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Mapping brucellosis risk in Kenya 
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In Sub-Saharan Africa (SSA), effective brucellosis control is limited, in part, by the lack of long-term 
commitments by governments to control the disease and the absence of reliable national human 
and livestock population-based data to inform policies. Therefore, we conducted a study to establish 
the national prevalence and develop a risk map for Brucella spp. in cattle to contribute to plans to 
eliminate the disease in Kenya by the year 2040. We randomly generated 268 geolocations and 
distributed them across Kenya, proportionate to the area of each of the five agroecological zones and 
the associated cattle population. Cattle herds closest to each selected geolocation were identified 
for sampling. Up to 25 cattle were sampled per geolocation and a semi-structured questionnaire was 
administered to their owners. We tested 6,593 cattle samples for Brucella immunoglobulin G (IgG) 
antibodies using an Enzyme-linked immunosorbent assay (ELISA). We assessed potential risk factors 
and performed spatial analyses and prevalence mapping using approximate Bayesian inference 
implemented via the integrated nested Laplace approximation (INLA) method. The national Brucella 
spp. prevalence was 6.8% (95% CI: 6.2–7.4%). Exposure levels varied significantly between agro-
ecological zones, with a high of 8.5% in the very arid zone with the lowest agricultural potential 
relative to a low of 0.0% in the agro-alpine zone with the highest agricultural potential. Additionally, 
seroprevalence increased with herd size, and the odds of seropositivity were significantly higher for 
females and adult animals than for males or calves. Similarly, animals with a history of abortion, 
or with multiple reproductive syndromes had higher seropositivity than those without. At the herd 
level, the risk of Brucella spp. transmission was higher in larger herds, and herds with a history 
of reproductive problems such as abortion, giving birth to weak calves, or having swollen testes. 
Geographic localities with high Brucella seroprevalence occurred in northern, eastern, and southern 
regions of Kenya all primarily characterized by semi-arid or arid agro-ecological zones dominated by 
livestock pastoralism interspersed with vast areas with mixed livestock-wildlife systems. The large 
spatial extent of our survey provides compelling evidence for the widespread geographical distribution 
of brucellosis risk across Kenya in a manner easily understandable for policymakers. Our findings can 
provide a basis for risk-stratified pilot studies aiming to investigate the cost-effectiveness and efficacy 
of singular and combined preventive intervention strategies that seek to inform Kenya’s Brucellosis 
Control Policy.
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Brucellosis, a zoonotic disease that affects both humans and livestock, poses a significant threat to public health 
and economic stability in regions where livestock farming is an important source of livelihood1,2. While brucel-
losis is the world’s most widespread endemic zoonosis, it also ranks as one of the seven most neglected diseases3. 
The disease also ranks highly in One Health Zoonotic Disease prioritization exercises conducted by African 
countries, including Kenya, mainly due to its economic impacts, including livestock productivity losses and 
restrictions on livestock trade4–6.

Incidence estimates in humans range between 5 and 12.5 million cases annually, primarily presenting with 
protracted debility3. In Kenya, the government has drawn a Brucellosis National Prevention and Control Strategy, 
emphasizing the need to develop conceptual frameworks for improving understanding of the spatial distribution 
and other risk factors to better design and implement programs leading to possible elimination by the year 20407.

Previous brucellosis epidemiological studies have been implemented in small agro-ecological zones, lim-
ited administrative units, or community settings. They have also employed different field and diagnostic 
methodologies8–11. These studies show high brucellosis prevalence in pastoral production systems. They also 
demonstrate that brucellosis exposure decreases as herd size and size of land holding reduce9. The high prevalence 
of brucellosis in pastoral areas has been attributed to occupational and culturally-related risky practices despite 
local communities having significant knowledge of the disease9,10, 12.

Nevertheless, the scope of these research studies is limited geographically and temporally, presenting signifi-
cant challenges to reliable analyses of animal-level, ecological, meteorological and edaphic correlates of exposure.

To address this knowledge gap, a nationally representative epidemiological study covering multiple regions 
is required to map brucellosis risk to inform national control strategies and generate hypotheses to guide future 
research. Previous studies have shown that determining disease burden and developing disease risk maps can 
enable governments to allocate their limited resources on appropriate prevention and control efforts. For exam-
ple, using a national Rift Valley fever (RVF) risk map13, Kenya implemented enhanced RVF surveillance during 
the forecasted 2015–2016 RVF high-risk period, focusing on 22 high-risk counties14. Here, we designed and 
implemented a national cattle population-based study using a stratified sampling procedure and testing of 6593 
serum samples across five agro-ecological zones and contrasting husbandry systems, covering all cattle age and 
sex classes to build an evidence base for brucellosis prevention and control in Kenya and possibly elsewhere in 
sub-Saharan Africa.

Methods
Sample size determination
We conducted this national cross-sectional survey in Kenya between November 2020 and August 2021. The 
study covered all the five agro-ecological zones in Kenya, including agro-alpine, high and medium potential, 
semi-arid, arid, and very arid zones. Since the study aimed to estimate the Brucella seroprevalence at the national 
level, we estimated the sample size using the standard formula for determining a population proportion15. In 
the absence of reference data, we assumed an a priori prevalence of 50%. Based on this assumption, the initial 
sample size generated was 384 animals. However, two adjustments were made to ensure robustness of the study 
population size. The first adjustment accounted for potential clustering of the outcome at the herd level, a char-
acteristic expected of Brucella based on previous studies10,16–18. We estimated a design effect of 8.2 based on an 
assumed intra-cluster correlation of 0.3 and a maximum of 25 cattle sampled per herd to meet the expectations 
of the Central Limit Theorem. This adjustment increased the sample size estimate from 384 to 3,150 animals. 
The second adjustment aimed to amplify the sample size to account for potential confounding variables. In this 
step, we assumed that the prediction model for Brucella would have at least two continuous predictors, each with 
a significant correlation of 0.5 with the outcome. Meeting the preceding assumptions required sampling 6,700 
animals from 268 herds or sampling points.

Sampling
A two-stage sampling technique was employed. The first stage involved selecting households across the country 
within the five Agro-Ecological Zones (AEZs) using random geographic coordinates (RGC) distributed propor-
tionately to the geographical coverage and livestock population in each AEZ (Fig. 1). In addition, the second stage 
selected 25 healthy cattle per herd for sampling. After the RGCs were transferred to a handheld GPS to locate 
their physical locations within Kenya, the closest herds within a 5 km radius of each geolocation were identified 
for sampling. In the second stage, 25 healthy cattle were selected per herd to be included in the study. For cattle 
herds with more than 25, the team selected 25 animals randomly. If a chosen herd had fewer than 25 animals, 
additional nearby herds were included until the desired sample size of 25 animals per geolocation was achieved.

The team then administered a structured questionnaire to the household heads at each sampling point to 
capture herd-level data, including herd size, herd composition, and the presence or absence of reproductive 
syndromes within the past two years. For each randomly selected cattle, the questionnaire also captured the 
demographic characteristics such as age, sex and history of reproduction syndromes before the collection of 
blood samples.

Blood sample collection and analysis
Animals were restrained appropriately and about 6 ml of blood was collected from the jugular vein using a 
barcoded plain vacutainer tube. The blood samples were initially kept for 15 min to allow clotting. They were 
then transported in a cool box to the field laboratory where serum was extracted after centrifugation at 1300 g 
for 10 min. The serum samples were aliquoted into barcoded cryovials and kept in a motorized freezer (− 20 
◦C), which was also used to transport the samples to a biosecurity level 2 laboratory at the International Live-
stock Research Institute (ILRI) in Nairobi. To detect circulating antibodies against Brucella spp., samples were 
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analyzed in duplicates using an indirect enzyme-linked immunosorbent assay (ID screen Brucellosis serum 
Indirect ELISA Multispecies from IDvet innovative diagnostics, France), as per the manufacturer instructions, 
to detect antibodies against Brucella abortus, Brucella melitensis and Brucella suis. Testing and interpretation 
of results were done according to the guidelines provided by the manufacturer, with the mean optical density 
(OD) being used to determine a positive or negative status. The samples were analyzed in a biosecurity level 
2 laboratory, as recommended for Brucella19–21, while following the set biosafety and biosecurity measures for 
biosafety level 2 laboratory.

Descriptive and risk factor analysis
We used the R statistical software (version 4.2.3)22 for data cleaning and analysis. Descriptive summaries were 
obtained via cross-classification tables using the CrossTable function in gmodels package23, while risk factor analy-
ses were implemented using Bayesian spatial logistic regression with a logit link and a binomial error distribution 
fitted using the integrated nested Laplace approximation (INLA) method24. The model uses approximate Bayesian 
inference to estimate the posterior distribution of model parameters. The model was fitted to the data using the 
R-INLA function in the R-INLA package25. INLA was preferred for these analyses because of its computational 
efficiency and accurate approximation of parameters of a wide class of generalized linear mixed models (GLMM), 
generalized additive models (GAM), spatial and spatio-temporal models using stochastic partial differential 
equations (SPDE)26. The data were initially analysed using a GLMM, with herd ID as the random effect, but this 
model was later replaced by a GLMM model with a spatial random effect accounting for spatial autocorrelation.

The spatial logistic regression model is given in Eq. 1. The logit link function ηi = log(πi/(1− πi)) links the 
probability of animal-level Brucella seropositivity πi to the linear predictor.

In the linear predictor, β0 is the intercept, m is the number of covariates, βj is the regression slope for covariate 
xj and f (zi) is a generic function accounting for spatial random effects. For the GLMM models f (zi) was assumed 

ηi = β0 +

m∑

j=1

βjxji + f (zi)

Figure 1.   Map of Kenya showing the randomly generated locations for sampling across the different 
agroecological zones. The map was prepared by Max Korir using QGIS version 3.30.1. The agroecological zone 
datasets were retrieved from https://​geopo​rtal.​icpac.​net/​layers/​geono​de:​ken_​aczon​es (ICPAC Geoportal).

https://geoportal.icpac.net/layers/geonode:ken_aczones
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to be structured according to independent and identically distributed Gaussian random effects (iid) represented 
by the herd ID. For the spatial model f (zi) was approximated by an SPDE model.

Fitting the spatial Bayesian models and computing their posterior distributions and posterior predictive 
distributions requires computationally intensive numerical quadrature methods such as Bayesian quadrature or 
probabilistic numerics. The Integrated Nested Laplace Approximation (INLA) method is particularly well-suited 
for this purpose because it performs approximate Bayesian inference by directly calculating the posterior densi-
ties for Bayesian hierarchical models. A noteworthy and distinct advantage of R-INLA is its high computational 
efficiency and reliable approximation relative to the widely used Markov Chain Monte Carlo (MCMC) simula-
tion method, even for spatial data with many observations. This enables rapidly fitting and exploring different 
contending models, gaining deep insights into the data, performing efficient cross-validation and improving 
transparency through quick code checking and running models by peers25. Consequently, several recent stud-
ies have applied the SPDE approach implemented in R-INLA, including to neglected tropical diseases, such as 
visceral leishmaniasis in Ethiopia, onchocerciasis in Africa and Yemen and Ebola in the DRC26–28.

Univariable and multivariable analyses with the GLMM model
The univariable and multivariable models were fitted to the animal- and herd-level data in turns. The predictors 
considered for the analyses using the animal-level data included an animal’s age, sex and history of abortion, 
birth of weak calves, or retained placenta. The models that used herd-level data considered the effects of herd 
size, ecology and occurrence of abortion, birth of weak calves and retained placenta in the index herd. Parameter 
estimates for variables whose 95% credible intervals excluded zero were considered significant.

We also checked the 95% credible intervals for the estimated variance component to establish if it excluded 
zero. We built the multivariate model as follows. First, we ranked the univariate models using the Watanabe 
Information Criterion (WAIC). Second, starting with the best supported univariate model, we added the covari-
ate from the second best supported model and the first-order interaction terms between the variables in the 
joint model. The second covariate was retained in the model if the WAIC for the joint model was smaller than 
for the best univariate model. Otherwise, the second covariate was dropeped from the joint model. Next, the 
covariate from the third best supported model was similarly added to the joint model and the process continued 
until all the covariates had been considered. Interaction terms higher than the first-order were omitted from the 
multivatiate model to limit or control the number of estimated parameters relative to the sample size or number 
of spatial sampling points.

Spatial analyses
Because it used multiple spatial datasets, we commenced the spatial analysis by developing a causal web diagram 
to guide the selection of predictors for modelling (Figure S1). Previous studies indicate that Brucella is endemic 
in pastoral and agro-pastoral areas where livestock are raised in large herds, graze communally, and are likely to 
interact with wildlife9. Climatic and environmental factors that influence types of livestock production systems 
and relevant socioeconomic practices in an area, were therefore considered as antecedent predictors. At the 
host level, individual characteristics such as species, age, physiological status, and production levels may also 
influence exposure patterns (Figure S1).

The spatial model was developed through five successive stages. The first involved the development of a mesh 
over the spatial domain and the second involved the specification of a projector matrix to connect the observed 
data with the nodes of the mesh (Supplementary text S2). The mesh was constructed using the Kenya shape file 
to define the location of the domain. We downloaded the shapefile from https://​www.​diva-​gis.​org/​gdata. The 
third step involved defining the SPDE model; non-informative priors were specified in this case. The fourth and 
the fifth stages involved setting up an index for the spatial field and constructing a data stack that was required 
for fitting the model, respectively.

A total of 49 predictor variables were tested for their association with Brucella seropositivity. These included: 
(a) the host characteristics—sex and age—recorded during sampling; (b) spatial distribution of cattle, camels, 
sheep and goats based on census data from the Department of Veterinary Services of Kenya, and predictions 
from the gridded livestock of the world project27; (c) environmental variables such as the aridity index, digital 
elevation indices, slope of the land surface, soil types, and (d) bioclimatic variables. A list of these datasets with 
a description of their resolutions and sources is provided in Table S3. A variable was considered significant if its 
95% credible intervals excluded zero.

Generating predictions from fitted models
The final model with ecological variables only was used to predict the probability of Brucella seroprevalence 
across the country. A full model with the animal-level factors could not be used for this purpose because there 
were no data on these characteristics for unsampled locations. We first generated a 5 km grid and centroids from 
the grid used to extract the predictor variables from relevant raster files to generate this prediction. We then 
plotted a map of the expected Brucella seroprevalence derived from the model predictions. Finally, we extracted 
and plotted the posterior marginal densities for the range and variance of the random effects. Estimates of these 
two parameters are relevant for designing future surveys and risk-based surveillance for Brucella.

Ethics approval and consent to participate
The study obtained research approval from the National Commission for Science, Technology, and Innovation 
(NACOSTI) under reference number NACOSTI REF: 218346. The ILRI’s Institutional Animal Care and Use 
Committee (IACUC) also reviewed our protocols and granted an approval REF: ILRI-IACUC2021-18. The 

https://www.diva-gis.org/gdata
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guidelines and regulations established by NACOSTI and IACUC were strictly adhered to during implementation 
of this study, while only including cattle from herds where informed consent was issued by the household head.

Results
We sampled 6,593 cattle from 468 herds distributed across the five agro-ecological zones in Kenya. The average 
number of animals sampled per herd was 14 (range: 1–25). Single herd sampling was achieved for 160 herds, 
the rest required multiple sampling to attain 25 animals per sampling point. While 44.87% of the sampled herds 
(210 herds) had more than 20 animals, 50 herds had between 10–19 animals, whereas less than 10 animals were 
obtained from 208 herds. A total of 449 out of the 6,593 samples tested positive for Brucella antibodies, resulting 
in a national seroprevalence of 6.8% (95% CI: 6.2–7.4%); 31.3% of all the herds had at least one positive animal.

Results from descriptive analyses are presented in Table 1. Adult animals had a higher seroprevalence (10.1%, 
range 9.1–11.1) than younger animals (3.9%, range 2.9–5.1). Female animals had significantly higher seropreva-
lence than males. Seroprevalence also differed significantly by herd type. Animals kept in single-species herds had 
a higher seroprevalence (9.9%, range 8.3–11.5) than animals kept in mixed-species herds (6.1%, range 5.5–6.7). 
Further, Brucella seropositivity was higher in arid AEZ but lower in non-arid AEZ. Animals kept in herds with 
a history of single or multiple reproductive syndromes also had higher seropositivity. Results of the univariable 
model run using the INLA package on all the variables are presented in supplimentary material (Table S4).

The results of the ILNA model used to analyze the animal-level data are summarized in Table 2. They show 
the risk of Brucella spp. seropositivity to be higher for female than male animals. Also, the adult animals had an 
elevated risk of being exposed to Brucella than the suckling calves and other age categories.

The estimated associations between the known syndromes of brucellosis and the frequency of detection of 
Brucella antibodies in female adult cattle are summarized in Table 3. Female adult animals with a history of 
abortion, and those that had experienced more than one syndrome of brucellosis had a higher likelihood of 
being positive for Brucella antibodies.

The herd-level risk factors associated with Brucella spp. seropositivity are summarized in Table 4. Herds 
containing animals with a history of reproductive syndromes such as abortions, retained placenta, or the birth 
of weak calves were significantly associated with Brucella spp. seropositivity, relative to those kept in herds with 

Table 1.   Summary of cattle population composition, descriptive characteristics, and Brucella spp. 
seropositivity. NB: The p-value presented in this trable are generated from a chi-square test.

Variable Category Total No. Brucella spp. positive
% Brucella spp. sero-positive (95% 
CI) p-value

Sex Male 1707 70 4.1 (3.2–5.0) 0.001

Female 4886 377 7.7 (6.9–8.4)

Age category Suckling 1138 45 3.9 (2.9–5.1) 0.001

Weaner 1059 31 2.9 (2.1–3.9)

Waiting to breed 984 27 2.7 (1.8–3.7)

Adult 3068 344 10.1 (9.1–11.1)

Herd type Cattle only 130 31 32.8 (16.9–31.1) 0.050

Cattle mixed with others 338 112 33.1 (28.1–38.3)

Herd size 1–25 252 16 6.3 (3.9–9.4)  < 0.001

26–100 114 60 52.6 (43.8–62.4)

More than 100 102 67 26.4 (20.0–34.3)

History of reproduction problems 
within a herd No 296 48 16.2 (12.5–20.6)  < 0.001

Yes 172 95 55.2 (48.3–63.4)

History of abortion within a herd No 414 118 28.5 (24.2–32.9) 0.012

Yes 54 25 53.7 (40.7–66.9)

History of weak calf within a herd No 457 135 29.5 (25.4–33.8) 0.006

Yes 11 8 72.3 (54.5–100.0)

History of swollen testis in a herd No 462 139 30.1 (25.9–34.4) 0.137

Yes 6 4 66.7 (50.0–100.0)

Retained placenta No 448 140 31.3 (27.0–35.7) 0.195

Yes 20 3 15.0 (5.0–31.5)

5 agro-ecological zones Agro Alpine 52 0 0.0 (0.0–3.1)  < 0.001

High and medium potential 151 8 5.2 (2.6–8.9)

Semi-arid 40 15 37.5 (25.0–54.0)

Arid 61 27 44.3 (32.8–57.6)

Very arid 164 93 56.7 (49.4–64.8)

Categorized AEZ Non-Arid 203 8 3.9.4 (2.0–6.7)  < 0.001

Arid 265 135 50.9 (44.9–57.3)
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no history of reproductive syndromes. Herds kept in non-arid areas were less likely to get exposed to Brucella 
spp. infection as opposed to those reared in arid and semi-arid AEZs. The risk of exposure to Brucella spp. was 
also significantly lower for small (≤ 25), than for middling (26–99) or large (≥ 100) herds.

Brucellosis risk mapping
From the 6,593 records collected from 468 herds in this study, only 6,587 (99.9%) records with complete entries 
were used for spatial analysis. Relatively high Brucella spp. seroprevalence was observed in the northern parts of 
Kenya (Fig. 2a). In contrast, low seroprevalence was observed in the central highlands and the western parts of 
the country (Fig. 2a). Areas with the highest seroprevalence had relatively lower cattle densities (Fig. 2b), lower 
rainfall (Fig. 2c) and calcic chernozems soil types (Fig. 2d).

Univariable modelling
Of the 53 variables used in the univariable analysis, 36 showed significant associations with seroprevalence 
(Table S5). Including the spatial random effects in this analysis reduced the number of significant variables to 19.

Table 2.   Significant risk factors associated with Brucella positivity at the individual animal level, identified by 
the INLA model with household as the random effect.

Variable Category Mean SD

Percentile range

2.5% 97.25%

Animal sex
Female 1.0 (Ref.)

Male  − 0.281 0.161  − 0.601 0.031

Age category

Adults 1.0 (Ref.)

weaners  − 1.340 0.213  − 1.772  − 0.935

Waiting to breed  − 1.314 0.219  − 1.760  − 0.899

Suckling calves  − 0.875 0.187  − 1.250  − 0.518

Table 3.   Summary of syndromes associated with brucellosis in female adult cattle based on results of the 
nonspatial INLA model with household as the random effect.

Variable Category Positivity for Brucella antibodies

Mean and 
standard deviation 
(SD) Percentile range

Syndromes of brucellosis in livestock n/N % seropositivity and (95%CI) Mean SD 2.5% 97.5%

Retained placenta No 317/2978 10.6 (9.6–11.7) 1 .0 (Ref.)

Yes 11/79 13.9 (7.6–21.6) 0.362 0.372  − 0.401 1.059

History of abortion No 291/2917 10.0 (8.9–11.1) 1. 0 (Ref.)

Yes 29/140 26.4 (20.0–34.3) 0.852 0.251 0.352 1.336

History of weak calf No 323/3028 10.7 (9.6–11.8) 1. 0 (Ref.)

Yes 5/29 17.2 (6.9–31.3) 0.771 0.582  − 0.428 1.858

Multiple syndromes No 316/3009 10.5 (9.4–11.5) 1.0 (Ref.)

Yes 12/48 25.0 (14.6–37.7) 1.106 0.421 0.257 1.910

Table 4.   Summary of results of the INLA model for herd level factors.

Variable Category Mean SD

Percentile range

2.5% 97.5%

Herd size

26–99 animals 1.0 (Ref.)

1–25 animals 1.758 0.355 1.752 2.471

100 and above 2.162 0.369 2.156 2,901

History of any reproduction problem (abortion, retained placenta or weak 
calf)

No 1.0 (Ref.)

Yes 1.151 0.266 0.633 1.675

Ecological zone
Arid- and semi-arid 1.0 (Ref.)

Non-arid areas  − 0.2.044 0.423  − 2.918  − 1.256
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Multivariable analysis
Table S6 summarises the outputs from the final multivariable model with animal and environmental variables, 
while Table S7 provides results from the model with only the environmental variables as significant predictors. 
In both cases, the spatial effect improved the model fit. This was manifested by substantial reductions in the 
Deviance Information Criterion (DIC) from 2,992.5 to 2,600.7 and 3125.8 to 2701.8 in the first and second 
models, respectively.

The DIC, used to compare the relative fit of the different Bayesian hierarchical models further revealed that 
including animal-level factors improved the model fit. The age of an animal was significantly associated with 
Brucella spp. seropositivity as the level of exposure increased with age. Regarding environmental factors, areas 
with lower rainfall and those with lower cattle numbers were associated with higher log odds of Brucella spp. 
seropositivity than those with high rainfall and cattle numbers (Table S6, Table S7). All the continuous variables 
satisfied the linearity assumption. All the first-order interaction terms were insignificant.

Figure 2.   Maps of the observed distribution of Brucella spp. seropositivity in cattle (a), and of the variables that 
were significant in the final model (cattle numbers (b), annual precipitation (c) and calcic chernozems (d)) fitted 
to the Brucella data.
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Model predictions
Figure 3 illustrates the predicted expected Brucella spp. seroprevalence in Kenya with high predicted seropreva-
lence occurring in the northern, eastern, and southern regions, all primarily characterized by semi-arid, arid or 
very arid agro-ecologies dominated by livestock pastoralism and mixed livestock-wildlife systems. Conversely, 
we predicted very low expected seroprevalence for the central and the western highlands and the Lake Victoria 
Basin region, all characterized by humid and high and medium potential agro-ecologies dominated by varying 
levels of intensified and mixed crop-livestock production systems.

Discussion
To our knowledge, this is the first national brucellosis exposure assessment for Kenya. Designed to be representa-
tive at the national level, we coupled risk factor assessment with risk mapping, thus gaining a comprehensive 
epidemiological picture and expanding our understanding of animal brucellosis exposure patterns in the diverse 
Kenyan territory. We found a consistent pattern of higher exposure among adult animals, females, and those 
raised primarily under pastoralism. In addition, our risk mapping confirmed that the disease risk is concentrated 
mainly in the hard-to-reach Arid and Semi-Arid Lands (ASALs), occupying three-quarters of the country’s 
land surface and home to about 36%, 70% and 90% of human, livestock and wildlife populations, respectively. 
Although developing countries have made remarkable progress in brucellosis control, vast endemic areas such 
as Kenya’s limit proper surveillance and control systems, calling for concerted efforts to launch "One Health"-led 
control programs tailored to realities of particular geographical and socio-cultural contexts.

The high seroprevalence found in the drier agroecological zones is consistent with findings of studies con-
ducted in smaller geographical locations9,10,28,29. In these zones, pastoralist communities keep livestock commu-
nally in large mobile herds, constantly searching for pasture and water, thereby sharing common environments. 
Unfortunately, this management practice brings infected aborting and birthing animals into close contact with 
susceptible livestock, promoting the transmission of Brucella. Since pastoralism is a way of life for these commu-
nities, studies are beginning to characterize livestock movement networks that could inform disease prevention 
and control practices and policies30. Indeed, previous studies have established strong correlations between human 
brucellosis in these regions and Brucella seroprevalence in livestock from engaging in risky practices that pro-
mote Brucella infection9. Specifically, pastoralists consume raw milk from infected animals that constantly shed 
bacteria in milk and also assist infected animals during parturition without protective clothing or equipment12.

The low brucellosis seroprevalence in the high agricultural potential agro-alpine zones and high and medium 
potential zones was considerably lower than the seroprevalence in the drier ASAL zones relative to the national 
prevalence of 6.8%. This low seroprevalence is linked to the husbandry systems that focus on intensifying milk 
production and targeting high-value markets in nearby urbanizing regions31. Intensification is a response 
to increasing human population density and land scarcity, pushing livestock farmers to keep few high-value 

Figure 3.   Predicted expected Brucella spp. seroprevalence in Kenya.
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livestock breeds under the stall-feeding system32, limiting between-herd contacts, and thus tremendously decreas-
ing the transmission risk of Brucella via placental or fetal tissues and urine. Furthermore, the production system 
in these zones employs biosecurity measures that cull animals with poor reproductive performance and minimize 
the introduction of animals from outside the farm through within-herd replacement of breeding animals31. This 
also curtails the within-herd spread of Brucella to humans.

The risk map we generated here can inform research into the effectiveness and efficacy of singular or combined 
preventive interventions, shifting away from costly one-size-fits-all control strategies that demotivate policymak-
ers towards more focused management based on risk stratification. Thus, the map is a holistic instrument for 
multifaceted strategies that may, for instance, inform pilot vaccination studies and community-based trialing of 
public health education and promotion.

The risk of Brucella spp. exposure was higher in females than males and in adult than juvenile cattle. These 
findings are consistent with those of previous studies and are primarily attributed to longer exposure time among 
females due to their role in providing replacement animals and milk production10. Additionally, in pastoralist 
communities, bull calves are often disposed of at an early age, leaving few males for breeding, and herds typically 
consist of less than 30% males33.

While Kenya is implementing the national Brucellosis Control Strategy, the strategy’s background and ration-
ale should be motivated by the livestock-dependent economy in the > 75% of the country’s landmass besides 
reducing the threat to human health. Although this study excluded the more populous brucellosis-susceptible 
small stock, our data show the distribution patterns of Brucella spp. exposure and indicate that the probable 
economic impact of animal brucellosis in the country is sufficient to motivate policymakers to increase funding 
for its control measures. Moreover, previous studies have estimated positive economic benefits from and cost-
effectiveness of such control measures undertaken in brucellosis-endemic settings elsewhere34. Not surprisingly, 
many countries have drawn up brucellosis eradication programs, with some employing vaccination-only poli-
cies, others using test-and-slaughter-only policies and some using both approaches and complementing them 
with other measures3. This likely reflects the occupation and culture prevalent in particular localities, with little 
consideration given to the role of human-livestock-environment interface interdependencies that facilitate dis-
ease transmission. It follows that that village-level community health volunteer and community animal health 
worker teams, attentive to particular social, cultural, livestock husbandry and disease control contexts, should 
form the cornerstone for the integrating socio-cultural environment into One Health practice in those remote, 
hard-to-reach zones. Anthropology can provide important additional context to One Health practice, which often 
overlooks the perspectives and lived experiences of communities affected by zoonoses spillovers to humans35. 
Such a strategy would contribute to achieving Sustainable Development Goal #3 of the United Nations, which 
focuses on equity and commitment to attending to peoples’ health in hard-to-reach areas36.

Policies, experts, and modelling exercises suggest that vaccination efforts alone are insufficient or take nearly 
three decades to control brucellosis effectively31. Even so, the B. abortus S19 vaccine is recommended as a live 
attenuated vaccine for female calves aged between 3 and 6 months, the age group highly treasured by pastoralists. 
It is administered as a single subcutaneous dose or as a reduced dose of organisms to adult cattle. This vaccine 
effectively reduces the incidence of brucellosis in cattle herds31. Thus, governments would do well to pilot it 
in pastoralist herds that value female cattle over males in SSA countries that are yet to adopt vaccination as a 
comprehensive brucellosis control strategy, particularly in areas with high-risk populations.In conclusion, this 
is the first national population-based survey of Brucellosis seroprevalence for a livestock species in SSA. The 
findings are valuable to the Kenya Brucellosis national prevention and control strategy that has set elimination 
targets by 2040. The use of seroprevalence mapping offers a methodologically rigorous approach for targeting 
surveillance, prevention, control, piloting disease control interventions and furthering research.

Data availability
All the data are included in this article and its supplementary files.
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