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Testing the performance of beta diversity
measures based on incidence data: the
robustness to undersampling
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INTRODUCTION

Biological diversity has long been separated into different

components according to the phenomena that interest ecol-

ogists (Whittaker, 1960, 1972). The components most often

studied are: (i) alpha (local) diversity; (ii) gamma (regional)

diversity, which can be considered as an equivalent to alpha

diversity on a larger scale, but reflects the allopatric distribu-

tion of related taxa, and; (iii) beta diversity that measures

turnover of species between communities, but for which there

is no universally accepted measure (Whittaker et al., 2001;

Koleff et al., 2003).

Much attention has been given to the increase in estimates of

alpha diversity resulting from increased sampling effort,

especially when comparing alpha diversity between communi-

ties sampled with different levels of effort and completeness

(i.e., the ratio of observed to actual richness) such that

comparisons are biased and even misleading (see Soberón &

Llorente, 1993; Gotelli & Colwell, 2001). Without complete

inventories of communities, comparisons of species richness
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ABSTRACT

Aim Researchers measuring beta diversity have rarely concerned themselves with

the problems of how complete the species lists of studied communities are, and of

how the varying degrees of completeness can actually change estimates of beta

diversity. No comprehensive assessment has been made regarding the behaviour

of most beta diversity indices when applied to incomplete samples, a situation

which is more common than usually recognized. Our objective was to assess the

behaviour and robustness of a number of beta diversity measures for incidence

data from undersampled communities.

Location Mainland Portugal and the Azorean archipelago (North Atlantic).

Methods Data from intensive sampling of spiders in mainland Portugal and

arthropods in Azores were collected. We examined the properties of 15 beta

diversity measures developed for incidence data. We simulated varying degrees of

completeness, whereas computing beta diversity for selected pairs of samples. The

robustness of these beta diversity accumulation curves was assessed for the

purpose of finding the best measures for undersampled communities.

Results The Harrison et al. b-2 and the Williams b-3 are particularly robust to

undersampling. These measures are also insensitive to differences of alpha

diversity (species richness) between communities, and therefore to nestedness.

Colwell & Coddington bcc and the related Jaccard bj and Gaston et al. bg

performed best of the measures sensitive to alpha diversity. They performed

poorly, however, when compared communities exhibited very low values of beta

diversity. In such cases, the Routledge br performed the best.

Main conclusions No index was found to perform without bias in all

circumstances. Overall, b-2, b-3 and bcc (or related measures bj and bg) are

recommended as they seem to be the most robust to undersampling.
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Accumulation curves, arthropods, beta diversity, completeness, sampling,
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cannot be reliably made if one does not consider the sampling

effort or completeness attained. Many researchers address this

concern by estimating alpha diversity using techniques that

adjust for sampling effort or completeness, especially when

dealing with hyperdiverse taxa, for which it is difficult to

obtain complete inventories (Keating et al., 1998; Longino

et al., 2002). However, researchers measuring beta diversity

have rarely concerned themselves with problems relating to the

potential effect that sampling effort and completeness within

compared communities may have on estimates of beta

diversity (e.g. Fisher, 1999; Chao et al., 2005). Perhaps this is

a consequence of the general lack of agreement about which

index of beta diversity should be used in the first place (e.g.

Koleff et al., 2003).

Colwell & Coddington (1994) and Chao et al. (2005)

revealed that, for different indices, beta diversity decreases

with increasing sampling effort, resulting from the fact that

with low effort, many species which are shared by two

communities may not be sampled from one or both by pure

chance, and differences between them are therefore artificially

inflated (see also Fisher, 1999). This happens even when

comparing samples that come from the same community,

which should ideally exhibit no differences. On the other hand,

the opposite problem is also possible. If the compared

communities share a few very abundant species, and if there

are many rare species that are exclusive to each community,

estimated beta diversity may increase with increased sampling

effort. In such cases, undersampling will tend to reveal only the

shared, more abundant species and beta diversity will therefore

be underestimated.

The problem of undersampling in measuring beta diversity

can be addressed in one of the three following ways: (i) by

ensuring sufficient sampling effort for the chosen beta diversity

measure to reach a stable, and therefore reliable, value; (ii) by

statistically correcting undersampling bias in indices (as in

Chao et al., 2000, 2005); or (iii) by explicitly choosing an index

that is robust to relatively low levels of sampling effort.

Chao et al. (2000) have devised ways of implementing the

second of these strategies by estimating the number of shared

species between pairs of samples (or communities) based on

the principles of the ACE estimator (Abundance-based Cov-

erage Estimator, Chao & Lee, 1992). Chao et al. (2005) have

also created estimators for the Jaccard and Sørensen similarity

indices (complements of beta diversity indices for incidence

data) for quantitative data. Their approach deserves consider-

ation given that it recognizes, and attempts to statistically

correct for undersampling. However, as with species richness

estimators, the approach does not eliminate all sampling

issues. A considerable amount of bias remains with underes-

timation still occurring, especially with respect to severe

undersampling and for highly dissimilar samples. Additionally,

the method requires that ‘adjustment terms’ be estimated to

account for the shared undetected species (Chao et al., 2005).

These adjustment terms are estimated from abundance data (of

recorded species) that may themselves be affected by under-

sampling or underestimation of the true abundances.

Our focus in this paper is on the third of the above strategies

– i.e. choosing an index that is robust to relatively low levels of

sampling effort. We examine the effects of undersampling on

well-known indices measuring the similarity, or conversely

dissimilarity (equivalent to beta diversity), between pairs of

communities. Some new indices (e.g., Baselga et al., 2007;

Chao et al., 2008) allow simultaneous measurement of simi-

larity for three or more samples, but these new indices are also

potentially affected by undersampling given that they are based

on incidence or abundance data, as are the pairwise indices.

These multi-sample indices are also new enough that they have

not yet been extensively applied to empirical data.

Several authors (Wilson & Shmida, 1984; Gray, 2000 ; Koleff

et al., 2003; Magurran, 2004) have reviewed a number of

pairwise indices based on incidence data and, in some cases,

have assessed these for properties that are deemed desirable in

an ideal beta diversity measure. But, to our knowledge, no

comprehensive assessment has yet been made regarding the

behaviour of such measures when applied to incomplete

samples, a situation which is more common than usually

recognized. While the effect of undersampling has been tested

for a few indices – e.g. for complementarity (Fisher, 1999),

Jaccard (Chao et al., 2005) and Sørensen’s (Plotkin & Muller-

Landau, 2002; Chao et al., 2005) – these effects have never been

compared between indices, and most indices proposed to date

have never been tested at all. Therefore, we have three

objectives in this paper: (i) to demonstrate the utility of beta

diversity accumulation curves in the assessment of the

robustness to undersampling in pairwise beta diversity mea-

sures based on incidence data; (ii) to assess how different

measures behave with regard to varying degrees of undersam-

pling and; (iii) to recommend the measures that are relatively

robust to undersampling.

METHODS

Indices assessed

Our evaluation focused on measures that assess beta diversity

in terms of compositional dissimilarity between pairs of

communities, rather than in terms of the overall beta diversity

of larger sets of three or more communities. The vast majority

of studies of pairwise beta diversity have focused on measures

that employ incidence data, consisting of lists of species

occurring in the compared communities (Koleff et al., 2003).

We therefore evaluated only measures that use such data and

not indices that require abundance data. We also limited the

study to those measures whose maximum values are finite. The

values for these measures typically vary between 0, indicating

that the two communities have identical species composition

and 1, indicating that the communities share no species.

Although one of the measures we evaluated did not originally

present values in this range, it was modified to fulfil this

condition (Williams b-3; Table 1).

Many indices are basically equivalent, or they present values

that are directly convertible to other indices by adding or
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multiplying fixed numbers (see Table 1). In such cases, we

assessed only one of these equivalent indices in detail, although

basic evaluation results are presented for all.

Datasets

To evaluate the behaviour of the different indices in relation to

sampling effort, we used three different datasets: one, theore-

tical that simulated species’ abundances of 11 fictitious

communities and two, empirical datasets generated from the

application of very comprehensive spider and arthropod

sampling protocols (see details below).

Ten of the communities in the theoretical dataset each

included 1,000,000 individuals and 1000 species, with the

number of individuals for each species assigned according to a

lognormal distribution. These were simulations of entire

communities rather than of samples or inventories, as very

few inventories sample this many individuals. However,

arthropod communities typically contain such numbers. Also,

typical communities follow a lognormal distribution of species

abundance (May, 1975; Longino et al., 2002), although this is

usually truncated by low sampling effort (Magurran, 2004;

Coddington et al., 2009). Datasets were constructed in such a

way that 10 species were represented by singletons (only one

individual recorded). The first fictitious community was

compared (pairwise) with the other nine communities. These

nine communities shared 1%, 5%, 10%, 20%, 50%, 80%, 90%,

95% and 99% of species with the first community, thus

representing varying degrees of sample similarity. The shared

species were chosen randomly such that they represented

species of varying abundances. To examine the performance of

the pairwise indices on nested data, one of the fictitious

communities with the 1,000,000/1000 lognormal distribution

was compared with the 11th community that presented

500,000 individuals and 500 species also following a lognormal

distribution. All these 500 species were shared by both

communities, in a fully nested structure.

One of the empirical datasets resulted from intensive

fieldwork in mainland Portugal, which concentrated on spiders

in three different habitat types, one in each of three protected

areas: a mixed oak forest in the Peneda-Gerês National Park

(hereafter simply referred to as Gerês), north-western Portugal

(see Cardoso et al., 2008b); a cork oak forest in the Arrábida

Nature Park (hereafter Arrábida), central Portugal (see Card-

oso et al., 2008a); and a scrubland in the Vale do Guadiana

Nature Park (hereafter Guadiana), south-eastern Portugal (see

Cardoso et al., 2009). At each site, a delimited area of 1 ha was

sampled with three different methods that covered all vertical

layers (except the high canopy) with some degree of overlap.

These methods were tree beating, sweeping and pitfall trap-

ping. Every method had 64 samples, each equivalent to one-

person-hour of work, which was set up as a semi-quantitative

protocol (see Cardoso et al., 2008a,b, 2009; for details). In

total, 336 species and 15,736 individuals were included in the

analyses. Sampling completeness, calculated as the ratio

between observed and estimated richness with the Chao1

estimator (Colwell, 2006), reached c. 90% at the first two sites,

and c. 70% at the third site.

The second empirical dataset resulted from a large collecting

effort of arthropods undertaken in the Azores archipelago, in

the North Atlantic, in relatively large natural forest fragments

on three different islands: Mistério da Prainha forest in the

island of Pico; Serra de Santa Bárbara in Terceira; and Morro

da Sé e Pico Alto in Flores. At each site, eight transects of

150 · 5 m were scattered in the forest to quantify arthropod

diversity (see Borges et al., 2005, 2006; Ribeiro et al., 2005;

Cardoso et al., 2007 for details). Each transect consisted of 30

pitfall traps and 30 beaten tree samples. Half of the pitfall traps

contained Turquin solution and the other half, an ethylene

glycol solution. In total, 233 species and 30,359 individuals

Table 1 Beta diversity measures com-

pared in this study, re-expressed in terms

of their pairwise matching/mismatching

components (a = species shared by both

communities; b, c = species exclusive to

each of the two compared communities;

notation following Koleff et al., 2003).

Indices that are equivalent or that present

similar properties for paired comparisons

of communities are indicated. *The origi-

nal formulation of Williams (1996) did not

include the multiplication by 2, but we

propose to use it to ensure that all indices

change between 0, indicating when two

communities have identical species com-

position, and 1, indicating when two

communities do not share any species.

Formula References Indices with the same properties

bw ¼
2ðaþbþcÞ
2aþbþc � 1 Whittaker (1960, 1972) b-1 (Harrison et al., 1992)

bt (Wilson & Shmida, 1984)

bme (Mourelle & Ezcurra, 1997)

bsor (Sørensen, 1948)

bhk (Harte & Kinzig, 1997)

br ¼
ðaþbþcÞ2

ðaþbþcÞ2�2bc
� 1 Routledge (1977)

b�2 ¼
minðb;cÞ

maxðb;cÞþa Harrison et al. (1992)

bco ¼ 1� að2aþbþcÞ
2ðaþbÞðaþcÞ Cody (1993)

bcc ¼ bþc
aþbþc Colwell & Coddington (1994) bg (Gaston et al., 2001)

bj (Jaccard, 1912)

b�3 ¼ 2 minðb;cÞ
aþbþc Williams (1996)*

bsim ¼ 1� a
minðb;cÞþa Lennon et al. (2001)

bz ¼ 1� log 2aþbþc
aþbþcð Þ

log 2

� �
Lennon et al. (2001)

Beta diversity robustness to undersampling
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were collected and included in the analyses. The sampling

completeness in each of the three forests was around 70%.

Statistical procedures

With the theoretical dataset, we first tested how the different

measures change according to varying proportions of shared

species. This provided confirmation of the sensitivity of

measures to changes in composition, and therefore that any

high robustness to undersampling observed in subsequent

analyses would not be because of an inherent lack of sensitivity

of any measure.

We evaluated the robustness of measures to incomplete

samples using accumulation curves. Beta diversity accumula-

tion curves can be constructed (in a similar way to species

richness accumulation curves; see Fisher, 1999; Chao et al.,

2005) by calculating the mean beta diversity of paired samples

simulating different amounts of undersampling. A computer

program (Java code) was created to randomize the accumu-

lation of individuals (without replacement), one at a time

within each of the two samples that were compared (code

available from the first author by request). This accumulation

was performed at the same rate for both the samples. When

datasets had a different maximum number of individuals, the

accumulation process for the smaller dataset would reach the

end before the larger dataset, which would then continue its

accumulation process until all individuals were selected. Ten

thousand curves were created and averaged for each pairwise

comparison (see below), resulting in smooth accumulation

curves for beta diversity values. Thus, the accumulation curves

allowed us to quantify the beta diversity between the two

datasets (series of paired samples) for the complete range of

undersampling.

Three analyses were made with this approach. First, we

assessed beta diversity indices (Table 1) with the theoretical

datasets, resulting in 10 accumulation curves per measure.

Secondly, we assessed how the indices behaved when applied to

the two empirical datasets at the large scale. A total of six

comparisons were made, with the three sites sampled for

spiders in Portugal paired together (three pairwise compari-

sons) and then the same for the three sites sampled for

arthropods in Azores (another three pairwise comparisons).

Again, each pairwise comparison resulted in the generation of

a beta diversity accumulation curve. Thirdly, we used the

empirical datasets to assess the performance of indices at a

more local scale by deriving these indices from results obtained

using different sampling methods within a single site selected

from each dataset – i.e. three methods compared for Gerês

(three pairwise comparisons) and three methods compared for

Pico (another three pairwise comparisons). These sites were

chosen because they contained the richest fauna in mainland

Portugal and the Azores, respectively. Although beta diversity

is not commonly calculated for this type of scenario (i.e., beta

diversity as produced by different sampling methods), each

method was directed towards a different subset of organisms,

with varying degrees of overlap between them. Moreover, these

comparisons enabled us to test the expectation that beta

diversity would be higher between pitfall methods and

vegetation displacement methods than among methods that

sampled similar parts of the community.

To quantitatively evaluate the performance of the different

indices for each pairwise comparison, we measured the

robustness to undersampling of the entire curve, from the

first to the next to last individual, using the following equation:

Robustness ¼ 1�
Pn�1

i¼1 jbi�bnj
n� 1

where n is the total number of individuals within each dataset;

bi is the average value (over all 10,000 curves) of the index

when i individuals are included in the sample; bn is the final

value of the index with all individuals included in the samples.

This index, derived from the Mean Absolute Error measure

(Walther & Moore, 2005), reflects the average difference

between the beta diversity values obtained with all possible

degrees of undersampling of the two datasets, and the final

value with all individuals of both datasets included (i.e., no

undersampling). The robustness value varies between 0 when

bn is either 0 or 1 and all bi values are 1 or 0, respectively, and 1

when all bi values are equal to bn.

Arthropod datasets very rarely reach the sampling com-

pleteness levels achieved for our empirical datasets (Cardoso,

in press). Typical per-site sampling effort in ecology and

conservation studies is as low as 1% of the effort we used

(Cardoso, in press). We have therefore plotted the accumu-

lation curves on a log10 scale and have calculated robustness

for three of these curves, corresponding to sampling of 1%,

10% and 100% of individuals. The log10 scale also allowed for

a clearer visual depiction of the robustness of the beta diversity

measures when sampling was 10% or less.

RESULTS

All measures were found to be similarly sensitive to changes in

compositional overlap between communities (Fig. 1). The

values of most measures decrease linearly as the percentage of

shared species is increased (holding richness equal between

compared communities). This suggests that any high values of

robustness to undersampling obtained in the results presented

below are not because of an inherent lack of sensitivity for any

of the evaluated measures.

The accumulation curves of beta diversity derived using the

theoretical datasets (Fig. 2) revealed that the values of all

measures change with varying sampling completeness. How-

ever, the nature of this change differs between measures. The b-

2 and b-3 rapidly reach an asymptote when communities differ

markedly in composition (Fig. 2c, d). On the contrary, br

performs very badly under this scenario. This latter measure,

however, is the best performer when communities are very

similar, reaching the asymptote more rapidly than any other

index (Fig. 2g–i). Four measures (br, b-2, b-3, and bsim) are

insensitive to differences in alpha diversity (species richness)

and nestedness, although in this case, they reach the true value

P. Cardoso et al.
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of 0 only with fully sampled datasets (Fig. 2j). This is

because, although the two communities are actually completely

nested, the accumulation process (representing under-

sampling) often produced samples that were not completely

nested.

Both large and local-scale evaluations of the empirical

datasets revealed relatively high robustness to undersampling

for all beta diversity measures when at least 10% of the dataset

was sampled (see Appendix S1). That is, many of the measures

rapidly converged to the true beta diversity value as sampling

effort increased (Figs 3 & 4). Two indices were found to be

particularly robust to undersampling, b-2 (robustness at

1% = 0.855 averaged over all 12 large and local-scale pairwise

comparisons; at 10% = 0.924; at 100% = 0.977) and b-3

(average robustness at 1% = 0.860; at 10% = 0.918; at

100% = 0.975). Their accumulation curves were usually very

stable right from the beginning of the process, with a few

exceptions (Figs 3 & 4). A relatively flat curve indicated a

highly robust index, regardless of the beta diversity value. This

was not the case for these two specific indices when compared

communities exhibited low final beta diversity values (e.g.

Fig. 3, Pico vs. Terceira or Fig. 4, beating vs. sweeping). In

such cases, their behaviour was unreliable, with undersampling

causing either overestimation or underestimation of beta

diversity. The br index appeared to be the most robust measure

when datasets had low dissimilarity (Fig. 2; see Appendix S1).

However, br presented a mediocre performance when datasets

had medium to high dissimilarity (average robustness at

1% = 0.781; at 10% = 0.884; at 100% = 0.960). The worst

performers overall were bw and related measures (average

robustness at 1% = 0.747; at 10% = 0.868; at 100% = 0.960)

and especially bsim (average robustness at 1% = 0.739; at

10% = 0.859; at 100% = 0.957). In general, the robustness of

the different measures, according to the large and local-scale

empirical evaluations, may be ranked as: b-2 �
b-3 > bcc = bj = bg > bz > br > bco > bw = b-1 = bt = bme =

bsor = bhk > bsim.

DISCUSSION

This study sought to explore the impact of undersampling on

the performance of pairwise measures of beta diversity, or

community dissimilarity. Although the use of pairwise mea-

sures is known to have its limitations when comparing a large

number of communities simultaneously (Chao et al., 2008),

many studies still use such measures. Using (dis)similarity or

related coefficients as measures of beta diversity is a common

practice (Johannsson & Minns, 1987; Philippi et al., 1998;

Anderson et al., 2006; Ferrier et al., 2007; Ricotta & Marignani,

2007). As previously mentioned, the Whittaker index when

calculated for pairwise comparisons is similar to the Sørensen

coefficient of similarity. Likewise, the complementarity index is

similar to the Jaccard coefficient. But not all similarity

measures have been ‘disguised’ as beta diversity indices.

Studies of distance decay of similarity mostly use the Sørensen

incidence-based index, equivalent to bw (Nekola & White,

1999; Morlon et al., 2008; Cardoso et al., in press). This

continued and widespread usage of pairwise indices highlight

the importance of studying the effects of undersampling on

these beta diversity measures.

Previous studies examined the effect of alpha diversity

(species richness) and sample size (number of individuals) on

pairwise beta diversity indices (Ricklefs & Lau, 1980; Wolda,

1981). These studies were aimed at estimating the bias in

each index where bias was defined as the difference between

the theoretical maximum for the index and the observed

value under different levels of species richness and sample

size.

As several authors have previously pointed out for different

datasets and measures (Fisher, 1999; Plotkin & Muller-Landau,

2002; Chao et al., 2005) theoretical or empirical, beta diversity

typically decreases with increasing sampling effort. The

decrease in beta diversity with an increasing number of

sampled individuals is usually constant and diversity values

often do not asymptote (Figs 3 & 4). The most commonly used

indices of beta diversity for incidence data are the original

formulation of Whittaker (1960, 1972) and the Wilson &

Shmida (1984), which is similar to the first index with respect

to pairwise comparisons (Table 1). Both are particularly prone

to overestimation when in the presence of undersampling. In

the case of comparisons of species lists, which are known to be

incomplete or with an unknown level of completeness, these

indices should be applied cautiously.

In this study, we have used beta diversity accumulation

curves to examine robustness of the most widely-used indices

to known levels of undersampling. These tests indicate that

there are a few indices that are less sensitive to undersampling

relative to other measures. Both b-2 and b-3 usually present

very stable curves, retaining similar values throughout the

simulated sampling process, which is confirmed by the high

robustness that both show in most of the pairwise compar-

isons. These two indices are precisely the ones that incorporate

the numerator min (b,c). The fact that only the smaller of the

mismatching components used prevents the index from

Figure 1 Value of the different pairwise beta diversity measures

(see Table 1) according to the proportion of shared species,

assuming similar species richness in both compared samples.

Beta diversity robustness to undersampling
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 2 Beta diversity accumulation curves for the 15 measures evaluated when comparing theoretical communities with 1,000,000

individuals and 1000 species with a lognormal distribution. A single community was compared with communities sharing: (a) 1%; (b) 5%;

(c) 10%; (d) 20%; (e) 50%; (f) 80%; (g) 90%; (h) 95%; (i) 99% of its species. The same community was compared with another presenting

(j) 500,000 individuals and 500 species, all shared by both communities, in a fully nested design, with no species exclusive to the latter. The

ordinate refers to the mean value of the given beta diversity index over 10,000 replicate simulations.

P. Cardoso et al.
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overestimating beta when there is undersampling, which

occurs most of the time with the other indices that incorporate

both components in their formulae. It may seem, on a first

glance, that the b-2 and b-3 have performed well only because

they are more insensitive to compositional differences than are

other indices. However, the results presented in Fig.1 suggest

that this is not the case.

The measures b-2 and b-3 are however, together with br and

bsim, insensitive to species richness differences between samples

and consequently to nestedness (given that complete nested-

ness reflects only a difference in species richness, not species

turnover). Complete nestedness (see Patterson & Atmar, 1986)

occurs when any community has all the species that are present

in all the less rich communities of the same region. Also, every

species of that community will be present at all the commu-

nities in the region that are richer than itself. Nestedness

patterns are usually because of impoverishment caused by

selective extinction, for example, during fragmentation of large

habitats, or as a result of enrichment driven by selective

colonization (for example, in the Azores see Cardoso et al., in

press). Many authors do not perceive nestedness as beta

diversity and the insensitivity of these indices to nestedness is

therefore probably desirable in many studies involving

community comparisons (e.g. Baselga et al., 2007). In fact,

this insensitivity is analogous to the requirement of indepen-

dence between alpha and beta diversities (Wilson & Shmida,

1984; Jost, 2007; Ricotta, 2008).

On the other hand, many authors may not agree with this

requirement of independence between diversity components.

When comparing very different communities that differ both

in richness and composition (e.g. polar and tropical biotas for

most taxa), b-2, b-3, br, and bsim will be limited by an upper

bound lower than 1. This can cause low values of beta diversity

even between communities with no shared species. The third

best measures in terms of robustness, bcc, bj, and bg, are

sensitive to such differences. These may therefore be preferred

in cases where differences in species richness between samples

(or communities) need to be reflected in the measurement of

beta diversity.

The measures b-2 and b-3 can be particularly prone to

underestimation when very similar communities are under-

sampled. In this case, an alternative measure could be br, which

exhibits the best behaviour for very similar communities.

However, as shown by the lack of an asymptote for many

indices in Figs 3 & 4 (see also Appendix S1), underestimation

seems to be less common and less severe than overestimation.

This bias was also reported by Ricklefs & Lau (1980) for some

of these indices.

CONCLUSIONS

As a general recommendation, the most desirable measures of

beta diversity based on our evaluation are those for which

values obtained from varying levels of undersampling are as

(a) (b)

(c) (d)

(e) (f)

Figure 3 Beta diversity accumulation

curves for the sampling at a large scale.

Three sites sampled for spiders in

mainland Portugal are compared:

(a) Gerês · Arrábida; (c) Arráb-

ida · Guadiana; (e) Gerês · Guadiana. As

are three sites sampled for arthropods in

the Azores: (b) Flores · Terceira;

(d) Terceira · Pico; (f) Flores · Pico.

The ordinate refers to the mean value of

the given beta diversity index over 10,000

replicate simulations.
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close as possible to the true value obtained from complete

sampling of both communities. If the degree of sampling

completeness of datasets is unknown or known to be low, we

recommend the b-2 index of Harrison et al. (1992) as the most

robust measure or, as an alternative, the b-3 of Williams (1996).

Both of these indices were also amongst those recommended by

Koleff et al. (2003) in their assessment of a number of other

properties. If however, alpha diversity differences or nestedness

need to be reflected in the measurement of beta diversity, then

the best alternatives are bcc, bj, and bg.
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