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For the first time, the structure, dimensions, and composition of the epidermis of an invasive earthworm

species that has successfully colonized hostile conditions in actively volcanic soil on S~ao Miguel (Azores)

have been measured. Metal concentrations in actively volcanic (Furnas) and volcanically inactive (Faj~a) soils

were similar; however, Furnas soil was characterised by elevated temperature (10 1C differential), relative

hypoxia, extremely high CO2 tension, and accompanying acidity. The epidermis of earthworm’s resident at

Faj~a was approximately twice the thickness of the epidermis of conspecifics resident in Furnas soil.

Reference worms transferred to Furnas soil for 14 days experienced an epidermal thinning of approximately

51%. In comparison, when Furnas earthworms were transferred to mesocosms at the relatively benign Faj~a

site, their epidermal thickness increased by approximately 21% over 14 days. Earthworms resident in

Furnas soil had higher goblet cell counts than the residents of volcanically inactive soil on a neighbouring

island (S. Maria). Transferring worms from S. Maria to mesocosms at Furnas induced a significant increase

in goblet cell counts. Clearly, the active volcanic environment at Furnas poses a multifactorial stress

challenge to the epigeic A. gracilis colonizer.

& 2010 Elsevier Inc. All rights reserved.
1. Introduction

The high fertility of volcanic soils often attracts high-density
human habitation, thus creating important risk scenarios in such
regions (Hall-Spencer et al., 2008; Ribeiro et al., 2008; Viveiros
et al., 2008; Viveiros et al., 2009). Geothermal biotopes are
reducing environments with certain unique features, mainly
characterised by elevated soil, water, and atmospheric elemental
composition, together with constant diffuse degassing and high
temperatures (Cruz et al., 1999; Viveiros et al., 2008; Viveiros
et al., 2009). Volcanic gases typically comprise water vapour,
carbon dioxide, sulphur dioxide, hydrogen sulphide, and
hydrogen chloride with lesser amounts of hydrogen fluoride
(Ferreira and Oskarsson, 1999). Rocks and volatiles of volcanic
origin are enriched with metals/metalloids, such as Al, As, Cu, Hg,
Pb, and Zn (Cruz et al., 1999; Ferreira and Oskarsson, 1999;
Aiuppa et al., 2000), with the diffusion of acidic volcanic gases
ll rights reserved.
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through the rocks mobilising the metals in associated soils and
water bodies (Cruz et al., 1999; Bagnato et al., 2007).

A primary task of ecophysiology is to understand how
organisms evolve adaptations to cope with the site-specific
challenges posed by stressful environments. The extant volcanic
activity in certain terrestrial locations on S~ao Miguel, one of the
nine islands comprising the Azores archipelago, provide good
‘‘field-laboratories’’ for investigating aspects of the capacity of
soil-dwelling macroinvertebrates to inhabit natural habitats
continuously receiving potentially toxic chemical inputs in a
milieu conducing bioavailability (Amaral et al., 2006b; Cunha
et al., 2008; Rodrigues et al., 2008).

Earthworms are detritivorous macroinvertebrates conferred with
the status of ‘ecological engineers,’ because they modify the
distribution of nutrients and their availability to other organisms,
whilst the biogenic structures that that they build profoundly affect
soil physical properties (Jouquet et al., 2006). A number of criteria
support the use of earthworms as sentinel species for soil quality
assessment (Morgan and Morgan, 1998, 1999; Suthar et al., 2008)
including: ecological functions; ability to inhabit extremely
contaminated metalliferous soils (Morgan and Morgan, 1993);
well-defined soil/tissue relationships for a number of metals
(Peijnenburg, 2002); established acute and chronic toxicity tests
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(Kula and Larink, 1998); and a burgeoning body of ecotoxicogenomic
protocols and observations (Spurgeon et al., 2008). Whilst the fate of
inorganic contaminants in earthworm tissues is still a focus of
ecotoxicological research (Cotter-Howells et al., 2005), the main
thrust of the field is to assess the toxic effects of soil contaminants
on the receptor organism, from the molecular-genetic and cellular
levels of organisation to the physiological and demographic levels
(Spurgeon et al., 2004; Bundy et al., 2008). Indeed, morphometric
and complimentary cellular assays have been performed to
determine the effects of volcanic soils in the Azores on the
alimentary epithelia and chloragocytes of a non-resident earthworm
species (Lumbricus terrestris) exposed under laboratory conditions
(Amaral et al., 2006b). No comparable studies have to date been
performed on indigenous species exposed in situ to volcanic soils.

The earthworm epidermis consists of supporting and basal
cells, plus at least two types of mucus-secreting goblet cells with
overlying cuticle (Jamieson, 1981). The integument is highly
permeable, and not only serves as the sole respiratory surface, but
may also be the predominant uptake route for metals such as Cd,
Cu, and Pb (Vijver, Vink, Miermans and Van Gestel 2003). The
structure, dimensions, and composition of epidermal surfaces
have been widely used for assessing the effects of xenobiotics on
molluscs (Gomot-de Vaufleury and Pihan, 2002), fish (Lamche and
Burkhardt-Holm, 2000), amphibians (Fenoglio et al., 2009), and
mammals (Fullerton and Hoelgaard, 1988; Iwata et al., 1999), but
surprisingly in view of its anatomical features and direct
interfacing with soil, not in earthworms. Thus, the main objective
of the present investigation was to determine morphometrically
the effect of a volcanic soil on the epidermis of a cosmopolitan
endogeic earthworm species (Amynthas gracilis Kinberg, 1867;
Megascolecidae) resident in the Azores by comparing populations
with different exposure histories confined within mesocosms in
field locations with and without volcanic activity. The amount of
ecophysiological and ecotoxicological observations on this species
is very limited.
2. Materials and methods

2.1. Earthworm sources and exposure sites

The Azores archipelago comprises nine islands and is located in the North

Atlantic Ocean, between 361450–391430N and 241450–311170W, at the triple

junction of Eurasian, African, and North American plates, characterised by a

complex tectonic settlement, where seismic and volcanic phenomena are common

(Booth et al., 1978). S~ao Miguel and Santa Maria are the two most eastern islands

of the archipelago, and the latter is the oldest of all nine. S~ao Miguel is the largest

island (757 km2), which presents several active volcanic spots, including fumarolic
Table 1

Physical properties and concentrations of metals (mg g�1 dry weight) in soils of Furna

Source of data of the soils from Ribeira site: (Amaral et al., 2006b).

Site Soil CO2 (vol% ) Soil O2 (vol%) CO (ppm) Soil temperature (1C

Physical properties

S~ao Miguel

Furnas 54.45 9.7 0.5 37

Faja 0 21.1 0 18

Santa Maria

Ribeira – – – –

Metal content
Cu Pb

S~ao Miguel

Furnas 42 81

Faja 41 90

Santa Maria

Ribeiran 66 74
fields, cold, and thermal springs and soil diffuse degassing (Viveiros et al., 2008).

Santa Maria (92 km2) is also of volcanic origin, but no volcanic activity has

occurred there for 43 million years (Feraud et al., 1981). Two field sites on S~ao

Miguel, differing in their contemporary volcanic activity (thermal and degassing

outputs), were selected for microcosm exposures: (a) Furnas, which displays the

most conspicuous degassing and geothermal activity in the entire Azores

archipelago and (b) Faj~a, which does not presently display any thermal and

degassing phenomena (Table 1).

A group of adult (clitellate) A. gracilis from Furnas, 37146024.600N 25118010.300W

(S~ao Miguel) and another group from Ribeira 36157004.600N 25105038.900W (Santa

Maria) were collected by digging and hand-sorting during Spring 2008, and were

assigned to factorial-design treatments (with earthworm source and exposure site

as factors, and exposure time as a covariable) within 24 h of collection (Fig. 1).

Twelve individual worms were placed in perforated, cube-shaped, plastic boxes

(volume 20 L) covered with a permeable mesh. Ten boxes were used per site, with

five boxes per ‘treatment’ (Furnas- or S. Maria-derived worms). Soil from the given

exposure site was used to which approximately 120 g of re-wetted, oven-dried (at

140 1C), urine-free horse manure (produced from a single known horse not subject

to any medication) was deposited on the soil surface at the beginning and after 14

days exposure. For t0 analysis, five earthworms from S. Maria and five from the

two Furnas (S. Miguel) populations were randomly chosen.

In the Furnas (volcanically active site) exposures, five individuals (one from

each of the appropriate replicated box) from both original sources (i.e. Furnas and

S. Maria) were randomly sampled for analysis at 4, 8, and 14 days. Sampling at the

Furnas site on day 28 was not possible due to the fact that at some indeterminate

time between scheduled sampling days 14 and 28, the microcosm boxes were

vandalized and most earthworms escaped. In the Faj~a 37145012.2N 25138021.300W

(S. Miguel, volcanically inactive site) exposures, five earthworms from both of the

original populations (Furnas and S. Maria) were randomly sampled for analysis at

4, 8, 14, and 28 days.

Fig. 1 provides a schematic representation of the experimental design. After

sampling, the earthworms were immediately transferred to the laboratory, where

they were depurated of gut contents by placing them on moistened paper for 36 h.

A fresh piece of tissue located 3–4 segments posterior to clitellum was excised

from each individual earthworm for use in light microscopy and morphometry, the

rest of the earthworm body was used for metal analysis.

2.2. Metal analyses

The soft tissues of A. gracilis were dried (130 1C) for 48 h, digested in aqua regia

at 95 1C for 2 h, and then microwave-digested inside closed vessels for 2 min.

Digests were diluted and analysed for Ca, Cu, K, Pb, and Zn on a Finnegan Mat

Element 2 High Resolution ICP/MS (Actlabs, Canada). Soil samples at 10 cm were

thoroughly homogenised, air-dried, and gently crushed prior to aqua regia

digestion and ICP/MS metal analyses as for worm tissues. A quality control was

implemented that included reagent blanks and reference materials. The accuracy,

was always higher than 95% for the analysed elements, and was assessed through

the analysis of eight standard reference materials GXR-1, GXR-2, GXR-4, GXR-6,

OREAS-13 P, SDC-1, SCO-1, NIST694, and DNC-1 (Actlabs, Canada). Ultrapure water

was used to prepare blanks and calibration standards.

2.3. Histological processing

Each fresh piece of tissue was fixed in neutral-buffered formaldehyde for 5 h,

dehydrated in graded ethanol series, and embedded in paraffin wax. Histological

section (4 mm thickness) were cut on a Leitz 1512 microtome (Leica Microsystems,
s, Faj~a (S~ao Miguel) and Ribeira (Santa Maria).

) Surface temperature (1C) Moisture (%) pH (H2O) Clay-silt (%) OM (%)

17 25 5.8 76 3.4

18 34 7.8 75 3.4

– 17.72 6.9 80 2

Zn K Ca

225 32,909 9149

195 21,261 22,516

197 83,700 14,600
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Fig. 1. Schematic representation of the experimental design.
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Wetzlar, Germany), mounted on albumin-coated slides (Menzel-Glaser,

Braunscheig, Germany), dried at 40 1C for 24 h, and stored at room temperature

until staining.
2.4. Morphometry

Sections were stained with haematoxylin–eosin (Martoja and Martoja-Pierson,

1970). Epidermis thickness was measured in four sections (four fields per section),

28 mm apart, in each individual worm. Images were captured using a CoolSNAP-cf

camera (Photometrics GmbH, Munich) coupled to a light microscope, and analysed

with Image Pro-Plus 5.0 software (Media Cybernetics, Silver Springs). Thus, for

statistical analysis the average value from 16 measurements per individual

earthworm was considered the true replicate (n¼5 per treatment).
2.5. Goblet cell counts

Another set of sections was stained with PAS-Alcian Blue (pH 2.5) to

distinguish neutral and acidic mucopolysaccharides (Martoja and Martoja-Pierson,

1970), so that the blue-stained goblet cells containing acid mucins could be

located. Counts were made in four microscope fields on two different sections

45 mm apart. Goblet cell numbers were expressed both as cells mm�1 and

cells mm�2 (by dividing the cells mm�1 by the cross-sectional area of the

epidermis).
2.6. Statistical analyses

Epidermal thickness measurements and goblet cell counts, respectively, were

analysed (with or without loge transformation, as appropriate) by two-way

ANOVA (using earthworm source and exposure site as factors, and exposure time

as a covariable) and Tukey post hoc pair-wise comparisons, with pr0.05

considered the level of significance.
3. Results

3.1. Soil and earthworm metal analyses

Although the measuring accuracy of the chemical analysis was
always higher than 95%, the number of replicates per day was not
enough to do a robust statistical comparison. Therefore the values
presented should be considered with merely descriptive value
and should be interpreted accordingly.

Cu, Pb, and Zn concentrations were very similar in the soils
from the volcanically active (Furnas) and inactive (Faj~a) sites
(Table 1). However, Ca concentration appeared to be appreciably
higher and K concentration was appreciably lower in Furnas soil.
Other noteworthy differences between the two soils are the lower
pH (5.8 compared with 7.8), and exceptionally high CO2 content
(with accompanying lower O2 and higher CO content), in Furnas
soil (Table 1). The Ribeira (S. Maria), site from which ‘reference’
worms were derived, had similar metal composition (apart from
much higher K concentration) to Furnas and Faj~a soils, and a
neutral pH (Table 1).

Cu, Pb, and Zn concentrations were higher in earthworms
maintained for a comparable exposure period of 14 days within
mesocosms containing actively volcanic Furnas soil compared
with an inactive Faj~a soil, irrespective of the source of the
earthworms (Fig. 2) and despite the similarities of the metal
contents of the soils at the exposure sites (Table 1). In fact, Cu, Pb,
and Zn showed an accumulation pattern in both populations
exposed to Furnas environment, with the highest concentration
values found at 14 days of exposure when compared with t0,



Fig. 2. Concentrations of metals (mg element g of dry weight�1) measured by HR-ICP/MS in tissues of Amynthas gracilis collected in Furnas, S. Miguel and S. Maria islands

which were exposed to, Furnas a site with volcanic activity and other with no volcanic activity, Faj~a.

Fig. 3. Micrographs of epidermal epithelia of Amynthas gracilis from Ribeira, Santa Maria before exposure (A) and after exposure (B) in Furnas and Furnas earthworms

before exposure (C) and after exposure (D) to the non-volcanic Faj~a Soil. Scale bars¼25 mm. Ct, cuticle;Gb, Goblet cells; Ep, epidermis; CMus, circular muscle; LgMus,

longitudinal muscle.
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revealing differences in the bioavailability of metals. Tissue K
concentrations did not differ significantly amongst the earthworm
‘treatment’ groups; however, Ca concentrations tended to be
lower in earthworms maintained in the relatively Ca-impover-
ished, acidic, Furnas soil compared with their counterparts
maintained on Faj~a soil (Fig. 2).
3.2. Epidermal structure

3.2.1. Epidermal thickness

The epidermis of earthworm’s resident at the reference site
(Ribeira) on S. Maria was approximately twice the thickness of the
epidermis of conspecifics resident in volcanically active Furnas
soil (Fig. 3). When the reference earthworms were transferred to
mesocosms at the volcanically inactive Faj~a soil, the epidermal
thickness decreased by approximately 30% over a 14 day exposure
period. In comparison, S. Maria worms transferred to Furnas soil
for 14 days experienced an epidermal thinning of approximately
51% (Fig. 4). Earthworms resident at Furnas experienced a modest
epidermal thickening (approximately 21%) after 14 day main-
tenance in Faj~a soil, but a progressive thinning of the epidermis
(approximately 24%) when confined within mesocosms of their
‘own’ soil (Fig. 4).

Correlation analysis between earthworm tissue heavy metal
concentrations and epidermis thickness (Table 2) indicated
significant negative relationships in the cases of Furnas and
S. Maria worms maintained on Furnas soil. There were no
observable significant correlations between heavy metal burden
Fig. 4. The epidermal thickness (mm) variation with time (days) and respective standard

which were exposed to the active volcanic environment (Furnas) and to place without

Table 2
Pearson’s correlation coefficients (r2) between epidermis thickness and concentrations o

microcosms to the active volcanism of Furnas during 14 days and to a site without vo

Earthworms from Furnas, Sâo Miguel Earthworm

Elements Furnas—active volcanism Faj~a—inac

Cu �0.614n 0.125

Pb �0.585n 0.144

Zn �0.575n
�0.067

Total heavy Metal load �0.738n 0.268

n Significant correlations at pr0.05.
and the morphometric parameter in either earthworm population
transferred to mesocosms containing Faj~a soil.

3.2.2. Goblet cell counts

The epidermis of earthworms resident in Furnas soil had
significantly higher goblet cell counts (expressed as number per
unit epidermis area) than the residents in volcanically inactive
S. Maria soil (Fig. 5). Transferring worms from both populations to
mesocosms of an inactive Faj~a soil (14 and 28 days) or active
Furnas soil (14 days) tended to induce an increase in goblet cell
counts. The two modes of expressing the cell counts gave some
inconsistencies. It is our view that expressing cells per unit
epidermal area (cf. Fig. 5C and D) rather than per linear dimension
yielded more easily interpretable observations (cf. Fig. 5A and B);
if true, then it is evident that transferring worms to mesocosms of
Furnas soil induced goblet cell accretion more strongly than
transfers to Faj~a soil for the same exposure period. Certainly,
Furnas and (particularly) S. Maria worms enclosed in Furnas soil
for 14 days had significantly elevated goblet cell counts.
4. Discussion

4.1. Chemical analysis

Most of the analysed elements showed similar concentrations
in both experimental soils; however, inoculated earthworm
showed temporal differences in accumulated tissue metal
error bars in Amynthas gracilis collected in Furnas, S. Miguel and Ribeira, S. Maria,

volcanic activity (Faj~a).

f the analyzed elements in tissues of A. gracilis from Furnas and S. Maria exposed in

lcanic activity, Faj~a during 28 days.

s from Ribeira, Santa Maria

tive volcanism Furnas—active volcanism Faj~a—inactive volcanism

�0.432n
�0.095

�0.166 �0.241

�0.522n
�0.187

0.678n 0.279



Fig. 5. A and B, Goblet cells numbers per epidermis length (Cell mm�1) and C an D

per epidermis cross-sectional area (Cell mm�2) in Amynthas gracilis collected in

Furnas, S. Miguel and Ribeira, S. Maria which were exposed to Furnas, a volcanic

environment and to place without volcanic activity, Faj~a. Different letters above

and below bars mean significant differences at pr0.05.
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concentrations. It has been recorded previously that the high
mineralisation and trace element bioavailability in Furnas soils
and water together, together with diffuse degassing phenomena,
do influence the tissue accumulation of metals by representatives
of the local fauna (Cruz et al., 1999; Cunha et al., 2008; Rodrigues
et al., 2008; Viveiros et al., 2009). Tissue metal concentrations
(especially Zn and Cu) in earthworms at the end of the
experimental exposure to Furnas soil were found to be almost
two-fold higher than the soil concentrations, and even similar to
what was found in earthworms living in, or inoculated into,
polluted sites (Ruiz et al., 2009). Moreover it is widely known that
soil physical parameters, such as pH, organic matter content, and
% clay-silt, can exert modulating influences on metal bioavail-
ability (Peijnenburg, 2002). According to Amaral et al. (2006a, b)
the physico-chemical characteristics of Furnas soil promote the
mobility and the bioavailability of metals such as Zn. For instance,
the relatively low soil pH arising from the continuous ingress of
CO2 increases the bioavailability of Cu, Pb, and Zn due to reduced
sorption of these divalent cations onto oxides of Fe and Mn.

Although, the role of temperature on metal bioaccumulation is
not fully understood, it is evident that temperature increase
within the thermal tolerance ranges of plants and animals tend to
promote metal bioaccumulation (Khan et al., 2007; Mubiana and
Blust, 2007; Chen et al., 2008). In the context of the present study,
it is germane to note that temperature significantly modulates the
toxicity of chemicals (Spurgeon et al., 1997). Whilst hypoxia and
potential hypercapnia independently can exert stressful cytologi-
cal effects, it is clear that the acidic soil matrix and elevated
temperature featured at the actively volcanic Furnas site jointly
increase metal mobility.
4.2. Morphometry and cell composition

Conspicuous volcanic stress factors, such as temperature,
hypoxia, pH, and heavy metal presence, are known to cause
changes in the phasic activity, atrophy, and cellular composition
of several animal tissues (Amaral et al., 2006b; Andersen et al.,
2006; Hourdez and Lallier, 2007; Cunha et al., 2008). Such
structural changes can be assessed morphometrically, a technique
that is sufficiently sensitive to detect epithelial thinning due to
environmental stress in the digestive epithelia and reproductive
tissues of several invertebrates (Vega et al., 1989; Marigomez
et al., 1998; Siekierska and Urbanska-Jasik, 2002). Morphological
alterations are not uncommon among organisms exposed to
extreme environments. A clear example is the case of the
hydrothermal tubeworm (Ridgeia piscesae) which shows a
‘short-fat’ morphotype that lives in a microhabitat of high
temperature but low O2 concentration, whilst the ‘long-skinny’
morphotype of the same species lives in a cooler, more O2-rich,
microhabitat (Andersen et al., 2006). It is noteworthy that the
branchial surface area (i.e. essentially the respiratory gas
exchange surface) is similar in both morphotypes, but the
branchial thickness, thus the diffusion distance, is lower in the
‘short-fat’ compared with the ‘long-skinny’ worms (Andersen
et al., 2006; Hourdez and Lallier, 2007). Cytological alterations
induced by heavy metal exposures have been observed in
different types of epithelial tissues in several invertebrate taxa
(Zaldibar et al., 2007; Cunha et al., 2008), and vertebrates (Pandey
et al., 2008; Srivastava et al., 2009). However, the metal
concentrations in the actively volcanic soil at Furnas are not
particularly excessive, especially in comparison with those often
encountered in mine-associated soils (Corp and Morgan, 1991),
and lead to the conclusion that cations alone, even under the
relatively acidic prevailing conditions, may not be the primary
cause of the epidermal perturbations observed in the resident
earthworms.

In the earthworm A. gracilis inhabiting volcanic soils, it is
plausible to consider epidermal thinning as a physiological
adaptation (probably plastic rather than constitutive) for reducing
the O2 diffusion distance across its dermal respiratory surface. By
such a structural modification, the earthworm can obtain the O2

that it requires for metabolism from its hypoxic native (actively
volcanic) Furnas soil. The high soil temperature at Furnas also
presumably increases metabolic O2 consumption and demand,
adding a premium to improved trans-epidermal diffusion
efficiency. The structural change in the gas permeable exchange
surface of Amynthas seems to be functionally analogous to the
thinning of alveolar epithelia observed in CO2-exposed neonatal
mice compared with controls (Li et al., 2006).

The epidermis tissue interface is known to act as the primary
barrier protecting earthworms from potential bacterial infections
(Fischer and Horváth, 1977). Since the epidermis also plays
functional roles in an ion transport, it is unsurprising that non-
essential metal ions and xenobiotics enter the organism through
it (Dietz, 1974; Clauss, 2001). It is noteworthy that there is an
evidence that the dermal route is the predominant route for metal
uptake by earthworms (Vijver et al., 2003). Reducing epidermal
thickness and increasing body surface humidity by goblet cells
secretion confers respiratory advantages, but could increase
exposure to metals, particularly in acidic environments such as
pertain at Furnas. To counter this, the worms may upregulate
continuous mucus production for cation trapping and shedding;
to this extent, increasing goblet cell counts would be beneficial.
This notion is consistent with the observations that secreted
mucopolysaccharides on the dermal surface trap heavy metals
(Fischer and Horváth, 1977; Back, 1990), whilst the amount of
surface-adsorbed Cd and Zn at any given time is minimal
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compared with the amount of internally sequestered metal
(Vijver et al., 2005). The progressive thinning of the epidermis
in Furnas’s earthworms when confined within mesocosms of their
‘own’ environment could be attributable to the seemingly
inevitable, but poorly understood, changes in the physico-
chemical properties of the soils, when they were inserted into
the mesocosms. For example, the phenomenon of further
increases in accumulated metal concentrations in earthworms
inhabiting metalliferous field soils when maintained on their
‘own’ soils in the laboratory has been observed by Corp and
Morgan (1991). In any case, the limited volume of the mesocosms
deployed in the present study may have amplified the effects of
metals and other edaphic stressors on epidermis morphology by
restricting the normal range of eco-physiological activities in the
confined worms.
5. Conclusion

In conclusion, the active volcanic environment at Furnas poses
a multifactorial stress challenge to the local soil-dwelling
organisms, including the earthworm A. gracilis. In normal
circumstances, it would be deemed imperative to attempt to
dissect the effects of the individual chemical and physical
stressors by performing robust, controlled, laboratory exposures,
and monitoring the induced changes with a suite of morpholo-
gical, physiological, and molecular observations. However, active
volcanic soils comprise a suite of dynamic and, in some cases,
volatile constituents that are more-or-less continuously expelled.
To this extent, such sites are terrestrial equivalents of marine
hydrothermal vents, and cannot easily be replicated in the
laboratory. The recommendation from the 3rd Workshop on
Earthworm Ecotoxicology that ‘‘more attention should be given to
field testing in general’’ and ‘‘there is a need to explore the
baseline variables influencing biomarker responses (confounding
factors such as drought, temperature) and the linkage between
biomarker and physiological responses’’ (Van Gestel and Weeks,
2004) is particularly opposite for active volcanic soils.
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