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Abstract

The joint analysis of two datasets X and Y that describe the same phenomena (e.g. the cel-

lular state), but measure disjoint sets of variables (e.g. mRNA vs. protein levels) is currently

challenging. Traditional methods typically analyze single interaction patterns such as vari-

ance or covariance. However, problem-tailored external knowledge may contain multiple dif-

ferent information about the interaction between the measured variables. We introduce

MIASA, a holistic framework for the joint analysis of multiple different variables. It consists of

assembling multiple different information such as similarity vs. association, expressed in

terms of interaction-scores or distances, for subsequent clustering/classification. In addition,

our framework includes a novel qualitative Euclidean embedding method (qEE-Transition)

which enables using Euclidean-distance/vector-based clustering/classification methods on

datasets that have a non-Euclidean-based interaction structure. As an alternative to conven-

tional optimization-based multidimensional scaling methods which are prone to uncertain-

ties, our qEE-Transition generates a new vector representation for each element of the

dataset union X [ Y in a common Euclidean space while strictly preserving the original

ordering of the assembled interaction-distances. To demonstrate our work, we applied the

framework to three types of simulated datasets: samples from families of distributions, sam-

ples from correlated random variables, and time-courses of statistical moments for three dif-

ferent types of stochastic two-gene interaction models. We then compared different

clustering methods with vs. without the qEE-Transition. For all examples, we found that the

qEE-Transition followed by Ward clustering had superior performance compared to non-

agglomerative clustering methods but had a varied performance against ultrametric-based

agglomerative methods. We also tested the qEE-Transition followed by supervised and

unsupervised machine learning methods and found promising results, however, more work

is needed for optimal parametrization of these methods. As a future perspective, our frame-

work points to the importance of more developments and validation of distance-distribution

models aiming to capture multiple-complex interactions between different variables.
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Introduction

Real-life processes are usually based on the interaction between distinct variables. For example,

the process of gene regulation within cells involves mRNAs and proteins. Nowadays, a large

amount of data can be collected for many variables, making their analysis more and more chal-

lenging. Current data analysis methods are usually focused on understanding a single interac-

tion pattern. Between multiple variables, multivariate data analysis methods are often used to

identify interdependence between the variables. For example, correspondence analysis investi-

gates the patterns related to the statistical independence of two categorical variables where

their joint occurrence is given by a contingency table [1, 2]. Measures of interdependence can

represent the degree of association between the variables, however, other measures of associa-

tion may be constructed through external knowledge about the interaction between the vari-

ables. For example, the correlation between gene expression and protein expression may

represent their degree of association.

The interaction patterns between variables can be represented by a distance matrix contain-

ing interaction measures between the sample vector or categories of the variables or between

any objects representing them. To analyze data that have Euclidean distance matrix structure,

the Schoenberg criterion [3, 4] can be used to recover the results of the low-rank matrix

approximation theorem [5] which constructs a new vector representation of the data such that

each dimension contains a well-defined pattern of explained variance in each dimension. This

process is known as principal component analysis or PCA when directly applied to the data

matrix. Correspondence analysis also employs the low-rank matrix approximation by analyz-

ing the patterns of statistical interdependence between variables instead of patterns of variance.

For non-Euclidean interaction structure, however, there exist no Euclidean vector representa-

tions for the dataset, and thus contemporary methods have been applying non-metric multidi-

mensional scaling methods searching for approximate vector representations that minimize

some desired distortion measure between the original distance and the distances in the

approximated Euclidean space [6]. This approximation method requires prior selection of the

number of dimensions of the approximated Euclidean space and is vulnerable to uncertainties

in the optimization process. Therefore, contemporary non-metric multidimensional scaling

methods lead to unpredictable alterations (although minimized) of the original information

provided by the assembled distance matrix.

Some multivariate data analysis methods have been developed for analyzing multi-block

datasets or multi-block distance datasets, which contain data from various sources [7, 8].

These methods, however, do not analyze disjoint variables but rather analyze multiple different

feature space representations of one variable. Although the feature space representations are

sample measures of other variables, they are only used to explore the patterns of differences

within this one variable they represent (e.g., exploring the shared information between differ-

ent measurements of the same object [9]). For example, one variable can be “cancer cell line”,

and each category of cancer cell line can be represented as a row vector including the copy

number variations (CNVs) of their genes or their gene expression data. A two-block data can

be constructed for the same group of cancer cell lines by stacking the row vector CNVs in one

block and gene expression data in another block. Likewise, a two-block distance matrix can be

constructed between the same group of cancer cell lines by stacking the pairwise distance

between the cancer lines in each block. Most methods for analyzing multi-block data are

described as “data fusion” methods. This fusion operates by transforming the non-aligned data

blocks into correlation- or variance- or model-based aligned data blocks and then identifies

the principal components of these blocks by solving complex extensions of the low-rank

matrix approximation problems [8]. All these methods require prior knowledge of the
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parameters that would work best for the datasets and the number of dimensions (compo-

nents). Solberg et al. proposed the analysis of multi-block distance matrix provided that the

distance matrices are Euclidean, by using a multidimensional scaling method extending the

low-rank matrix approximation theorem to each distance block and then applying other opti-

mization techniques to find the principal axes vectors that maximize the explained variance

across the data-blocks (common components) and within individual blocks (distinct compo-

nents) [7]. However, the authors found that there is always a trade-off between these common

and distinct components, and the term “common” can only refer to either resemblance across

blocks (correlation) or explanation of a large part of the observations (variance). The accept-

ability of all the methods’ trade-offs is then left to the analysts’ better judgment. In both cases,

the methods are complex, difficult to interpret, and ignore the possibility of multiple interac-

tions between the categories of variables involved (e.g., by only analyzing the correlation

between gene expression within each group of the cancer cell lines, the possible interdepen-

dence between gene expression and cancer cell categories is ignored).

Another method widely used in data analysis is clustering (e.g.: [10–12]). This method is

focused on finding similarity patterns between samples representing the same variable. For

example, two genes may be termed similar if their gene expression levels are similar in magni-

tudes. Numerous clustering methods, such as the k-means [13, 14], the k-medoids [15], the

agglomerative hierarchical clustering [16] methods, and spectral clustering methods [17], have

already been developed. The choice of a suitable clustering method is, however, not universal

and largely depends on the specific aim and application of the investigation [10]. For example,

the k-means algorithm has been found to perform well in the clustering of cancer gene expres-

sion data aiming to identify cancer subtypes [18]. In general, however, all clustering methods

aim to identify meaningful proximity between the objects in the dataset. This proximity repre-

sents the specific patterns that researchers aim to identify and is expressed in terms of distance

between the objects. Distance-based clustering methods can be divided into two groups, the

Euclidean-distance-based methods and the non-Euclidean distance-based methods. Euclid-

ean-distance-based methods can only perform clustering using a distance that is an Euclidean

distance. For example, the Ward clustering method in which the Ward method [19] is used as

a linkage method within a hierarchical clustering process, requires the Euclidean distance

(although it has also been shown to work for the Manhattan distance [20]). On the other hand,

non-Euclidean distance-based methods, such as the k-medoids, work for any type of distance.

In all cases, Euclidean or non-Euclidean, distance-based clustering methods have also been

mostly used to identify single interaction patterns within categories of the same variables

belonging to the same feature space.

From the perspective of machine learning (ML), the term “cluster” is substituted with the

term “class” but the principle is the same as that of clustering, that is, the aim is to find mean-

ingful classification of the categories of one variable sharing the same feature space representa-

tion. Available machine learning methods can be categorized into two major groups:

unsupervised, and supervised. To our knowledge, however, they are mostly either Euclidean-

distance-based, such as unsupervised Self-Organizing-Maps [21], or Euclidean-vector-based,

such as supervised Neural Networks [22–24] and Support Vector Machines [25, 26]. Other

methods termed supervised multiple-metric learning attempt to learn complex nonlinear data

structures by identifying and merging multiple local metrics that fit the best classification

structure in the training data [27]. Despite that these methods seem based on multiple interac-

tion measures, broadly termed as multiple metrics, they also primarily require Euclidean-vec-

tor representations of the items to be classified. Therefore, most currently available machine

learning methods are also not directly accessible for the joint analysis of disjoint sets of

variables.
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In this paper, we propose MIASA, a holistic framework that involves two major contribu-

tions. The first contribution is that the MIASA framework can be tailored to multiple distinct

variables describing the same phenomenon or process and investigate multiple interaction pat-

terns between them. The variables can be of any type (categorical, continuous, or other) as

long as the interaction measures, such as similarity vs. association, can be properly defined

between them and assembled into one distance matrix (which is likely a non-Euclidean one).

The second contribution is that our framework includes a novel Euclidean embedding method

(qEE-Transition) that strictly preserves the ordering of distances. It is designed to combine the

similarity and association distances information into a single Euclidean distance and subse-

quently applies an Euclidean-distance-based clustering method or vector-based machine

learning methods to simultaneously observe the similarity and associations between the

objects of interest. We suggest our qEE-Transition method for dealing with the assembled

non-Euclidean distance matrix as an alternative to the conventional non-metric multidimen-

sional method which does not provide well-defined patterns of explained variance and is

unlikely to preserve the information carried by the assembled distance matrix. Since clustering

or machine learning algorithms are also often based on optimization criteria, we preferred not

to add another uncertainty in the clustering/classification process.

Our manuscript is organized as follows. The next section, Materials and methods, is dedi-

cated to the main components of the MIASA framework and problems designed for simula-

tion experiments, the second section includes the results of our simulation experiments

(Results), and we finalize our paper with the sections Discussion and Conclusion. Our Materi-

als and methods section is subdivided into several subsections. The first subsection is a formal

formulation of the problem intended to be solved for two disjoint sets of variables. The second

subsection describes the construction of the assembled distance matrix that represents the

joint interactions between the variables. The third and fourth subsections cover the description

of the qEE-Transition that enables the construction of a joint Euclidean space for the disjoint

variables. The fourth subsection describes the clustering, machine learning, and data-visualiza-

tion methods integrated into the MIASA framework. The fifth subsection formalizes three

potential problems, and the remaining subsections describe the evaluation of clustering results

and the implementation of our framework. Next, our Results includes the results of our simu-

lation experiments. First, we present a snapshot of the identification of cluster memberships

for the three problem showcases described in Materials and methods, then we present the

result of a thorough evaluation of the clustering results with qEE-Transition vs. without, and

finish this section with an experiment on machine learning methods. Finally, sections Discus-

sion and Conclusion summarize our work and present future potential research directions.

Materials and methods

Problem formulation

In the MIASA framework, we consider two independent datasets X and Y containing m; n 2
N n f0; 1g samples or timeseries representing specific objects. We combine the two datasets in

one dataset D, denoted

D ¼ X [ Y; such that X ¼ fx1; . . . ; xmg and Y ¼ fy
1
; . . . ; yng: ð1Þ

where x• and y• are vectors, matrices, or other data representations, containing several obser-

vations of a random variable or time-dependent observation of a specific variable.

Let dX and dY be the similarity distance between the elements of X and Y, respectively,

such that at least one them is an Euclidean distance. Furthermore, let dXY be the association
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distance between elements of the different sets, which is an arbitrary positive function that is

not zero everywhere.

The MIASA framework aims to identify the patterns of similarity and association between

the elements of D through the cluster memberships corresponding to the distance triplets

ðdX ; dY; dXYÞ. The framework is conceptualized in Fig 1 and the specific components are

described in the sections that follow.

NB: We note that X and Y might contain representations of more than one variables. What

is important is the similarity distance and the association distance have to be properly defined.

Assembled similarity and association distance

Let X and Y be two separated datasets and D be their union as described in Problem formula-

tion. The choice of similarity distance dX and dY between the elements of the same dataset

should correspond to the target clustering membership. It thus depends on the information

that we intend to extract from the dataset which needs to be properly conceptualized.

Before going to the next step, at least one of the similarity distances dX and dY must be

Euclidean; however, an extra step may be performed when the problem requires a non-Euclid-

ean similarity distance is necessary (see qEE-Transition: Dealing with a Non-Euclidean simi-

larity). An Euclidean similarity distance may be defined as the Euclidean distance between

feature transformations of the elements of X and/or Y. That is, we denote

UðXÞ ¼ fuðx1Þ; . . . ; uðxmÞg and=or VðYÞ ¼ fvðy
1
Þ; . . . ; vðynÞg; ð2Þ

where u and v are feature transformations corresponding to the research concept. The pairwise

similarity distance between the elements of our dataset is thus given as follows, for every q, q0

2 {1, . . ., m} and l, l0 2 {1, . . ., n}

dXðxq; xq0 Þ ¼ jjuðxqÞ � uðxq0 Þjj and=or dYðyl; yl0 Þ ¼ jjvðylÞ � vðyl0 Þjj; ð3Þ

where ||•|| represents the Euclidean norm.

The concept of association may be used interchangeably with the concept of similarity.

Here, however, the term association distance is solely defined as the distance between elements

of the different datasets X and Y (Problem formulation). Let dXY be the association distance

associated with each pairs ðxq; ylÞ 2 X � Y. Our framework requires that dXY is positive and

non-identically zero everywhere. Here again, the association distance depends on the defini-

tion of cluster membership that we are aiming to re-construct. That is, it may be any problem-

tailored measure of interaction between variables.

Following the above definitions, the similarity distance and association distance are not

required to carry the same information. Therefore, the MIASA framework combines the dis-

joint datasets by incorporating different pieces of information describing the phenomenon

represented by the variables.

qEE-Transition: An Euclidean distance that joins disjoint datasets

The key component of MIASA is that the clustering process is always performed using an

Euclidean distance that joins the similarity and association distance information. This Euclid-

ean distance, denoted LX[Y , is derived from a qualitative Euclidean embedding (qEE) of all the

elements of D ¼ X [ Y under the condition that at least one of the similarity distances is

Euclidean (see [28]). The qEE is based on the existence of c1, c2 > 0 and c3 > 0 (dependent on
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Fig 1. Concept of the MIASA framework. Starting from two separated datasets X and Y, then assembling similarity

distances dX and dY , and association distances dXY . Finally, clustering with or without the qEE-Transition.

https://doi.org/10.1371/journal.pone.0302425.g001
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c1 and c2) such that for every q, q0 2 {1, . . ., m} and l, l0 2 {1, . . ., n}

LX[Yðxq; xqÞ ¼ 0; LX[Yðyl; ylÞ ¼ 0; ð4Þ

LX[Yðxq; ylÞ ¼ LX[Yðyl; xqÞ; ð5Þ

LX[Yðxq; xq0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dXðxq; xq0 Þ
2
þ c3z

q

; q 6¼ q0; ð6Þ

LX[Yðyl; yl0 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dYðyl; yl0 Þ
2
þ c3z

q

; l 6¼ l0 ; ð7Þ

LX[Yðxq; ylÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dXYðxq; ylÞ
2
þ c3z

q

; ð8Þ

where

z ¼

zx1
¼ max

x 2 X
y 2 Y

X

y 2 Y
x 2 X

dXðx; x1Þ
2
þ dXYðy; x1Þ

2
� dXYðx; yÞ

2

2

�
�
�
�
�

�
�
�
�
�
; if only dX is Euclidean;

zx1
; if dX and dY are Euclidean;

zy1
¼ max

x 2 X
y 2 Y

X

y 2 Y
x 2 X

dYðy; y1
Þ

2
þ dXYðx; y1

Þ
2
� dXYðx; yÞ

2

2

�
�
�
�
�

�
�
�
�
�
; if only dY is Euclidean;

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð9Þ

Additionally, a theoretical point of origin o can be added to encode the information on the

magnitudes of the elements of D. That is, the qEE can be calibrated to carry the following

information

LX[Yðxq; oÞ
2
¼ jjxqjj

2
þ c3z and LX[Yðyl; oÞ

2
¼ jjyljj

2
þ c3z: ð10Þ

The use of the theoretical point o (Eq (10)) is optional and can be removed entirely for both

datasets X and Y or partially for only one of the dataset. It is particularly useful when the mag-

nitude of the elements of X or Y carries information that we want to preserve in the Euclidean

embedding.

Any triplet (c1, c2, c3) satisfying Eq (11) bellow is a solution of Eqs 4 to 8

c1 � K;

c2 � K 0;

2þ c1 þ c2 � c3 ¼ 0;

8
>>><

>>>:

ð11Þ

where K and K0 are some non-negative numbers that depend on c1, c2, and on the range values

of the similarity and association distances. This result is derived in [28], under the conditions

that at dX or dY is Euclidean, using the Geršgorin circle theorem [29] and the Schoenberg crite-

rion [3, 4]. This criterion is a necessary and sufficient condition for LX[Y to be an Euclidean

distance. Accordingly, Algorithm 1 converges to the triplet (c1, c2, c3) satisfying Eq (11). [!h]

Algorithm 1: An algorithm that finds a solution for Eq (11)
1 c1  1/2;
2 c2  2;
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3 c3  
ð2c1 þ c2Þ �

2c2

mþ n

1 � 1

mþn

;

4 compute LX[Y;
5 while Schoneberg criterion on LX[Y FALSE do
6 c1  c2;
7 c2  2c1;
8 c3  2 + c1 + c2;
9 end

We adopted the initialization of algorithm 1 because they were obtained from previous tri-

als and errors and proved to solve previous problems without necessarily being a solution of

Eq (11) [28]. Nevertheless, c1, c2, c3 can also be initialized with random positive numbers. In

most of the simulations presented here, the provided initialization solves the qEE problem,

however, for random initialization between 0 and 1, we found that the algorithm finds a solu-

tion within 4 iterations. The algorithm 1 enables us to find a feasibility region for the existence

of the Euclidean embedding although it is not optimal.

qEE-Transition: Dealing with a non-Euclidean similarity

As mentioned above, our framework combines two similarity distances, dX and dY , and one

association distance dXY into one Euclidean distance LX[Y . The construction of LX[Y requires

that at least one of the similarity distances is an Euclidean distance. However, some problems

might require using non-Euclidean similarity distance for both datasets X and Y because they

might provide a more meaningful conception of cluster membership. In such a case, we can

use the qEE method to transform one of the similarity distances into an equivalent Euclidean

distance as described in the previous section, and then use the derived Euclidean distance as

dX . This means that for every q, q0 2 {1, . . ., m} and l, l0 2 {1, . . ., n}, we redefine the similarity

distances as follows

dXðxq; xq0 Þ ¼ LX[ ~X ð~xq; ~xq0 Þ and=or dYðyl; yl0 Þ ¼ LY [ ~Y ð~y l; ~y l0 Þ;

where ~X ¼ X is the dataset duplicate with elements ~xq ¼ xq relabeled to make the distinction

between the original dataset and the duplicate, and similarly for ~Y . The metrics LX[ ~X and

LY [ ~Y are Euclidean distances obtained from the qEE of X [ ~X and Y [ ~Y , respectively, and

are constructed as follows.

Let dðM1Þ

X and dðM2Þ

Y be the two non-Euclidean distance that is representative of the similarity

distance between the elements of the same dataset. Furthermore, let dðEuclÞX and dðEuclÞY be any

arbitrary Euclidean distance between the objects, which are only used as a placeholder and

does not have to carry any meaningful information. Then, the Euclidean distances LX[ ~X and

LY[ ~Y are constructed using the same procedure as for obtaining LX[Y in the previous section.

That is, LX[ ~X is obtained by constructing the Euclidean metric space ðX [ ~X ;LX[ ~X Þ using the

distance triplets

ðdX ¼ dðEuclÞX ; d ~X ¼ dðM1Þ

X ; dX ~X ¼ dðM1Þ

X Þ;

and similarly, LY[~Y is obtained using the distance triplets

ðdY ¼ dðEuclÞY ; d~Y ¼ dðM2Þ

Y ; dY ~Y ¼ dðM2Þ

Y Þ;
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In the above triplets distances, dX ~X and dY ~Y can also be replaced by arbitrary non-negative

function. Then, from the Euclidean embedding, we extract the following information

LX[ ~X ð~xq; ~xq0 Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðM1Þ

X ðxq; xq0 Þ
2
þ c3ðX [ ~X Þ zðX [ ~X Þ

q

;

and/or

LY[~Y ð~yq; ~yq0 Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dðM2Þ

Y ðyq; yq0 Þ
2
þ c3ðY [ ~YÞ zðY [ ~YÞ

q

;

where c3(•)z(•) are obtained using the procedure described in the previous section but depend

on the specific datasets. In this way, LX[ ~X and LY[ ~Y , specifically restricted on the elements of

~X and ~Y , carry the same information as the non-Euclidean distances dðM1Þ

X and dðM2Þ

Y with

which we aim to use for clustering.

Clustering/classification and lower dimensional visualization

Finally, the MIASA framework is completed by clustering the elements of the dataset D using

their Euclidean embedding in the metric space ðD;LX[YÞ which is obtained from the qEE-

Transition. Because LX[Y is the square root of a positive scaling of the squared similarity and

association distances (Eqs 4 to 8)), the true clusters of the metric space ðD;LX[YÞ should be

equal to the true clusters of the non-Euclidean space ðD; dX=dY=dXYÞ. An Euclidean-distance-

based clustering method can be used to identify the clustering patterns associated with LX[Y

but only a non-Euclidean-distance-based clustering method can be used to identify clustering

patterns associated with dX=dY=dXY .

As listed in the introduction, Euclidean-distance-based clustering methods include the

Ward clustering method minimizing the total within-cluster variance [19] and the k-mean

clustering method minimizing the total square distance to cluster center points or centroids

[13, 14]. Both of these methods are well known in the clustering research community and each

of them is based on a reasonable criterion for cluster membership, thus, choosing between

them is not evident. Here we need to account for a technical aspect of the qEE-Transition,

which by construction, tends to embed the dataset in high dimensional space such that the

Gramian matrix of the embedded points is almost full rank. However, it has been shown that

the k-mean method generally performs poorly on high-dimensional data (see [30] for a

review). After performing several tests, we confirmed that the k-mean method (currently

implemented in Python) was incompatible with the qEE-Transition. Conversely, the Ward

clustering method seemed to work well in combination with qEE-Transition, thus we advise

using the Ward clustering method instead of the k-means method.

We also integrated several machine learning approaches designed for supervised and unsu-

pervised data classification to complement the qEE-Transition within MIASA. As an unsuper-

vised ML method, we integrated the Self-Organizing-Maps [21] which is an Euclidean-

distance-based learning algorithm consisting of initializing a group of vectors (nodes) that has

the same number of our desired cluster numbers and iteratively finding the vector that is the

closest to each sample vectors of the datasets (the best matching unit or BMU) and moving

these BMUs closer and closer to their most similar sample vectors (following some learning

rate parameter) until the number of maximum iteration is achieved. The result of the Self-

Organizing-Maps, thus, depends on the initialization, the maximal number of iterations, and

the learning rate. In the Python implementation of the Self-Organizing-Maps [31], the two lat-

ter parameters are left to the better judgment of the users. As supervised machine learning

methods, we integrated a Neural Network [22–24] and a Support Vector Machines method
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[25, 26] which are both Euclidean-vector-based. Supervised machine learning requires prior

knowledge of a certain proportion of the true cluster membership, this data is termed training

dataset. The Neural Network training process assumes that the training input vectors (training

cluster members) can be transformed into the output training (training cluster labels) through

a composition of one or more functions (feedforward multi-layer perceptron). Each layer is

represented as a collection of nodes where the nodes of the first layer are the input vectors and

the nodes of the next layer contain the output of the first function operations which then

become inputs for the next function operation, and so on until reaching the last layer which

contains the output training. Each node of a given layer is assigned a weight representing its

contribution to the function that leads to the next layer, and each weight is considered to vari-

ous degrees depending on a chosen activation function. The iteration steps of the Neural Net-

work then aim to find the optimal weight configurations of this multi-layer perceptron by

minimizing the distortion between the calculated least square error loss between the calculated

output and the training output or by minimizing a cross-entropy estimate. After the final esti-

mation of the weights of the multi-layer perceptron, the remaining data is used to test the per-

formance of the Neural Network. The output of the Neural Network depends on parameters

such as learning rates used to update the weights along the gradient of the loss function, the

number of functions used (hidden layers), the number of iterations of the algorithm, and the

number of training vectors. The Support Vector Machines method is also supervised, however,

instead of using the notion of functions, it achieves its learning process by searching for the

hyperplane that maximizes the separation (margin) between the points belonging to different

classes [32]. It achieves a fast computing performance by using the “kernel trick” [33] in which

direct computation of the dot product in the algorithm is replaced by a linear function of the

kernel thereby reducing computational complexity [33]. The performance of this method

depends on the number of training vectors, and the maximal number of iterations, and addi-

tionally requires an educated guess on the kernel function.

In all implementations of the subsequent clustering/classification following qEE-Transition,

the theoretical point of origin o (Eq (10)) is used in our examples but is removed from the clus-

tering process because in several experiments it was assigned to one cluster separated from all

the other points.

For evaluating the contribution of the qEE-Transition combined with the Ward clustering,

we selected five non-Euclidean-distance-based clustering methods: agglomerative hierarchical

clustering with a complete, average, and single linkage which are well-known ultrametric link-

age methods [34], the k-medoids method which is analogous to the k-means by replacing the

notion of centroid with the notion of medoids (representatives object of the dataset achieving

a minimal total distance to cluster members), and the spectral clustering procedure based on

Laplacian-Matrix well know in graph theory [17].

Concerning data visualization, our qEE-Transition is currently incompatible with linear

visualization methods such as orthogonal projections due to the high dimensionality of the

Euclidean embedding as mentioned above. Thus, the visualization of the results is useful for

summarizing the findings but is currently not the primary focus of MIASA. Orthogonal pro-

jection might not be appropriate because c3z (Eqs 4–10) introduces artificial variance in the

dataset. The principal orthogonal axes are thus unlikely to be sufficient for a qualitative obser-

vation of the original data variance since the pairwise distances are distributed across all the

dimensions of the embedding space. Instead of focusing on visualizing the pairwise relation-

ship between the elements of the datasets, we focused on the visualization of cluster member-

ship. Therefore, for our simulated datasets here, we used UMAP [35] or t-SNE [36]

projections, which are non-linear dimension reduction method that performs well for the visu-

alization of high-dimensional datasets.
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Potential applications

To demonstrate our approach, we considered three types of simulated datasets and their asso-

ciated true cluster memberships and chosen similarity and association distances.

Problem 1: Clustering data into distinct families of distributions. For this dataset, we

considered four families of distributions: the normal, the uniform, the Pareto, and the Poisson

distribution. Then, for each family of distributions, we considered five different distributions

based on different parameters. From each distribution, we generated 25 sample vectors that we

included in the dataset X and a duplicate of 25 sample vectors that we included in the dataset

Y (each sample vector contained 300 observations). The union of the datasets, D, thus

included 4 × 25 × 2 sample vectors. We then assumed that the true cluster membership corre-

sponds to the family of distributions and aimed to predict four clusters.

The histograms of the sample vectors differentiate them from one another and the shapes

of the distributions are often similar for distributions belonging to the same family. Since

MIASA attempted to recover the family of distributions, we assumed that the two similarity

distances dX and dY , are the Euclidean distances between the heights of numerical histograms

of the sample vectors (computed with 10 bins for all histograms). Following our notations in

Assembled Similarity and Association distance, the histogram transformation is the feature

transformation of the sample vector in this case.

The association distance can be measured by any statistic that reflects the differences in the

distributions. For example, an association distance can be defined using the p-value of the Kol-

mogorov-Smirnov (KS) test denoted pKS. The test corresponds to the null hypothesis that two

samples come from the same distribution. As a result, the smaller pKS, the stronger we reject

the null hypothesis. Therefore, to predict two samples of the same distribution, we computed

the following association distance

dXYðxq; ylÞ ¼ �þ 1 � pKSðxq; ylÞ; ð12Þ

where � is a small positive number ensuring that dXY is non zero.

Problem 2: Clustering data into distinct correlated random variables. For this dataset,

we assumed that each true cluster contains sample vectors drawn from a bivariate normal dis-

tribution. Furthermore, we considered 10 different bivariate normal distributions. We gener-

ated 25 sample vectors, each of which was composed of 300 observations. The first dimension

of each sample vector is then assigned to the dataset X and the second dimension is assigned

to Y. The dataset D thus contained 10 × 25 × 2 elements and our framework aimed to predict

10 clusters corresponding to the original distributions.

For the similarity distance, we compared the marginal distributions of the correlated sam-

ple vectors. We also used an Euclidean similarity distance for the two datasets X and Y.

Accordingly, the pairwise similarity between the elements of each set X and Y is given by the

Euclidean distance between the empirical cumulative distribution function of the sample vec-

tors. This information can always be extracted without prior knowledge about the correlation

between the elements of X and Y. The empirical cumulative distribution function is thus the

feature transformation corresponding to the similarity distance used in this example dataset.

For the association distance, the problem at hand is to identify the correlation between the

sample vectors in different datasets. Therefore, any measure of correlation can be used. Here,

we used the absolute value of the Spearman rank correlation coefficient (ρ(xq, yl)) to identify

positive or negative non-linear correlations between (xq and yl) as follows

dXYðxq; ylÞ ¼ �þ 1 � jrðxq; ylÞj; ð13Þ

where � is a small positive number ensuring that dXY is non zero everywhere.
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Problem 3: Clustering mRNA time-course data into regulatory model classes. For this

dataset, we represented each object by the time-course of the three moments: the mean, the

variance, and the skewness (concatenated or stacked on a matrix) generated by a particular

two-gene regulatory network simulating the time courses of mRNA counts for each gene

(denoted A and B). We considered three types of two-gene interaction models [37]: the no-

interaction model (“No-I”) in which the two genes are regulated independently of each other,

the mono-directional interaction model (“Mono-I”) in which gene B actively down-regulates

the gene A and bidirectional interaction model (“Bi-I”) in which the two genes regulate each

other. For each model, we generated 25 time-course of the moments, and each time-course

was empirically calculated from 4000 stochastic time-courses of mRNA counts for each gene.

All mRNA A from each model were then assigned to the dataset X and all mRNA B were

assigned to the dataset Y and thus the union of the datasets contained 3 × 25 × 2 time-course

of moments. To identify regulation patterns, we assumed that interacting genes (Mono-I and

Bi-I models) corresponded to the same true cluster and the non-interacting genes (No-I

model) corresponded to different true clusters. The dataset is thus composed of 4 different

true clusters and our framework was calibrated to predict them.

To make the time courses comparable, we applied min-max normalization as a feature

transformation. Then, we considered that all similarity distances are Euclidean and computed

as the Euclidean distance between the normalized time courses.

Finding a suitable statistic representing regulation between genes is still an ongoing

dilemma [38] and one of the main problems is that it is difficult to separate “correlation” in

gene levels from causal mechanisms such as “regulation” between the involved genes [37].

Here, we used the Granger causality concept [39] as it was used in previous gene regulation

inference as a proxy for the direction of regulation [40]. Since we needed a statistic, we used

the p-value of the Granger causality (pG) test, having the null hypothesis that the first vector

does not Granger cause the second one or vice-versa. We thus used the following association

distance

dXYðxq; xlÞ ¼ �þmeanfpGðDxqjw;DyljwÞ : w ¼ mean; variance; skewnessg; ð14Þ

where � is a small positive number ensuring that dXY is non-zero, and the sign |w indicates that

the time course vector is restricted to w, Δ is a differencing transformation of the time-courses

ensuring that they are stationary as required by the test [41, 42].

Performance evaluation

To evaluate the performance of the MIASA framework, we compared the clustering results

obtained with the qEE-Transition vs. without it. One of the most common indexes used for

clustering validation when the ground truth is known is the adjusted rand index or ARI [43–

46]. The ARI score is a total measure of the agreement between the true and the predicted clus-

ter membership of each pair of objects relative to a completely random pairing and it is com-

puted as follows

ARIðT ;PÞ ¼
Index � meanðIndexÞ

maxðIndexÞ � meanðIndexÞ

¼
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where T ¼ fT i; i ¼ 1; . . . ; Ig is the true cluster partition and P ¼ fPj; j ¼ 1; . . . ; Jg is the

predicted cluster partition, Nij is the number of pairs objects that simultaneously belong to

cluster T i and Pj, Ni• = ∑jNij, N•j = ∑iNij, and N = ∑i,jNij.

For evaluating cluster memberships in the MIASA framework, we take into account that

the partitioning separating the dataset X from the dataset Y is known since they are disjoint

datasets to begin with. Additionally, by the construction of our disjoint datasets, there might

be some known pairing patterns between the elements of X and Y (this is the case of our three

examples in Potential applications). For example, the dataset X is partitioned as fX 1; . . . ;X pg

and the dataset Y is partitioned as fY1; . . . ;Ypg such that each pair ðX k;YkÞ corresponds to

the same data collection procedure. Therefore, we used the following accuracy measure

ARI ¼ meanfARIðT X ;PXÞ; ARIðT Y;PYÞ; ARIðT X��Y�
;PX��Y�

Þg; ð15Þ

where T X is the true partition for X , PX is the predicted partition for X , T Y is the true parti-

tion for Y, PY the predicted partition for Y, T X��Y�
is the true partition pairing, and PX��Y�

is

the predicted partition pairing.

Implementation and simulations

The MIASA framework was implemented in Python mainly using SciPy [47], NumPy [48],

and scikit-learn [49]. All codes are available at https://github.com/AlexiaNomena/MIASA.

The main results of this manuscript were computed from Jupyter Notebooks (https://jupyter.

org) and a snakemake workflow (https://snakemake.readthedocs.io/en/stable/) pipeline is pro-

vided to enable the users to apply the framework on their datasets. The simulations required

for performance evaluation were performed on the high-performance computing (HPC) clus-

ter at ZEDAT, Freie Universität Berlin [50]. Figures were finalized with Inkscape 1.2.

Results

In this section, we present the results of our simulation experiments. The simulations are

designed to assess the performance of MIASA as compared with the analog non-metric clus-

tering framework. We first simulated an example of clustering obtained from a random sample

dataset of each of the three dataset types (Potential applications).

Identified clusters versus true clusters

To illustrate the type of results that can be obtained using MIASA, we performed one test sim-

ulation for each dataset type. Each predicted cluster is displayed in separate panels to facilitate

the comparison between predicted and true clusters. We considered the two cases of similarity

distance using the same datasets in both of them. That is, in the first case we considered that

both dX and dY are Euclidean (as described in Potential applications), and in the second one,

we considered that both of them are L3-norms between the features to show how to use the

method for non-Euclidean similarity distance (although there is no conceptual motivation for

this).

The results for the Euclidean similarity distance are shown in Fig 2 using UMAP visualiza-

tion. For Data Type 1, the predicted clusters showed a good agreement with the true cluster

representation of the family of distributions. The results are shown in Fig 2A and each pre-

dicted cluster is shown in different panels from (1) to (4). The five individual distributions

simulated for each family of distribution are also shown as the convex hull of the projections of

their sample vectors. The family of Uniform and Pareto Distributions were identified with

100% accuracy in panels (2) and (4), respectively. The family of Normal and Poisson
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distributions were combined into a single cluster in panel (1) except for the 5th Poisson distri-

bution which was assigned to cluster number (3). However, in panel (1), the Normal distribu-

tions are grouped while the Poison distributions surround them. Additionally, Fig 2A shows

that the individual distributions can still be well distinguished on the UMAP projections. For

Fig 2. MIASA-prediction for Euclidean similarity distance. A: UMAP projections of predicted families of

distributions (in separate panels 1–4) versus convex hulls of the data points belonging to the different distributions:

Poisson (Poi1 to Poi5), Normal (N1 to N5), Pareto (Pa1 to Pa5), and Uniform (U1 to U5). B: UMAP projections of

predicted clusters (in separate panels 1–10) versus samples of bivariate normal distributions, first dimensions (N1X to

N10X) and second dimensions (N1Y to N10Y). C: UMAP projections of predicted clusters (in separate panels 1–4) versus

true gene regulation patterns between gene A and gene B (convex hulls of data point representations): No-I A, No-I B,

Mono-I A & B, and Bi-I A & B. True and False predictions are only evaluated for the pairs of genes belonging to the

same models.

https://doi.org/10.1371/journal.pone.0302425.g002
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Data Type 2, representing samples of correlated random variables, we also found that the sam-

ple correlated bivariate variables were identified with 100% accuracy (Fig 2B). Interestingly,

the UMAP projections of each cluster indicated a clear separation between the sample vectors

representing the first dimension (labeled X) and the correlated sample vectors’ second dimen-

sion (labeled Y). Notably, the 6th cluster showed the strongest separation between the sample

vectors, and the 10th cluster showed the weakest separation. We examined the average magni-

tude of Spearman’s rank correlation constant for each of the distributions for each predicted

cluster and found that the highest was 35% higher than the mean, while the lowest was 7%

higher than the mean. These bounds effectively belonged to the 6th and 10th clusters, respec-

tively. However, the average deviation from the mean of Spearman’s rank coefficient did not

always follow the separation pattern, for example, it was 29% for cluster 8 but only 12% for

cluster 9 although they show the opposite separation pattern (Fig 2). Thus, the UMAP patterns

need to be interpreted cautiously. Lastly, for Data Type 3, representing three models of two-

gene interactions, we already have the prior knowledge that the genes in the separate models

could never interact with each other because they can also be considered to come from

completely different experiments. Therefore, the prediction combining pairs of genes that do

not belong to the same model can be ignored as this pattern is only a coincidence. Fig 2C

shows the patterns of regulation between the genes it predicted all the interaction models but

with a few false predictions. Firstly, the no-interaction model (No-I) was partially identified

with gene A predicted in cluster 1 and gene B predicted in cluster 3 but both gene A and gene

B predicted in cluster 4. The mono-directional model (Mono-I) was predicted in the 1th cluster

with a clear separation between gene A and gene B, but also with a false positive position of

gene B in cluster 3 and the outliers in cluster 2. The bidirectional interaction model (Bi-I) was

well predicted in cluster 2 (with a few of them as outliers in clusters 1 and 3).

The results for the L3-norm similarity distance are shown in Fig 3 using t-SNE visualization.

For the distribution datasets (Problem 1), we kept the L3-norm similarity distance for X and

embedded Y to obtain the required Euclidean similarity distance corresponding to the L3-

norms between the representations of the sample vectors (qEE-Transition: Dealing with a

Non-Euclidean similarity). For the other problems, all similarity distances were transformed

into Euclidean equivalents. The predicted family of distributions, shown in Fig 3A, were the

same as for the Euclidean similarity distance (Fig 2A). The individual distributions are still

well distinguished on the t-SNE projections although with rather elongated shapes. The pre-

dicted correlated variables are shown in Fig 3B and it also has an accuracy of almost 100%

(only two outliers in clusters 9 and 10). The t-SNE maps, however, displayed a well-mixed pro-

jection of the sample vectors of the first and second dimensions of the correlated samples as

opposed to the patterns seen in Fig 2B. For the two-gene interaction models, all true interac-

tion models were also included in the result, however, with slightly more false predictions (Fig

3C) than in the case of the Euclidean similarity distance (Fig 2C). In terms of projection, the t-

SNE also showed a clear separation between the genes of the Mono-I model but also the genes

of the Bi-I model (Fig 3C panel 2).

Performance evaluation: With qEE-Transition vs. without

We evaluated our contribution to the problem of data clustering by comparing the accuracy

clustering results with the qEE-transition to the ones without. As a measure of accuracy, we

adopted the adjusted rand index (ARI) which provides a quality assessment score between the

predicted cluster membership and the true cluster membership relative to a purely random

clustering procedure (Performance Evaluation). For each investigated problem (Potential

applications), we generated accuracy score distribution from 2000 experiments each time
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generating different datasets. Our evaluation results are presented in Fig 4 which shows that

overall the clustering results with the qEE-Transition performed significantly better than the

non-agglomerative methods (Man Whitney U test p-value <0.001 and r> 0.6) but had a var-

ied performance against the agglomerative methods. For a fixed number of objects in each

true distribution (Fixed cluster size), the qEE-Transition enabled a median accuracy of around

Fig 3. MIASA-prediction for L3-norm similarity distance. A: t-SNE projections of predicted clusters (in separate

panels 1–4) versus convex hulls of data points belonging to the different distributions: Poisson (Poi1 to Poi5), Normal

(N1 to N5), Pareto (Pa1 to Pa5), and Uniform (U1 to U5). B: t-SNE projections of predicted clusters (in separate panels

1–10) versus samples of bivariate normal distributions, first and second dimensions (N1XY to N10XY). C: t-SNE

projections of predicted clusters (in separate panels 1–4) versus true gene regulation patterns between gene A and gene

B (convex hulls of data point representations): No-I A, No-I B, Mono-I A & B, and Bi-I A & B. True and False

predictions are only evaluated for the pairs of genes belonging to the same models.

https://doi.org/10.1371/journal.pone.0302425.g003
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Fig 4. Accuracy of MIASA vs. Non-metric framework. Distribution of accuracy scores (Eq 15) for 2000 experiments

for Euclidean similarity proximities and specific association distance (Potential applications). A: Prediction accuracy

for families of distributions for fixed (25) and random (2 to 25) number of sample vectors per distribution. B:

Prediction accuracy for bivariate normal correlated sample vectors with fixed (25) and random (2 to 25) pairs of

sample vectors per distribution. C: Prediction accuracy for identification of regulation for two-gene regulatory

network models with fixed (25) and random (2 to 25) pairs of gene representations sampled from each model.

Whiskers indicate the 5th − 95th percentile of the score distribution and colored star indicates a significant Man

Whitney U test corresponding to the significantly superior method (p-value<0.001 and r> 0.6).

https://doi.org/10.1371/journal.pone.0302425.g004

PLOS ONE MIASA: A framework for the joint analysis of disjoint sets of variables

PLOS ONE | https://doi.org/10.1371/journal.pone.0302425 May 10, 2024 17 / 26

https://doi.org/10.1371/journal.pone.0302425.g004
https://doi.org/10.1371/journal.pone.0302425


0.68 (IQR = 0.65, 0.75) whereas all the direct non-Euclidean-based methods had a median

accuracy between 0 and 0.35 with a quite narrow IQR ranges except for the complete linkage

method (Fig 4A left panel). This means that in 75% of the simulations, the MIASA framework

performed 65% better than expected from a random clustering procedure whereas the direct

non-Euclidean-based methods rather resulted in a random clustering of the objects. Our

framework performed the best for the dataset of correlated random variables in which the

accuracy score was narrowly distributed around 1 (Fig 4B, left panel). The direct non-Euclid-

ean-based clustering methods, had varied performances, with the agglomerative method hav-

ing accuracy scores distributed narrowly around 1, and the non-agglomerative methods

having accuracy scores distributed between 0 and 0.5. The last dataset representing the two-

gene regulatory network models had the lowest overall accuracy scores as compared to the

other dataset types (Fig 4C, left panel), however, the result shows that the qEE-transition com-

bined with Ward still performed at least 55% better than a random clustering procedure. The

qEE-transition combined with Ward clustering and the non-Euclidean-based agglomerative

methods had an accuracy between 0.55 and 0.7, and the non-agglomerative methods had an

accuracy ranging between 0 and 0.35. Similar comparisons can be made in the case of a ran-

dom cluster size (Fig 4 right panels), however, the ranges of the accuracy distributions are

wider, indicating some sensitivity with the size of the true clusters.

Experiments on machine learning methods

Due to the uncertainties in the optimal parametrization of the machine learning methods (see

Clustering/Classification and lower dimensional visualization), we only conducted a few

experiments with the distribution dataset. These experiments were performed after obtaining

the joint Euclidean embedding of the separated datasets X and Y using the qEE-Transition. In

all machine learning methods, we provided a fixed maximal number of iterations as three

times the number of sample vectors, and unless specified here, for all other parameters we

used the default setting provided by the Python package. For the Self-Organizing-Maps

(SOM), we provided a slow learning rate parameter equal to 10� 20=
ffiffiffiffiffiffi
c3z

p
and simulated two

different initial conditions: one with a random initial condition and the other with the result

of Ward clustering as an initial condition (Fig 5A). The results show that the SOM with the

random initialization performed poorly with an ARI score bellow 1% and all the predicted

clusters look similarly composed with some proportions of the true distributions (Fig 5A left

panel group). With the Ward initialization, the SOM remained at the same prediction result

(Fig 5A right panel group). This suggests that the SOM algorithm might struggle to overcome

local optima. For the Neural Network (NN) and the Support Vector Machines (SVM), we sim-

ulated two proportion parameters for the training datasets: the first one uses 30% of the data as

training and the second one uses 80% of the data as training (Figs 5B and 5C). Curiously, the

prediction result of the NN with the 30% training closely resembles that of the SOM with ran-

dom initialization (Fig 5B left panel group). With 80% training, the NN method achieves a

good accuracy of 60%, however, the predicted clusters contain many outliers and small groups

of other true cluster members (Fig 5B right panel group). Finally, the SVM method provided

the best cluster structure despite having an accuracy measure similar to that of the SOM and

the NN (Fig 5C). We can see that, in both cases, i.e., 30% training and 80% training, the SVM

achieves similar prediction structures. The 30% training has a poor accuracy only because

there is a denser cloud of points in the fourth cluster (Fig 5C left panel), however, with 80%

training, the clouds of points become denser in the well-predicted clusters (1, 2, 3) and thinner

in the fourth cluster which leads to a much higher accuracy measure (Fig 5C right panel).
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Fig 5. Experiments on machine learning methods. qEE transition combined with different Euclidean distance-based

or vector-based machine learning methods applied to the distribution dataset (predicted clusters are shown in different

panels as in Fig 2).

https://doi.org/10.1371/journal.pone.0302425.g005
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Qualitatively, thus, with our parameter settings, the SVM-predicted cluster is much better than

the NN- and SOM-predicted clusters.

Discussion

In this paper, we presented MIASA, a framework that enables the joint analysis of distinct vari-

ables describing the same phenomenon or process and which can be associated with multiple

different information defining their interaction. Here, a distinction is made between the terms

similarity vs. association (despite that they could be used interchangeably) because it provides

a simple way of presenting the notion of multiple-interaction measures. For simplification we

formulated the problem using two variables, however, it can be extended to any number of

variables by properly re-distributing the datasets between the conceptual datasets X and Y (as

can already be seen with the distribution data example in Potential applications). Our frame-

work starts by assembling user-defined similarity vs. association distances, then, it transforms

the assembled distance matrix into an equivalent Euclidean distance (qEE-Transition) and

completes the clustering process by applying an Euclidean-distance-based clustering/classifica-

tion method. The construction of the required Euclidean distance is based on a qualitative

Euclidean embedding (qEE) method which requires that at least one similarity distance is

Euclidean [28]. However, any arbitrary similarity distance can also be used because the qEE

method can also construct an Euclidean distance equivalent to it. As the Euclidean distance-

based clustering method, we selected the agglomerative hierarchical clustering with Ward’s

linkage method for the accuracy comparison because it performed the best, in combination

with the qEE-Transition, during our numerous test simulations. However, in the implementa-

tion of our framework, we included the possibility of collecting the qEE-transformed dataset,

in standard machine-readable formats, enabling all users to apply any other clustering or

machine learning methods of their choice (several clustering and machine learning methods

are also integrated into the framework pipeline).

As an alternative to conventional optimization-based non-metric multidimensional meth-

ods which do not necessarily preserve the distance information and require a prior input on

the number of dimensions, our qEE-Transition strictly preserves the distance information. It

is also not concerned with dimension reduction but rather finds an appropriate Euclidean

space that provides the distance information. The dimension of the object in their respective

original feature space is not important in our framework because the dimension of the Euclid-

ean embedding space tends to always be equal to the number of points that need to be embed-

ded. This means that, in terms of reduced dimension, our method provides an advantage

when the dimensions of the original feature spaces of the datasets are much larger than the

number of objects. We want to stress, however, that the qEE-Transition encodes the assembled

distance matrix in the Euclidean distance between the embedded coordinates and not in any

other distance measure. Therefore, using a non-Euclidean distance derived from the qEE coor-

dinates of the dataset objects as a distance basis for the clustering process might not provide

the pattern corresponding to the originally assembled similarity and association information.

In a sense, our framework unifies all distance-based clustering/classification problems into the

Euclidean distance-based clustering/classification problem. Therefore, the clustering/classifi-

cation performance will improve alongside new developments in Euclidean distance-based

clustering and machine learning methods.

We used three different datasets to illustrate the performance of our approach: families of

distributions, correlated random variables, and two-gene regulatory network models. For pre-

dicting the families of distributions, the numerical histograms of the samples defined similarity

distance, and the Kolmogorov-Smirnov p-value defined the association distance. This
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assumption provided a good prediction pattern for families of distribution albeit a mixing of

the Poisson and the Normal families. Additionally, the UMAP projection showed that individ-

ual distributions are still quite well-separated suggesting the information on the individual dis-

tributions was well captured by the association distance. Therefore, it should be possible to

separate the Normal and the Poisson families by further analyzing the patterns in the predicted

clusters. The dataset of correlated samples was the easiest to reconstruct. This indicates that

the choice of combination of the similarity and association distances used was well in line with

the definition of correlation. The third dataset, composed of three two-gene interaction models

was moderately reconstructed. The Euclidean similarity distance provided better results than

the L3-norm similarity distance. The two genes of the bidirectional interaction model (Bi-I)

and the mono-directional interaction model (Mono-I) were correctly predicted as belonging

to the same cluster whereas the two genes of the no-interaction models displayed both true

and false predictions. Additionally, the UMAP projection suggests that the genes of the Bi-I

model are well mixed, the genes of the Mono-I models are well separated, whereas the genes of

the No-I model are more disorganized. This pattern may be explained by the mixing of regula-

tion and correlation in the different models. The No-I model purely contained correlation

seen as an overlapping upward trend in the mean mRNA counts, the Mono-I model included

a mixture of regulation and correlation also seen as an upward trend on the mean mRNA

counts but lower for gene A since gene A was down-regulated by gene B, and the Bi-I model

purely contained regulation albeit it is also seen as an overlapping upward trend in the mean

mRNA counts [37]. The trends in the mean mRNA counts mean that the No-I model and the

Bi-I model are the same and this explains the similar mixing of the genes between the No-I

and the Bi-I model, however, since there is no regulation in the No-I model, the genes where

also identifies separately in other clusters. As for the Mono-I model, the clear separation

between the genes in the UMAP projection is also explained by the moderate regulation pat-

tern. Our gene-regulation clustering pattern indicates that the Granger causality association

distance measure effectively identifies regulation but struggles to differentiate between correla-

tion and regulation. However, the regulating genes seem to be consistently predicted within

the same cluster, thus, the consistency of the combination of the genes might provide a cut

between regulation and correlation.

Our accuracy analysis (Performance evaluation: with qEE-Transition vs. without) indicates

the robustness of the above assessment and the potential advantage that the qEE-Transition

might provide over the direct non-Euclidean clustering methods. From this performance

assessment, we can conclude that the qEE-Transition combined with the Ward clustering

method had a significant advantage as compared with non-agglomerative methods. Our

method had similar performance when compared with the agglomerative methods except for

the distribution data where it performed significantly better. Our results are sensitive to the

scaling between similarity vs. association distance. This is seen in the change in the cluster

structure of results based on different scaling of the distances (S1 Fig). Care should thus be

taken when choosing any scaling of similarity vs. association distance because the clustering

algorithm might become biased toward either of them. At this point, we are not sure about the

appropriate scaling trends. However, we recommend that the users test out several scaling

options according to which distance information they need to prioritize over the other.

As a novel contribution to the data classification process in machine learning, our frame-

work offers to make Euclidean-distance- or vector-based machine learning available for classi-

fying disjoint datasets (Experiments on Machine Learning Methods). Similarly to the

clustering methods, this is possible due to the mediation of our information-preserving qEE-

Transition. Our few experiments on the distribution data suggested that the Support Vector

Machines method provided the best classification results in terms of accuracy measure and
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cluster structure. This result is, of course, dependent on our parameterization. We did not

include machine learning methods as part of the accuracy analysis because of the lack of

proper optimization of parameter choice. To execute other parameter-optimized methods, all

users can easily collect the qEE-transformed dataset by running our pipeline on their dataset.

In addition, our machine learning results were obtained only because of the qEE-Transition,

however, purely technically speaking, the rows of the assembled distance matrix could also be

used as a vector representation of the sample vectors. This would represent the assumption

that the pairwise interaction between all the objects involved is a function of all the other pair-

wise interactions within the dataset. Nevertheless, we did not include this possibility as an

option for comparing our method because we find this assumption difficult to justify, and

because our tests showed that this would provide a poor structure of predicted clusters or a

non-increasing learning performance on the different training data (see S2 Fig). This suggests

that the assumption of using pairwise distances as Euclidean vector representation might not

be an appropriate choice and reinforce the contribution of the qEE-Transition.

In terms of visualization, the high dimensionality of the qEE-transformed dataset did not

allow us to perform the standard two-dimensional PCA projections (orthogonal projection).

Therefore, it is currently not possible to thoroughly visualize the pairwise interaction between

the elements of the different datasets. Here, we used non-linear dimension reduction methods

such as UMAP and t-SNE, however, these methods also do not provide full interpretability of

the pairwise interpoint distance between the projections of the datapoints. Therefore, more

work is needed to properly reduce the dimensionality of the qEE and allow a detailed analysis

of pairwise interactions. Additionally, our experiments here are certainly not exhaustive

because of the large number of clustering methods and distance definitions that have been

already developed. We focused mainly here on presenting the MIASA framework and provid-

ing a snapshot of potential applications in data analysis. One advantage of our framework is

that it bridges the gap between Euclidean-distance-based and non-Euclidean-distance-based

clustering and machine learning methods. In other words, it unifies all distance-based cluster-

ing/classification problems into the Euclidean-distance-based problem. Therefore, knowledge-

driven choice of similarity and association distance is the most crucial step in recovering struc-

tures within datasets. The generic approach for identifying appropriate clustering methods for

the dataset consists of testing all different types of distances and cluster validations scores (e.g.,

[12, 18, 51]). However, each distance measure carries a specific type of information that might

or might not be appropriate for the dataset or the phenomenon that they describe. By improv-

ing the clustering results and enabling machine learning methods for disjoint datasets, our

framework helps to assess how relevant assumptions on the interaction distance are, to the

investigated phenomenon.

Our framework points to the importance of distance distribution models. This type of

model has already been investigated for general Lp− metrics to optimize the performance of

nearest-neighbor methods applied to investigate similarity or associations between represen-

tations of the same variable [52]. In the future, our framework can support the development

and validation of interaction-distance distribution models to capture complex interactions

between distinct variables. As shown in [52], regardless of the underlying data distribution,

the pairwise Euclidean distance, between pairs of samples, asymptotically tends to a normal

distribution as the number of dimensions of the feature space increases. Though some

adjustment might be necessary for jointly distributed random variables (as we might think of

interacting distinct variables), our qEE-Transition derives a new high dimensional feature

space that only depends on the number of objects involved in the analysis. Therefore, for a

large enough number of objects in each disjoint dataset, the qEE-Transition derives a dis-

tance distribution close enough to a normal distribution regardless of the original
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interaction-distance distribution to which the assembled distance matrix belongs. Exploring

the qEE-transform dataset from the perspective of Euclidean distance-distribution models

might provide insights into the original interaction-distance distribution and the complex

interactions between the variables involved.

Conclusion

In summary, this paper presents the MIASA framework for a holistic analysis of the multiple

interaction patterns between distinct variables represented in disjoint datasets through the

mediation of an information-preserving transformation (qEE-Tansition). These interaction

patterns are conceptualized as similarity when measured between the same variable and associ-

ation when measured between different variables. We implemented our framework in Python

enabling any users to apply most of the clustering algorithms and machine learning methods

used in this paper and to collect the qEE-transformed dataset in standard machine-readable

formats to apply their own clustering or machine learning methods. As a showcase, we applied

our framework to three potential problems to show that the qEE-Transition method works

well when combined with the Ward clustering and the Support Vector Machines methods,

however, a better parameterization of the machine learning methods might improve the

results. Here, we are not claiming to solve all the complex aspects of multi-variable data analy-

sis because defining appropriate similarity vs. association measures is complex enough. How-

ever, we believe that our framework is simple and intuitive enough to enable researchers in

any field involving data analysis to identify important information from multiple datasets. At

this point of our research, the qEE-Transition method cannot be combined with orthogonal

projection, however, in the future, we will investigate the possibility of refining the method to

provide a PCA-like analysis of the pairwise interactions pictured by the assembled distance

matrix. Additionally, our framework points to the importance of more developments and vali-

dation of distance-distribution models to capture complex interactions between disjoint vari-

ables especially when the interaction-distance information is available.

Supporting information

S1 Fig. MIASA-prediction for scaled distances. A: Families of distributions with max-scaled

histograms representations, UMAP projections of predicted (in separate panels 1-4) versus

convex hulls of the data points belonging to the different distributions: Poisson (Poi1 to Poi5),

Normal (N1 to N5), Pareto (Pa1 to Pa5), and Uniform (U1 to U5). B: Correlated variables with

(1/2)-scaled association distance, UMAP projections of predicted (in separate panels 1-10) ver-

sus samples of bivariate normal distributions, first dimensions (N1X to N10X) and second

dimensions (N1Y to N10Y). C: Two-Gene Regulation Network with (1/2)-scaled similarity in

gene A, UMAP projections of predicted (in separate panels 1-4) versus true gene regulation

patterns between gene A and gene B (convex hulls of data point representations): No-I A, No-I

B, Mono-I A & B, and Bi-I A & B. True and False predictions are only evaluated for the pairs

of genes belonging to the same models.

(TIF)

S2 Fig. Experiments on machine learning methods using distances as features. Test results

when the rows of the assembled distance matrix are used as Euclidean configuration of the

sample vectors for the distribution dataset (without the qEE-Transition step).

(TIF)
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