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1 Introduction 

Classification of movement trajectories into different 

behavioral categories has become a recent trend in many 

domains, including e.g. movement ecology, transportation, 

and urban management. In ecology especially, behavioral 

classification is an important analysis step, because 

knowledge about behaviour provides important input to many 

inferences about physiology, energy balance, and evolution of 

particular species. While various types of data are being used 

for animal behavior classification, the use of features based on 

movement trajectories (e.g. GPS) is still quite uncommon (see 

[18]). The main reason for this has been that when the goal is 

to distinguish between behaviors (especially fine-grained 

behaviors, e.g. foraging vs. non-foraging), the temporal 

sampling rate is typically low or irregular in relation to the 

variability inherent to the movements that are considered. 

However, due to recent advances in tracking technologies, it 

has become feasible to collect high-resolution GPS and sensor 

data on a more regular basis. For example, GPS has been 

integrated into operational systems with other sensor 

technologies to collect temperature, activity, proximity and 

mortality data from terrestrial species and birds [1, 19, 21]. 

This study aims at developing a classifier to identify 

foraging behavior in a shorebird, the Eurasian Oystercatcher 

(Haematopus ostralegus), based on GPS trajectory data. This 

species has been intensively studied ([6]) to answer questions 

on e.g. foraging ecology, resource use and territoriality in 

shorebirds. The GPS trajectory data for individuals may be 

more accurate and less biased than the sighting or 

experimental data that are available from previous research 

and may thereby lead to more robust answers. Especially the 

time spent on foraging as well as foraging locations form 

important variables to measure foraging strategies and 

efficiency. 

Accelerometer data can be used to identify various behaviors 

of an oystercatcher, including foraging [18], the same way as 

depth loggers are used to record ‘dives’, salinity sensors to 

record ‘being in the water’, or light sensors to record ‘being in 

a burrow’ [7, 9, 10, 13, 17]. However, accelerometers are not 

yet in widespread use today and a lot of trajectories with 

location-only information have been collected and will 

continue to be collected. According to Movebank 

(www.movebank.org) as one of the major repositories of 

animal movement, more than 90% of the data collected there 

is location-only. Therefore we attempt to develop features and 

a classifier that is based exclusively on location data. In order 

to do so, the model of [18] is first used to generate the 

behavioral labels and then serves as a baseline to train and 

evaluate the classification model that is based exclusively on 

movement features extracted from GPS trajectories. Thus, the 

main research question is to what extent fine-grained foraging 

behaviors, on the example of oystercatchers, can be classified 

from GPS tracking data alone. 

 

 

2 State of the art 

A variety of methods for inferring behaviors based on sensor 

data have been proposed. Among movement parameters 

computed from trajectories, velocity has been used to 

distinguish between traveling and resting during bird 
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Abstract 

Recent advances in tracking technologies provide an unprecedented opportunity for a better understanding of animal movement. Data from 

multiple sensors can be used to capture crucial factors deriving the behaviors of the animal. Typically, accelerometer data is used to describe and 
classify fine-grained behaviors, while GPS data are rather used to identify more large-scale mobility patterns. In this study, however, the main 

research question was to what extent fine-grained foraging behaviors of wading birds can be classified from GPS tracking data alone. The 

species used in this study was the Eurasian Oystercatcher, Haematopus ostralegus. First, a supervised classification approach is employed based 
on parameters extracted from accelerometer data to identify and label different behavioral categories. Then, we seek to establish how movement 

parameters, computed from GPS trajectories, can identify the previously labeled behaviors. A decision tree was developed to see which 

movement features specifically contribute to predicting foraging. The methods used in this study suggest that it is possible to extract, with high 
accuracy, fine-grained behaviors based on high-resolution GPS data, providing an opportunity to build a prediction model in cases where no 

additional sensor or observational data on behavior is available. The key to success, however, is a careful selection of the movement features 

used in the classification process, including cross-scale analysis. 
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migration [9], identification of different behavioral categories 

in combination with accelerometer readings [18], and 

distinguishing behavioral drug treatments in neuro-

pharmacology [3]. A combination of velocity and direction 

has also been used in [20] for defining behaviorally consistent 

movement units. Sinuosity, on the other hand, has been used 

for detection of behavioral change in animal movement [16], 

foraging movement and activity patterns of seabirds [25], and 

for distinguishing between trajectories of different vehicles 

types [4]. Wavelet analysis has also been applied based on the 

values of net displacement [23] and velocity [15] for studying 

behavioral patterns in animal movement. 

Accelerometer data, on the other hand, is increasingly being 

applied to characterize behavior or describe certain 

movements, e.g. of humans (using accelerometers on smart 

phones) [24], domestic animals [12], as well as free-ranging 

animals like birds [10, 14, 17, 18] and marine mammals [7, 

13]. 

 

 

3 Methods 

In this paper, we use a data set of combined GPS and 

accelerometer observations, obtained in the Dutch Wadden 

Sea, south of the island Schiermonnikoog on 12 individual 

Eurasian Oystercatchers (Haematopus ostralegus). The birds 

were tagged with UvA-BiTS devices [1], and samples from 

June and July 2009 as well as from May and June 2011 were 

used in this study. There were different sampling intervals in 

the samples, but for the major part of the data it was one 

location per 13 seconds (the second large group was with 

intervals of 6 seconds and the intervals were always lower 

than one location per 45 seconds). 

We first classified the Oystercatcher trajectories as 

‘foraging’ versus ‘non-foraging’ based on accelerometer data, 

using a classification model introduced in [18]. In [18], the 

model had been calibrated for the same species at 

approximately the same location while using the same 

devices. Based on the labeled data set we then started to 

develop features and classifiers based on GPS data only. The 

following (movement) features were calculated for each fix of 

the trajectories: distance traveled; velocity; turning angle and 

its dependent variables including angular velocity (turning 

angle over time) and meandering (turning angle over distance 

traveled). See [3] and [4] for some example uses of these 

parameters. Furthermore, two parameters indicative of path 

curvature were generated: sinuosity and the Multi-Scale 

Straightness Index (MSSI; see [16]). 

A decision tree was selected for the classification process, 

using the implementation in RapidMiner 5, (RapidMiner, 

http://rapidminer.com/). A top-down procedure is applied 

based on the CART learner to traverse the tree [2]. Whenever 

a new node is created at a certain stage, an attribute is picked 

to maximize the discriminative power of that node with 

respect to the examples assigned to the particular subtree. This 

discriminative power is measured by the information gain 

ratio [2]. The information gain ratio can be considered as the 

importance of the selected attributes in the design of the tree. 

This was the reason for choosing decision trees in this study: 

they can give an insight into the relative importance of 

different movement features in the identification of behaviors, 

by their appearance as a node splitter. Other machine learning 

methods such as SVM might even result in a slightly better 

classification performance (as preliminary test have shown), 

but since improving the classification performance was not 

the main objective of this study, those classification methods 

were not chosen. A 10-fold cross-validation procedure was 

applied to see how good the resulting classification 

performances are when different movement parameters were 

used as input variables. For the evaluation of the performance 

of classification models, we looked at different criteria, such 

as overall classification accuracy and Kappa values, as well as 

precision and recall values in the case of individual classes, 

specifically when we examined the foraging class. 

Since the sampling intervals differed between data sets and 

earlier studies had demonstrated the importance of scale in the 

computation of movement parameters, we performed a cross-

scale analysis, employing the method proposed by [11]. 

Values of movement parameters for each fix of the trajectory 

were computed across a series of sliding windows with 

different sizes of w, in a segment where w/2 fixes exist before 

and after the central sample point of interest. 

 

4 Results 

4.1 Attribute selection 

The classification performance was first acquired individually 

for all parameters. At first glance, velocity and distance 

traveled did seem to have a large impact on the classification 

results, which is in accordance with the findings of the studies 

having used these parameters [9, 15, 20, 23]. Turning angle, 

angular velocity and meandering, on the other hand, were not 

so helpful, which might be due to the positional error in GPS 

observations, especially at lower speeds. For the path 

curvature parameters, including MSSI and sinuosity, the 

values were computed across different scales. MSSI is 

inherently a multi-scale measure and similarly to sinuosity, it 

gives a ratio of the beeline distance between two points of 

interest and the actual distance traveled. However, the 

difference between the measures is that distance is computed 

multiple times, over a variety of scales for both temporal 

granularity and observational window [16]. We chose a 

granularity value of 2 and window sizes of 4, 8, 12, 16, 20 and 

24, respectively. When individual sets of MSSI values were 

used, they were not helpful in distinguishing between classes, 

but as will be shown later, when geographic location is 

integrated (latitude and longitude), they do show a great 

potential in improving the results. 

The same cross-scale approach was employed for sinuosity. 

The window sizes chosen for calculation of sinuosity start 

from the surrounding fixes (window size of 1), increasing up 

to 7 points before and after (1, 2, 3, 4, 5, 6, 7). Then, each set 

of sinuosity values computed at different scales were 

considered separately as input features in the classification, to 

see how the performance and the resulting decision tree would 

vary. We used the 3-class category (no locomotion, terrestrial 

locomotion and fly) of [18] in this part, as we wanted to 

investigate the importance of scale effects on a known model. 

In the subsequent process, however, the classification is only 

between foraging and non-foraging classes, by considering the 

outputs of the cross-scale analysis.  

http://rapidminer.com/
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Interestingly, only after using a window size of 3 the role of 

sinuosity is starting to emerge in the structure of the decision 

tree (Figure 1). At the same time, for the window sizes of 3 to 

6, higher classification accuracy and Kappa values were 

achieved. The tree structure for these window sizes was 

always the same, with velocity at the top, followed by 

sinuosity on the second level of the tree hierarchy (Figure 1). 

Since the window size of 5 scored relatively higher 

classification performance, it was selected as the window size 

at which sinuosity values can be reliably computed and 

considered as input features for the final classification. 

 

 

4.2 Foraging versus non-foraging 

In [18], a 5-class model has been calibrated that we are 

applying in this study; however we aggregate the output from 

5 to 2 classes. First, since the fly class in the 5-class model 

can be easily distinguished from the stand, sit and foraging 

classes by using only the velocity parameter (Figure 2), the fly 

class is eliminated from the further analysis. The velocity 

values for the body care class are surprisingly high, which 

might be due to an error in the behavioral classification 

resulting from the accelerometer data. Nevertheless, since 

there were only two points labeled as body care, removing the 

fly class is still reasonable. Afterwards, all the non-foraging 

classes were aggregated and compared to the foraging class, 

resulting in a binary classification between a foraging class 

and a non-foraging class. Eliminating the fly class will help 

since there is a huge difference in the movement parameter 

values of the fly class and the rest of the classes, respectively, 

and if they were aggregated into a single class of non-foraging 

behaviors, it would have been difficult for the classifier to 

discriminate them. So, by first removing the fly class, only the 

sit, stand and body care classes will be aggregated into the 

non-foraging class. These behaviors share more similar 

movement characteristics. 

In the end, there were 6486 fixes labeled as foraging and 

4725 as non-foraging. Prior to applying the final 

classification, values of the selected attributes including 

distance traveled, velocity, sinuosity and MSSI are discretized 

into 3 bins, as it will help in improvement of the classification 

performance of the decision trees [5]. 

 

 

 

Figure 2: Boxplots of variation of velocity for five behavioral 

classes (Stand, Sit, Forage, Fly and Body Care). 

 

 
 

 

 

4.3 Importance of geographic context 

To see whether knowledge about geographic context, 

represented by the geographic location of the birds, will help 

in identifying the behaviors, values of latitude and longitude 

of each fix were considered as input features in a 

classification tree. The resulting decision tree using only 

geographic location is shown in Figure 3. Apparently, latitude 

is a dominant variable in identifying behaviors, resulting in a 

Figure 1: Variation of classification performance (Accuracy and Kappa) according to different temporal window sizes 

used for calculation of movement parameters. 
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rather high classification accuracy of 67.16 %. However, very 

high classification precision (91.27 %) and at the same time 

very low recall values (50.40 %) does not indicate a robust 

performance. Nevertheless, this model will be considered as a 

baseline in order to compare with the following classification 

experiments, where values of movement parameters are 

integrated as well. 

Subsequently, two separate decision trees based on the 

values of MSSI and sinuosity were developed (Figure 4). For 

each of these models, geographic location values were also 

integrated in order to make it possible to compare these to the 

baseline model developed in Figure 3. Additionally, since the 

importance of velocity and the distance traveled have been 

already emphasized, their values were also considered as input 

features in the classification model. Interestingly, both of the 

trees start with latitude at the top and then movement 

parameters are emerging at the lower levels (Figure 4). 

 

 

Figure 3: The baseline decision tree for distinguishing 

foraging versus non-foraging developed based on location 

information, i.e. latitude and longitude. The confusion matrix 

is based on 10-fold cross-validation results. 

 

 

 
 

5 Discussion 

In the baseline classification model (Figure 3), the choice of 

latitude as a predictor variable in the decision tree can be 

understood from the east-west orientation of the Wadden 

island Schiermonnikoog, which provides the habitat of the 

studied individuals, located along the southern shore. The 

areas south of latitude 53.47º consist of mudflats with a short 

emersion time and high shellfish density. The area between 

53.47º and 53.48º contains a combination of mudflats with 

long emersion time (which relates to a low shellfish density) 

and salt marshes. The area north of 53.48º contains salt 

marshes and meadow land. On the mudflats the 

Oystercatchers will feed on shellfish (mainly Baltic tellin – 

Macoma baltica) and ragworm (Nereis diversicolor). 

Conversely, on the saltmarsh and meadows they eat 

earthworms and insect larvae. The differences in habitat 

structure and prey types are reflected in different movement 

patterns. 

As shown in Figure 4, the decision trees based on sinuosity 

and MSSI are not only improving the classification 

performance, but also give a more comprehensible overview 

of the importance of the movement features involved in 

combination with the underlying geographic location. 

In the case of sinuosity, the leaves of the decision tree seem 

to be reasonable. Low values, indicating a smoother path, are 

labeled as foraging, whereas large values, indicative of a more 

complex path, are related to the non-foraging class (the path is 

more curved while the bird is sitting, standing or body caring 

due to GPS uncertainty). The values in the medium category 

are broken down again and distance values appear at the next 

level of the tree. The leaves at these levels are also sensible, as 

low and medium values of distance traveled are labeled as 

non-foraging and higher values as foraging. At the same time 

and as shown in Figure 1, it is worth noting that the usefulness 

of sinuosity is only revealed when the values are computed 

across different scales. In other words, if we had only used the 

sinuosity values computed at the original temporal rate, we 

could not have obtained the same results. 

The resulting tree structure for MSSI is rather difficult to 

explain, but what looks interesting is the hierarchy in the 

structure of the tree (starting with window size 24x at the top 

and then 8x and 4x). Also, the tree is mostly dominated by 

foraging at the top (24x and 8x), while non-foraging only 

appears to be more dominant at the smallest scale (4x). 

Resulting classification performances for the MSSI and 

sinuosity trees are comparable, with slightly better results for 

the sinuosity tree. As shown in the tables of Figure 4, overall 

accuracy and recall values are better for the sinuosity tree, 

whereas the MSSI tree results in a better precision value. 

Comparing to the baseline model developed based on 

geographic coordinates only (Figure 3), the classification 

performance is considerably better for the MSSI and sinuosity 

classification trees, leading to classifiers with an overall cross-

validation accuracy of 0.78. This indicates a clear potential of 

parameters extracted from trajectories for the identification of 

movement-related animal behaviors. 

 

 

6 Conclusions 

To our knowledge, most of the works based on movement 

features (e.g. sinuosity and MSSI) do not use a classification 

model and are rather descriptive. Sinuosity, for example, has 

only been applied to flying birds ([8, 22]) and not yet to 

wading birds that are foraging on the ground. Thus, a 

classification model based on trajectory features, as presented 

in this study, seems a useful contribution to exploit 

information from animal-borne sensors to further understand 

and model animal behavior. However, apart from sinuosity 

and MSSI, there are other features that have not been used yet, 

including e.g. first passage time, scale invariance and fractal 

dimension. Exploration of these features can be considered as 

part of future work. Furthermore, since using GPS trajectory 

data often stumbles on problems with accuracy, an assessment 

of the positional accuracy and its consequences for the 

distinction of behavioral types seems important in order to 

fully appraise the potential of the proposed approach. 
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Figure 4: Two developed decision trees based on the two employed movement features (together with velocity and 

distance traveled): Sinuosity calculated at window size of 5 (shown as sin5) and MSSI calculated at window sizes of 

4, 8, 12, 16, 20 and 24. Depending on their importance, each of these features are emerging at different levels of the 

corresponding decision trees. Note that the confusion matrices related to each tree are based on 10-fold cross-

validation results. 
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