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Abstract
Predicting the spread of invasive species and understanding the role of niche dynamics in niche transferability are critical 
challenges in the management of biological invasions, both theoretically and practically. We used complementary species 
distribution modelling approaches, such as multivariate niche analysis and reciprocal distribution models, to test the niche 
conservatism hypothesis and to predict the potential distribution of the fishhook waterflea, Cercopagis pengoi. Our analy-
sis indicated a significant similarity between its native and invasive ranges, suggesting that a subset of the Ponto-Caspian 
propagules may have been the founders of European populations. However, our results contradict the niche conservatism 
hypothesis, showing that C. pengoi has not fully occupied the available niche within its current invasive ranges. Moreover, 
we observed a notable niche expansion, reflecting a significant shift in niche following its intercontinental introduction in 
North America. Given the suitability of new environments for the expansion of C. pengoi and its tendency to evade detec-
tion prior to population surges, we recommend a focus on early detection through monitoring of both water columns and 
bottom sediments. This should be complemented by strict enforcement of ballast water regulations to curtail its spread in 
North America, Europe, and other suitable non-native regions globally.
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Introduction

Aquatic invasions can affect biodiversity and ecosystem 
services at different levels by outcompeting native species, 
disruptin trophic relationships, and—among others—alter-
ing nutrient dynamics (Havel et al. 2015; Bellard et al. 2016; 
Cuthbert et al. 2021). The extent of invasive non-native spe-
cies introductions and the severity of their impacts depend 

on the connectivity of the aquatic system, the frequency and 
magnitude of novel introductions (i.e. propagule pressure 
and colonisation pressure; Lockwood et al. 2005; Briski 
et al. 2012), and the taxon considered, as well as the effec-
tiveness of the consequently applied management actions 
(Ahmed et al. 2022). Likewise, distinguishing temporal 
and spatial dynamics within the invasion process is essen-
tial for informing decision-making, optimising current and 
future conservation interventions, as well as minimising the 
impacts of invasive species (Ricciardi 2007; Hulme 2009; 
Haubrock et al. 2022). A common method to estimate the 
potential spread of an invasive non-native species involves 
evaluating its niches in environmental and geographic con-
texts using species distribution modelling (SDM). These 
models can correlate species occurrences from the native 
and invaded ranges with environmental data to predict the 
environmental suitability and invasion potential in space and 
time (Soberón and Nakamura 2009; Araújo and Peterson 
2012). Nevertheless, climatic modelling assumptions over-
simplify the relationships between species and their environ-
ment and whether these relationships are affected by e.g. (i) 
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genetic and phenotypic variations, (ii) dispersal features, (iii) 
biotic interactions and (iv) niche conservatism (Liu et al. 
2022; Han et al. 2023). The niche conservatism hypothe-
sis—a fundamental assumption on which SDM-based pre-
dictions have been developed—states that the niches of spe-
cies remain conserved across different spatial and temporal 
scales (Soberón and Nakamura 2009; Wiens et al. 2010). 
Approaches for quantifying niche dynamics have also been 
developed to study the success of non-native invasive spe-
cies in new environments (see a review of 434 species at 
Liu et al. 2020). While invasive non-native species often 
maintain their niches (Liu et al. 2022), niche evolution is a 
significant aspect of their invasiveness (Hui et al. 2023). This 
evolution can result from environmental selection in new 
ranges (Card et al. 2018), changes in ecological interactions 
like predation pressure (Tingley et al. 2014), and adaptations 
in morphology, physiology, and function (Macêdo et al. 
2021). Understanding whether invasive non-native species 
retain their niches after successful establishments is crucial 
for more precise modelling of potential range expansions 
and for guiding effective management strategies.

Ecological and evolutionary changes, notably including 
biological invasions, are significantly altering and threaten-
ing biodiversity globally (Mooney and Cleland 2001). This 
highlights the need to investigate variations in landscapes 
affected by invasions and their diverse impacts on native 
species and their communities. In our study, we used SDMs 
to explore the ecological and biogeographical characteristics 
of Cercopagis pengoi Ostroumov, 1891, a small invertebrate 
with an adult body size of 1–3 mm that is listed as one of the 
‘100 of the World’s Worst Invasive Alien Species’ (Luque 
et al. 2014). Native to the Caspian and Aral Seas, C. pengoi 
likely spread to the Great Lakes via ballast water from the 
Baltic Sea (MacIsaac et al. 1999; Cristescu et al. 2001). As a 
generalist predator, it competes with native zooplankton and 
meroplankton such as Leptodora kindtii Focke, 1844, and 
larval fish, leading to significant ecological and economic 
impacts (Ojaveer and Lumberg 1995; MacIsaac et al. 1999; 
Jacobs and MacIsaac 2007; Naumenko and Telesh 2019).

The basic premise of SDMs, namely niche conserva-
tism, is key to understanding the invasion dynamics of C. 
pengoi. This species has successfully established popula-
tions in non-native areas, despite its low genetic diversity. 
Interestingly, it exhibits high phenotypic variation through 
cyclomorphosis—environmentally induced changes in cla-
doceran morphology (Gorokhova et al. 2000; Makarewicz 
et al. 2001; Litvinchuk and Telesh 2006). This suggests 
that physiological and morphological adaptability, a trait 
often seen in cladocerans (Gustafsson et al. 2005), might 
play a more crucial role in its invasion success than previ-
ously thought. Additionally, the limited geographic spread 
of C. pengoi over decades is noteworthy, as it suggests the 
potential to thrive in new environments. However, gathering 

reliable presence/absence data for C. pengoi, is challenging 
and nearly impossible to maintain globally. Thus, examin-
ing the current niches of C. pengoi in the Baltic Sea and 
North America, compared to its native Caspian region, 
offers an opportunity to uncover the patterns and biological 
processes shaping the niches of well-established invasive 
non-native species. Specifically, it allows us to investigate 
whether factors other than climatic shifts play a more signifi-
cant role in determining their establishment and persistence, 
even at lower abundances (Spear et al., 2021).

Our first objective is to test whether the niche of the spe-
cies shifts or remains unchanged after it establishes itself in 
non-native regions (Warren et al. 2008). We propose that 
niche conservation occurred from native to regional intro-
ductions in the Baltic Sea, while niche expansion plays a 
significant role in the successful establishment of popula-
tions overseas. The invasion success of C. pengoi was found 
to be more influenced by environmental filters rather than by 
biotic interactions (Golubkov et al. 2020), possibly due to 
the limited genetic variation between these areas (MacIsaac 
et al. 1999). By investigating the relative importance of 
niche conservatism versus niche shift, we aim to determine 
whether C. pengoi has spread to all potentially suitable habi-
tats in the invaded ranges and, therefore, identify potential 
areas at risk for further spread. Specifically, we aim to assess 
whether the invasive ranges predict more similar potential 
areas compared to currently occupied ranges. The implica-
tions of our findings for the use of SDMs as tools for predict-
ing new occurrences of non-native species are also briefly 
discussed.

Methods

Occurrence and environmental data

We gathered occurrence records of C. pengoi from (i) the 
Global Biodiversity Information Facility (GBIF 2021); (ii) 
the US Geological Survey’s Nonindigenous Aquatic Species 
Database (USGS-NAS; Fuller and Nielson 2015; Benson 
et al. 2023); and (iii) the Ocean Biodiversity Information 
System (OBIS; https://​obis.​org/​taxon/​234025); and (iv) lit-
erature-extracted data, which we searched by title, abstract, 
and keywords in Scopus and the Web of Science using the 
search strings: Cercopagis AND (“invas*” OR “non-native” 
OR “non-indigenous” OR “alien*” OR “introduc*”).

In total, we gathered 1,652 records of C. pengoi in 
the Ponto-Aralo-Caspian basin and two invasive ranges: 
‘Invaded region 1’ (Inv1) in the Baltic Sea and ‘Invaded 
region 2’ (Inv2) in the Laurentian Great Lakes and Fin-
ger Lakes in the eastern North American region. We 
thinned data with a 10-km buffer around each coordinate 
using the spThin R library (Aiello-Lammens et al. 2015) 

https://obis.org/taxon/234025
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to minimise unevenness in sampling efforts, geographical 
sampling biases, and spatial autocorrelation. As a result, 
we retained a subset of geographically unique occurrences 
(Native region = 11, Inv1 = 100, and Inv2 = 63) (Table S1 in 
Supplementary Information S1).

All bioclimatic variables for the current climatic condi-
tions available from the WorldClim database (http://​www.​
world​clim.​org; Hijmans et al. 2005) were gathered at a 2.5 
arc-min resolution for the analyses described in sections 
‘Niche dynamics’ and ‘Projecting potential distribution in 
current scenarios’. We pre-selected variables to ensure the 
use of relevant proxies that better describe C. pengoi dis-
tribution and climatic niche as advised as one of the best 
practices for constructing species distribution and ecological 
niche models (Araújo et al. 2019). The selection of each var-
iable was based on environmental characteristics that are key 
drivers of the population dynamics and reproductive patterns 
of C. pengoi. These factors may account for its successful 
invasion and its fitness within its native range, as discussed 
by Golubkov et al. (2020) and Litvinchuk (2021). The rel-
evance of these variables is explained in detail in Table 1.

Niche dynamics

We estimated the amount of niche overlap, i.e. Schoener’s 
D (Schoener 1970; Warren et al. 2008), based on species 
abundance and the environmental conditions available for 
each population (Native  region, Inv1, and Inv2), to test 
niche conservatism hypothesis. If the niche remains consist-
ent throughout the invasion process, spatial models devel-
oped using data from the native range of C. pengoi should 
also indicate suitable conditions in the areas where the 
species has been introduced. We evaluated niche overlap 
with multivariate niche similarity tests, i.e. whether one 
niche is more similar to the others than would be expected 
by chance, given the available environmental background. 

Niche conservatism was inferred when the niche similarity 
test yielded significant values, suggesting that the niches 
are more similar than what random chance would predict. 
This means determining whether the climatic niche of one 
population can more accurately predict another population 
compared to niches randomly generated from a background 
region. To thoroughly interpret niche dynamics, we used 
the density of occurrences in environmental space. This 
approach helps estimating niche stability (i.e. the proportion 
of native niche conditions present in the non-native range), 
assesses niche expansion for insights into species adaptation 
(i.e. new environmental conditions encountered in the non-
native range), and identifies environmental niche unfilling 
(i.e. the proportion of the native niche not occupied in the 
non-native range, as detailed by Guisan et al. 2014).

First, we generated an environmental space based on the 
principal components analysis (PCA) values calculated for 
the background and occurrence records. We then modelled 
the species density in the environmental grid, considering 
the observed occurrence density and the availability of the 
conditions in the background. We calculated the niche over-
lap and the partition of the non-overlapped niche among 
niche unfilling (i.e. niche space that is occupied in the native 
but unoccupied in the non-native range), expansion (i.e. 
niche space that is unoccupied in the native but occupied in 
the invaded range), and stability (i.e. the proportion of the 
non-native niche overlapping the native niche) (Warren et al. 
2008; Broennimann et al. 2012; Guisan et al. 2014).

We extracted values for the four pre-selected bioclimatic 
variables (bio03, bio10, bio14, and bio15) at a resolution of 
2.5 arc-min using the defined backgrounds (Fig. 1A). We 
randomised the occurrence records for both backgrounds. 
We generated a buffer of ~ 100 km around the occurrence 
records to further determine the background available con-
ditions to further apply a PCA for all combined background 
environmental conditions and generate an environmental 

Table 1   Meaningful ecological variables for predicting environmental suitability and estimating niche of Cercopagis pengoi 

Variable Definition Ecological meaning

Bio3 Isothermality: ratio of diurnal variation to annual variation in temperatures Temperature differences between summer 
and winter significantly influence invasive 
cladocerans, leading to abrupt outbreaks 
in dormant populations (Walsh et al. 2016; 
Spear et al. 2021)

Bio10 Mean temperature of warmest quarter: the warmest quarter of the year is determined 
(to the nearest month)

Bio14 Precipitation of driest month: precipitation amount of the driest month Future trends towards drier conditions in inland 
waters are expected to favour cladoceran 
invasions (Macêdo et al. 2022a). Seasonal 
variations in precipitation can alter the 
salinity of inland waters (Pauli and Briski 
2018; Casties and Briski 2019), affecting the 
invasibility of freshwater ecosystems and the 
invasion success of the euryhaline species 
such as C. pengoi

Bio15 Precipitation seasonality: the coefficient of variation is the standard deviation of the 
monthly precipitation estimates expressed as a percentage of the mean of those 
estimates (i.e. the annual mean)

http://www.worldclim.org
http://www.worldclim.org
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space (PCA-env; Broennimann et al. 2012). We calculated 
the occurrence density within each cell of the environmen-
tal space grid for the entire distribution range of the spe-
cies. Finally, we estimated the environmental space using a 
smooth kernel density function that considers the geographi-
cal conditions available for the studied ranges (Broennimann 
et al. 2012). A total of 10,000 pseudo-absences were gener-
ated, and Schoener’s D was calculated 100 times to produce 
a null distribution of overlap scores (α = 0.05), which were 
then compared to the observed value (Warren et al. 2008).

Projecting potential distribution in current 
scenarios

We used the same uncorrelated environmental variables used 
in the niche dynamics analysis in the reciprocal distribution 
modelling (Table 1). This approach allows identifying which 
geographic areas share similar climatic conditions between 
the calibrated and projected ranges. Results from the poten-
tial distribution of C. pengoi in both invaded ranges and the 
native range will uncover the areas not currently occupied 
(e.g. due to local extinctions or yet not reached) but with 
suitable climatic conditions for C. pengoi to prosper. This 

approach would also be suitable to infer the magnitude and 
direction of possible future range expansions. Our approach 
followed the workflow (Fig. 1A, C) where the models were 
calibrated in the native range and projected onto the two non-
native ranges (Native region → Inv1, Native region → Inv2). 
Similarly, we calibrated models in the non-native ranges 
and projected them onto the native range and from one non-
native range to the other (Inv1 → Native region, Inv1 → Inv2, 
and Inv2 → Inv1, Inv2 → Native region).

The modelling procedure was conducted using the sdm 
R package (Naimi and Araújo 2016). We used the machine-
learning Maximum Entropy algorithm (Maxent; Phillips 
et al. 2006), one of the most utilised algorithms (Bradie and 
Leung 2017). This algorithm has good performance and 
accuracy, being flexible with absence data (Elith et al. 2011), 
a relevant feature when dealing with invasive species that are 
plausibly spreading below detection rates (Araújo and Peter-
son 2012). We generated randomly distributed background 
points in each calibration area (see Fig. 1) in a proportion of 
1:10 (1 presence record to10 background points).

Following evidence-based recommendations, we fine-
tuned process to determine the best Maxent settings for 
each calibration—projected area (All occurrences → Inv1 

Fig. 1   Workflow for (A) species and (B) environmental data prepa-
ration, followed by the modelling procedures, is detailed. For niche 
dynamic analysis (C), a background derived from a Minimum 
Convex Polygon (MCP), constructed using occurrence records 
(Native region  = 11, Inv1 = 100, and Inv2 = 63), was employed. In 
reciprocal distribution modelling (B), calibration was performed on 
one range with subsequent projection into another, and vice versa. 
Although the native range includes the Ponto-Aralo-Caspian basin 

and the Black Sea (denoted in blue as ‘Native’), it was not individu-
ally utilised in the training dataset for the native range in reciprocal 
modelling due to data insufficiency. Instead, a comprehensive data-
set incorporating all records was employed. The invaded ranges are 
identified as the Baltic Sea and the Volga rivers in Russia (denoted in 
orange as ‘Invasive1’) and Northeastern North America in the Great 
Lakes (denoted in green as ‘Invasive2’)
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and Inv2, Inv1 → Inv2, and Inv2 → Inv1). For this procedure, 
we utilised the framework implemented in the ENMeval R 
package (Kass et al. 2021), where several configurations of 
features (L, LQ, LQH, and LQHP) and regularisation mul-
tipliers (1, 2, 3, 4, and 5) were tested to provide the best 
configuration for each model. We retained model settings 
that presented the lowest ∆AIC (Akaike Information Cri-
terion; Akaike 1973). Models configurations are presented 
in Table S2 (Supplementary Information S2). We generated 
20 replicates evaluated using bootstrapping or subsampling 
methods selecting 30% of random records for model evalu-
ation. Model performance was estimated using (1) the area 
under the receiver operating curve (AUC; Fielding and Bell 
1997), (2) true skills statistics (TSS; Allouche et al. 2006), 
and (3) the continuous Boyce index (CBI; Boyce et al. 2002; 
Hirzel et al. 2006). Lastly, we used the weighted average 
based on TSS to obtain the consensus model of the prob-
ability of occurrence. We considered the threshold that 
maximises sensitivity and specificity (max sp + se) as the 
cut-off value (Liu et al. 2013). All analyses were carried out 
in R language and environment version 4.3.0 (R Core Team 
2023) with the ecospat R package (Di Cola et al. 2017).

Results

Niche comparison tests

The environmental niche spaces occupied by C. pengoi in its 
native and invaded ranges (Inv1 and Inv2) are represented 
in Fig. 2A–C. The first two PCA axes combined explained 
77.1% of the environmental variation (52.1% for the first 
and 25.7% for the second axis; Fig. 2D). Isothermality 
(bio3) and precipitation seasonality (bio15) were the most 
important variables associated with the first axis (Fig. 2E) 
whereas the second axis was associated with the mean 
temperature of the warmest quarter (bio10) and precipita-
tion of the driest month (bio14) (Fig. 2F). According to the 
PCA-env approach, native populations have more similar 
environmental conditions with Inv1 than with Inv2, which 
represents a subgroup of the native space (Fig. 3). In con-
trast, a low proportion of the environmental space in Inv2 
is contained in the native space. The environmental space 
in North America (Inv2) has more adjacent space with the 
European range (Inv1), also shown by the environmental 
niche overlap between these ranges (Schoener’s D values; 

Fig. 2   The first two axes of the principal component analysis (PCA), 
pertaining to the current distribution of Cercopagis pengoi in (A)–(B) 
invasive ranges and (C) native range, are presented. The PCA outputs 
for the preselected bioclimatic variables are shown in (D). The impor-

tance of variables in each PCA axis is detailed in (E) for the first axis 
and (F) for the second axis. The continuous line denotes 100% of the 
available environmental background, while the dashed line signifies 
the 50% most common conditions
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Table 1). The proportion of niche overlap exhibited between 
all three ranges is shown in Fig. 3, where the dashed lines 
represent the total background available in each region.

The similarity hypothesis test between Native and Inv1 
(Table 2; p < 0.05) indicated that these niches were more 
similar to each other than to 100 randomly selected niches 
from the Native and Inv1 ranges (Broennimann et al. 2012). 
The observed overlap, based on Schoener’s D, is significantly 
higher than what would be expected to occur by chance. 
However, the similarity test results for Native-Inv2 and Inv1-
Inv2 showed a non-significant similarity,suggesting that 
these niches are less similar than what would be expected 
by random chance, as detailed in Table 2.

Native and Inv2 had the lowest stability indicating dis-
similar environmental conditions between both Ponto-Cas-
pian and North American ranges (1 → 2, 28% and 2 → 1, 
15%, Table 2). Furthermore, the higher degree of unfilling 

between Native region → Inv2 suggests that large portions 
of unoccupied environments remain available for C. pengoi 
in North America (unfilling = 85%). The niche dynamics 
analysis revealed a substantial expansion between the native 
range and the North American range (Native region → Inv2) 
at 72%, and between the Baltic and North American invasive 
ranges (Inv1 → Inv2) at 39%. In contrast, a smaller expan-
sion of 16% was observed between the native range and the 
Baltic range (Native region → Inv1), as detailed in Table 2.

Reciprocal projections of SDM

Response curves showed that the distribution of C. pengoi 
is related to regions with less daily temperature variation 
compared to the annual range, with an optimal isothermal-
ity (bio3) slightly below 17%. Cercopagis pengoi displayed 
different suitability to average temperatures in its invaded 
ranges (around 16 °C in Inv1 and 20 °C in Inv2), however 
with similar temperature amplitudes (Fig. 4). Overall, C. 
pengoi demonstrates higher suitability in relatively stable 
and moderate hydrological regime, with populations in Inv2 
having a slightly higher tolerance for precipitation seasonal-
ity compared to the Inv1.

The reciprocal SDMs indicated an overall good per-
formance considering all metrics utilised. Final models 
trained in all ranges (Native region + Inv1 + Inv2) had AUC 
0.92 ± 0.01 (mean ± standard deviation), TSS 0.75 ± 0.03, 
and CBI 0.91 ± 0.05. Those trained in the Inv1 had AUC 
0.92 ± 0.02, TSS 0.75 ± 0.06, and CBI 0.86 ± 0.06. Finally, 
when trained in Inv2, the model had AUC 0.97 ± 0.01, TSS 
0.91 ± 0.04, and Boyce index (CBI) 0.66 ± 0.21. These 
results of the reciprocal modelling suggest that predictions 
calibrated in all ranges had an overall better performance 
than those calibrated only in the invaded regions (Fig. 5A).

The potential distribution of C. pengoi, as predicted by 
models calibrated in Inv1 (Fig. 5B), did not encompass areas 
currently found in the native range or within Inv2. On the 
other hand, models calibrated in Inv2 showed higher accu-
racy in predicting the occurrence of C. pengoi in its native 
range. These models also indicated more limited and geo-
graphically scattered regions in North America than those 

Fig. 3   Overlaps in the realised climatic niches of Cercopagis pen-
goi across all considered ranges are depicted, with niches superim-
posed upon the available climatic background. The native range 
is represented in blue (Native); The non-native region  Baltic Sea is 
represented in dark orange (Inv1) and the North American non-native 
region in green (Inv2). Continuous contours indicate the top 20% of 
density values, while dashed thin lines outline 100% of the available 
background in each respective region

Table 2   Multivariate niche 
comparisons and related metrics 
of niche dynamics

Pairwise comparisons D index Similarity Stability Unfilling Expansion
1 → 2 1 → 2 1 → 2 1 → 2

2 → 1 2 → 1 2 → 1 2 → 1

Native region-
Invaded region 1

0.11 0.04 0.84 0.67 0.16
0.05 0.33 0.16 0.67

Native region-
Invaded region 2

0.03 0.16 0.28 0.85 0.72
0.14 0.15 0.72 0.85

Invaded region 1-Invaded 
region 2

0.02 0.42 0.61 0.48 0.39
0.37 0.52 0.39 0.48
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calibrated with all occurrences (Fig. 5C). The models trained 
in the invaded ranges displayed similar projected areas in 
Eurasia. They identified much larger geographic areas as 
climatically suitable for C. pengoi than its known current 
distribution, particularly in the Middle East and Russian 
water bodies. However, the risk of invasion is low in North 
Africa and Hudson Bay in Canada, as well as in most of the 
European territory and the Mediterranean Sea.

Discussion

In recent decades, a range of brackish and freshwater habi-
tats in Europe and North America, including the Baltic Sea 
and the Laurentian Great Lakes, have experienced numer-
ous invasions by species native to the Azov, Black and Cas-
pian Seas. This phenomenon is known as the Ponto-Cas-
pian invasion (Soto et al., 2023). Despite the environmental 
conditions and shipping frequencies in these regions, these 
invasions are far more prevalent than expected (Casties and 
Briski 2019). Euryhalinity, the ability to tolerate a wide 
range of salinities, is often investigated as a crucial inva-
siveness trait (Pauli and Briski 2018; Dobrzycka-Krahel 
et al. 2023). Nevertheless, climate conditions also play a 
significant role, often triggering sudden surges in invasive 
populations, specifically by accelerating the hatching of rest-
ing eggs (Spear et al. 2021). Our SDM specifically examined 
Cercopagis pengoi, a notorious high-ranking predator recog-
nised by the IUCN as an impactful invasive species for over 
two decades (Luque et al. 2014). We sought to quantify the 
niche dynamics of C. pengoi, thereby enriching knowledge 

of niche instability as a mechanism behind plankton inva-
sions. Importantly, our models identified regions potentially 
susceptible to the establishment of C. pengoi, emphasising 
the urgency of targeted preventive measures.

Niche dynamics

The debate on invasive population dynamics centres around 
two opposing ideas: one views invasive species as exhib-
iting niche conservatism, colonising environments akin to 
their native range, while the other suggests a niche shift 
occurs during the invasion process (Liu et al. 2020; 2022). 
In our study, we found support for partially rejecting the 
niche conservatism hypothesis during the invasion process 
of C. pengoi. However, invasive populations of C. pengoi 
demonstrated tendencies towards unfilling or evolution of 
their ecological niches, native environmental space was 
more similar to the non-native region of the Baltic Sea 
(Inv1) than would be expected by chance, a result consist-
ent with niche conservatism. This suggests that the first non-
native populations in the Baltic Sea likely originated from 
the native source range in the Ponto-Caspian region, also 
indicating a colonisation of populations affected by bottle-
necks. This route is also supported by mitochondrial genetic 
analysis (MacIsaac et al. 1999) and by the low intraspecific 
genetic diversity commonly found in non-native populations 
(Gorokhova et al. 2000; Makarewicz et al. 2001; Litvinchuk 
and Telesh 2006). However, in this plausible initial invasion 
step, niche comparison analyses indicated that C. pengoi has 
only partially occupied its ancestral niche, suggesting that 
future invasions are anticipated.

Fig. 4   Response curves for 
the environmental variables 
utilised in the potential dis-
tribution model for C. pengoi 
are detailed. These variables 
include isothermality (Bio3), 
mean temperature of warmest 
quarter (Bio10), precipitation of 
driest month (Bio14), and pre-
cipitation seasonality (Bio15)
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Significant niche similarity was not observed when com-
paring the native space with the space of Inv2, nor between 
Inv1 and Inv2. Rather, a high degree of unfilling (i.e. condi-
tions present in the native range but absent in the invasive 
range) and expansion (i.e. conditions unique to the invaded 
range) was evident between the native and North American 
populations (Inv2), as well as, to a lesser extent, between 
Inv1 and Inv2. This indicates greater stability, or the abil-
ity of the species to maintain its ecological niche over time 
(Warren et al. 2008; Broennimann et al. 2012). This implies 
that while the invasion process of Inv1 does not show a sig-
nificant change in the environmental niche, the subsequent 

expansion into Inv2 could represent either the still-unfilled 
conditions in North America (indicating climatic non-equi-
librium) or evolutionary processes occurring post-invasion 
in this region (Broennimann et al. 2012). The greater degree 
of unfilling observed between the Native region and Inv2, 
as compared to that between Inv1 and Inv2, might be attrib-
uted to dispersal filters rather than biotic resistance. This is 
because Inv1 is presumably a more intense source of prop-
agules to Inv2, potentially sustaining ongoing propagule 
pressure. In other words, there is likely higher anthropogenic 
dispersal facilitated by the more active commercial route 
between the Baltic Sea and North America (Hudgins et al. 

Fig. 5   Ensemble predictions for Cercopagis pengoi under the cur-
rent scenario were derived using a weighted mean of models gener-
ated with MaxEnt. The binary suitability maps display the species’ 
predicted presence based on the maximum sensitivity plus specificity 
threshold (refer to the ‘Methods’ section for additional details). Col-

ours indicate suitable areas, with red, yellow, and green representing 
varying degrees of suitability, while unsuitable areas are shown in 
grey. Maps correspond to predictions based on training data incorpo-
rating all occurrences (A), Inv1 (B), and Inv2 occurrences (C). Black 
dots mark the current distribution of C. pengoi 
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2023). Given that cladocerans rely on wind, drift, and other 
animals for the dispersal of their propagules (adult form or 
resting stages) (Moreno et al. 2019), it is predominantly 
human-assisted dispersal that facilitates their widespread 
distribution (Incagnone et al. 2015; Kotov et al. 2022).

In the study by Torres et al. (2018), a significant shift 
in the ecological niches of most freshwater invertebrates, 
including C. pengoi, was observed during their transition 
from native regions to potential new invasive spots in New 
Zealand. This shift in niche dynamics, as evidenced by the 
metrics in Table 2, could be attributed to rapid evolutionary 
changes or adaptations to novel environmental conditions. 
Such adaptations are particular features of cladocerans, 
which have short life cycles and well-known adaptive traits 
(LaMontagne and McCauley 2001; Gustafsson et al. 2005). 
However, the role of phenotypic plasticity in the establish-
ment of C. pengoi also warrants consideration. Phenotypic 
plasticity, the ability of an organism to alter its phenotype 
in response to environmental variations, might be a key 
factor in the establishment of the species, as suggested in 
the invasion process of North American lakes by C. pengoi 
(MacIsaac et al. 1999). Indeed, if plasticity is a significant 
driver, the invasion pathway characterised by the sequence 
Native region > Inv1 > Inv2 might not strictly adhere to a 
pattern of pre-adaptation.

Northern regional and intercontinental range 
expansion

Suitable but not yet occupied environments can become 
time-bombs for sudden outbreaks of C. pengoi, as already 
shown for ecologically similar invasive cladocerans (e.g. 
Bythotrephes longimanus; Spear et al. 2021). Additionally, 
environmental non-equilibrium, as demonstrated here for C. 
pengoi, can undermine the accuracy of invasion risk assess-
ments and thus deserves special attention from monitoring 
programs (Cutter et al., 2023; Maxson et al., 2023). These 
assessments can identify whether management biases or 
delays—attributed to the premise of the absence of invasive 
species due to non-detection—are plausible, given their abil-
ity to thrive in novel environments (Capinha et al. 2011; 
Gallardo et al. 2013; Torres et al. 2018; Macêdo et al. 2021). 
Curiously, C. pengoi populations are not established else-
where in the world outside of the areas investigated in this 
study. In this sense, predicting the shifts in species ranges in 
response to environmental change is critical for developing 
timely conservation and mitigation strategies (i.e. anticipa-
tion or biocontrol; Dinis et al. 2020), and targeting costly 
invasive species (Cuthbert et al. 2021; Macêdo et al. 2022b), 
as inaction has been proven to be deleterious to global econ-
omies (Ahmed et al. 2022).

Our projections indicate improved model performances 
when based on both native and invasive ranges (Loo et al. 

2007; Jiménez-Valverde et al. 2011; Macêdo et al. 2021). 
Invasive populations of C. pengoi may be adapted to dif-
ferent average temperatures while maintaining a consistent 
preference for limited daily temperature variability. Also, 
the responses to precipitation suggest that invasive popula-
tions have different drought resistance. These results suggest 
a degree of ecological plasticity in adapting to the mean 
thermal conditions of an area while maintaining a selec-
tive affinity for a narrow range of temperature fluctuations, 
which likely contributes to its invasive success in distinct yet 
climatically divergent regions.

Surpassing all occupancy restrictions, surveillance pri-
ority areas can be pointed out, aiming for more efficient 
control strategies for C. pengoi invasion. Starting from 
areas close to the source populations in North America and 
extending northward, e.g. the plains of Ontario and Quebec, 
Canada. Also, the predicted expansion southward into Illi-
nois, possibly reaching even more southernmost locations 
in North America through natural downstream movements. 
For instance, Maxson et al. (2023) recently reported new 
records of C. pengoi in the Mississippi River Basin, which 
represents so far the southernmost record in the North Amer-
ican range. In Europe, we suggest higher efforts in North-
ern countries (Sweden, Finland, Denmark, and Norway), but 
primarily in Russian water bodies that have been invaded 
by zooplankton organisms through global trade (DiBacco 
et al. 2012; Casas-Monroy et al. 2015), including recent geo-
graphic range expansion of C. pengoi into Russian water-
ways (Lazareva 2019a, 2019b). The suitable areas for C. 
pengoi invasions indicated by our models are also targets for 
novel commercial ship routes in the Arctic (McCarthy et al. 
2019), indicating areas where this cladoceran is currently 
absent (e.g. the Mediterranean Sea; Zenetos and Galanidi 
2020). However, false negatives are possible as biodiversity 
in these regions has not been completely assessed, as new 
species are continuously being described (e.g. Alonso et al. 
2021). Since methods of sterilisation of ballast water tanks 
can fail to reduce propagule pressure and instead trigger rest-
ing eggs hatching (Lin et al. 2020), implementing constant 
monitoring programs should be considered to mitigate both 
ecological and economic impacts, mainly to fish and fisher-
ies (Macêdo et al. 2022b).

Conclusion

Species distribution modelling can provide insights into the 
mechanisms driving the invasion establishment of differ-
ent populations of C. pengoi, beyond expectations of wide-
spread niche conservatism of non-native species. Although 
relatively geographically restricted in invaded ranges, C. 
pengoi is not climatically constrained to the localities of its 
known current distribution, suggesting that more significant 
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portions could be occupied if control policies weaken, or 
under novel environmental conditions that may trigger a 
population outbreak. Also, niches are neither similar nor sta-
ble between invasive ranges in Europe and North America, 
and introductions from these sources are possible or already 
ongoing but not tracked due to detection limitations. We 
suggest monitoring efforts should conduct samplings in bot-
tom sediments due to resting egg bank formation for rapid 
detection and action, as well as developing protocols for 
ballast water sterilisation. In doing so, the invasion process 
of C. pengoi could be elucidated at local and regional scales, 
avoiding impacts on biodiversity and economic activities.
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