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Abstract 
Motivation: Local alignments of query sequences in large databases represent a core part of metagenomic studies and facilitate homology 
search. Following the development of NCBI Blast, many applications aimed to provide faster and equally sensitive local alignment frameworks. 
Most applications focus on protein alignments, while only few also facilitate DNA-based searches. None of the established programs allow 
searching DNA sequences from bisulfite sequencing experiments commonly used for DNA methylation profiling, for which specific alignment 
strategies need to be implemented.
Results: Here, we introduce Lambda3, a new version of the local alignment application Lambda. Lambda3 is the first solution that enables the 
search of protein, nucleotide as well as bisulfite-converted nucleotide query sequences. Its protein mode achieves comparable performance to 
that of the highly optimized protein alignment application DIAMOND, while the nucleotide mode consistently outperforms established local 
nucleotide aligners. Combined, Lambda3 presents a universal local alignment framework that enables fast and sensitive homology searches for 
a wide range of use-cases.
Availability and implementation: Lambda3 is free and open-source software publicly available at https://github.com/seqan/lambda/.

1 Introduction 
The approximate search of query sequences in large anno
tated databases is a central part of sequence analysis. Queries 
such as sequencing reads are aligned to a reference genome or 
a collection of subject sequences in order to detect regions 
that share different levels of sequence similarity with the 
query. Identifying exact or near-exact matches of the query 
sequence in the reference database is required during the pro
cess of read mapping, where the genomic origin of a sequenc
ing read is detected. For this purpose, semi-global alignments 
are used that allow a limited amount of differing bases be
tween the read and reference genome to account for potential 
technical errors or genetic variation within a species (Reinert 
et al. 2015). Additionally, in most cases only the best-scoring 
match is reported as sequencing reads originate from a single 
genomic location that needs to be correctly identified—ex
cept for repetitive or not assembled regions.

In other fields, such as homology search, it is beneficial to 
also identify more distant matches. Here, sequences of com
mon evolutionary descent within or across species are 

determined, which plays a role in the identification of known 
and unknown species in contaminated or mixed background 
samples (Pearson 2013). Additionally, the relatedness of dif
ferent species can be determined using taxonomic classifica
tions based on homology search (Pearson 2013). This is 
particularly relevant for metagenomic or -transcriptomic 
studies, where samples are usually not associated with a sin
gle species but instead comprise a diversity of organisms 
(Tringe and Rubin 2005). In order to identify homologues 
across large reference databases, local alignments are used 
that can detect more distant matches of query (sub-)sequen
ces that might be evolutionary conserved (Smith and 
Waterman 1981). In this context, it is also frequently desir
able to identify not only one but many matches per query 
across the database in order to assess its distribution across 
species and thus facilitate taxonomic analyses 
(Pearson 2013).

Identifying a large number of local hits across many query 
and subject sequences represents a computational challenge 
that is typically addressed using heuristic algorithms. These 
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are not exact, but ensure feasibility of such searches given the 
ever-growing size and amount of sequencing datasets. 
Additionally, and in contrast to read mapping, homology 
search can make use of protein instead of nucleotide align
ments, which may reveal a different type of conservation that 
is not apparent from the DNA level (Pearson 2013). Protein 
alignments can also reduce the search space as the amount of 
known protein sequences is drastically smaller than the geno
mic counterparts, thus accelerating the search process. 
Previously, many local alignment applications have been de
veloped of which Blast is the gold standard for protein and 
nucleotide searches. It also provided the statistical basis for 
many applications developed in the following years (Altschul 
et al. 1990), most of which greatly improved the speed com
pared to Blast (sometimes by a factor of over 1000). These in
clude Lambda (Hauswedell et al. 2014) and MALT (Vågene 
et al. 2018) for protein and nucleotide alignments, as well as 
DIAMOND that implements extremely fast and sensitive protein 
alignments (Buchfink et al. 2015, 2021).

Here, we introduce Lambda3, which improves the perfor
mance of previous Lambda versions, making it competitive 
with DIAMOND’s fast protein alignments while additionally 
providing faster nucleotide searches than state-of-the-art 
applications. As a new feature that has not been provided by 
other local alignment applications so far, Lambda3 offers a 
mode that enables the search of queries from bisulfite se
quencing experiments. Together, these advances make 
Lambda3 a fast and universal application for protein and nu
cleotide homology search.

2 Materials and methods
2.1 Application overview
Lambda3 operates in three distinct ‘domains’: nucleotide, pro
tein, and bisulfite. Furthermore, the application is divided into 
two parts: the index creation and the search (Fig. 1). Sub- 
commands (similar to, e.g. the git program) exist for each part 

and domain, i.e. lambda3 mkindexn <arguments> and 
lambda3 searchn <arguments> for the nucleotide do
main. Table 1 provides an overview of the sub-commands.

The index creation involves reading the subject sequences 
(usually FastA) and computing an FM-index, a step that is 
computationally expensive but only has to be performed 
once. Optionally, Lambda3 can also parse and include taxo
nomic annotations, which allow subsequent searches to cal
culate the lowest-common ancestor (LCA) of all database 
matches detected for a single query. The index as well as as
sociated options and annotations are stored in a single file 
on disk.

The search commands load the previously computed index, 
as well as the query sequences (reads). In contrast to previous 
versions of Lambda, the query is not indexed. Seeding is per
formed in the FM-index with various heuristic optimizations 
and parameters specific to each domain. For queries that 
have no promising hits after seeding, a second, more sensitive 
seeding step is performed. After seeding, hits are extended lo
cally, scored and compared against the desired threshold (bit- 
score or e-value). Verified hits are written to an output file 
(Blast formats and Sequence Alignment Map (SAM) resp. 
Binary Alignment Map (BAM) supported).

It is important to note, that the program architecture for 
all domains is very similar, but that the choice of parameters 
and some algorithmic components differ (more on this be
low). In some cases, the domain implies specific sequence 

Parse arguments

Serialization

Parse arguments
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Figure 1. Overview of Lambda3. The program consists of two main parts, the index creation and the search of query sequences in the index.

Table 1. The domain specific sub-commands available in Lambda3 and 
corresponding Blast programs.

Domain Index creation Search Equivalent Blast  
programs

Protein mkindexp searchp BlastP, BlastX,  
TBlastN, and TBlastX

Nucleotide mkindexn searchn BlastN, MegaBlast
Bisulfite mkindexbs searchbs —
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data as input, e.g. the nucleotide commands expect nucleo
tide sequences (similar to BlastN and MegaBlast). The pro
tein commands, on the other hand, can be used with both 
protein and nucleotide data (for query and/or subject sequen
ces). In this case, nucleotide sequences are automatically 
detected and translated to amino acids. This unifies all of 
Blast’s protein modes into a single, easy-to-use interface (see  
Table 1 for an overview).

2.2 Algorithm
2.2.1 Input/output and user interface
Lambda3 is provided as a single command-line application 
with multiple sub-programs. Argument handling is provided 
by the Sharg-Parser library (Mehringer and Seiler 2023 at 
https://github.com/seqan/sharg-parser), and Lambda3 has a 
fully documented interface, including manual pages.

Sequence input files are read using the BioCþþ I/O library 
(Hauswedell 2023 at https://github.com/biocpp). Both FastA 
and FastQ formats are supported, including compressed ver
sions (bgzip, gzip, bzip2). The query file can either be loaded 
completely at program start (default), or is lazily read by a 
background thread. The latter option can save memory if the 
query file is larger than the index, but it uses one of the CPU 
threads exclusively for I/O.

Taxonomic annotations (NCBI or UniProt format) are 
handled using a custom parser and can be used to annotate 
subject sequences. The output of the indexer sub-command 
includes the FM-index, original subject sequences and identi
fiers, taxonomic annotations (if provided) and corresponding 
parameters. All of these are written to a single (binary) ar
chive file and later read by the search command, using the ce
real library (Grant and Voorhies 2023 at https://github.com/ 
USCiLab/cereal). This is an improvement compared to previ
ous versions of Lambda, where multiple files were generated 
and stored in a separate output directory. Optionally, the in
dex file can be compressed, which reduces the file’s size by 
36% (tested using the UniRef50 database).

The final search results can be written to disk in Blast for
mats (tabular or pairwise) or SAM/BAM using the SeqAn2 li
brary (Reinert et al. 2017).

2.2.2 Data storage and alphabets
The two main data sources in the application are the query 
and the subject sequences. Three different representations 
(transformations) of these sequences are used in different 
parts of Lambda3.

2.2.2.1 Original sequences
These are the sequences as provided by the user. Depending 
on the domain, they can be nucleotides or amino acids. 
Amino acids are stored using the 27-letter alphabet provided 
by the BioCþþ core library (aa27), which includes the 20 ca
nonical amino acids, as well as rare and ambiguous letters. 
For nucleotides, the 5-letter DNA alphabet (dna5: A, C, G, 
T, N) is used. RNA alphabets are supported as input, but all 
U letters will be treated as T. In the protein domain, the query 
and subject sequences might have different alphabets (such as 
nucleotide query sequences and protein subject sequences in 
BlastX mode).

2.2.2.2 Translated sequences
As the name implies, these always refer to sequences in the 
protein domain. If the original sequences are nucleotides, 

Lambda3 translates these into all six possible reading frames. 
In case of protein input sequences, the translated sequences 
are identical to the original sequences. In the nucleotide and 
bisulfite domains, the translated sequences always have the 
same alphabet as the original sequences, but a reverse com
plement ‘frame’ is added for every query sequence. In the bi
sulfite domain, both query and subject sequences are 
additionally duplicated to allow for separate handling of 
queries originating from different strands (see below).

2.2.2.3 Reduced sequences
These are built from the translated sequences and transform 
the alphabet to a new (typically smaller) alphabet. In the pro
tein domain, a functional reduction based on biochemical 
amino acid properties is implemented (see section 2.2.3 for 
details). In the nucleotide domain, sequences are reduced to a 
4-letter alphabet (dna4) by replacing unknown bases (N)
with a random base (A, C, G, or T). This allows creating a
smaller and faster FM-index. See section 2.2.4 for the trans
formation applied in the bisulfite domain.

An overview of the alphabets and frames is shown in  
Table 2. The different algorithmic components in Lambda3 
work on different types of sequences. In particular, the search 
and seeding steps operate on the reduced sequences to in
crease performance and sensitivity. In contrast, the alignment 
step operates on the translated, unreduced sequences in order 
to ensure specificity. Using BioCþþ and Cþþ Ranges, only 
the original sequences are ever stored in memory, and both 
the translated and reduced sequence sets are created as so- 
called views (Hauswedell 2022). Views behave like contain
ers, allowing constant-time, non-allocating random access. 
However, the elements (both individual characters and entire 
sequences) are generated lazily when accessed. This has no 
measurable performance overhead compared to generating 
and storing the additional datasets, but saves memory, and 
allows for a clean program architecture.

2.2.3 Protein reduction
Reduced amino acid alphabets are a common feature of pro
tein aligners (Liang et al. 2022). A reduced amino acid alpha
bet is a small(er) alphabet, where groups of amino acids are 
each represented by a single letter. They are created by clus
tering amino acids by various biochemical properties or sub
stitution probabilities.

The main purposes of employing a reduction are:

1) Enable matching of (functionally) similar amino acids to
account for likely mutations. This improves the sensitiv
ity of matches.

Table 2. The alphabets used and frames generated in the respective 
domains of the program.a

Original Translated Reduced

Domain Alphabet Alphabet QF SF Alphabet

Protein aa27/dna5 aa27 1/6 1/6 aa27, li10 or mu10
Nucleotide dna5 dna5 2 1 dna4
Bisulfite dna5 dna5 4 2 6-letter BS alphabet

a QF/SF are the number of frames generated per query/subject sequence. 
Input alphabets in protein domain are detected from input; nucleotide leads 
to six-frame translation. Reduced alphabets in protein domain depend on 
user choice (li10 is default).
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2) Improve the performance of algorithmic steps. A smaller
alphabet results in smaller and more efficient data struc
tures, in particular the FM-index.

The exact criteria for clustering different amino acids into 
one letter, as well as the target size of the reduced alphabet, 
vary. Many different reduced alphabets exist in the literature. 
For protein aligners, alphabets of size 10–12 have been popu
lar, and previous Lambda versions used the reduction by 
Murphy et al. 2000 (mu10). In Lambda3, the new default re
duced amino acid alphabet is the one proposed by Li et al. 
(2003) (li10). An overview of the amino acid clusters de
fined by the different alphabets are shown in Fig. 2.

Depending on the query dataset and database, reduced 
alphabets can perform differently in regard to sensitivity 
(number of valid results) and performance. We evaluated 
DIAMOND’s alphabet and found it to be sensitive but not very 
fast in our application; it is likely that these properties are 
balanced out by other parameters and heuristics in 
DIAMOND’s algorithm. For Lambda3, Li’s alphabet shows an 
improved performance while maintaining a similar sensitivity 
to Murphy’s. Users who favor sensitivity over speed—espe
cially with very small datasets—have the option to continue 
using Murphy’s alphabet via a command-line argument.

2.2.4 Bisulfite reduction
Sodium bisulfite treatment of the DNA leads to the conver
sion of unmethylated cytosines to uracils, which are replaced 
with thymines in subsequent amplification steps (Frommer 
et al. 1992). Sequencing of the resulting fragments allows de
termining the DNA methylation status of cytosines in the ge
nome. Depending on the protocol and the sequencing setup, 
this can lead to four different read types, which arise from 
the bisulfite conversion itself (reads reflecting the original for
ward and reverse strand) or the subsequent amplification, 
which includes the reverse complements of the original 
strands (Fig. 3A, Cokus et al. 2008). Due to the bisulfite con
version, the reverse complement of the original forward 
strand does not equal the original reverse strand as for stan
dard DNA sequencing.

To account for the effects of bisulfite conversion, the 
search and alignment process need to be adapted: C (subject) 
to T (query) mismatches need to be considered as matches for 
reads originating from the original forward or reverse strand 
of a DNA fragment. Similarly, G (subject) to A (query) mis
matches should not be penalized for reads originating from 
the reverse complements of the original strands (Fig. 3A). In 
order to account for this, we make use of a common concept 
that has been established for many bisulfite alignment appli
cations (Kunde-Ramamoorthy et al. 2014). Here, the actual 
search is carried out using one of two 3-letter alphabets, 
where either C and T or G and A are considered as identical.

For Lambda3, we implemented an artificial 6-letter alpha
bet where the first and the last three letters represent the two 
different reduced 3-letter alphabets respectively (Fig. 3B). 

The subject sequences are duplicated prior to the index con
struction. One copy is reduced according to the first three let
ters of the new alphabet, while the second copy is reduced 
according to the last three letters. This offers the possibility 
to search reads that originate both from the original strands 
and their reverse complements (Fig. 3C). For the query se
quence, first the reverse complement is added (similar to the 
nucleotide domain, translated sequences) and then treated 
analogously to the subject sequences (reduced sequences,  
Table 2 and Fig. 3D).

Using a combined alphabet for both bisulfite reductions 
has the advantage that a single index can be built. Therefore, 
the general application architecture remains the same as in 
the other domains. Other alignment applications typically 
generate two indexes with different alphabet reductions, and 
queries are subsequently searched in both data structures 
(Krueger and Andrews 2011, Otto et al. 2012).

2.2.5 Seeding
The initial search is performed using an FM-index (Ferragina 
and Manzini 2000), which is implemented in the standalone 
FMIndex-Collection library (Gottlieb 2023, see https:// 
github.com/SGSSGene/fmindex-collection). The advantages 
of FM-indexes over hash-tables are inexact searches and a 
runtime choice of the seed length, while hash-tables allow 
asymptotically faster look-ups. Bidirectional FM-indexes are 
supported by Lambda3, but are not used by default as they 
did not outperform the unidirectional index combined with 
its heuristics (see below).

The index is always built on the reduced subject sequences 
to enhance performance and sensitivity. Multiple worker 
threads run in parallel, and each thread takes chunks of query 
sequences. The sequences in each chunk are translated and re
duced (depending on the domain and user settings), split into 
seeds and searched in the index. Promising hits are then 
handed over to the alignment step.

Seeding is determined by many parameters, that each influ
ence sensitivity versus speed (Fig. 4). The most important 
ones are the minimum ‘seed length’, the distance between 
seed begin positions (‘seed offset’, determines overlap of 
seeds), and whether a mismatch is allowed in the seed (‘seed 
delta’, 0 or 1). These parameters can be chosen by the user, 
and their default values depend on the domain. Additionally, 
predefined profiles with faster or more sensitive parameters 
are available.

In combination with these common parameters, several 
heuristics are employed. ‘Iterative search’ is defined as trying 
a fast search first, and performing a more sensitive search 
only if the first yielded no promising results. The benefits of 
this option depend strongly on the dataset and the expected 
success-rate of the search. ‘Adaptive seeding’ represents the 
dynamic elongation of the seed size if the seed is found too of
ten. This is based on the assumption that seeds that map to 
too many locations are less relevant due to their universal oc
currence. Another advantage of the seed expansion is the ac
celeration of the subsequent alignment step, because fewer 
hits need to be considered. ‘Half-exact seeding’ allows the 
seed delta only in the second half of the seed in order to re
duce search complexity. The loss in sensitivity can usually be 
compensated by a smaller seed offset (higher overlap).

Alphabet reduction can also be classified as a form of heu
ristic, and, depending on the domain, may introduce many 
false positive hits. To remove these from downstream 

Murphy (10)

Li (10)

DIAMOND (11)

A S T K R D E Q N H C F W Y G I V L M P
A S T K R D E Q N H C F W Y G I V L M P
A S T K R D E Q N H C F W Y G I V L M P

Figure 2. Overview of different amino acid alphabet reductions. For 
simplicity, non-canonical amino acids and special characters are omitted 
here. MALT uses the same alphabet as DIAMOND.
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analyses, every potentially matching region is evaluated in the 
unreduced sequence space via a fast, gapless local alignment.

2.2.6 Alignment and scoring
After a worker thread has searched seeds for all its query 
sequences, the resulting matches are sorted and distributed 
into batches of similar sequence length. These are then ex
tended via a gapped local alignment of the entire unreduced 
query sequence against the target region of the subject se
quence. Each thread computes multiple alignments at the 
same time through Single Instruction Multiple Data (SIMD) 
acceleration (Rahn et al. 2018). In contrast to previous ver
sions of Lambda, no X-drop heuristic is used, as this would 
prevent vectorization. This implies that the current algorithm 
is optimized more strongly for short reads. In the bisulfite 
mode, matches are sorted additionally based on the reduction 

of the subject sequence that the query mapped to (first or sec
ond half of the combined 6-letter alphabet, Fig. 3B and C). 
The alignment process is then carried out separately for the 
two reduction versions in order to account for the different 
types of conversion effects. For all matches that were found 
in subject sequences that treated C and T bases as equal, an 
imbalanced scoring-scheme is used that allows C (subject) to 
T (query) mismatches but penalizes T to C mismatches. 
Similarly, for matches found in subject sequences that considered 
G and A as the same base, only G (subject) to A (query) mis
matches are not penalized. This reduces the false positive rate 
arising from the search in a 3-letter alphabet.

At the end of the alignment step, every alignment is scored, 
and an output record is generated if it passes the respective 
thresholds. Lambda supports e-value cut-offs, bit-score 
thresholds and/or a minimum percent identity. The bit-score 
is derived from the alignment score by incorporating con
stants derived from observed substitutions in empirical stud
ies and parameters of the used scoring-scheme (Altschul et al. 
1990, Karlin and Altschul 1990). This allows comparing bit- 
scores between different scoring-schemes and domains. 
Higher bit-scores indicate better alignments. E-values are de
rived from the bit-score by taking into account the length of 
the query sequence and the total size of the database. They 
are a measure of significance, where an e-value of 1 indicates 
that, given the query sequence length and scoring-scheme, 
one alignment is assumed to be found by chance in the data
base. Smaller e-values indicate more significant alignments; 
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Figure 3. Search of bisulfite-converted sequences using a 3-letter alphabet. (A) Sodium bisulfite treatment leads to the conversion of unmethylated 
cytosines to uracils. During subsequent amplification steps, uracils get replaced with thymines. As a result, four different read types can be distinguished 
that stem from the original forward and reverse strand or their reverse complements. (B) In order to build a single index for bisulfite-aware alignments, 
Lambda3 implements an artificial 6-letter alphabet, where the first three letters represent the reduced alphabet associated with reads from the original 
strands (C and T are considered identical). The last three letters represent the reduced alphabet for reads originating from the reverse complements of 
the original strands (G and A are considered identical). (C) Before the index is built, subject sequences are duplicated. The first copy is subsequently 
reduced using the first three letters of the 6-letter alphabet, while the second copy is reduced using the last three letters. This way, the index is built 
across the same alphabet that accounts for both reductions without the necessity to build two indexes. (D) Query sequences are reduced analogously to 
the subject sequences after the sequences have been reverse complemented to account for every possible alignment according to the four read types.

ACCTGATCGAAAGTAGATAGAGCGCCCCGAGAGAGATGCCGA

...
Seed
offset

Seed length

Exact match
1 mismatch allowed
Potential elongation

Seed length

Figure 4. Lambda3’s seeding strategy. Seeds are defined by their length 
and the offset between start positions. By default, an error is only 
considered in the second half of the seed. If too many hits are found, the 
seed is automatically extended.
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the same alignment found in databases of different sizes will 
have different e-values (but the same bit-score).

3 Results
3.1 Benchmark setup
Informative and reliable benchmarking of local alignment 
applications is not trivial, because use-cases vary strongly, 
and various applications with many tunable parameters exist. 
To this date, no other application covers all the domains that 
are covered by Lambda3, but some cover both the protein 
and nucleotide domain. Instead of the previously published 
version of Lambda (Hauswedell et al. 2014), we compared 
against Lambda2 (version 2.0.1) which is the most commonly 
used Lambda branch prior to the release of Lambda3. The 
‘gold standard’ application Blast was omitted from our com
parisons, simply because it cannot be run feasibly on the data 
sizes used. However, comparisons on much smaller datasets 
(and including Blast) are provided in the Supplementary 
information. Furthermore, existing research has already 
established that the discussed applications operate in a simi
lar general sensitivity range—even if they are slightly less sen
sitive in their default settings (Hauswedell et al. 2014, 
Buchfink et al. 2015).

We are aware that applications perform differently on dif
ferent inputs, and that the choice of files influences the per
ceived performance strongly. Therefore, we selected a variety 
of query datasets, both simulated and real-world, and includ
ing DNA and RNA sequencing experiments. Where avail
able, we chose well-established databases, or created 
reference datasets in line with previous studies and potential 
use-cases.

There are different ways to measure sensitivity. Lambda 
and other applications produce more than one hit per query 
(the desired upper bound can be set via the command line), 
and there are several use-cases for utilizing these secondary 
alignments, especially in taxonomic analyses. However, there 
are also use-cases where these are not relevant, and it is not 
trivial to compare secondary alignments between applica
tions. Simply counting them is not meaningful, as this hides 
their distribution between different query sequences. 
Ambiguities also arise from matches that appear as one long 
alignment in the output of one application and as two sepa
rate smaller ones in the output of another; the single longer 
result would usually be preferable, so a higher total count 
might even indicate unfavorable results. Therefore, we chose 
the widely used metric of the number of query sequences with 
at least one hit (Huson and Xie 2014, Ye et al. 2011). This is 
a lower bound for the sensitivity, because not finding any 
results for a query sequence is clearly detrimental to all fur
ther analyses. Additionally, we provide a separate benchmark 
specifically for the task of maximizing the number of query- 
subject pairs detected (supplementary information). All 
results that pass the e-value and/or bit-score threshold are 
considered true positives (except in the bisulfite domain, see 
Supplementary information).

We chose an e-value cut-off of 0.01 for our analyses, which 
implies that less than 1% of the reported results are expected 
to have occurred by chance. The cut-off is lower than Blast’s 
default, but slightly higher than what we used in previous 
analyses (Hauswedell et al. 2014), as we found that applying 
a more stringent cut-off removes many high-scoring align
ments that were previously reported with smaller databases. 

As elaborated previously, the method of e-value calculation 
between different applications is not reliable, resulting in dif
ferent e-values for the same alignment (Hauswedell et al. 
2014). Bit-scores, on the other hand, seem to be the same for 
identical alignments reported by multiple applications. To 
improve comparability, we pre-computed the bit-score 
equivalent of the 0.01 e-value cut-off for every query and 
subject dataset combination and used the resulting bit-score 
threshold instead. We used the simplest and most widely ac
cepted formula of bitScore ¼ log2

m�n
eValue

� �
, where m represents 

the query length and n the total size of the database. This 
ignores certain statistical fine-tuning that some applications 
may or may not employ, but as long as the same bit-score 
threshold is used for all applications, the method of deriving 
such a threshold should favor no application over another.

All benchmarks were performed on a dual-socket system 
with two Intel(R) Xeon(R) Gold 6248 CPUs (each provide 20 
cores and can execute 40 threads), one terabyte of RAM and 
regular hard drives. The query datasets are sampled to be ex
actly 200 MiB big, and the applications are configured to use 
up to 40 threads.

3.2 Protein domain
3.2.1 Datasets
Searching translated nucleotide data in a protein database is 
the most-common form of protein search, also known as 
BlastX. We selected two simulated datasets (q1 and q2 in  
Table 3) by the Initiative for the Critical Assessment of 
Metagenome Interpretation (CAMI) which offers compre
hensive datasets to enable benchmarking of applications ap
plied in metagenomic studies (Meyer et al. 2022). 
Additionally, we selected two real-world sequencing datasets: 
a topsoil DNA sample (q3) and an RNA sequencing experi
ment of a human colorectal tumor (including the associated 
gut microbiome; q4). Both datasets were generated as part of 
metagenomic studies (Bahram et al. 2018, Visnovska et al. 
2019). We used UniRef50 (downloaded 25 May 2022) as the 
database for all protein searches, which is also the reference 
database used by Buchfink et al. (2021).

3.2.2 Applications
We ran Lambda3 (commit d995cb5, after the 3.0.0 release) 
and Lambda2 (version 2.0.1) in its default mode and the pre
defined ‘fast’ and ‘sensitive’ profiles (for Lambda2, these pro
files are provided as recommended settings). For Lambda2, 
the desired number of hits per query was reduced from 256 
to 25 to be in line with the default values of the other applica
tions. DIAMOND (version 2.1.6) was run with its default, fast 
and mid-sensitive profiles, as these corresponded most closely 
to the profiles benchmarked for Lambda3. More sensitive 
profiles are available; however, these operate in an entirely 
different region on the speed $ sensitivity spectrum 
(Buchfink et al. 2021). Lastly, we ran MALT (version 0.6.1) in 
its default mode (no fast or sensitive profiles are available). 
All applications by default use the Blosum62 matrix for scor
ing, combined with a score of −1 for each gap-character and 
an additional cost of −11 for each contiguous sequence of 
gaps. To establish comparability of the scores, composition- 
based statistics were disabled if available (not all applications 
implement these adjustments and several incompatible imple
mentations exist, Sch€affer et al. 2001, Yu and Altschul 
2005). The bit-score threshold was determined as 47 for q1, 
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q2, and q4, as well as 48 for q3 (due to the longer 
query sequences).

3.2.3 Results
Every application’s default mode yields results in a similar 
overall sensitivity range (� 5%), but the speed varies signifi
cantly, and Lambda3 and DIAMOND consistently deliver the 
best results per time (Fig. 5A, shapes indicate modes that are 
expected to operate in the same sensitivity range). Lambda3’s 
profiles are on average twice as fast as the corresponding pro
files of DIAMOND, while—depending on the query dataset and 
profile—Lambda3 or DIAMOND detect slightly more queries 
than the other. Although MALT exhibits similar sensitivity 
compared to Lambda3 and DIAMOND, it is on average 38 
times slower than Lambda3 in its default mode, and it 

demands more than 800 GiB of RAM (Fig. 5A and B). In con
trast, Lambda3 requires around 60 GiB—a notable improve
ment over Lambda2 that consumes between 67 and 250 GiB 
in the default mode. DIAMOND requires only 11 GiB (Fig. 5B). 
When speed is the primary concern, Lambda3’s fast mode is 
the clear choice, being the fastest in every comparison, often 
by a factor of three over DIAMOND’s fast and Lambda3’s de
fault mode. However, it also misses up to 14% of the results 
in one dataset.

3.3 Nucleotide domain
3.3.1 Datasets
For our benchmarks of the nucleotide domain, the same 
query datasets are used as in the protein domain. The data
base encompasses a collection of microbial genomes 

Table 3. Query datasets used to evaluate the performance of Lambda3 and comparable tools.

ID Query set Length (bp) Molecule Source

q1a Strain diversity 150 DNA (simulated) CAMI II challenge (2022)
q2a Plant-associated 150 DNA (simulated) CAMI II challenge (2022)
q3 Topsoil 251 DNA Bahram et al. (2018)
q4 Colorectal tumor (gut microbiome) 125 RNA Visnovska et al. (2019)
q5a Strain diversity 150 DNA (simulated, in silico bisulfite-converted) CAMI II challenge (2022)
q6a Plant-associated 150 DNA (simulated, in silico bisulfite-converted) CAMI II challenge (2022)
q7 Xenograft breast tumor 125 Bisulfite-converted cell-free DNA Liu et al. (2021)
q8 Fungi 76 Bisulfite-converted DNA Bewick et al. (2019)

a Datasets of the CAMI challenge were additionally in silico bisulfite-converted in order to test Lambda3’s bisulfite mode.
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assembled by the Human Microbiome Project (downloaded 7 
June 2022, Human Microbiome Project Consortium 2012).

3.3.2 Applications
In line with the protein domain, Lambda3 and Lambda2 were 
compared with their default, fast and sensitive profiles using a 
maximum of 25 hits per query. Similarly, we ran MALT with 
its default mode. For the nucleotide domain, we also selected 
MegaBlast (version 2.13.0, Camacho et al. 2009), which repre
sents a faster version of BlastN and was run in default mode. 
Since MegaBlast does not offer the option to filter results based 
on a bit-score threshold, we performed a first search with a re
laxed e-value cut-off of 1 and subsequently determined the max
imum e-value associated with the estimated bit-score 
thresholds. The actual benchmarks were then performed using 
these e-values. All applications were configured to use a 
scoring-scheme of f2;−3;−2;−5g (match, mismatch, gap, gap- 
open), which is already the default for most applications. The 
bit-score threshold was determined as 46 for q1, q2 and q4, 
and 47 for q3. These thresholds are reduced in comparison to 
the protein domain due to the smaller database size (six com
pared to 15 billion characters).

3.3.3 Results
Across all datasets, Lambda3 exhibits the highest sensitivity 
with its default and sensitive profiles (Fig. 6A). For most 
comparisons, Lambda3’s default mode also exhibits faster 
runtimes compared to the other applications, while its fast 
profile consistently outperforms all applications regarding 

the search speed. Lambda2 is always less sensitive and slower 
than Lambda3. For some datasets, it yields only a quarter of 
the results and is more than three times slower at the same 
time (Fig. 6A). MALT is of comparable sensitivity to 
Lambda3’s default profile, but between two and five times 
slower. Additionally, it requires more than 10 times as much 
memory (230 GiB versus 21 GiB, Fig. 6B). MegaBlast is in a 
similar speed range as Lambda3—in contrast to regular 
BlastN, which is orders of magnitude slower (Supplementary 
information). However, it misses 75% of the results that 
Lambda3 finds for query dataset q1. Its memory require
ments, on the other hand, are the least demanding (less than 
12 GiB, Fig. 6B).

3.4 Bisulfite domain
3.4.1 Datasets
We in silico converted the CAMI datasets introduced above 
into sequences mimicking a bisulfite conversion experiment 
where cytosines were converted to thymines using a bisulfite 
conversion rate of 99% (scripts obtained from Nunn et al. 
2021). For simplicity, we converted all query sequences ac
cordingly, which reflects the effect of bisulfite conversion of 
reads from the original strands (Fig. 3A). To ensure that 
Lambda3 can also detect reads from reverse complements of 
the original strands, we additionally created a version of the 
two datasets where guanines were converted to alanines with 
the same conversion rate, which led to comparable results. 
These two query datasets are searched in the same database 
as in the nucleotide search. A common application for 
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bisulfite sequencing is the read-out of cell-free DNA, which 
can reflect disease states such as tumors that can be identified 
using DNA methylation patterns, but has also been reported 
to contain fragments of microbial DNA (Legendre et al. 
2015, Kowarsky et al. 2017). We therefore selected a breast 
tumor xenograft model bisulfite sequencing dataset, where 
the cell-free DNA of the xenograft model is expected to con
tain DNA fragments of both organisms (the host mouse 
model and the engrafted human cells), but also potential rem
nants of microbes (Liu et al. 2021). These reads are searched 
in a database consisting of the human (hg19) and mouse 
(mm10) genomes, as well as the Human Microbiome Project. 
As the fourth query file, we sampled a pan-fungi dataset from 
a study that profiled different fungi species in order to mimic 
a cross-species sequencing experiment (Bewick et al. 2019). 
All fully assembled fungi reference genomes (download 7 
June 2022) were used as database.

3.4.2 Applications
Lambda3 was run in its default mode and with its two prede
fined profiles (‘fast’ and ‘sensitive’). Lambda2 has no corre
sponding bisulfite mode and, therefore, was not considered 
for the benchmark. Since no local aligner for this type of 
queries has been developed to date, we chose the semi-global 
alignment applications GEM3 (version 3.6.1), BSMAP (version 
2.90), and Bismark (version 0.24.0). Bismark does not offer 
the option to limit the number of threads reliably. The user 
can only specify the number of instances of Bismark that will 
be started in parallel that, according to the manual, start 

between two and six threads each. Therefore, the number of 
parallel instances was set to eight to approximate 40 threads. 
Bismark also offers a local mode, which we tested in addition 
to the semi-global alignment mode. GEM3 by default switches 
to a local mode if no alignments are encountered for a certain 
query. For Lambda3’s bisulfite domain, we needed to develop 
a new method to determine the bit-score threshold, because 
we expect different random distributions of hits due to the 
effects of the bisulfite conversion (compared to the nucleotide 
mode), and no respective predefined constants exist to nor
malize the raw alignment scores. The method is described in 
the Supplementary information. We attained the following 
thresholds: 68 (q5–q7) and 66 (q8). It should be noted that 
the other applications compared in our analysis perform no 
significance evaluation at all, so care should be taken when 
comparing the sensitivity. This implies that some of the other 
applications’ results are likely not significant, and that any 
kind of threshold will be unfavorable to Lambda3 in 
this comparison.

3.4.3 Results
Lambda3’s bisulfite mode consistently outperforms semi- 
global alignment applications based on the number of queries 
detected, except for q8, where Bismark’s local mode detects 
more queries (Fig. 7A). However, no program other than 
Lambda3 performs well consistently, e.g. Bismark detects al
most no results for dataset q6. The default and sensitive pro
files of Lambda3 are in some cases slightly slower than the 
semi-global aligners, which can be expected due to the larger 
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number of seeds and hits that need to be processed. The fast 
mode shows comparable runtimes to BSMAP and Bismark 
while still detecting more queries for most datasets (Fig. 7A). 
GEM3 is the fastest application (its runtime depends mostly 
on the time required to load the database). Of all applica
tions, Bismark consumes the most memory (up to 585 GiB 
for q3 with the largest database), while GEM3 and Lambda3 
only use up to 103 GiB and 71 GiB of RAM, respectively 
(Fig. 7B). Lambda3’s bisulfite mode uses more memory than 
the corresponding nucleotide mode, which is expected due to 
the doubling of the number of subject sequences (Figs 6B and  
7B). BSMAP is the most memory-efficient application (30 
GiB for the largest database), which could be attributed to 
the fact that it is the only application that does not build an 
FM-index but instead is based on hash-tables (Fig. 7B).

4 Discussion
We presented Lambda3, a new version of the Lambda local 
alignment software that is more sensitive, faster, and requires 
less memory than previous versions. It is highly competitive 
with other modern applications in the protein and nucleotide 
domains, and it provides a novel mode to align bisulfite- 
treated sequences that is more sensitive and reliable than the 
semi-global applications previously available.

MALT, the only other local alignment application in our 
comparison that computes both nucleotide and protein align
ments, is notably slower than Lambda3 in both domains and 
requires more than 10 times as much memory. Based on our 
observations, we see no advantage to using it in either do
main. For many of the datasets tested, Lambda3 even outper
forms the highly optimized protein aligner, DIAMOND— 
sometimes by a notable margin. However, we acknowledge 
that DIAMOND may be more suited when dealing with long 
read data or if the number of query sequences becomes much 
larger than what we tested (DIAMOND claims sublinear scal
ability while other applications, including Lambda3, scale 
linearly in runtime with the number of input sequences). In 
the nucleotide domain, there are fewer established local align
ers, and Lambda3 seems preferable to all other compared 
applications, its default mode beating MegaBlast in speed 
and sensitivity on all tested datasets.

Our benchmarks showcased that the bisulfite domain of 
Lambda3 consistently detects more queries compared to stan
dard semi-global alignment applications, which was most 
pronounced for actual metagenomic datasets (q5 and q6). 
These results show that established bisulfite alignment appli
cations are not suitable for performing this type of search, 
even though some of them perform well in a query-dependent 
fashion. Therefore, Lambda3 represents the first application 
to reliably compute local alignments and could support fu
ture metagenomic studies using bisulfite sequencing.

We conclude that Lambda3 is a significant upgrade over 
previous versions. It stands out by being an integrated appli
cation that covers multiple data domains (protein-, nucleo
tide-, and bisulfite-treated data), and it exhibits very low 
runtimes, even with huge databases. Lambda3 provides many 
small but useful features, e.g. support for taxonomic binning 
and a variety of input and output formats (including SAM 
and BAM). Although short reads are still the dominant tech
nology, we may focus on adding optimizations for long read 
data (e.g. support for frame-shift alignments) in the future. 
Integrating a technology like the DREAM index (Dadi et al. 

2018, Seiler et al. 2021), would allow searching even 
larger databases.
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