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Abstract

Aerobic methanotrophs are a specialized microbial group, catalyzing the oxidation of methane. Disturbance-induced loss of methan-
otroph diversity/abundance, thus results in the loss of this biological methane sink. Here, we synthesized and conceptualized the
resilience of the methanotrophs to sporadic, recurring, and compounded disturbances in soils. The methanotrophs showed remark-
able resilience to sporadic disturbances, recovering in activity and population size. However, activity was severely compromised when
disturbance persisted or reoccurred at increasing frequency, and was significantly impaired following change in land use. Next, we
consolidated the impact of agricultural practices after land conversion on the soil methane sink. The effects of key interventions
(tillage, organic matter input, and cover cropping) where much knowledge has been gathered were considered. Pairwise comparisons
of these interventions to nontreated agricultural soils indicate that the agriculture-induced impact on the methane sink depends on
the cropping system, which can be associated to the physiology of the methanotrophs. The impact of agriculture is more evident in
upland soils, where the methanotrophs play a more prominent role than the methanogens in modulating overall methane flux. Al-
though resilient to sporadic disturbances, the methanotrophs are vulnerable to compounded disturbances induced by anthropogenic

activities, significantly affecting the methane sink function.
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Introduction

Methane is a potent greenhouse gas (GHG), having a 34-fold higher
heatretentive capacity in a 100-year time frame than carbon diox-
ide (IPCC 2019). Atmospheric methane has increased to ~1857
ppmy in 2018, a 2.6-fold hike since the preindustrial era (IPCC
2019, Saunois et al. 2020). The recent trend in methane growth
is a cause for concern, exacerbating the impact of climate change
(Etminan et al. 2016, Dean et al. 2018), and indicates the imbal-
ance of methane sources and sinks whereby the rate of methane
production is outpaced by consumption (Saunois et al. 2020). In-
deed, the net methane flux is a balance of methane production
and oxidation, catalyzed by the methanogenic archaea (anaer-
obic decomposition of organic matter) and methanotrophs, re-
spectively (Conrad 2009, Kirschke et al. 2013, Guerrero-Cruz et al.
2021). Particularly in well-aerated soils (e.g. forest, upland agri-
cultural soils, and pasture), the methane flux is governed more by
the activity of the aerobic methanotrophs than the methanogens
(Serrano-Silva et al. 2014, Meyer et al. 2017, Ho et al. 2019). Hence,
disturbances, including agricultural practices, inflicted upon the
methanotrophs will inevitably affect the methane sink function
in these soils. Anthropogenic-associated methane emissions, also
accounting for agriculture-derived methane, contributes up to
65% of the total methane emitted globally (Nazaries et al. 2013).
Nevertheless, some agricultural practices may have a compa-
rably lower environmental footprint than others (Lehmann et al.

2020). To this end, regenerative agricultural practices, which ap-
proximate or imitate natural systems are thought to render ben-
eficial effects to soils (see below discussion). While the impact of
(regenerative) agricultural practices on nitrous oxide fluxes and
the associated microorganisms, specifically in relation to differ-
ent (bio-based or mineral) fertilization regimes have been rel-
atively well-documented (Cayuela et al. 2014, Yoon et al. 2019,
El-Hawwary et al. 2022), how methane and the aerobic methan-
otrophs are affected by these interventions remain fragmented.
This may, in part, stem from the general assumption that agri-
cultural soils become less important methane sinks after con-
version from pristine environments (Le Mer and Roger 2001, Ho
and Bodelier 2015, Tate 2015, Kaupper et al. 2020). Here, we aim
to (i) conceptualize the resilience and response of the methan-
otrophs to sporadic (i.e. one-off disturbances, allowing recovery
of activity/community composition), recurring, and compounded
environmental/anthropogenic disturbances, and (ii) consolidate
research findings on the impact of agriculture, with emphasis
on regenerative practices, on the methane sink function via pair-
wise comparisons of agricultural soils with and without specific
interventions (magnitude or % change of the capacity of the
soil to consume methane is documented). Practice-based agri-
cultural interventions and the outcomes of these interventions
were documented in a literature survey. We compiled field man-
agement practices (namely, nontillage, nonchemical-based fertil-
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ization, and cover cropping; Table S1, Supporting Information)
largely considered to be regenerative (Lehmann et al. 2020, New-
ton et al. 2020), and focused on the impact of these practices on
the methane flux, and with respect to the methanotroph ecology,
when available. This compilation is not intended to be exhaus-
tive, but rather to capture the breadth of the results (adverse to
stimulatory effects of the practices on soil methane sink), par-
ticularly under upland cropping system. Individual agricultural
practices were considered given that we cannot unequivocally at-
tribute the response of the methane flux to a specific agricultural
practice where multiple approaches were simultaneously applied
(i.e. synergistic effect, such as integrating livestock and crop farm-
ing; Newton et al. 2020).

Key players of aerobic methane oxidation

Discoveries over the past two decades have broadened the known
diversity of methanotrophs, particularly the anaerobic ones which
were found able to couple anaerobic methane oxidation to a
suite of electron acceptors, including iron, sulphate, nitrite, and
manganese; the ecology, physiology, and potential applications of
the anaerobic methanotrophs have recently been reviewed (In 't
Zandt et al. 2018, Guerrero-Cruz et al. 2021). On the other hand,
the aerobic methanotrophs (henceforth, referred as methan-
otrophs) oxidize methane to methanol using oxygen as the pri-
mary electron acceptor with the enzyme methane monooxy-
genase (MMO), which can be present as a soluble (sMMO) or
membrane-bound particulate (pMMO) form. While the vast ma-
jority of methanotrophs harbor the pMMO, the alphaproteobac-
terial methanotrophs Methylocella and Methyloferula possess only
the sSMMO (Theisen et al. 2005, Vorobev et al. 2011). In methan-
otrophs harboring both the pMMO and sMMO, copper regulates
the relative expression of these enzymes, suppressing the sMMO,
while stimulating the pMMO (Knapp et al. 2007, Trotsenko and
Murrell 2008). The pmoA and mmoX gene, respectively encoding
for a subunit of the pMMO and sMMQO, are frequently targeted in
culture-independent studies to characterize the methanotrophs
in complex communities (e.g. Liebner and Svenning 2013, Cai et
al. 2016, Wen et al. 2016, Karwautz et al. 2018).

Besides the canonical proteobacterial methanotrophs, aci-
dophilic and thermophilic/thermotolerant methanotrophs be-
longing to Verrucomicrobia were discovered in geothermal
springs, but have since been found to be widespread (Schmitz
et al. 2021, Kaupper et al. 2021b, Hwangbo et al. 2023). Inter-
estingly, a cave-dwelling putative methanotroph (candidatus My-
cobacterium methanotrophicum) was recently discovered, belonging
to Actinobacteria (van Spanning et al. 2022). The methanotrophs
possess distinct carbon assimilation pathways and metabolic fi-
nesse (Trotsenko and Murrell 2008). While around 50%-60% of
methane-derived carbon is assimilated into the cell (remaining
methane is oxidized to carbon dioxide via dissimilatory methane
oxidation) in most methanotrophs, some methanotrophs (e.g. al-
phaproteobacterial Methylosinus) derived a substantial amount of
cell carbon (> 60%) from carbon dioxide (Yang et al. 2013, Dedysh
and Knief 2018). Additionally, some methanotrophs (e.g. Methy-
locella, and specific Methylocystis species, but not all) are faculta-
tive, capable of growth on compounds containing carbon-carbon
bonds (e.g. acetate, ethanol, and succinate), besides methane
(Dedysh et al. 2005, Im et al. 2011, Dedysh and Knief 2018). Other
characteristics which differentiate the methanotrophs include
their distinct phospholipid fatty acid (PLFA) profiles (Ho et al.
2019). The metabolic flexibility of methanotrophs may reflect on

their ecological traits, influencing their habitat preference (Ho et
al. 2013a, Knief 2015, 2017).

In particular, the aerobic rather than the anaerobic methan-
otrophs were often documented to be the active and key methane-
oxidizers in many methane-emitting terrestrial environments
(Blazewicz et al. 2012, Ho et al. 2013a, Gao et al. 2022, Kaupper
et al. 2022). Interestingly, these methanotrophs may also foster
close interactions with photosynthetic organisms, widening their
habitat range to micro-oxic or even anoxic environments (Raghoe-
barsing et al. 2005, Ho and Bodelier 2015, Milucka et al. 2015,
Guerrero-Cruz et al. 2021). It follows that high methane-emitting
environments (e.g. wastewater treatment systems, landfill cover,
rice paddies, and peatlands) are hotspots for the methanotrophs.
Noteworthy, methanotrophs possessing MMO with a low affinity
to methane (i.e. high concentration of substrate is required to sat-
urate the MMO) and hence, tend to thrive in methane hotspots, are
typically referred to as “low-affinity” methanotrophs (e.g. Ho et al.
2013a). Conversely, methanotrophs oxidizing methane at (circum-
) atmospheric methane levels are anticipated to possess the en-
zyme with a high affinity to methane (henceforth, referred as
“high-affinity” methanotrophs; Knief and Dunfield 2005, Bissett et
al. 2012). Although representing a relatively minor fraction of the
total bacterial population being members of the rare biosphere
(Bodelier et al. 2013), the “low-affinity” methanotrophs dispropor-
tionally contribute to the total soil carbon (i.e. methane-derived
carbon 1%—2%; Sultana et al. 2022). While the majority of cul-
tured methanotrophs are “low-affinity” methane-oxidizers, typi-
cally but not exclusively recovered from high methane-emitting
environments, the “high-affinity” methanotrophs have, for a long
time been identified based on their pmoA gene diversity and re-
sisted isolation (Cai et al. 2016, Pratscher et al. 2018, Ho et al.
2019, Tveit et al. 2019). Traditionally, these “high-affinity” methan-
otrophs have been clustered in specific clades (e.g. upland soil
clusters USC-a and USC-y, respectively belonging to Alpha- and
Gamma-proteobacteria, as well as Jasper Ridge clusters JR1, JR2,
and JR3; Knief 2015). Recently, a novel methanotroph capable of
high-affinity methane oxidation belonging to a genus thought
to consist of “low-affinity” methanotrophs, Methylocapsa gorgona
has been isolated in subarctic Norway (Tveit et al. 2019), blurring
the distinction between “high-“ and “low-affinity” methanotrophs
on the phylogenetic level. Along with this isolate, other mem-
bers of the same genus, Methylocapsa acidiphila and Methylocapsa
aurea have also been shown to grow on atmospheric methane
(Tveit et al. 2019). Although Methylotuvimicrobium buryatense can
oxidize methane at relatively low concentrations, these values
are still above atmospheric levels (>200 ppm, for M. buryatense),
and M. buryatense did not exhibit growth below the threshold
methane concentrations (He et al. 2023). Therefore, with the ex-
ception of Methylocapsa species (Tveit et al. 2019), the lack of tra-
ditional “high-affinity” methanotroph isolates (e.g. members of
USC-a, USC-y, and JR clusters) capable of oxidizing and grow
on atmospheric methane makes interpretation of their phys-
iological response to disturbances challenging. Much remains
unknown of this elusive methanotroph group. Having different
affinities to methane may influence methanotroph distribution
in the environment, with the “low-affinity” methanotrophs being
more prevalent in environments with a high methane availability
(% range), typically acting as a methane biofilter at oxic-anoxic
interfaces, while the “high-affinity” ones consume atmospheric
methane in well-aerated upland soils (Singh et al. 2010). However,
it should be noted that the distribution of the “low-affinity” and
“high-affinity” methanotrophs is not mutually exclusive, and they
may co-occur. For instance, “low-affinity” methanotrophs may be-
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come active following a rainfall event in well-aerated upland soils
as methane exceeding atmospheric levels becomes available with
increased anoxic niches resulting in stimulated methanogenesis
(Shrestha et al. 2012, Ho et al. 2013b). The different affinities for
methane may also determine the response and resilience of the
methanotrophic groups to disturbances (see below discussion).

Conceptualizing the resilience of the
methanotrophic activity and aerobic
methanotrophs to sporadic, recurring, and
compounded disturbances

The “low-affinity” methanotrophs are remarkably resilient to spo-
radic or single disturbance events, having been shown to recover
following a temperature and heat shock up to 45°C (Ho and Fren-
zel 2012), physical disruption to soil structure (sieving and grind-
ing; Kumaresan et al. 2011), increasing salinity [soil salinity range
0.3-1.0 dS m~*, and up to saltwater salinity level (Bissett et al.
2012, Ho et al. 2018)], and disturbance-induced mortality [soil re-
colonization following disturbances (Ho et al. 2011, Pan et al. 2014,
Kaupper et al. 2020)], among other anthropogenic-induced distur-
bances (e.g. contamination of heavy metals, and pollutants such
as pharmaceuticals, pesticides, and chemical additives; see Table
S2, Supporting Information; Semrau et al. 2010, Deng et al. 2011,
Benner et al. 2015). Given sufficient recovery time (within days to
weeks) and substrate (methane and oxygen) availability, the “low-
affinity” methanotrophs even over-compensated for disturbance-
induced activity and diversity loss (Fig. 1). Also, relevant factors
restricting microbial growth (i.e. nutrients and space, as a result
of disturbance-induced cell die-off) may become available follow-
ing disturbances. Therefore, the modified edaphic properties may
determine the success of the early colonizers, benefiting the fast-
growing methanotrophs under these favorable conditions (Ho et
al. 2017). A compositional shift is often detected after disturbance,
suggesting the differential response of community members to
the disturbance leading to an altered trajectory in community
succession (Table S2, Supporting Information; Kumaresan et al.
2011, Andersen et al. 2013, Kaupper et al. 2021a). In particular, the
alphaproteobacterial methanotrophs (Methylosinus and Methylo-
cystis), which showed habitat preference for relatively oligotrophic
environments (e.g. ombrotrophic peatlands and upland soils), ap-
peared to be generally more resistant to disturbances (Dedysh
2011, Ho et al. 2013a, Knief 2015, 2017), while the fast-growing
gammaproteobacterial methanotrophs (e.g. Methylobacter, Methy-
losarcina, and Methylobacter) are likely the rapid-responders and
early colonizers (Ho et al. 2013a, Pan et al. 2014, Kaupper et
al. 2020). This suggests advantageous ecological traits inherent
to some methanotrophs, likely reflecting on their life strategies,
which enabled their persistence and dominance during and af-
ter disturbances, respectively (see reviews Ho et al. 2013a, 2017,
Krause et al. 2014).

The resilience of the “low-affinity” methanotrophs may be at-
tributable to relatively high methane availability in their habi-
tat, allowing rapid proliferation among the surviving commu-
nity members after disturbances, in contrast to the “high-affinity”
methanotrophs, which are restricted by substrate availability (at-
mospheric methane), limiting growth and the population size
(Knief and Dunfield 2005, Kolb et al. 2005, Ho et al. 2019). Impor-
tantly, the resilience of the “low-affinity” methanotrophs can also
be partly explained by previous exposure to the same disturbance
or disturbances, which elicited a similar physiological response,
prompting rapid recovery of a community which had survived the
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event (Krause et al. 2012,2017, Baumann and Marschner 2013, van
Kruistum et al. 2018). It stands to reason that a microbial com-
munity primed to a disturbance eliciting a specific physiological
response will respond more rapidly should the event reoccur. Al-
though activity recovery can be attributable to prior exposure to
a disturbance, results indicate the marginal role of site history in
conferring resilience to contemporary disturbances, particularly
for the “low-affinity” methanotrophs. Regardless of the commu-
nity composition, methanotrophs from deep lake sediments re-
covered just as rapidly as methanotrophs from a shallow lake
and rice paddy soil from desiccation and heat stress, despite not
having prior exposure to the disturbance nor harboring the same
community members (Ho et al. 2016). Nevertheless, prior distur-
bances likely selected for a reservoir of (seed bank) community
members that were resistant or were even favored by the distur-
bance (Krause et al. 2010, van Kruistum et al. 2018). This begs
the question whether the resilience of the methanotrophs will be
challenged in the face of (intensified) recurring, and compounded
disturbances.

To this end, methane uptake rates were shown to recover
after consecutive desiccation-rewetting cycles induced every 2
weeks, but activity was significantly impaired when desiccation—
rewetting events intensified (shortened recovery time from 2 to 1
week; Ho et al. 2016) and the effect increased over stress cycles.
This suggests that disturbances may exert a cumulative effect
on the soil methane uptake over time, and that the resilience of
the “low-affinity” methanotrophs may eventually reach a “tipping
point” with recurring disturbances (e.g. increased frequency of
desiccation-rewetting events; Table S2, Supporting Information),
as demonstrated in other microbial systems (Veraart et al. 2012,
Konig et al. 2018). Impaired methane uptake rates were accom-
panied by a compositional shift in the recovered methanotrophic
community, favoring members of Methylocystis (Ho et al. 2016).
Similarly, a step-wise increase in ammonium concentrations from
0.5t04.75¢g17! (in 0.25-0.5 g1~! increments) significantly impaired
methanotrophic activity or lengthened the lag before the onset of
activity, but methane uptake could still be detected at the high-
est application rate, indicating the emergence of an ammonium-
tolerant methanotrophic community with continuous and grad-
ual exposure to increasing ammonium levels (Qiu et al. 2008,
Lépez et al. 2019, Ho et al. 2020). Whereas an abrupt ammonium
increase elicited a dose-dependent effect on the soil methane
uptake, likely favoring the more ammonium-resistant methan-
otrophs (i.e. able to detoxify products of ammonium oxidation
like hydroxylamine, nitrate, and nitrite) such as those belonging
to gammaprobacteria (e.g. Methylosarcina, Methylocaldum, Methy-
lococcus, and Methyobacter (Noll et al. 2008, Poret-Peterson et al.
2008, van Dijk et al. 2021). These studies demonstrate that inten-
sified and recurring disturbances imposed a cumulative effect on
the methanotrophic activity, and profoundly alter the community
composition, with consequences for future disturbances.

As with recurring disturbances, methanotrophic activity is
significantly affected by compounded disturbances (i.e. mul-
tiple stressors inflicted simultaneously), as would be antici-
pated during a natural disaster and under anthropogenic-related
land-use change such as land conversion for agricultural pur-
poses. Following a peatland forest fire, the potential to oxidize
methane was significantly impaired, concomitant to significantly
reduced methanotroph abundance even after 7 years postrecov-
ery (Danilova et al. 2015). The conversion of pristine to arable
lands exacerbates methane emissions (thereafter, see below for
effects of specific agricultural practices on the methane sink
function; see Table S1, Supporting Information). Particularly for
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Figure 1. The effect of sporadic (A), recurring (B; i—grey line; ii—orange line), prolonged (B; iii—blue line), and compounded (B; iv—green line)
disturbances on the methanotrophic activity (see Table S2, Supporting Information). In many instances, the recovery in methane uptake rates is not a
reflection of the recovery in the methanotrophic community composition, indicating redundancy among the community members. Given sufficient
recovery time under ample substrate (methane and oxygen) availability, methanotrophic activity typically recovers within days/weeks (light gray line;
e.g. Pan et al. 2014, Kaupper et al. 2021a) or even over-compensate for initial activity loss (dashed light gray line; e.g. Ho and Frenzel 2012) likely
attributable to higher nutrient and space availability (derived from disturbance-induced cell lysis and death) after sporadic disturbances (A). In (B),
prior exposure to a disturbance may select for a seed bank community resistant to the disturbance for future contingencies. Hence, upon exposure to
the same disturbance, activity will fully recover, and may even be less adversely affected (i—grey line; e.g. Krause et al. 2010, Baumann and Marschner
2013, van Kruistum et al. 2018). Without allowing a full recovery from prior disturbances, the methanotrophic activity eventually reached a “tipping
point”, and thereafter, activity no longer recover with intensified recurring disturbance (ii—orange line; Ho et al. 2016, 2020). Following prolonged
disturbances (ili—blue line), methanotrophic activity was profoundly altered, and did not recover to predisturbance levels (e.g. drought; Collet et al.
2015). Likewise, compounded disturbances (iv—green line) as expected under land-use change scenarios (i.e. peat mining, deforestation for
agriculture; Tate 2015, Meyer et al. 2017, Reumer et al. 2018, Ho et al. 2022) significantly impaired the methanotrophic activity (particularly,
“high-affinity” methane oxidation), but activity may return requiring extended recovery time spanning over decades (iv—dashed green line; e.g. Levine

et al. 2011, McDaniel et al. 2019).

well-aerated upland soils, heightened methane emission follow-
ing land conversion can be attributable to the loss of the methane
sink function (Tate 2015, Meyer et al. 2017, Kroeger et al. 2021,
Obregon Alvarez et al. 2023), which is projected to take up to 80
years to recover after the abandonment of agriculture (Levine et
al. 2011, McDaniel et al. 2019). Likewise, deforestation of tropical
rainforests for palm oil production significantly lowered the ca-
pacity of the soil to oxidize methane, but activity gradually recov-
ered over decades (> 30 years) under oil palm agriculture (Kaup-
per et al. 2020, Ho et al. 2022). Comparing the methane uptake
rates in a pristine, actively mined, and abandoned peatlands un-
der different restoration interventions, activity in the dammed
peatland postexcavation recovered after > 15 years with the re-
turn of Sphagnum, but the community composition was signifi-
cantly altered, and the network of interacting microorganisms be-
came less complex and connected (Andersen et al. 2010, Putkinen
et al. 2018, Reumer et al. 2018, Kaupper et al. 2021b). The recov-
ery in activity after peat mining was, thus not reflected in the re-
covery of the microbial population, resulting in a shift in the tra-
jectory of community succession over time. Nevertheless, com-
munity shifts postdisturbance in peatlands may not necessarily
be unfavorable with regard to methane emissions, considering
that the comparably poorly established methanogenic commu-
nity may lower methane production after restoration (Juottonen
et al. 2012). In contrast to sporadic disturbances, these examples
highlight the vulnerability of the methanotrophs to compounded
disturbances, significantly impairing methanotrophic activity, as
well as inducing compositional changes to the community. A shift
in the methanotrophic composition may alter the collective traits
of the methane-oxidizing community, exerting an effect on com-
munity functioning (Ho et al. 2013a, Krause et al. 2014, Nijman

et al. 2021), more pronounced under fluctuating environmental
conditions.

Anthropogenic activity affecting soil
methane sinks; spotlight on agricultural
practices

Agriculture expansion and intensification to meet the global food,
feed, and biofuel demands pose a threat to soil processes world-
wide, including methane consumption. Although land conver-
sion to agriculture may adversely impact soil ecosystem func-
tion, specific agricultural management practices may leave a less
severe imprint. To this end, regenerative farming has been per-
ceived as agricultural management approaches, which have a rel-
atively lower environmental impact on soil ecosystem functions
than conventional agriculture, at times, even purported to reverse
the impact of conventional agriculture (e.g. carbon stock accu-
mulation). Considered “sustainable land management practices”
by the Intergovernmental Panel on Climate Change (IPCC), re-
generative agriculture has been heralded as an effective strat-
egy for continuous sustainable crop production (IPCC 2019). Yet,
the concept lacks a clear definition or has been defined differ-
ently by users, albeit the widespread usage of the term. Agri-
cultural practices, which are frequently associated with regen-
erative farming include reducing/eliminating tillage, use of cover
crops including green manure, and integrated farming (Table S1,
Supporting Information; Newton et al. 2020). Other exclusion-
ary measures include no or minimum synthetic fertilizer input
or replacing these with bio-based or organic residues (Table S1,
Supporting Information; Lehmann et al. 2020). The impact of
these agricultural practices particularly on edaphic parameters,
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crop yield, as well as carbon dioxide and nitrous oxide emis-
sions in relation to (in)organic fertilization have been relatively
well-documented in recent work (see discussion below). Although
methane turnover in wetland rice cultivation is well-studied (e.g.
Kriger et al. 2001, Kimura et al. 2004, Shrestha et al. 2011, Lee et
al. 2014, Li et al. 2021), the impact of agriculture on the methane
sink and the associated methanotrophs in upland soils remain
fragmented. In particular, the response of the methanotrophic
community composition and abundances are pertinent to explain
variation in the response of the methane sink to diverse agricul-
tural practices (Shrestha et al. 2012, Judd et al. 2016).

The impact of agricultural practices on the
methane sink

Here, we elaborate on the effects of specific agricultural practices
(i.e. nontillage, exclusion of chemical N fertilization or incorpora-
tion of bio-based residues, cover cropping) on the methane sink
function, with emphasis on upland soils (Table S1, Supporting
Information; Lehmann et al. 2020, Newton et al. 2020). Because
of the wide range of organic or bio-based residues used in case
studies relevant at the local- or regional-scale (e.g. oil palm
kernel and husks, diverse aboveground crop residues; Kania-
pan et al. 2021, Shinde et al. 2022), we focused on compost
and biochar, which can be derived from various waste streams,
as well as manure or digestate, a commonly applied bio-based
fertilizer.

The effects of tillage on soil methane emissions are contra-
dictory, having been documented to significantly stimulate (e.g.
Yeboah et al. 2016) or lower (e.g. Tian et al. 2013) methane up-
take in agricultural soils (Fig. 2; Table S1, Supporting Information).
This inconsistency may stem from the different types of cropping
systems (wetland or well-aerated upland agriculture), exhibiting
starkly different methane flux rates, in turn determining the mag-
nitude and direction of fluxes (i.e. methane source or sink), and the
response of the predominant indigenous methanotrophs (‘low-
affinity” or “high-affinity”) present. Similarly, the processes gov-
erning methane flux is different in the two cropping systems, with
methanogenesis and anaerobic methane oxidation becoming im-
portant in the wetland soils. However, a general trend emerged
when comparing the effects of nontillage and conventional tillage
in wetland and upland agricultural soils independently, showing
overall lower methane emission under nontillage in paddy fields
(which may depend on the rice growing stage; Li et al. 2011), and
having no apparent effects or lowered methane emission in up-
land agricultural soils (see review; Maucieri et al. 2021; Fig. 2;
Table S1, Supporting Information). Comparatively lower methane
emissions under nontillage in rice paddies are consistent with pre-
vious work (Huang et al. 2018). Rice paddies are commonly tilled
between rice plants to remove weeds during the rice growing sea-
son. Tillage results in the aeration of soil and the oxidation of re-
duced electron acceptors, thereby providing thermodynamically
favorable electron acceptors for microbial respiration and sup-
pressing methanogenesis (Brune et al. 2000, Liesack et al. 2000).
Moreover, tillage also disrupts the methane-oxygen counter gra-
dient, which forms on the soil surface-overlaying floodwater in-
terface (upper 1-3 mm, based on electrode measurements of sub-
strate depth profiles), where the methanotrophs thrive. Here, the
contribution of the methanotrophs to the net methane flux, typ-
ically determined using specific inhibitors, exhibited substantial
methane consumption potentially up to 90% of total methane
produced (Liesack et al. 2000, Kajan and Frenzel 2006, Reim et
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Figure 2. The impact of selected agricultural practices on methane
emissions in well-aerated upland soils, comparing the effects of the
treatments to agricultural soils without treatments (see Table S1,
Supporting Information). The arrow indicates the direction of the
change (increase or decrease); the magnitude of the change (%) is given
in Table S1 (Supporting Information). Dashed outline indicates that the
effect of an intervention has yet to be unambiguously resolved (e.g.
potentially lower methane emissions following compost addition into
upland agricultural soils). A dash indicates that the intervention
imposed marginal or no change to methane emission. Abbreviations:
i.c., inconclusive (insufficient studies to derive conclusion). Graphic of
the crop is reproduced from Brenzinger et al. (2021).

al. 2012, Prajapati and Jacinthe 2014). Hence, agricultural prac-
tices, which destroy this microhabitat will inevitably affect the
role of the methanotrophs as a methane biofilter in rice pad-
dies, requiring time (days to weeks; Ho et al. 2011) for the gra-
dient and methanotroph population to re-establish. In contrast
to wetland agriculture, tillage in well-aerated upland soils may
act to relieve gas exchange limitation and promote methane up-
take. When both nontilled and conventionally tilled upland agri-
cultural soils act as methane sinks, atmospheric methane uptake
can be lower in the nontilled than tilled site (Plaza-Bonilla et al.
2014), albeit the stimulatory effect of tillage could not be unam-
biguously confirmed in the presence of other confounding fac-
tors (Maucieri et al. 2021). Relevant local soil physico-chemical pa-
rameters, which may confound tillage-induced effects are mois-
ture and temperature (Boeckx and Cleemput 1996, Hiltbrunner et
al. 2012). Lower soil methane uptake in nontilled soils had been
attributed to lower in situ temperature and high soil moisture
in a field study, covering seasonal variation over a year (Tian et
al. 2013), with lower temperature limiting biological activity in-
cluding methane oxidation, whereas the high moisture content
is thought to restrict gas (methane and oxygen) diffusion into the
soil. While nontillage minimizes soil erosion and degradation, this
intervention exerts different effects on soil methane emission, de-
pending on the cropping system.

Another relevant agricultural practice that regenerates organic
matter in soil is the exclusion and/or replacement of inorganic
fertilizers with bio-based/organic residues (e.g. manure, as well
as compost and biochar from diverse waste streams; Jenkinson
1991). However, the incorporation of bio-based organic residues,
particularly manure, may still have undesirable side effects, in-
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cluding heightened methane emission via stimulation of the in-
digenous soil methanogens and/or the addition of residue-derived
methanogens into the soil (Gattinger et al. 2007, Radl et al. 2007,
Thangarajan et al. 2013,Ho et al. 2015). Manure-induced increase
in methane emissions typically occur in rice paddies, while gen-
erally imposing little effect in upland agricultural soils (Fig. 2).
Supplementing rice paddy soil with fresh manure promoted the
soil-borne methanogens in flooded rice paddies, leading to signif-
icantly higher methane production (e.g. Kim et al. 2018), but can
be remedied with the application of manure additives to the ma-
nure to suppress methane production, besides odor control (am-
monia volatilization; Zhu 2000). Other bio-based residues show
promising methane mitigation or crop growth-promoting capabil-
ities; when locally sourced materials from diverse waste streams
(e.g. agriculture, industry, and household) were applied to repre-
sentative agricultural (sandy loam and clay) soils, some bio-based
residues (e.g. nitrogen-rich sewage sludge and aquatic plant ma-
terial) significantly increased crop (wheat) yield at the expense of
having a higher global warming potential (GWP), mainly driven
by nitrous oxide emissions (Ho et al. 2015, 2017). In the same
study, the incorporation of compost in upland agricultural soils
imposed comparably lower GWP than in the soils without any
residue addition, and only marginally affected the soil bacterial
community composition, including the methanotrophs, and fun-
gal abundance (Hoetal. 2017, Brenzinger et al. 2018), in addition to
promoting plant beneficial microbes (Bonanomi et al. 2018). Spe-
cific compost suppressed methane emission in well-aerated up-
land soils in the short-term (< 2 months) by significantly stim-
ulating the apparent cell-specific methane uptake rates, offset-
ting up to 16% of the total carbon dioxide emitted (Ho et al.
2015, 2019, Brenzinger et al. 2018). Presumably, compost-derived
rare earth metals (e.g. La and Ce) and other elements (e.g. cop-
per and calcium) at minute concentrations (pg g soil™! range;
El-Ramady 2011) may have stimulated methanol dehydrogenase
(catalyzes the conversion of methanol to formaldehyde) and/or
the pMMO (in the case for copper) of some methanotrophs (Ho
et al. 2013c, Zheng et al. 2018); Agegnehu et al. 2016, Vekeman et
al. 2016, Krause et al. 2017). While methanotrophs may possess
a copper sequestration mechanism by releasing methanobactin,
a chalkphore with a high affinity for copper, and thus overcome
copper limitation, a scavenging mechanism for the rare earth
elements is as yet unknown in methanotrophs (Pol et al. 2014,
DiSpirito et al. 2016). In contrast, compost induced significantly
higher methane emission in wetland agricultural soils, consid-
ering high methane production under water-logged conditions.
Despite having generally comparable physico-chemical proper-
ties (e.g. stable C fraction, or absence/minimal labile carbon),
mature compost derived from different waste streams may dif-
ferentially influence methane production and oxidation, affect-
ing the overall flux (Brenzinger et al. 2018, van den Bergh et al.
2023). Hence, nuances in mature compost (e.g. presence of heavy
metal contaminants or rare earth elements) may impose a strong
effect on the soil methanotrophic community and activity. Al-
though having no apparent effects on crop yield in these stud-
ies, compost amendment may thus reduce methane emissions
and benefit other aspects of soil function (e.g. long-term carbon
accumulation in soil; Ryals et al. 2015). Evidently, no improve-
ment in crop yield was a trade-off for lower GWP, but the car-
bon dioxide offset by increased methane uptake suggests that
crop productivity can be improved considering compost addi-
tion complemented with other N-rich soil additives (Brenzinger
et al. 2021) at optimal combinations to minimize overall GHG
emissions.

In addition to manure and compost, biochar application gained
attention in the past decade, having been proposed as a car-
bon storage strategy in soils (Lehmann et al. 2006), and was pro-
jected to achieve carbon neutrality in agro-systems (rice, wheat,
and corn production systems) when applied in combination with
other climate-smart agricultural practices (intermittent drainage
in rice production and reduced N-fertilization input; Xia et al.
2023). Although the effects of biochar amendments alongside con-
ventional fertilizers on the edaphic properties have been well-
documented (i.e. improved water and nutrient retention, cation
exchange capacity, soil porosity, and aggregation leading to higher
crop growth and yield; Liang et al. 2006, Mau and Utami 2014,
Agegnehu et al. 2016, Bamminger et al. 2018, Rasa et al. 2018),
the effects of biochar on GHG fluxes remain contentious. Biochar
amendment can suppress or stimulate fertilizer-associated ni-
trous oxide emission (Yanai et al. 2007, Spokas et al. 2009, Cayuela
etal. 2014, Harter et al. 2014, Shen et al. 2014, Agegnehu et al. 2016,
Bamminger et al. 2018, Borchard et al. 2019). Similarly, what little
is known on the effects of biochar on methane turnover is based
on case studies, showing both a stimulation on methane produc-
tion (e.g. Wang et al. 2012) and enhanced methane uptake (e.g.
Karhu et al. 2011, Syed et al. 2016, Kubaczynski et al. 2022; Table
S1, Supporting Information), as well as having no or marginal ef-
fects on methane emission (e.g. Bamminger et al. 2018). Like the
effects of tillage, the apparent contrasting effects of biochar on
the methane flux may stem from the cropping system, as well
as the variable application rate in different studies (9-240 t ha™*;
Spokas et al. 2009, Karhu et al. 2011, Bamminger et al. 2018, Zhao
et al. 2021, Kubaczynski et al. 2022, Xia et al. 2023) and the de-
layed detectable effect over time (e.g. significant effects of biochar
amendment detected only after 1 year; Major et al. 2010). Incor-
poration of biochar to wetland rice agricultural soils increased
the methane sink strength or decreased the methane source
when compared to amendments in upland agricultural soil, which
showed marginal effects (Jeffery et al. 2016, Bamminger et al. 2018,
Zhao et al. 2021). On the other hand, a recent study showed signif-
icant stimulation of methane uptake in upland agricultural soils
concomitant to increased methanotroph abundance over at least
5 years after biochar addition (Kubaczynski et al. 2022). Moreover,
biochar appeared to have a stabilizing effect, reducing the vari-
ability in methane fluxes (Karhu et al. 2011). Regardless of the
feedstock (exception, biosolids) for biochar production, the pyrol-
ysis temperature appears to be relevant in determining the ef-
fect of the final product on soil methane emission, with biochar
undergone high pyrolysis temperature exceeding 600°C signifi-
cantly increased the methane sink function after incorporation
into soils (Jeffery et al. 2016). Biochar derived from high pyrol-
ysis (> 600°C) contains less labile material (Bruun et al. 2011)
and hence, less substrate availability for microorganisms (resis-
tant to degradation), including the methanogens. Likewise, high
porosity in biochar increases aeration, potentially suppressing
methane production, or promotes methane oxidation (Karhu et
al. 2011, Joseph et al. 2021). It thus appears that biochar modifies
the edaphic properties, in turn, affecting microbially mediated soil
processes; the direct effect of biochar, as well as other amend-
ments, on methanotroph metabolism remains to be determined.

Besides no-tillage and incorporation of organic amendments
into soils, regenerative farming includes cover cropping to mini-
mize nitrogen loss via leaching and/or (de)nitrification in the pres-
ence of the main crops (intercropping) and during fallow after
harvest (Pappa et al. 2011, Gabriel et al. 2012, Sanz-Cobena et al.
2014). Cover crops (e.g. legumes such as vetch and peas) may also
be incorporated into the soil as green manure, thereby retaining
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accumulated N (i.e. having relatively slower mineralization rates;
Baggs et al. 2000, Kim et al. 2012) in the field for the next cropping
season. Also, depending on the selection of cover crops (mixtures
or monocrop), substrate utilization profile assessed using a Biolog
ECO plate analysis of soils amended with cover crop mixtures sig-
nificantly increased, indicating a relatively higher microbial func-
tional (metabolic) diversity when compared to soils that receive
residues from monocrop (Drost et al. 2020). Species-specific ef-
fects of cover crops on carbon dioxide and nitrous oxide emissions
have been documented, showing varied results (higher, lower, or
comparable emission rates in fields without cover crops) for both
intercropping and as green manure (Baggs et al. 2000, Pappa et
al. 2011, Sanz-Cobena et al. 2014). However, the effects of cover
cropping and green manure application on soil methane uptake
are less known. Regardless of the choice of cover crops (barley,
rape, and vetch), an upland agricultural soil planted to maize re-
mained a methane sink, albeit having vetch as a cover crop turned
the soil into a weak but not significant methane source during fal-
low (Sanz-Cobena et al. 2014). Like for carbon dioxide and nitrous
oxide emissions (Sanz-Cobena et al. 2014, Drost et al. 2020), it ap-
pears that the C:N ratio of the cover crop is relevant when deter-
mining methane emissions. To this end, the choice of a cover crop
as green manure in rice agriculture was shown to exert a strong ef-
fect on methane emission, with vetch possessing a lower C:N ratio
resulting in significantly lower methane emission than rye (higher
C:N), prompting the authors to suggest that the extraneous car-
bon (comparatively higher total C and labile C fractions) avail-
ability in rye upon incorporation into soil stimulated methano-
genesis (Kim et al. 2012). Besides inducing a lower methane emis-
sion, vetch also significantly increased crop yield (total biomass
and grain yield). Hence, a tailored selection of cover crops, also as
green manure, for specific main crops and cropping systems are
required to reduce methane emissions, while increasing yield. Ev-
idently, future studies to explore the impact of cover cropping on
methanotrophs are warranted.

Conclusion and perspective

The methanotrophs are evidently affected by disturbances, but
may still recover from sporadic events. Upon disturbance recur-
rence, however, methanotrophic activity was impaired, and re-
quired decades to recover following compounded disturbances as-
sociated to change in land use and natural disasters. Accumulat-
ing evidence indicates that the methane-oxidizing community is
comprised of both methanotrophs and nonmethanotrophs, each
play relevant roles, enabling and even exerting synergistic effects
on community functioning (e.g. Stock et al. 2013, Ho et al. 2014,
Benner et al. 2015, Veraart et al. 2018). Given the relevance of
the nonmethanotrophs in modulating methanotrophic activity,
future work could focus on interkingdom interaction in response
to disturbances (incorporating soil micro- and macro-organisms
e.g. viruses, protists, soil isopods; Murase and Frenzel 2008, Kuiper
etal. 2013, Heffner et al. 2023a, b), and possibly, to establish early-
warning indicators of a collapsing interaction network, leading to
impaired community function. Moreover, interaction-induced re-
lease of (volatile) organic compounds can significantly influence
the methanotrophs (Veraart et al. 2018), as well as the selection of
beneficial microorganisms essential for crop protection (e.g. dis-
ease suppressive soils; Carrién et al. 2019, Weisskopf et al. 2021).

Although evidence suggests the transition to specific agricul-
tural practices (e.g. nontillage, organic fertilization, and cover
cropping) may favor or do not exert an adverse impact on the
methanotrophs, applying such practices alone may not be suffi-
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cient to achieve food security for a growing human population.
To this end, ecological intensification is generally thought to en-
hance soil ecosystem services by complementing and/or replac-
ing conventional agricultural approaches to boost crop yields (Tit-
tonell 2014, Kleijn et al. 2019, MacLaren et al. 2022). Central to
ecological intensification is the enhancement of belowground (mi-
cro)organism interaction, which facilitates the usage of resources
more efficiently. For instance, agricultural practices (e.g. low and
sparse fertilization; Pandey et al. 2019) that favor dissimilatory ni-
trate reduction to ammonium over denitrification to retain N in
soil (e.g. Putz et al. 2018, Yoon et al. 2019). Also, while the impact
of specific agricultural practices on methane emissions and by
extension, other parameters determining the multifunctionality
of soils (e.g. physico-chemical characteristics, other GHG, micro-
bial diversity) have been documented, the trade-off when apply-
ing multiple practices concurrently in conjunction with the indi-
vidual practices, potentially yielding additive, synergistic, antago-
nistic, and/or net neural effects needs further probing (Lehmann
et al. 2020, Xiao et al. 2021).

Emerging soil “modifiers,” such as nano- and microplastics are
relatively persistent compounds, that not only alter soil charac-
teristics, affecting gas diffusivity and the emissions/consumption
of GHG, but also significantly affect the soil microbial (plasti-
sphere; Rohrbach et al. 2022, Zhu et al. 2022) and invertebrate (e.g.
earthworms and soil isopods; Lahive et al. 2022, Hink et al. 2023)
communities. In addition, nanoplastics may accumulate in plants
(Gong et al. 2021), and modify plant characteristics (e.g. change
in root anatomy; Elena Pradas del Real et al. 2022), potentially
affecting crop yield. Although the application of specific organic
compounds such as biochar as soil additives has generally been
well-received as a strategy to sequester carbon and immobilize
heavy metals in soils (Gong et al. 2022), the environmental im-
pact of long-term accumulation of the immobilized heavy metal
remains unclear. The ambiguity of the long-term impact of these
compounds (e.g. nanoplastics, microplastics, and biochar) in soils
necessitates thorough environmental assessments. Summarized,
regenerative agricultural practices can strengthen the methane
sink and favor the methanotrophs, depending on the cropping sys-
tem, but further work is needed to shed light on the mechanistic
understanding of the outcomes of these agricultural practices.
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