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1. Introduction

Let J = Ir ⊕ −In−r (0 6 r 6 n), where Im denotes the identity matrix of order

m. If r 6= 0, n, the matrix J endows C n with the Krein structure defined by the

indefinite inner product 〈x, y〉J = y∗Jx, x, y ∈ C n . For A ∈ Mn, the algebra of

n × n complex matrices, consider the J-Cartesian decomposition A = HJ + iKJ ,

where HJ = (A + JA∗J)/2 and KJ = (A − JA∗J)/(2i) are J-Hermitian matrices,

that is, HJ = J(HJ)∗J and KJ = J(KJ)∗J . If J = ±In, we obtain the well known

Cartesian decomposition of A, where H = HJ and K = KJ are Hermitian matrices.

Let F J
A(u, v, w) = det(uHJ + vKJ + wIn) be the characteristic polynomial of the

pencil −(uHJ +vKJ). Our aim is to discuss the connection between F J
A(u, v, w) and

the J-numerical range of A denoted and defined by

WJ(A) =

{

x∗JAx

x∗Jx
: x ∈ C n , x∗Jx 6= 0

}

.

1 The work of this author was partially supported by the Portuguese foundation FCT, in
the scope of program POCI 2010.
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If J = ±In, then WJ (A) reduces to the well-known classical numerical range or field

of values of A, usually denoted by W (A). For an arbitrary J , WJ (A) coincides with

the numerical range of the pencil Jλ − JA, λ ∈ C [9], [14], [15]:
W (Jλ − JA) = {µ ∈ C : (x∗Jx)µ − x∗JAx = 0 for some nonzero x ∈ C n}.

We briefly recall some known properties of WJ(A). For any A ∈ Mn, W (A)

contains the spectrum of A, denoted by σ(A), while for the J-numerical range the

following inclusion holds: σ+

J (A) ∪ σ−
J (A) ⊆ WJ (A), where σ+

J (A) and σ−
J (A) cor-

respond to the sets of eigenvalues of A with associated eigenvectors having positive

and negative J-norms, respectively. By σ0
J (A) we represent the set of eigenvalues

of A with isotropic eigenvectors, i.e., vectors x such that x∗Jx = 0. Note that if

λ ∈ σ0
J (A), it may not belong to WJ (A). The field of values W (A) is a compact and

convex set for A ∈ Mn [7]. In contrast with the classical case, WJ (A) may not be

closed and is either unbounded or a singleton [10], [11]. For λ ∈ C , WJ(A) = {λ} if
and only if A = λIn. On the other hand, WJ (A) is not usually convex. However, it

is the union of convex sets:

(1) WJ(A) = W+

J (A) ∪ W+

−J (A),

where

W±
J (A) = {x∗JAx : x ∈ C n , x∗Jx = ±1}

and W+

−J(A) = −W−
J (A) [11]. Moreover, WJ (A) is pseudo-convex [11]; that is, for

any pair of distinct points x, y ∈ WJ (A), if x, y belong to the same convex set in (1),

W+

J (A) or W+

−J (A), then WJ (A) contains the closed line segment joining x and y;

otherwise, WJ(A) contains the two closed half-lines of the line defined by x and y

with endpoints x and y.

A matrix U ∈ Mn is called J-unitary of signature (r, n − r), 0 6 r 6 n, if

U−1 = JU∗J . These matrices form a group denoted by Ur,n−r. For any U ∈ Ur,n−r

we have WJ(A) = WJ (U−1AU). Also, the following identity holds:

WJ (αIn + βA) = α + β WJ (A), α, β ∈ C .

The well-known Elliptical Range Theorem for A ∈ M2, obtained by Murnaghan

[12], states that W (A) is an elliptical disc (possibly degenerate) whose foci are the

eigenvalues of A, α1 and α2. The major and minor axes are of length

√

tr(A∗A) − 2 Re(α1α2) and
√

tr(A∗A) − |α1|2 − |α2|2,

respectively. In the indefinite case, for A ∈ M2 and J = diag(1,−1), the Hyperbol-

ical Range Theorem [2] states that WJ (A) is bounded by the hyperbola (possibly
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degenerate) with foci at the eigenvalues of A, α1 and α2, and the transverse and

non-transverse axes of length

√

tr(JA∗JA) − 2 Re(α1α2) and
√

|α1|2 + |α2|2 − tr(JA∗JA),

respectively. For the degenerate cases, WJ (A) may be a singleton, a line, a subset of

a line, the whole complex plane, or the complex plane except a line.

A supporting line of a convex set K ⊆ C is a line that intersects K at least at one

point and defines two half-planes, such that one of them does not contain any point

of K. The supporting lines of WJ (A) are, by definition, the supporting lines of the

convex setsW+

J (A) andW+

−J (A). As proved in [2, Theorem 2.2] (cf. [15, Remark 3]),

if ux + vy + w = 0 is the equation of a supporting line of WJ (A), then

(2) F J
A(u, v, w) = det(uHJ + vKJ + wIn) = 0.

Since F J
A(u, v, w) is a homogeneous polynomial of degree n, (2) may be viewed as the

line equation of an algebraic curve on the complex projective plane PC 2 . Considering

the dual curve

Γ∗ = {(u, v, w) ∈ P C 2 : F J
A(u, v, w) = 0},

we may determine by dualization

Γ = {(x, y, z) ∈ PC 2 : xu + yv + zw = 0 is a tangent of Γ∗},

whose real affine view

CJ (A) = {(x, y) ∈ R2 : (x, y, 1) ∈ Γ}

is called the associated curve of WJ (A). If J = ±In, then CJ (A) is simply denoted

by C(A) and called the associated curve or boundary generating curve ofW (A). The

curve CJ (A) has class n, that is, through a general point in the plane there are n

lines (may be complex) tangent to the curve. (For details on plane algebraic curves

we refer to [4].)

For J = ±In, Kippenhahn proved that the curve C(A) generates W (A) as its

convex hull [8]. If J 6= ±In, then CJ (A) generates WJ (A) as its pseudo-convex

hull. Indeed, if there exists θ ∈ [0, 2p] such that the n eigenvalues λ1(θ), . . . , λn(θ)

of cos θHJ + sin θKJ , A = HJ + iKJ ∈ Mn, are real and have an associated basis of

anisotropic eigenvectors u1(θ), . . . , un(θ), then

u∗
k(θ)JAuk(θ)

u∗
k(θ)Juk(θ)

∈ CJ (A), k = 1, . . . , n.
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Considering all the different directions θ satisfying the above requisites, the set

WJ (A) is the pseudo-convex hull of the points so obtained [3].

This paper is organized as follows. In Section 2, the point equation of CJ (A) is

derived, following the approach developed by Fiedler [5] for W (A). In Section 3,

WJ (A) is characterized for J-Hermitian matrices of size 3. In Section 4, the asso-

ciated curves CJ (A) are classified in the 3 × 3 case using Newton’s classification of

cubics, and illustrative examples are provided. These results extend to Krein spaces

results of Kippenhahn [8] onW (A). In Section 5, some open problems are presented.

2. The point equation of CJ (A)

We recall that a point P 6= (1, i, 0), (1,−i, 0), the circular points at infinity, is

called a focus of an algebraic curve C if the lines l1 and l2 through P and (1, i, 0)

and through P and (1,−i, 0), respectively, are tangent to C at points other than

the circular points at infinity. It may be easily proved that the coefficients of the

polynomial F J
A(u, v, w) are real. A curve of class n with real coefficients has n

real foci, counting multiplicities, and n2 − n non-real foci [16]. Murnaghan [12] and

Kippenhahn [8] independently proved that the real foci of the algebraic curve defined

in homogeneous line coordinates by det(uH + vK + wIn) = 0 are the eigenvalues of

A = H + iK.

Proposition 1. The n real foci of the algebraic curve defined in homogeneous

line coordinates by the equation F J
A(u, v, w) = det(uHJ + vKJ + wIn) = 0 are the

eigenvalues α1, . . . , αn of the matrix A = HJ + iKJ .Proof. Taking u = 1 and v = i in (2), we obtain det(HJ + iKJ + wIn) =

det(A+wIn) = 0, and w coincides with −αj , j = 1, . . . , n. Repeating this procedure

for u = 1 and v = −i, we find det(HJ − iKJ + wIn) = det(A∗ + wIn) = 0. Thus,

w coincides with −αj , j = 1, . . . , n. For k, l = 1, . . . , n, let gk and gl be the lines

given in line coordinates by (1, i,−αk) and (1,−i,−αl), respectively. The lines gk

pass through (1, i, 0), while the lines gl pass through (1,−i, 0). Since gk and gl are

solutions of the equation (2), they are the unique tangent lines to the curve that pass

through the circular points at infinity. Easy calculations show that the intersection

of gk with gk is given by (Re αk, Imαk, 1), k = 1, . . . , n. �

We recall that a common procedure to find the point equation of CJ(A) is to

eliminate one of the indeterminates, say u, from (2) and ux + vy + w = 0, deho-

mogenize the result by setting w = 1, and eliminate the remaining parameter v from

the equations FA(v, x, y) = 0 and ∂FA(v, x, y)/∂v = 0. In this section we present an

alternative procedure, developed by Fiedler for the classical case.
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For this purpose we recall some auxiliary results. The second mixed compound of

two matrices A = [aij ] and B = [bij ] of the same size m × n, denoted by C2(A, B),

is the
(

m
2

)

×
(

n
2

)

matrix with entries

C2(A, B)PQ =
1

2
(airbjs + ajsbir − aisbjr − ajrbis),

where P = (i, j), 1 6 i < j 6 m, and Q = (r, s), 1 6 r < s 6 n. In particular,

the second compound of A is denoted and defined by C2(A) = C2(A, A). From the

definition it follows that

C2(A)PQ = det

[

air ais

ajr ajs

]

for P = (i, j), 1 6 i < j 6 m, and Q = (r, s), 1 6 r < s 6 n. Therefore, C2(A) is

the array of all second order minors of A.

The following two lemmas were obtained in [5] and are used in the proof of The-

orem 1.

Lemma 1. For any matrices A, B, A1, A2 of the same size and for any complex

numbers α1, α2 the following identities hold:

(a) C2(α1A1 + α2A2, B) = α1C2(A1, B) + α2C2(A2, B);

(b) C2(A, B) = C2(B, A).

Lemma 2. For A, B ∈ Mn, the form det(xA + yB) (which is a product of linear

complex factors αix + βjy) is either identically zero, or has a multiple linear factor

if and only if

det

[

C2(A) C2(A, B)

C2(A, B) C2(B)

]

= 0.

As observed by Fiedler, the next theorem is not practical for large matrices. How-

ever, it can be used for small size matrices and for theoretical purposes. The proof

is essentially Fiedler’s proof and it is presented for the sake of completeness.

Theorem 1. Let A = HJ + iKJ ∈ Mn, where HJ and KJ are J-Hermitian.

If CJ(A), given in line coordinates by (2), is irreducible, then its point equation is

given by the non-linear part of the equation

(3) det

[

C2(H
J − xIn) C2(H

J − xIn, KJ − yIn)

C2(H
J − xIn, KJ − yIn) C2(K

J − yIn)

]

= 0
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or, equivalently, by the non-linear part of the equation

(4) det











C2(H
J) C2(H

J , KJ) C2(H
J , In) xI(n

2
)

C2(H
J , KJ) C2(K

J) C2(K
J , In) yI(n

2
)

C2(H
J , In) C2(K

J , In) I(n

2
) I(n

2
)

xI(n

2
) yI(n

2
) I(n

2
) 0











= 0.

The linear factors of equations (3) and (4) correspond to flexional tangents or to

multiple tangents (at real or complex points, finite or infinite points) of the complex

algebraic curve that contains CJ (A).Proof. By elementary operations with the blocks of the matrix in (4), Laplace
Theorem and Lemma 1, we easily conclude that the left hand sides of equations

(3) and (4) are equal if
(

n
2

)

is even, or symmetric if
(

n
2

)

is odd. Therefore, the

equations (3) and (4) are equivalent. On the other hand, (3) is invariant under the

transformation A 7→ A± (x + iy)In, and CJ (A) is obtained from CJ (A± (x + iy)In)

by a translation. Hence, it is sufficient to prove that the result holds for (0, 0). The

origin satisfies (4) if and only if

det

[

C2(H
J) C2(H

J , KJ)

C2(H
J , KJ) C2(K

J )

]

= 0.

By Lemma 2, det(uHJ +vKJ) is identically zero or has a multiple linear factor. The

first case implies that det(uHJ + vKJ + wIn) is divisible by w and, consequently,

CJ (A) is reducible. Thus, the form det(uHJ + vKJ) has a multiple linear factor.

Now, the proof proceeds by duality arguments. Consider the dual curve of CJ(A)

given in homogeneous point coordinates by (2). Taking w = 0 in (2), we obtain the

intersection points of the dual curve with the line of infinity. Since det(uHJ + vKJ)

has a multiple linear factor, this implies that the line of infinity has two intersections

with the dual curve at a certain point. If that point is singular, it corresponds to

a flexional tangent or to a multiple tangent of the curve whose real part is CJ(A).

Otherwise, the line of infinity must be tangent to the dual curve at that point and

this implies that the origin belongs to CJ(A). Consequently, the equations (3) and

(4) give the points of CJ (A) and the flexional and multiple tangents of the complex

curve that contains CJ (A). �

Remark 1. From (4) we conclude that the order of CJ (A) is given by n(n − 1)

minus the number of flexional and multiple tangents counted according to multiplic-

ities, which agrees with Plücker’s formulae (cf. [4]).
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3. Characterization of WJ(A) for a J-Hermitian matrix A of size 3

In this Section we present auxiliary results which will be used in Section 4. Let

A ∈ Mn be a J-Hermitian matrix. It is known that ([13], [9], [14], [15])

W+

J (A) = {x ∈ R : t(x + i) ∈ W (JA + iJ) for some 0 < t 6 1} ;(5)

W+

−J (A) = {x ∈ R : t(−x − i) ∈ W (JA + iJ) for some 0 < t 6 1} .(6)

From (5) and (6) it follows that W+

J (A) is a right half-line [m1, +∞[, or ]m1, +∞[,

for a certain m1 ∈ R, if and only ifW+

−J (A) is a left half-line ]−∞, m2], or ]−∞, m2[,

for some m2 ∈ R. The endpoints of these half-lines are eigenvalues of A [13]. On the
other hand, W+

J (A) = R if and only if W+

−J (A) = R. The following lemma plays an
important role in our investigation.

Lemma 3 [13]. Let A ∈ Mn be a non-scalar J-Hermitian matrix with J 6= ±In.

Then

(a) W+

J (A) is an open or closed half-line of R if and only if 0 ∈ ∂W (JA + iJ) or

0 6∈ W (JA + iJ);

(b) W+

J (A) = R if and only if 0 is an interior point of W (JA + iJ).

In the sequel J = diag(1, 1,−1). For A ∈ M3 a J-Hermitian matrix, the equa-

tion det(uJA + vJ + wI3) = 0 has the (simple) root (0, 1, 1) and the (double) root

(0, 1,−1). Thus, y = −1 is a simple tangent of C(JA + iJ), while y = 1 is a double

tangent. Since W (J) = [−1, 1], it is also clear that y = ±1 are supporting lines of

W (JA + iJ). Using Kippenhahn’s classification of the boundary generating curve

[8], we arrive at the following possibilities for C(JA + iJ):

I. the curve reduces to three points such that one belongs to y = −1 and the other

two to the line y = 1;

II. the curve is the union of a point in y = 1 and an ellipse with y = ±1 as tangent

lines;

III. the curve is irreducible with y = 1 as a double tangent. Therefore, it must be

a cardioid contained in the strip limited by the lines y = ±1.

The field of valuesW (JA+iJ) is the convex hull of C(JA+iJ). Using (5) and (6),

we characterize W+

J (A) and W+

−J(A), and so WJ (A).

Lemma 4. If A = [aij ] ∈ M3 is a J-Hermitian matrix and tr(A) = α, then there

exist U ∈ U2,1 and b ∈ R, c, d > 0 such that

U−1AU =





α − b − a33 c 0

c b d

0 −d a33



 .
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Proof. Considering the diagonal matrix U1 = diag(eiβ, eiγ , 1), β, γ ∈ R, we
may obtain a matrix B = [bij ] = U−1

1 AU1 such that b13 = −b31 > 0, b23 = −b32 > 0.

Next, applying the J-unitary transformation associated with the matrix

U2 =





p q 0

−q p 0

0 0 1





with p, q ∈ R and p2 + q2 = 1, we may consider C = [cij ] = U−1
2 BU2 such that c13 =

c31 = 0. Finally, by the J-unitary transformation induced by U3 = diag(eiβ , 1, 1),

β ∈ R, we get D = [dij ] = U−1
3 CU3 such that d12, d21 > 0.

If a13 6= 0, take U = U1U2U3. Otherwise, it is sufficient to consider U = U1U3.

We notice that a33 is invariant under these operations. �

We denote by trC2(B) the sum of the 2× 2 principal minors of a matrix B. Easy

calculations yield

Lemma 5. For A = HJ + iKJ ∈ M3 and J = Ir ⊕−I3−r (0 6 r 6 3) we have

F J
A(u, v, w) = w3 + det(HJ )u3 + det(KJ)v3 + Re tr(A)uw2 + Im tr(A)vw2

+ Im tr C2(A)uvw + tr C2(H
J )u2w + tr C2(K

J)v2w

+ [det(HJ) − Re det(A)]uv2 + [det(KJ) + Imdet(A)]u2v.

A matrix A ∈ Mn is called nilpotent if there exists k ∈ N such that Ak = 0. The

smallest k satisfying Ak = 0 is the nilpotency index of A. If k = 1, then A = 0 and

WJ (A) = W+

J (A) = W+

−J (A) = {0}.

Theorem 2. Let 0 6= A = [aij ] ∈ M3 be a nilpotent J-Hermitian matrix with

nilpotency index k 6 3. The following assertions hold:

(a) if k = 2 and a33 > 0 (a33 < 0), then W+

J (A) = ]−∞, 0], W+

−J (A) = ]0, +∞[

(W+

J (A) = [0, +∞[, W+

−J (A) = ]−∞, 0[);

(b) if k = 3, then W+

J (A) = W+

−J (A) = R.Proof. Since A is J-Hermitian and has zero trace, by the J-unitary similarity

invariance of WJ (A) and Lemma 4 we may write A in the form

(7) A =





−a − b c 0

c b d

0 −d a



 ,

where a = a33 and b ∈ R, c, d > 0. Notice that d 6= 0, because A3 = 0 and A 6= 0.

Since c is a real number and A3 = 0, considering the (2, 3)-th and (3, 3)-th entries of
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A3 it is easy to prove that d2 − a2 > 0. Furthermore, −(d2 − a2) coincides with the

(3, 3)-th entry of A2. Thus, if d 6= |a|, that is, d > |a|, the nilpotency index k of A

is equal to 3. If d = |a| then analyzing the entries of A3 and A2 we easily conclude

that k = 2. Having in mind that tr(A) = det(A) = tr C2(A) = 0, from Lemma 5 we

obtain

det(uJA + vJ + wI3) = (w + v)(w2 − v2 − 2auw) − 2(d2 − a2)u2w.

The associated curve C(JA + iJ) is reducible if and only if d = |a|. In this case it is
the union of the point (0, 1, 1) and the ellipse

(8)
(x + a)2

a2
+ y2 = 1,

which is the dual of the conic w2 − v2 − 2auw = 0. The ellipse passes through the

origin, the imaginary axis being the tangent of the curve at that point. Consequently,

W+

J (A) = ]−∞, 0] and W+

−J (A) = ]0, +∞[ if a > 0, or W+

J (A) = [0, +∞[ and

W+

−J (A) = ]−∞, 0[, if a < 0.

Suppose now that d > |a|. Since C(JA + iJ) is irreducible, the associated curve

is a cardioid with the double tangent y = 1. Consider the dual curve defined in

homogeneous point coordinates by det(xJA + yJ + zI3) = 0. Take the affine view

x = 1 and define

f(y, z) = det(JA + yJ + zI3) = (z + y)(z2 − y2 − 2az)− 2(d2 − a2)z.

Evaluating the first partial derivatives of f at (0, 0), we conclude that (1, 0, 0) is a

simple point of the curve, whose tangent has homogeneous line coordinates (0, 0, 1).

Analyzing the second order partial derivatives of f , we can easily prove that this line

has more than two intersections with the dual curve. Therefore, the point (1, 0, 0) is

a flex. By dual considerations, we conclude that (0, 0, 1) is a cuspid of C(JA + iJ)

and the tangent is the line (1, 0, 0), i.e., the imaginary axis. If the origin of the

affine plane coincides with the cuspid of the cardioid, then it lies in the interior of

its convex hull. Hence, by Lemma 3, W+

J (A) = W+

−J (A) = R. �

Theorem 3. Let A = [aij ] ∈ M3 be a J-Hermitian matrix with the eigenvalues 0

(double) and α > 0 (simple). Then the following possibilities may occur:

(a) A is J-unitarily diagonalizable and either α ∈ σ−
J (A), W+

J (A) = ]−∞, 0],

W+

−J(A) = [α, +∞[ or α ∈ σ+

J (A), W+

J (A) = [0, +∞[, W+

−J(A) = ]−∞, 0].

(b) A is J-unitarily reducible to the form





α 0 0

0 −a a

0 −a a



 , a 6= 0,
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and either a > 0, WJ (A) = W+

J (A) = W+

−J (A) = R or a < 0, W+

J (A) =

]0, +∞[, W+

−J(A) = ]−∞, 0[ and WJ (A) = R \ {0}.Proof. Since α is a simple eigenvalue, either α ∈ σ+

J (A) or α ∈ σ−
J (A).

(a) Suppose that D = U−1AU , where U ∈ U2,1 and D is a diagonal matrix. If

α ∈ σ−
J (A), then D = diag(0, 0, α), and W (JD + iJ) is the line segment joining the

points (0, 1, 1) and (−α,−1, 1). Otherwise, D = diag(α, 0, 0) or D = diag(0, α, 0),

and W (JD + iJ) is the triangle with vertices (0, 1, 1), (0,−1, 1) and (α, 1, 1). The

result follows easily from (5) and (6).

(b) Suppose that A is not J-unitarily diagonalizable. Taking into account that

α 6∈ σ0
J (A), A must be a J-decomposable matrix. Since det(A) = 0, there exists

V ∈ U2,1 such that

B = V −1AV =





α 0 0

0 −a a

0 −a a



 , a 6= 0.

In this case, α necessarily belongs to σ+

J (A), otherwise A would be diagonaliz-

able. Using the proof technique of the last theorem, we deduce the expression for

det(uJB + vJ + wI3) and, by dual considerations, we find that C(JB + iJ) is the

union of the point (α, 1, 1) and the ellipse (8). If a > 0, then the point and the

ellipse are in the right and left half-planes, respectively, and 0 is an interior point of

W (JB +iJ). Otherwise, they are both in the right half-plane and 0 ∈ ∂W (JB +iJ).

The sets W+

J (A) = W+

J (B) and W+

−J (A) = W+

−J(B) are given by (5) and (6). �

Remark 2. Noting that W+

J (−A) = −W+

J (A), we see that the case α < 0 is

covered by Theorem 3.

Remark 3. Let A = [aij ] ∈ M3 be an arbitrary J-Hermitian matrix with real

spectrum. The above theorems allow the characterization ofWJ (A) according to the

multiplicity of its eigenvalues.

(a) Suppose that A has a triple eigenvalue λ. Then A − λI3 is nilpotent with

nilpotency index k 6 3. If A is a scalar matrix, then WJ (A) = {λ}. Other-
wise, by Theorem 2, WJ (A) = R (W+

J (A) and W+

−J (A) are also obtained from

Theorem 2).

(b) Suppose that A has a simple eigenvalue α and a double eigenvalue λ 6= α.

Thus, α − λ and 0 are a simple and a double eigenvalue of the J-Hermitian

matrix A−λI3, respectively, and Theorem 3 characterizesWJ (A), W+

J (A) and

W+

−J(A).

(c) Finally, suppose that A has three distinct real eigenvalues, λ1 < λ2 < λ3. If

λ1, λ3 ∈ σ+

J (A), λ2 ∈ σ−
J (A), then WJ (A) = R. Otherwise, WJ(A) is the real

line except for the open line segment joining two of the eigenvalues.
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Additionally, if A has non-real eigenvalues, then it is known that WJ(A) =

W+

J (A) = W+

−J(A) = R [3].
4. Characterization of WJ (A) for A ∈ M3

We characterize WJ (A) for J = diag(1, 1,−1) and for an arbitrary A ∈ M3,

following Kippenhahn’s approach in the classical case [8]. That is, we classify the

associated curve CJ (A), considering the factorizability of the polynomial F J
A(u, v, w).

The following possibilities may occur.

1st Case: Suppose that A ∈ M3 is a J-decomposable matrix, i.e., there exists a

J-unitary matrix U ∈ U2,1 such that

(9) U−1AU =

[

b 0

0 B

]

,

or

(10) U−1AU =

[

B 0

0 b

]

,

where b ∈ C andB ∈ M2. SinceWJ(A) = WJ (U−1AU), without loss of generality we

may consider that A is a block diagonal matrix of the form (9) or (10). If A is of the

form (9), then F J
A(u, v, w) = (Re b u+Im b v+w)F J1

B (u, v, w), where J1 = diag(1,−1).

The linear factor of F J
A(u, v, w) corresponds to the eigenvalue b ∈ σ+

J (A). It follows

that WJ (A) is the pseudo-convex hull of b and CJ1
(B), which is by the Hyperbolical

Range Theorem a hyperbola (possibly degenerate).

Suppose now that A is of the form (10). We have b ∈ σ−
J (A), C(B) is characterized

by the Elliptical Range Theorem, and so WJ (A) is the pseudo-convex hull of a point

and an ellipse (possibly degenerate).

2nd Case: The matrix A is J-indecomposable, but the polynomial F J
A(u, v, w)

factorizes into a linear and a quadratic factor or into three linear factors (possibly

not distinct). The linear factors correspond to the foci of the algebraic curve, and

consequently, to the eigenvalues ofA. If there exists a quadratic factor, it corresponds

to a hyperbola or to an ellipse (the conic cannot be a parabola, because one of its

real foci is a point of infinity and this contradicts Proposition 1). Therefore, CJ(A)

consists of three points (counting multiplicities) or of one point and an ellipse or a

hyperbola.

3rd Case: Finally, suppose that the polynomial F J
A(u, v, w) is irreducible. By

Newton’s classification of cubics [1] and by dual considerations there are the following

possibilities for the associated curve:

11



C1. CJ(A) is a sextic with three cusps and at least one oval component;

C2. CJ(A) is a quartic with three cusps and an ordinary double tangent (at two

complex points);

C3. CJ(A) is a quartic with one cusp and an ordinary double tangent at two of its

points;

C4. CJ(A) is a cubic with one cusp and one flex;

C5. CJ(A) is a sextic with three cusps and contains neither oval components nor

ordinary double tangents.

In the second and third cases, we may determine WJ (A) as follows. The investi-

gation of the projections of W+

J (A) (W+

−J (A)) on lines that pass through the origin

and defining an angle θ with the real axis is crucial. These projections are given

by W+

J (cos θHJ + sin θKJ) (W+

−J (cos θHJ + sin θKJ)), and we use the character-

ization of the numerical range of J-Hermitian matrices from the previous section.

If there exists a single direction θ ∈ R such that W+

J (cos θHJ + sin θKJ) is a half-

line, then W+

J (A) is a half-plane (possibly open) perpendicular to the direction θ.

When the same happens for several directions, then W+

J (A) is the intersection of the

corresponding half-planes. The boundaries of the half-planes are supporting lines of

W+

J (A) and tangents to the associated curve. In this case, the intersections of the

half-planes coincide with the pseudo-convex hull of the associated curve. If no such

direction exists, W+

J (A) is the complex plane.

In the examples presented here, it is enough to determine the projectionsWJ(HJ )

of WJ(A) on the real axis, because the matrices are real and so the J-numerical

range is symmetric with respect to to the real axis. The figures have been produced

with Mathematica 5.1, and Theorem 1 is used to determine the point equation of

CJ (A), while the line equation is given by Lemma 5. Not only the associated curve

is represented, but also the eigenvalues of each matrix. The boundaries of W+

J (A)

and W+

−J (A) are represented by thick lines.

Example 1. It can be easily seen that the matrix

A1 =





1 0 0

−1 −1 0

0 −1 1





is J-indecomposable, the Kippenhahn polynomial is reducible, F J
A1

(u, v, w) =

−(u−w)(u+w)2 and CJ (A1) = {(−1, 0, 1), (1, 0, 1)}. Since A1 is not a J-Hermitian

matrix, WJ (A1) cannot be a subset of the real line. To characterize WJ (A1),

we determine its projection on the real axis and so we consider the J-Hermitian
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component matrix of the J-Cartesian decomposition of A1,

HJ
1 =





1 − 1

2
0

− 1

2
−1 1

2

0 − 1

2
1



 .

The eigenvalues of HJ
1 are 1 (double) and −1. By Remark 3(b) we conclude that

W+

J (HJ
1 ) = W+

−J (HJ
1 ) = R, and so WJ(A1) = W+

J (A1) = W+

−J (A1) = C .
In the following examples, the polynomial F J

A(u, v, w) is irreducible.

Example 2. Let

A2 =





0 − 1

2
0

1

2
0 − 1

2

0 1

2

√
2



 with HJ
2 =





0 0 0

0 0 − 1

2

0 1

2

√
2



 .

The line equation of CJ (A2) is 4 + 4
√

2u + u2 − v2 −
√

2uv2 = 0 (cf. Figure 1). The

eigenvalues of HJ
2 are 0, (

√
2−1)/2 ∈ σ+

J (HJ
2 ) and (

√
2+1)/2 ∈ σ−

J (HJ
2 ). Therefore,

by Remark 3(c),

W+

J (HJ
2 ) = ]−∞, (

√
2 − 1)/2] and W+

−J(HJ
2 ) = [(

√
2 + 1)/2, +∞[.

Then W+

J (A2) is contained in the half-plane x 6 (
√

2 − 1)/2 and W+

−J (A2) is con-

tained in the half-plane x > (
√

2 + 1)/2. Moreover, W+

J (A2) and W+

−J(A2) are

bounded by the outer branches of CJ (A2) contained in those half-planes.

-2 -1 1 2 3

-2

-1

1

2

Figure 1. Curve of C1 type with two oval components and two components with cusps.
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Example 3. Let

A3 =





3 2 1

−2 −5 0

1 0 0



 with HJ
3 =





3 0 0

0 −5 0

0 0 0



 .

The line equation of CJ (A3) is 1 − 2u − 3(5u2 + v2) − 5uv2 = 0 (cf. Figure 2).

The eigenvalues of HJ
3 are −5, 3 ∈ σ+

J (HJ
3 ) and 0 ∈ σ−

J (HJ
3 ). Having in mind

Remark 3(c), we obtain W+

J (HJ
3 ) = W+

−J (HJ
3 ) = R. Then WJ (A3) = W+

J (A3) =

W+

−J (A3) = C .
-5 -4 -3 -2 -1 1 2 3

-2

-1

1

2

Figure 2. Curve of C1 type with one closed oval and a deltoid.

Example 4. For

A4 =





0 2
√

2 0

−2
√

2 1
√

5

0
√

5 1



 with HJ
4 =





0 0 0

0 1 0

0 0 1



 ,

the line equation of CJ(A4) is given by 1 + 2u + u2 − 3v2 − 8uv2 = 0 (cf. Figure 3).

Since HJ
4 = diag(0, 1, 1), by Remark 3(b), we conclude that

W+

J (HJ
4 ) = ]−∞, 1] and W+

−J(HJ
4 ) = [1, +∞[.

Therefore, W+

J (A4) is the half-plane x 6 1 and W+

−J (A4) is the half-plane x > 1,

and WJ (A4) = C .
-2 -1 1 2 3 4 5 6

-2

-1

1

2

Figure 3. Curve of C2 type with two components with cusps and a double tangent (at
complex points) of equation x = 1.
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Example 5. Let

A5 =





0 −1 0

1 0 −1

0 − 3

2

1

2



 with HJ
5 =





0 0 0

0 0 1

4

0 − 1

4

1

2



 .

The line equation of CJ (A5) is 16 + u2 + 9v2 − 8u(v2 − 1) = 0 (cf. Figure 4). Since

HJ
5 has the eigenvalues 0 and 1/4 (double), Remark 3(b) implies that

W+

J (HJ
5 ) = ]−∞, 1/4[ and W+

−J(HJ
5 ) = ]1/4, +∞[.

Consequently, W+

J (A5) is the half-plane x < 1/4 and W+

−J (A5) is the half-plane

x > 1/4. Finally, WJ (A5) = C \ {z ∈ C : Re z = 1/4}.

-1.5 -1 -0.5 0.5 1 1.5

-1

-0.5

0.5

1

Figure 4. Curve of C2 type with a deltoid and a double tangent (at complex points) of
equation x = 1/4.

Example 6. Consider now

A6 =





3

16
− 7

4

3

4
9

4

1

3
− 3

2

− 3

4
− 7

2
−3



 with HJ
6 =





3

16

1

4

3

4
1

4

1

3
1

− 3

4
−1 −3



 .

The associated curve CJ (A6) is represented in Figure 5 and its line equation is

4+9v2 +7u(−68+567v2)/48 = 0. The eigenvalues of HJ
6 are −119/48 and 0, where

0 has algebraic multiplicity 2. By Remark 3 (b) it follows that

W+

J (HJ
6 ) = [0, +∞[ and W+

−J(HJ
6 ) = ]−∞,−119/48].

The set W+

J (A6) is contained in the half-plane x > 0 and it is the convex hull

of the branch of CJ (A6) in the right closed half-plane. Analogously, W+

−J(A6) is

contained in the half-plane x 6 −119/48, being the convex hull of the associated

curve contained in this region.
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-9 -6 -3 3 6 9

-6

-3

3

6

Figure 5. Curve of C3 type with a cusp in the real axis and the imaginary axis as a double
tangent.

Example 7. Let

A7 =





0 4
√

2

0 0
√

2

0 0 0



 , with HJ
7 =





0 2
√

2

2

2 0
√

2

2

−
√

2

2
−

√
2

2
0



 .

The line equation of CJ (A7) is 1 − 3(u2 + v2) − 2u(u2 + v2) = 0 (cf. Figure 6).

-2 -1.5 -1 -0.5 0.5 1

-1.5

-1

-0.5

0.5

1

1.5

Figure 6. Curve of C3 type: a cardioid with a cusp in the real axis and x = 1 as a double
tangent.

The eigenvalues of HJ
7 are −2 and 1, the latter having algebraic multiplicity equal

to 2. By Remark 3(b), W+

J (HJ
7 ) = W+

−J (HJ
7 ) = R. Then WJ (A7) = W+

J (A7) =

W+

−J (A7) = C .
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Example 8. The line equation of CJ (A8), where

A8 =





√
2 0 2

0 −
√

2 4

0 2 0



 and HJ
8 =





√
2 0 1

0 −
√

2 1

−1 −1 0



 ,

is given by 1 + 10v2 + 8
√

2uv2 = 0 (Figure 7).

-4 -3 -2 -1 1 2

-3

-2

-1

1

2

3

Figure 7. Curve of C4 type (Cissoid of Diocles) with a cusp in the real axis and a flex in
the line of infinity. The imaginary axis is the flexional tangent and it corresponds
to an assymptote of the curve.

The matrix HJ
8 is nilpotent with nilpotency index k = 3. By Theorem 2(b),

W+

J (HJ
8 ) = W+

−J (HJ
8 ) = R and so WJ(A8) = W+

J (A8) = W+

−J (A8) = C .
Example 9. Let

A9 =





0 1 1

0 0 1

0 0 0



 with HJ
9 =





0 1

2

1

2
1

2
0 1

2

− 1

2
− 1

2
0



 .

The associated curve CJ(A9) is represented in Figure 8, and its line equation is given

given by 4 + (u2 + v2) − u(u2 + v2) = 0. The matrix HJ
9 has complex eigenvalues

(1 ±
√

7i)/4. Consequently, W+

J (HJ
9 ) = W+

−J (HJ
9 ) = R and WJ (A9) = W+

J (A9) =

W+

−J (A9) = C .
Example 10. Finally, let

A10 =





0 2 1

0 0 1

0 0 0



 with HJ
10 =





0 1 1

2

1 0 1

2

− 1

2
− 1

2
0



 .

The line equation of CJ (A10) is 2 − (u2 + v2) − u(u2 + v2) = 0 (cf. Figure 9).
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-1.25 -1 -0.75 -0.5 -0.25 0.25

-0.25

0.25

Figure 8. Curve of C5 type: a sextic reduced to one component with three cusps.

-3 -2 -1 1 2 3

-1

1

Figure 9. Curve of C5 type with two components.

Since (1± i)/2 are (complex) eigenvalues of HJ
10, W

+

J (HJ
10) = W+

−J(HJ
10) = R and

WJ (A10) = W+

J (A10) = W+

−J(A10) = C .
5. Open problems

Kippenhahn [8] proved that the cases C2, C4 and C5 cannot occur in the classical

case. In the indefinite case, the examples of the previous section show that all the

5 types of curves may occur. However, the associated curves of types C2, C4 and

C5 have led to degenerate cases, where WJ (A) coincides with C or with C except
for a line. It is an open problem to prove (or disprove) that this property is valid in

general.

In the classical case, Kippenhahn [8] also showed that the curves of C1 and C3

types correspond to a closed oval with a deltoid in its interior and to a cardioid,

respectively. In the preceding section, we presented non-degenerate examples for

unbounded associated curves CJ (A) of types C1 and C3 (cf. Figures 1 and 5). We

also obtained degenerate examples when those curves are bounded (cf. Figures 2

and 6). It is also an open problem to determine whether this is true in general.
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