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  Introduction 

 Land use/cover maps are essential for environmentalists and 

land managers for urban and regional planning purposes. 

These maps identify which features exist on the ground and 

for which purpose each land parcel is used [26,32]. The 

process of mapping land related features is called land 

use/cover mapping e.g., [23,34], which result in land 

use/cover inventories. Traditionally land surveying and 

recently remote sensing data and algorithms have been used to 

map land use/cover patterns e.g., [22,28,30]. Undoubtedly, 

remote sensing has played a vital role in monitoring and 

mapping land features. Nevertheless, in-field information is 

often required to assess the outcomes of remote sensing 

techniques [3,5]. Additionally, they are used to enrich the land 

use patterns regarding its attributes and semantic information 

[13]. 

 Recently, the rise of web 2.0 technologies and CS-based 

projects has resulted in tremendous amount of geolocated 

information from citizens [9,16]. As a successful leading CS 

projects, OSM can be named, which has been increasing 

receiving new users and contributions. Published 

investigations on applicability of OSM datasets have shown 

that OSM provides us a wide variety of datasets for different 

application including and not limited to routing, Points of 

Interest (POIs) search, transport mapping, building 

inventories, etc. OSM also collects the information on land 

features and shares them with public. So far, little attention to 

the collected OSM features on land use information has been 

drawn [4,8], although OSM can provide an alternative source 

for mapping land use features contributed by citizens. What is 

remarkable about harnessing OSM for land use mapping is the 

fact that once OSM users log into OSM, fine resolution image 

libraries generated from multiple remote sensing imageries 

are shared in the mapping/editing interface so that the users 

simply delineate the geometrical tessellation of land use 

features and additionally insert their personal knowledge of 

that specific land parcel to it. It is of great importance to note 

that in this process, the OSM users benefit from user-friendly 

editing softwares, which display fine-resolution images (even 

up to 20 cm spatial resolution) in the background, for 

delineating land parcels and add attributes and metadata about 

each land parcel to it [21]. In other words, thanks to the fine-

resolution images/air-photos as well as users’ knowledge of 

the mapped areas, the process of land use mapping is handled 

differently so that the in-field information are actively given 

by the users instead of going to the field for collecting them 

[20].  

 A remarkable amount of efforts and money have been 

inserted into generating global land-use maps, for instance, 

Global Land Cover (GLC)-2000 [11], Moderate-resolution 

Imaging Spectroradiometer (MODIS; [10]), and GlobCover 

[1], among others. At a European level scale, the CORINE 

2000 [2] and Global Monitoring for Environment and Security 

Urban Atlas (GMESUA; [3]) have been prepared. The 

accuracy of these inventories however, is often questioned by 

the researchers and further projects on evaluating their 

accuracies are called [19,25,27,29,33]. To sum up, the process 

of generating land use inventories actively demands for large 

amount of budget, while this process in a passive manner 

diminishes the monetary costs significantly and might result 

in better results. Furthermore, they need to be updated on a 

regular basis and therefore, repeating the efforts. As such, the 

main aim is to evaluate the degree of completeness for OSM 

land use features in order to see how well OSM can play a 

role in land use science. Empirical findings reported by 

[15,20] have addressed the potentials of exploiting OSM for 

land use mapping. Hence, the main objective of this study is 

to measure how complete OSM land use features in a 

European scale are in order to start exploiting them. To be 
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Abstract 

Land use inventories are important information sources for scholarly research, policy-makers, practitioners, and developers. A 
considerable amount of effort and monetary resources have been used to generate global/regional/local land use datasets. While remote 

sensing images and techniques as well as field surveying have been the main sources of determining land use features, in-field 

measurements of ground truth data collection for attributing those features has been always a challenging step in terms of time, money, as 
well as information reliability. In recent years, Web 2.0 technologies and GPS-enabled devices have advanced citizen science (CS) projects 

and made them user-friendly for volunteered citizens to collect and share their knowledge about geographical objects to these projects. 

Surprisingly, one of the leading CS projects i.e., OpenStreetMap (OSM) collects and provides land use features. The collaboratively 
collected land use features from multiple citizens could greatly support the challenging component of land use mapping which is in-field 

data collection. Hence, the main objective of this study is to calculate the completeness of land use features to OSM across Europe. The 

empirical findings reveal that the completeness index varies widely ranging from almost 2% for Iceland to 96% for Bosnia and 
Herzegovina. More precisely, more than 50% of land use features of eight European countries are mapped. This shows that CS can play a 

role in land use mapping as an alternative data source, which can partially contribute to the existing inventories for updating purposes.   
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more precise, this research seeks to find out how complete 

land-use features per each European state are contributed to 

OSM.  

 Materials and data processing 

3.1 OpenStreetMap dataset 

The OSM datasets utilized in this study is the OSM snapshot 

for February 20, 2014. To retrieve relevant land-use features, 

polygon features labelled with “Land-use” and “Natural” tags 

are filtered. While the features with “Natural” tag describe a 

wide variety of physical features, features with “Land-use” 

tag identify the land use features. These features are then 

merged together to create a uniform dataset.  

 

3.2 Study area 

A country-wide coverage of forty European countries is sampled 

in this study. The reason for considering a pan-European wide of 

datasets is the fact the patterns of contributions are intrinsically 

heterogeneous as proven by [17,21]. This is also evident through 

a query to osmatrix.uni-hd.de.  Figure 1 displays the extent of 

this study. 

 

 
Figure 1: the selected study areas 

 

Methods 

Among the purposed criteria by different ISO standards in 

particular 19157:2013 for assessing the accuracy of geodata 

internally, completeness plays a vital role as it measures how 

complete the dataset is [7,14]. Completeness is the major 

concern for using OSM datasets [18,24] as it is an indicator of 

how much of the whole has been mapped by volunteers. In 

contrast to polyline and point features in OSM, the completeness 

for land-use features is the proportion of mapped areas relate to 

its overall extent. The completeness index for each country is 

calculated by calculating the mapped areas by the whole area of 

extent. This represents a simple indicator to find out how 

complete a country is mapped i.e., how far we are from having 

full data coverage. 

Results and discussion 

Table 1 represents total mapped area and completeness indices 

for each country. As shown in Table 1, the calculated 

completeness index values are diverse. While only 1.6% of land 

use features in Iceland are mapped, 96% of Bosnia and 

Herzegovina are mapped, which is quite surprising that no study 

has been already dedicated to further accuracy assessment of the 

contributed features.  

Table 1: the calculated completeness values for each country 

Country 
Total Area 

(km2) 

Mapped 

Area (km2) 

Completeness 

(%) 
Class 

Bosnia & H. 51,209 49,495 96.6 A 

Slovakia 49,035 43,698 89.1 A 

Netherlands 37,354 30,818 82.5 A 

Belgium 30,528 19,221 63.0 A 

Romania 238,391 138,737 58.2 A 

Luxemburg 2,586 1,426 55.2 A 

France 548,500 296,833 54.1 A 

Germany 357,114 190,851 53.4 A 

Liechtenstein 160 65 41.2 B 

Macedonia 25,713 9,432 36.7 B 

Czech R.  78,867 28,728 36.4 B 

Croatia 56,594 17,591 31.1 B 

Andorra 468 144 30.9 B 

Poland 312,685 88,489 28.3 B 

Austria 83,945 22,764 27.1 B 

Denmark 43,094 11,610 26.9 B 

Switzerland 41,277 10,803 26.2 B 

Cyprus 9,251 2,422 26.2 B 

Slovenia 20,273 5,240 25.8 B 

Finland 338,419 86,569 25.6 B 

Montenegro 13,812 2,916 21.1 B 

Spain 505,992 106,131 21.0 B 

Greece 131,957 27,181 20.6 B 

Great Britain 242,900 46,366 19.1 B 

Lithuania 65,300 12,108 18.5 B 

Kosovo 10,908 2,004 18.4 B 

Norway 386,224 61,706 16.0 B 

Moldova 33,846 5,410 16.0 B 

Malta 316 48 15.4 B 

Hungary 93,028 14,198 15.3 B 

Serbia 88,361 11,481 13.0 B 

Bulgaria 110,879 14,362 12.9 B 

Sweden 441,370 56,657 12.8 B 

Italy 301,336 38,024 12.6 B 

Ukraine 603,500 68,735 11.4 B 

Belarus 207,600 22,968 11.1 B 

Ireland 70,273 4,965 7.1 B 

Portugal 92,090 3,919 4.3 B 

Albania 28,748 897 3.1 B 

Iceland 103,000 1,687 1.6 B 

 

The completeness indices are then arbitrarily categorized into 

two classes ranging between zero to hundred percent with 50 

percent interval. To be more precise, while class “A” represents 

countries that completeness index exceeds 50 percent, class “B” 

identifies countries that less than half of them are mapped. 

According to this categorization, 8 countries place within the 

class “A” and 32 countries are classified as “B”. Belgium, 

Bosnia & Herzegovina, Germany, France, Luxemburg, the 

Netherlands, Romania, and Slovakia are those which are well-

mapped. Spatial distribution of the mapped features within 

Europe is displayed in Figure 2. Green cells represent the 

contributed features regardless their attributes. It should be 

mentioned that the European countries have different 

populations and population densities, and physical 

characteristics and the completeness values should not be used 

for refereeing the topology of citizen participations in 

collaborative mapping practices [17]. For instance, Iceland with 

an area of 103,000 km2 and nearly 300 thousand inhabitants is 

the least mapped country. This is not comparable with the 

Netherlands, holding an area of 41,500 km2 and nearly 17 

million inhabitants, corresponding to the best mapped country 

(82%). This inequality of public participation should be further 

investigated.  
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Figure 2: spatial distribution of contributed land use features in 

Europe 

                     

 Conclusion 

The contemporary emergence of citizen science projects, 

namely OSM, has drawn the attention of large number of 

citizens to share their information, as well as records of their 

GPS-enabled devices, with the public. This collaboratively 

collected information have been implemented in several 

applications such as navigation, context-aware routing, indoor 

mapping, and tourism recommendations. Exceptionally, OSM 

collects the land use features from contributors and therefore its 

potential for land use science has to be assessed.  

This study aimed at assessing the completeness of land use 

features across European countries to find out how completely 

these features have been mapped. The calculated indices reveal 

that the degree of completeness is heterogeneous and ranges 

between 1 to 96 percent. More than half of 8 countries as listed 

in Table 1 are mapped in terms of land use features by OSM 

mappers. Apart from barely mapped countries, this means that 

volunteered mappers express their interest in mapping landscape 

related information as well and this opens avenues for further 

research towards harnessing CS for land use science. Future 

research directions should be conducted towards accuracy 

assessment of the land use attributes versus ground truth or 

proprietary datasets, e.g., the pan-European urban atlas and 

CORINE datasets. 

As a final conclusion, the contributed OSM land use information 

suggest a promising alternative data source for land use mapping 

independent from applying computational image processing 

techniques. Whereas the degree of completeness in OSM 

increases over time, further contributions from volunteers 

should be expected within a short period of time. Further to this, 

the findings attempt to draw the attentions of volunteers to map 

the landscape-related objects as well so that citizen science 

could greatly contribute to collecting up-to-date information of 

our land resources. The following recommendations are 

suggested to environmentalists and land-use scientists that 

contributed features enable us to either consider the OSM 

features as an alternative data source or take advantage of the 

partially mapped areas for updating the existing and outdated 

inventories as outlined by [12]. It should be mentioned that 

applying data mining and data fusion techniques with other 

available features in OSM help to complete the incomplete 

areas. 
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