑚𝑃𝑓,𝑛
→ 𝑚−

𝑃𝑓,𝑛
, 𝑚𝑃𝑓,𝑛 → 𝑚+

𝑃𝑓,𝑛
can also be proved. Combining these results completes the proof of the

roposition. □

Proposition 3 indicates that the LSPM of the failure probability 𝑚𝑃𝑓,𝑛
will approach to the posterior mean 𝑚𝑃𝑓,𝑛 from the left and

he RSPM of the failure probability 𝑚𝑃𝑓,𝑛 will approach to the posterior mean 𝑚𝑃𝑓,𝑛 from the right when the GP posterior approaches
o the -function. In the meantime, the posterior mean of the failure probability 𝑚𝑃𝑓,𝑛 will approach to the true failure probability
𝑓 as reflected by Proposition 2. Despite the inclusion of the harsh condition (i.e., 𝜎𝑛 (𝒖) → 0+ and 𝑚𝑛 (𝒖) → (𝒖)), Propositions 2
nd 3 will provide us with a sound basis for developing the stopping criteria and even the learning functions.

In this study, we propose the following three stopping criteria:

Stopping criterion 1:
𝑚𝑃𝑓,𝑛 − 𝑚𝑃𝑓,𝑛

𝑚𝑃𝑓,𝑛
< 𝜖1, (21)

Stopping criterion 2:
𝑚𝑃𝑓,𝑛 − 𝑚𝑃𝑓,𝑛 < 𝜖2, (22)
5

𝑚𝑃𝑓,𝑛
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Stopping criterion 3:
𝑚𝑃𝑓,𝑛 − 𝑚𝑃𝑓,𝑛

𝑚𝑃𝑓,𝑛
< 𝜖3, (23)

here 𝜖1, 𝜖2 and 𝜖3 are three user-specified tolerances. Stopping criterion 1 means that the learning process is terminated when the
elative difference between 𝑚𝑃𝑓,𝑛 and 𝑚𝑃𝑓,𝑛

falls below a certain threshold 𝜖1. The other two stopping criteria can also be interpreted
similarly. It should be emphasized that the three stopping criteria have a parsimonious form and their validity is theoretically
guaranteed. Implementing the above three stopping criteria, however, requires the treatment of the analytically intractable integrals
involved. In this study, we employ the variance-amplified importance sampling (VAIS) technique developed in [24] in a sequential
manner.

Taking stopping criterion 1 as an example, we have to approximate two integrals 𝑚𝑃𝑓,𝑛 and 𝑚𝑃𝑓,𝑛−𝑚𝑃𝑓,𝑛
. For notational simplicity,

et 𝛥𝑃𝑓,𝑛
= 𝑚𝑃𝑓,𝑛 − 𝑚𝑃𝑓,𝑛

. The VAIS estimators of 𝑚𝑃𝑓,𝑛 and 𝛥𝑃𝑓,𝑛
can be expressed as:

𝑚̂𝑃𝑓,𝑛 = 1
𝑁

𝑁
∑

𝑖=1
𝛷

(

−
𝑚𝑛 (𝒖

(𝑖))

𝜎𝑛 (𝒖
(𝑖))

)

𝜙𝑼 (𝒖(𝑖))
ℎ(𝒖(𝑖))

, (24)

𝛥̂𝑃𝑓,𝑛
= 1

𝑁

𝑁
∑

𝑖=1

[

𝛷

(

−
𝑚𝑛 (𝒖

(𝑖))

𝜎𝑛 (𝒖
(𝑖))

)

−𝛷

(

−
𝑚𝑛 (𝒖

(𝑖))

𝜎𝑛 (𝒖
(𝑖))

− 𝑏

)]

𝜙𝑼 (𝒖(𝑖))
ℎ(𝒖(𝑖))

, (25)

where ℎ(𝒖) is the sampling density, which is equal to the joint PDF of 𝑛 independent normal variables with a mean of zero and a
standard deviation of 𝜆 > 1;

{

𝒖(𝑖)
}𝑁
𝑖=1 is a set of 𝑁 random samples generated from ℎ(𝒖). The variances associated with 𝑚̂𝑃𝑓,𝑛 and

𝛥̂𝑃𝑓,𝑛
are given by:

V
[

𝑚̂𝑃𝑓,𝑛

]

= 1
𝑁 − 1

⎧

⎪

⎨

⎪

⎩

1
𝑁

𝑁
∑

𝑖=1

[

𝛷

(

−
𝑚𝑛 (𝒖

(𝑖))

𝜎𝑛 (𝒖
(𝑖))

)

𝜙𝑼 (𝒖(𝑖))
ℎ(𝒖(𝑖))

]2

− 𝑚̂2
𝑃𝑓,𝑛

⎫

⎪

⎬

⎪

⎭

, (26)

V
[

𝛥𝑃𝑓,𝑛

]

= 1
𝑁 − 1

⎧

⎪

⎨

⎪

⎩

1
𝑁

𝑁
∑

𝑖=1

[(

𝛷

(

−
𝑚𝑛 (𝒖

(𝑖))

𝜎𝑛 (𝒖
(𝑖))

)

−𝛷

(

−
𝑚𝑛 (𝒖

(𝑖))

𝜎𝑛 (𝒖
(𝑖))

− 𝑏

))

𝜙𝑼 (𝒖(𝑖))
ℎ(𝒖(𝑖))

]2

− 𝛥2
𝑃𝑓,𝑛

⎫

⎪

⎬

⎪

⎭

. (27)

To speed up the computation and avoid the computer memory problem when a large 𝑁 must be used, the VAIS method should
e implemented sequentially. Moreover, we can also reuse information in the sequential process. The details of the algorithm are
riefly explained as follows. Assume that the sample size is the same for each batch, say 𝑁0. At the 𝑗th iteration, first generate 𝑁0
andom samples from ℎ(𝒖), denoted as

{

𝒖(𝑖)
}𝑁0
𝑖=1. Then, evaluate the following two terms:

𝑞(𝑖) = −
𝑚𝑛 (𝒖

(𝑖))

𝜎𝑛 (𝒖
(𝑖))

, (28)

𝑝(𝑖) =
𝜙𝑼 (𝒖(𝑖))
ℎ(𝒖(𝑖))

. (29)

After that, we evaluate the following four terms:

𝑚̂(𝑗)
𝑃𝑓,𝑛

= 1
𝑁0

𝑁0
∑

𝑖=1
𝛷
(

𝑞(𝑖)
)

𝑝(𝑖), (30)

𝛥̂(𝑗)
𝑃𝑓,𝑛

= 1
𝑁0

𝑁0
∑

𝑖=1

(

𝛷
(

𝑞(𝑖)
)

−𝛷
(

𝑞(𝑖) − 𝑏
))

𝑝(𝑖), (31)

𝑠(𝑗) = 1
𝑁0

𝑁0
∑

𝑖=1

[

𝛷
(

𝑞(𝑖)
)

𝑝(𝑖)
]2 , (32)

𝑟(𝑗) = 1
𝑁0

𝑁0
∑

𝑖=1

[(

𝛷
(

𝑞(𝑖)
)

−𝛷
(

𝑞(𝑖) − 𝑏
))

𝑝(𝑖)
]2 . (33)

p to the 𝑗th iteration, the estimates and variances for 𝑚𝑃𝑓,𝑛 and 𝛥𝑃𝑓,𝑛
can be calculated as follows:

𝑚̂𝑃𝑓,𝑛 = 1
𝑗

𝑗
∑

𝑡=1
𝑚̂(𝑡)
𝑃𝑓,𝑛

, (34)

𝛥̂𝑃𝑓,𝑛
= 1

𝑗

𝑗
∑

𝑡=1
𝛥̂(𝑡)
𝑃𝑓,𝑛

, (35)

V
[

𝑚̂𝑃𝑓,𝑛

]

= 1
[

1
𝑗
∑

𝑠(𝑡) − 𝑚̂2
𝑃𝑓,𝑛

]

, (36)
6

𝑗𝑁0 − 1 𝑗 𝑡=1
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V
[

𝛥𝑃𝑓,𝑛

]

= 1
𝑗𝑁0 − 1

[

1
𝑗

𝑗
∑

𝑡=1
𝑟(𝑡) − 𝛥2

𝑃𝑓,𝑛

]

. (37)

The above sequential process is repeated until a stopping criterion is satisfied, i.e.,
√

V
[

𝑚̂𝑃𝑓,𝑛

]

∕𝑚̂𝑃𝑓,𝑛 < 𝛿1 and
√

V
[

𝛥̂𝑃𝑓,𝑛

]

∕𝛥̂𝑃𝑓,𝑛
< 𝛿2,

where 𝛿1 and 𝛿2 are two user-defined thresholds. Note that the most time-consuming part is usually associated with the term
𝑞(𝑖). Nevertheless, it can be reused in several places to reduce the overall computation time. This advantage comes mainly from
the structure of the stopping criterion 1 that we propose. After the sequential VAIS procedure is completed, the numerator and
denominator on the left-hand side of stopping criterion 1 should be replaced with their respective estimates. Also, the stopping
criterion is thus required to be satisfied twice in a row to avoid possible spurious convergence.

The other two stopping criteria (i.e., stopping criteria 2 and 3) can also be handled similarly to stopping criterion 1, and the
computational benefits can also be reserved. Note that it is not necessary to use all three stopping criteria at the same time, but only
one of them. The stopping criteria proposed in Eqs. (21)–(23) depend on the thresholds 𝜖1, 𝜖2 and 𝜖3 respectively, and also on the
parameter 𝑏. If a smaller 𝑏 is chosen, we need to set a smaller threshold to ensure the accuracy of the failure probability estimate
and vice versa.

3.2. Three learning functions

A point at which the -function is evaluated next should be identified if the selected stopping criterion is not satisfied. This
can usually be achieved by using a so-called learning (or acquisition) function. An appropriate learning function should be able to
suggest promising points that cause the posterior mean of the failure probability to approach the true one, taking into account the
trade-off between exploration and exploitation.

In this study, according to the three stopping criteria we propose the following three learning functions, which are called ‘left-
shifted contribution’ (LSC), ‘right-shifted contribution’ (RSC) and ‘left-shifted and right-shifted contribution’ (LSRSC), respectively:

Learning function 1: LSC(𝒖) =
[

𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

−𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

− 𝑏

)]

𝜙𝑼 (𝒖), (38)

Learning function 2: RSC(𝒖) =
[

𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

+ 𝑏

)

−𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)]

𝜙𝑼 (𝒖), (39)

Learning function 3: LSRSC(𝒖) =
[

𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

+ 𝑏

)

−𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

− 𝑏

)]

𝜙𝑼 (𝒖). (40)

Take learning function 1 as an example. Note that 𝑚𝑃𝑓,𝑛 − 𝑚𝑃𝑓,𝑛
= ∫ LSC(𝒖)d𝒖 holds. The learning function LSC(𝒖) can thus be

nterpreted as a measure of the contribution at the point 𝒖 to the difference between the posterior mean and the left-shifted posterior
ean of the failure probability. This is why it is so named. The other two learning functions can be interpreted similarly.

The best next point 𝒖(𝑛+1) at which to evaluate the -function can be chosen by maximizing the selected learning function such
hat:

𝒖(𝑛+1) = arg max
𝒖∈

LF(𝒖), (41)

here LF(𝒖) can refer to any of the three learning functions. The optimization problem involved in Eq. (41) can be solved by any
uitable global optimization algorithm, e.g., genetic algorithm. In practice, it is unnecessary and infeasible to search the entire space

for a possible solution, and a reduced subspace could be sufficient, e.g., [−𝑅,𝑅]𝑑 with 𝑅 > 0. In this study, the parameter 𝑅 is
pecified by 𝑅 =

√

𝜒−2
𝑑 (1 − 𝜌) with 𝜌 = 1×10−10, where 𝜒2

𝑑 is the CDF of a chi-squared distribution of degree 𝑑. Here, we will use the
learning function 1 to illustrate why our active learning scheme works. By choosing the point that maximizes the LSC(𝒖) function
as the next point to query the -function, it is expected that the difference between 𝑚𝑃𝑓,𝑛+1 and 𝑚𝑃𝑓,𝑛+1

will be reduced significantly.
Besides, note from Eq. (38) that LSC(𝒖) consists of the product of two terms. Obviously, the second term prefers the point whose
oint PDF value is large. The first term favors the point where 𝑚𝑛 (𝒖)

𝜎𝑛 (𝒖)
equals − 𝑏

2 due to the property of 𝛷. This means that any
point can be preferred, as long as the ratio between its posterior mean and standard deviation is a negative constant. From this
perspective, the learning function LSC(𝒖) allows a balance between exploration and exploitation through its first term. According
to our computational experience, 𝑏 = 1 might be a good choice.

3.3. Implementation procedure of the proposed methods

From the point of view of numerical implementation, the three proposed methods differ only in the stopping criterion and the
learning function. For this reason, we will only present the implementation details of PBALC1, which involves six main steps and
can be illustrated by the flowchart shown in Fig. 1.
7

Step 1: Generating an initial observation dataset
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𝑛

t

Fig. 1. Flowchart of the proposed PBALC1 method.

The first step involves generating an initial observation dataset by evaluating the -function. First, a small number (denoted as
0) of uniformly distributed samples  =

{

𝒖(𝑗)
}𝑛0
𝑗=1 are generated within a 𝑑-ball of radius 𝑅0 by using the Sobol sequence. Herein,

he radius 𝑅0 is determined by 𝑅0 =
√

𝜒−2
𝑑 (1 − 𝜌0) with 𝜌0 = 1 × 10−8. Then, the output values  =

[

𝑦(1), 𝑦(2),… , 𝑦(𝑛0)
]⊤ of the

-function can be obtained, where 𝑦(𝑗) = (𝒖(𝑗)). At last, the initial observation dataset is formed as  = { ,}. Let 𝑛 = 𝑛0.
Step 2: Obtaining the posterior GP of the -function
At this stage, one needs to obtain the posterior GP ((𝑚𝑛 (𝒖), 𝑘𝑛 (𝒖, 𝒖

′))) of the -function conditional on the observation dataset
. This mainly involves tuning the hyper-parameters by the use of maximum likelihood estimation. In this study, we adopt the fitrgp
function in the Statistics and Machine Leaning Toolbox of Matlab.

Step 3: Computing the two terms in the stopping criterion
The two estimates 𝑚̂𝑃𝑓,𝑛 and 𝛥̂𝑃𝑓,𝑛

that will be used in the stopping criterion are computed by using the sequential VAIS technique,
as described in Section 3.1.

Step 4: Checking the stopping criterion

If the stopping criterion,
𝛥̂𝑃𝑓,𝑛
𝑚̂𝑃𝑓,𝑛

< 𝜖1 is satisfied twice in a row, go to Step 6; Else, go to Step 5.
Step 5: Enriching the observation dataset
The best next point to evaluate the -function is identified by maximizing the LSC(𝒖) function such that 𝒖(𝑛+1) =

arg max𝒖∈[−𝑅,𝑅]𝑑 LSC(𝒖). After that, the -function is evaluated at 𝒖(𝑛+1) to produce the corresponding output value 𝑦(𝑛+1). The previous
dataset  is enriched with

{

𝒖(𝑛+1), 𝑦(𝑛+1)
}

. Let 𝑛 = 𝑛 + 1, and go to Step 2.
Step 6: Ending the algorithm
Return 𝑚̂𝑃𝑓,𝑛 as the failure probability estimate and end the algorithm.

4. Numerical examples

This section investigates five numerical examples to demonstrate the performance of the three proposed methods, namely
PBALC1, PBALC2 and PBALC3. The unspecified parameters involved are set as follows: 𝑛0 = 10, 𝑏 = 1, 𝜆 = 2, 𝑁0 = 106, 𝛿1 = 2%,
𝛿2 = 5%, 𝜖1 = 2.5%(5%), 𝜖2 = 2.5%(5%), 𝜖3 = 5%(10%). The reference failure probability for each example is obtained from the
crude MCS with a sufficiently large number of samples, if applicable. For comparison purposes, three state-of-the-art methods,
Active Learning Kriging Markov Chain Monte Carlo (AK-MCMC) [28], Active Learning Kriging-Kernel Density Estimation-Importance
8
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Table 1
Reliability analysis results of Example 1 obtained by several methods.

Method 𝑃𝑓 COV
[

𝑃𝑓
]

𝑁𝑐𝑎𝑙𝑙

MCS 3.01 × 10−9 1.82% 1012

AK-MCMC 2.34 × 10−9 33.11% 195.45
ALK-KDE-IS 3.03 × 10−9 0.55% 84.10
BSS 3.52 × 10−9 47.64% 66.35
Proposed PBALC1 (𝜖1 = 2.5%) 3.04 × 10−9 3.82% 44.75
Proposed PBALC2 (𝜖2 = 2.5%) 3.04 × 10−9 1.39% 50.10
Proposed PBALC3 (𝜖3 = 5%) 3.03 × 10−9 1.99% 49.50

Sampling (ALK-KDE-IS) [29] and Bayesian Subset Simulation (BSS) [30], are also implemented in all examples. All methods except
MCS (or its substitute) are run 20 independent times to test their robustness, and the average results are reported.

4.1. Example 1: A series system with four branches

The first example considers a series system with four branches, which has been a common benchmark for the verification of
tructural reliability analysis methods [20]. The performance function is given by:

𝑔
(

𝑋1, 𝑋2
)

= min

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑎 + (𝑋1−𝑋2)2
10 − (𝑋1+𝑋2)

√

2

𝑎 + (𝑋1−𝑋2)2
10 + (𝑋+𝑋2)

√

2

(𝑋1 −𝑋2) +
𝑏
√

2

(𝑋2 −𝑋1) +
𝑏
√

2

, (42)

where 𝑋1 and 𝑋2 are two independent standard normal variables; 𝑎 and 𝑏 are two constant parameters, which are specified as 6
and 12, respectively.

Table 1 summarizes the results obtained by several methods, i.e., MCS, AK-MCMC, ALK-KDEIS, BSS, PBALC1, PBALC2 and
PBALC3. The reference value of the failure probability is 3.01 × 10−9 with a COV of 1.82%, given by the crude MCS with 1012

samples. AK-MCMC produces an average failure probability (say 2.34 × 10−9) that is smaller than the reference value and with a
large COV (say 33.11%), implying its inaccuracy in this example. However, it requires an average of 195.45 performance function
evaluations, which is the most of the six competing methods. At the cost of 84.10 -function calls on average, ALK-KDE-IS can
produce an unbiased result for the failure probability with a COV of 0.55%. As for BSS, it generates a biased result for the failure
probability with a very large COV (i.e., 47.64%), even at the cost of an average of 66.35 performance function evaluations. On the
contrary, all three proposed methods are capable of producing fairly accurate failure probabilities with an average of only about 45
∼ 50 performance function evaluations. Among them, PBALC1 requires the fewest -function calls on average, but has the largest
COV.

To further illustrate the proposed methods, we show in Figs. 2–4 the learning curves (left panel) and selected points (right panel)
generated from an exemplary run of the three methods. From the learning curves, we can see that the posterior mean estimate of
the failure probability 𝑚̂𝑃𝑓,𝑛 eventually approaches the reference failure probability. Also, the left-shifted and right-shifted posterior
mean estimates of the failure probability (𝑚̂𝑃𝑓,𝑛

and 𝑚̂𝑃𝑓,𝑛 ) gradually approach 𝑚̂𝑃𝑓,𝑛 . On the other hand, it can be observed from the
elected points that most of the added points are close to the four important parts of the limit state curve that are crucial for the
ailure probability estimation.

.2. Example 2: A nonlinear oscillator

As a second example, we consider a nonlinear, undamped, single-degree-of-freedom (SDOF) oscillator subject to a rectangular
ulse load [31], as shown in Fig. 5. The performance function is formulated as:

𝑔
(

𝑚, 𝑘1, 𝑘2, 𝑟, 𝐹1, 𝑡1
)

= 3𝑟 −
|

|

|

|

|

|

2𝐹1
𝑘1 + 𝑘2

sin

(

𝑡1
2

√

𝑘1 + 𝑘2
𝑚

)

|

|

|

|

|

|

, (43)

where 𝑚, 𝑘1, 𝑘2, 𝑟, 𝐹1 and 𝑡1 are six random variables, as detailed in Table 2.
The proposed three methods are compared in Table 3 with several other reliability analysis methods, i.e., MCS, AK-MCMC,

LK-KDE-IS and BSS. With 1012 samples, MCS can produce a failure probability estimate of 4.01×10−8 with a rather small COV (say
0.50%), so it is used as a reference solution. All the other six methods except BSS are able to give quite good results. However, the
three proposed methods significantly outperform other methods in terms of the average number of performance function calls. Note
that PBALC1 has a sightly larger COV and requires a sightly fewer -function calls on average than PBALC2 and PBALC3.
9
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Fig. 2. Illustration of the proposed PBALC1 method for Example 1.

Fig. 3. Illustration of the proposed PBALC2 method for Example 1.

Fig. 4. Illustration of the proposed PBALC3 method for Example 1.
10
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Fig. 5. A nonlinear SDOF oscillator under a rectangular pulse load.

Table 2
Random variables for Example 2.

Variable Description Distribution Mean COV

𝑚 Mass Lognormal 1.0 0.05
𝑘1 Stiffness Lognormal 1.0 0.10
𝑘2 Stiffness Lognormal 0.2 0.10
𝑟 Yield displacement Lognormal 0.5 0.10
𝐹1 Load amplitude Lognormal 0.4 0.20
𝑡1 Load duration Lognormal 1.0 0.20

Table 3
Reliability analysis results of Example 2 obtained by several methods.

Method 𝑃𝑓 COV
[

𝑃𝑓
]

𝑁𝑐𝑎𝑙𝑙

MCS 4.01 × 10−8 0.50% 1012

AK-MCMC 4.03 × 10−8 0.76% 282.30
ALK-KDE-IS 4.03 × 10−8 2.92% 84.60
BSS 4.53 × 10−8 32.53% 77.75
Proposed PBALC1 (𝜖1 = 5%) 4.03 × 10−8 4.29% 29.10
Proposed PBALC2 (𝜖2 = 5%) 4.07 × 10−8 2.61% 31.90
Proposed PBALC3 (𝜖2 = 10%) 4.05 × 10−8 3.66% 30.95

Fig. 6. A simply-supported I beam subjected to a concentrated force.

4.3. Example 3: An I beam

The third example involves a simply-supported I beam subjected to a concentrated force [32], as depicted in Fig. 6. The
performance function is expressed as:

𝑔(𝑿) = 𝑆 − 𝜎max, (44)

in which

𝜎max =
𝑃𝑎(𝐿 − 𝑎)𝑑

2𝐿𝐼
, (45)

with

𝐼 =
𝑏𝑓𝑑3 − (𝑏𝑓 − 𝑡𝑤)(𝑑 − 2𝑡𝑓 )3

12
. (46)

In this example, a total of eight random variables are considered, as listed in the Table 4.
11
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Table 4
Random variables for Example 3.

Variable Distribution Mean COV

𝑃 Lognormal 1500 0.20
𝐿 Normal 120 0.05
𝑎 Normal 72 0.10
𝑆 Normal 200,000 0.15
𝑑 Normal 2.3 0.05
𝑏𝑓 Normal 2.3 0.05
𝑡𝑤 Normal 0.16 0.05
𝑡𝑓 Normal 0.26 0.05

Table 5
Reliability analysis results of Example 3 obtained by several methods.

Method 𝑃𝑓 COV
[

𝑃𝑓
]

𝑁𝑐𝑎𝑙𝑙

MCS 1.69 × 10−7 0.77% 1011

AK-MCMC 1.71 × 10−7 2.13% 376.70
ALK-KDE-IS – – –
BSS 1.88 × 10−7 31.38% 104.90
Proposed PBALC1 (𝜖1 = 5%) 1.69 × 10−7 3.14% 45.05
Proposed PBALC2 (𝜖2 = 5%) 1.67 × 10−7 4.08% 45.00
Proposed PBALC3 (𝜖3 = 10%) 1.69 × 10−7 2.71% 46.70

Table 6
Random variables for Example 4.

Variable Distribution Mean COV

𝑃1 Lognormal 150 kN 0.20
𝑃2 ∼ 𝑃9 Lognormal 100 kN 0.20
𝐸 Normal 2.06 GPa 0.10
𝐴 Normal 2000 mm2 0.05

Table 5 reports the reliability analysis results by several methods. The reference value of the failure probability is 1.69 × 10−7

ith a COV of 0.77%, provided by MCS with 1011 samples. At the cost of an average of 376.70 performance function evaluations,
K-MCMC can produce an unbiased result for the failure probability with a small COV. The results of ALK-KDE-IS are missing
ecause it cannot converge in multiple trials. BSS still gives a slightly biased result, even with 104.90 -function calls on average.
n the contrary, with an average of about 45–46 performance evaluations, the three proposed methods are able to produce desired

esults.

.4. Example 4: A spatial truss

As a fourth example to illustrate the performance of the proposed methods, we consider a 56-bar space truss structure [33], which
s shown in Fig. 7. The structure is modeled as a three-dimensional finite element model with 35 nodes and 56 truss elements using
penSees. Nine vertical concentrated forces, 𝑃1 ∼ 𝑃9, are applied to the model along the negative of the 𝑧-axis. The cross-sectional
rea and Young’s modulus of each element are assumed to be the same and denoted as 𝐴 and 𝐸 respectively. The performance
unction is defined as:

𝑔(𝑃1 ∼ 𝑃9, 𝐸, 𝐴) = 𝛥 − 𝑉1(𝑃1 ∼ 𝑃9, 𝐸, 𝐴), (47)

here 𝑉1 is the displacement of node 1 along the negative of the 𝑧-axis; 𝛥 is the threshold, which is set to be 50 mm; 𝑃1 ∼ 𝑃9, 𝐸
nd 𝐴 are 11 random variables, as listed in Table 6.

To obtain a reference solution for the failure probability, we implement the importance sampling (IS) method available in
QLab [34]. The results of several other methods are reported in Table 7, as well as the IS method. The failure probability estimate
roduced by IS is 4.83 × 10−8 with a COV of 0.99%, at the cost of 67,107 𝑔-function evaluations. Although AK-MCMC can produce
n unbiased result, it has a COV up to 9.33% and requires an average of 453.80 model evaluations. At the cost of 176.45 -function
alls, ALK-KDE-IS produces a biased result with a considerably large COV (i.e., 24.06%). As for BSS, a biased result can be produced
sing an average of 81.70 -function calls. It is noteworthy that the three proposed methods only require on average less than 30
odel evaluations, while still maintaining a desired level of accuracy.

.5. Example 5: A dam seepage model

The last example involves the study of the steady-state confined seepage flow below a dam (adopted from [35]), as shown in
ig. 8. The dam foundation consists of an impermeable layer and two permeable layers (silty sand and silty gravel). A cut-off wall
12

s installed at the bottom of the dam to prevent excessive seepage. The upstream water has a height of ℎ𝐷 m. Thus, the hydraulic
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Fig. 7. Schematic of a 56-bar space truss structure.
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Table 7
Reliability analysis results of Example 4 obtained by several methods.

Method 𝑃𝑓 COV
[

𝑃𝑓
]

𝑁𝑐𝑎𝑙𝑙

IS 4.83 × 10−8 0.99% 67,107
AK-MCMC 4.83 × 10−8 9.33% 453.80
ALK-KDE-IS 4.52 × 10−8 24.06% 176.45
BSS 5.34 × 10−8 24.90% 81.70
Proposed PBALC1 (𝜖1 = 5%) 4.86 × 10−8 5.70% 27.20
Proposed PBALC2 (𝜖2 = 5%) 4.85 × 10−8 4.61% 26.90
Proposed PBALC3 (𝜖3 = 10%) 4.87 × 10−8 6.64% 26.30

Fig. 8. Schematic illustration of the dam seepage problem.

Table 8
Random variables for Example 5.

Variable Distribution Parameter 1 Parameter 2

ℎ𝐷 (m) Uniform 7 10
𝑘𝑥𝑥,1

(

10−7 m/s
)

Gumbel 5 0.20
𝑘𝑦𝑦,1

(

10−7 m/s
)

Gumbel 2 0.20
𝑘𝑥𝑥,2

(

10−6 m/s
)

Lognormal 5 0.20
𝑘𝑦𝑦,2

(

10−6 m/s
)

Lognormal 2 0.20

Note: Parameter 1 and Parameter 2 denote the lower and upper bounds for a uniform distribution,
while mean and COV for a Gumbel/Lognormal distribution, respectively.

ℎ𝑊 over the impermeable layer is ℎ𝑊 = ℎ𝐷 + 20 m. It is assumed that the water only flows from the segment AB to the segment
CD through the two permeable layers (where the vertical and horizontal permeabilities of the 𝑖th layer are denoted as 𝑘𝑥𝑥,𝑖 and
𝑘𝑦𝑦,𝑖, respectively). Five quantities (i.e., ℎ𝐷, 𝑘𝑥𝑥,1, 𝑘𝑦𝑦,1, 𝑘𝑥𝑥,2 and 𝑘𝑦𝑦,2) are considered as random variables, as given in Table 8. The
hydraulic head of the seepage problem is governed by the following partial differential equation:

𝑘𝑥𝑥,𝑖
𝜕2ℎ𝑊
𝜕𝑥2

+ 𝑘𝑦𝑦,𝑖
𝜕2ℎ𝑊
𝜕𝑦2

= 0, 𝑖 = 1, 2. (48)

The equation is numerically solved by using the finite element method with 1628 quadratic triangular elements, as depicted in
Fig. 9. Once ℎ𝑊 is solved, the seepage discharge 𝑞 at the downstream side of the dam, measured in units of volume over time over
distance, can be calculated:

𝑞 = −∫CD
𝑘𝑦𝑦,2

𝜕ℎ𝑊
𝜕𝑦

d𝑥. (49)

The performance function of this problem is formulated as:

𝑔(ℎ𝐷, 𝑘𝑥𝑥,1, 𝑘𝑦𝑦,1, 𝑘𝑥𝑥,2, 𝑘𝑦𝑦,2) = 𝛥 − 𝑞(ℎ𝐷, 𝑘𝑥𝑥,1, 𝑘𝑦𝑦,1, 𝑘𝑥𝑥,2, 𝑘𝑦𝑦,2), (50)

where 𝛥 denotes a prescribed threshold for the seepage discharge 𝑞, which is set as 20 L/h/m.
Table 9 lists the results of several reliability analysis methods. The reference value for the failure probability is adopted as

7.78 × 10−6, given by the IS method in UQLab [34]. With an average of 94.75 performance function evaluations, AK-MCMC gives
14
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Fig. 9. Finite-element mesh of the permeable layers.

Table 9
Reliability analysis results of Example 5 obtained by several methods.

Method 𝑃𝑓 COV
[

𝑃𝑓
]

𝑁𝑐𝑎𝑙𝑙

IS 7.78 × 10−6 1.97% 16,218
AK-MCMC 7.78 × 10−6 0.80% 94.75
ALK-KDE-IS 7.76 × 10−6 2.55% 125.00
BSS 7.73 × 10−6 27.40% 43.85
Proposed PBALC1 (𝜖1 = 5%) 7.76 × 10−6 1.74% 62.60
Proposed PBALC2 (𝜖2 = 5%) 7.82 × 10−6 1.88% 76.40
Proposed PBALC3 (𝜖3 = 10%) 7.81 × 10−6 1.81% 77.55

a failure probability mean that is close to the reference one, while processing a small COV. ALK-KDE-IS requires more  function
calls on average than AK-MCMC, but has slightly larger variability. The COV of the BSS is as high as 27.40%, even though the
average number of model evaluations is only 43.85. All the three proposed PBALC methods can produce fairly good results for the
failure probability at the cost of up to 77.55 performance function calls (average). Note that PBALC1 requires relatively fewer model
evaluations than PBALC2 and PBALC3 on average in this example.

Remark. The three proposed methods perform very similarly in all five numerical examples, except for the first and last two (where
PBALC1 is clearly more efficient, but exhibits relatively larger variability in example 1). Therefore, PBALC1 is recommended when
efficiency is more important than accuracy, and vice versa.

5. Concluding remarks

This study presents three novel Bayesian active learning methods under the name ‘partially Bayesian active learning cubature’
(PBALC) for structural reliability analysis, especially when very small failure probabilities are involved. These methods are the result
of extending the framework of Bayesian failure probability inference to Bayesian active learning of failure probabilities. The basic
idea is to use only the posterior mean of the failure probability to design the stopping criterion and the learning function. Following
this idea, we creatively propose three stopping criteria by exploring the structure of the posterior mean of the failure probability. In
addition, the analytically intractable integrals encountered in the stopping criteria are numerically approximated by the sequential
variance-amplified importance sampling, which also enables to assess very small failure probabilities. Motivated by the stopping
criteria, we further develop three learning functions that allow a balance between exploration and exploitation. The three stopping
criteria and associated learning functions correspond to the three proposed methods PBALC1, PBALC2 and PBALC3. Numerical
studies show that these proposed methods can accurately evaluate very small failure probabilities in the order of 10−6–10−9. Besides,
they also significantly outperform several existing methods in the literature in terms of accuracy and efficiency.

The proposed methods are expected to be applicable to weakly and moderately nonlinear problems in low to medium dimensions.
For highly nonlinear and/or high-dimensional problems (e.g., dynamic reliability analysis of nonlinear structures under random
excitation), special treatments are required. In addition, some minor efforts could be made in the future along the following
directions. The sequential variance-amplified importance sampling is found to be time-consuming in some cases, though it is a robust
method for numerically approximating the analytically intractable integrals involved in the proposed stopping criteria. Therefore,
an interesting future direction is to develop a more refined importance sampling instead. In addition, we select only a single point
that maximizes the learning functions at the active learning phase, which may waste other useful information and does not support
parallel distributed processing. In the future, a multi-point selection strategy can be developed to reduce the number of performance
function evaluations and enable parallel computing.
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