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P H Y S I C S

An in-principle super-polynomial quantum advantage 
for approximating combinatorial optimization 
problems via computational learning theory
Niklas Pirnay1, Vincent Ulitzsch1, Frederik Wilde2, Jens Eisert2,3*, Jean-Pierre Seifert1,4

It is unclear to what extent quantum algorithms can outperform classical algorithms for problems of combinato-
rial optimization. In this work, by resorting to computational learning theory and cryptographic notions, we give 
a fully constructive proof that quantum computers feature a super-polynomial advantage over classical comput-
ers in approximating combinatorial optimization problems. Specifically, by building on seminal work by Kearns 
and Valiant, we provide special instances that are hard for classical computers to approximate up to polynomial 
factors. Simultaneously, we give a quantum algorithm that can efficiently approximate the optimal solution with-
in a polynomial factor. The quantum advantage in this work is ultimately borrowed from Shor’s quantum algo-
rithm for factoring. We introduce an explicit and comprehensive end-to-end construction for the advantage 
bearing instances. For these instances, quantum computers have, in principle, the power to approximate combi-
natorial optimization solutions beyond the reach of classical efficient algorithms.

INTRODUCTION
Recent years have enjoyed an enormous interest in quantum com-
puting as a new paradigm of computing. While ground breaking 
work (1–3) established that quantum computers provide a substan-
tial speedup for certain problems over classical computers, the ex-
tent of this quantum advantage is still largely uncharted territory. It 
has been suggested that quantum computers may actually assist in 
improving existing classical algorithms for the task of combinatorial 
optimization. That is, the task of assigning discrete values from a 
finite set to finitely-many variables, such that the cost function 
over the variables is minimal. Here, we provide a full constructive 
proof that quantum computers can indeed outperform classical 
computers for finding approximations to combinatorial optimiza-
tion problems.

Combinatorial optimization problems arise in a wealth of con-
texts, ranging from problems in the description of nature to indus-
trial resource optimization (4). In combinatorial optimization 
problems, one is given an objective function, which needs to be op-
timized over a finite set of object, such that some constraints over 
the objects are satisfied. A prominent example is the traveling sales-
person problem, in which one has to choose a cyclic route through a 
set of cities, such that the length of the route is minimal (see Fig. 1A). 
In this case, the objective function is the sum of traveled distances 
along the route, which needs to be minimized. The objects are the 
cities and the constraints demand that the start- and endpoints are 
the same city, and no city is visited twice. The traveling salesperson 
problem underlies many routing problems that we encounter in our 
everyday life, such as finding the most efficient supply chain, the 
cheapest delivery route or the fastest three-dimensional print. In ad-
dition, job scheduling, resource allocation, or portfolio optimiza-
tion—and many naturally occurring problems such as that of protein 
folding—can basically be seen as combinatorial optimization 

problems. Given the vast social and economic significance of com-
binatorial optimization problems, it is expected that they have been 
a subject of intense research for many decades. However, many 
problems of this kind are known to be NP-hard in worst case com-
plexity, i.e., even the best algorithms to date cannot solve all instanc-
es of combinatorial optimization problems in tractable time. This 
does not mean that one cannot solve practically relevant instances 
up to reasonable system sizes or find good approximations to the 
optimal solutions. There is indeed a rich body of literature on both 
heuristic approaches that work well in practice (5) and on a rigorous 
theory of approximating solutions (6). For example, enormous trav-
eling salesperson instances of up to 85.900 cities have been solved 
optimally (7) and there are many software suites that enable good 
approximations for the industry today.

Motivated by the insight that quantum computers may offer sub-
stantial computational speedups over classical computers (1, 2), it 
has long been suggested that quantum computers may actually assist 
in further improving approximations to these problems. While 
there is no hope for an efficient either quantum or classical algo-
rithm that is guaranteed to find the optimal solution, a crucially im-
portant question is whether quantum computers offer an advantage 
for combinatorial optimization problems and specifically for ap-
proximating the solution of these problems.

This topic is particularly prominently discussed in the realm of 
near-term quantum computers (8), for which full quantum error 
correction and fault tolerance seem out of scope but which may 
well offer computational advantages over classical computers (3, 9). 
For these devices, algorithms such as the quantum approximate op-
timization algorithm (10) have been designed precisely to solve 
combinatorial optimization problems of the above mentioned 
kind. Surely, these instances of variational algorithms (11–13) will 
not always be able to solve these problems: At best, these algo-
rithms may be able to produce approximate solutions that are 
better than those found by classical computers. They may also be 
able to efficiently find good approximations for more instances 
than classical computers when they are used perfectly. When ac-
tually operated in realistic, noisy environments, the performance 
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of quantum devices is further reduced. For variational algorithms 
run on noisy devices, some obstacles have been identified for quan-
tum computers that involve circuits that are deeper than logarith-
mic (14–17), obstacles that may well be read as indications that it 
will be challenging to achieve quantum advantages in the presence 
of realistic noise levels.

For variational algorithms aimed at tackling classical combina-
torial optimization problems that are being cast in the form of 
minimizing the energy of commuting Hamiltonian terms, further 
obstructions are known (18). Some small instances of the problem 
can even be classically efficiently simulated [although small noise 
levels may help (19)].

The make-or-break question, therefore, is: What is, after all, the 
potential of quantum computers for tackling combinatorial optimi-
zation problems? A simple quantum advantage for exactly solving 
combinatorial optimization problems may be obtained by reducing 
the integer factoring problem to the 3-Satisfiability (3-SAT) prob-
lem and leveraging the advantage of Shor’s algorithm (1). A quan-
tum advantage for approximating the solution of combinatorial 
optimization problems can also be obtained using a different proof 
technique than used in this manuscript. As outlined in (20), the cel-
ebrated PCP theorem can be used to show classical approximation 
hardness, while Shor’s algorithm for factoring can be used for an 
efficient quantum approximation algorithm. Thus, an in-principle 
separation between classical and quantum approximation algo-
rithms can already be obtained from the PCP machinery and Shor’s 
algorithm. However, the focus of this work is to provide a techni-
cally detailed and complete proof that comprehensively describes 
the reductions and gives and end-to-end guidelines on how to con-
struct the advantage-bearing combinatorial optimization instances. 
We expect that the concrete realization of the proof gives follow-up 
work additional insights over a generic proof sketch. Given the prac-
tical importance of combinatorial optimization tasks and its wide 
applicability, this is a valuable contribution to further advance quan-
tum optimization algorithms.

RESULTS
Premise of this work
In this work, we provide a comprehensive proof that a fault-tolerant 
quantum computer can approximate certain combinatorial optimi-
zation problems super-polynomially more efficiently than a classical 
computer. While such a result can also be obtained from the PCP 
theorem and Shor’s algorithm (20), our work focuses on fully flesh-
ing out a constructive proof to provide a clear guideline on how 
these advantage-bearing instances can be constructed. An impor-
tant contribution of our work—particularly in the light of claims of 
applications of quantum computers for solving optimization prob-
lems that have become common—is also in contributing to clarify-
ing in what precise sense one can hope for quantum advantages in 
optimization in the first place.

In our efforts, we digress from the PCP theorem and build on the 
work of Kearns and Valiant (21), who have shown the classical hard-
ness of approximating the solution of the so-called formula coloring 
(FC) problem, a combinatorial optimization problem that general-
izes the graph coloring problem. We continue to draw inspiration 
from (21) when showing an approximation hardness preserving re-
duction from the FC problem to integer programming [a family 
of combinatorial optimization problems on which variants of quan-
tum approximation have already been applied to (22)]. To prove 
the super-polynomial quantum advantage, we extend the work of 
Kearns and Valiant (21) to show the classical approximation hard-
ness for certain integer programming instances that are constructed 
from the Rivest–Shamir–Adleman (RSA) encryption function. We 
then provide an efficient quantum algorithm for approximating the 
solutions of those instances up to a polynomial factor. For a given 
instance ℐ of integer programming or FC, it can be decided in quan-
tum polynomial time whether ℐ belongs to this set of advantage 
bearing instances.

We also formulate the hard-to-approximate instances in the op-
timization problem of minimizing the energy of commuting Hamil-
tonian terms, connecting our findings to the widely studied field of 

Fig. 1. Overview of the setting of our work. (A) Diagrammatic sketch of the traveling salesperson problem aimed at finding the shortest possible route that visits each 
city (represented as vertices) exactly once and returns to the origin city. (B) Venn diagram that depicts the sense, in which a quantum advantage—symbolized in (C)—is 
proven in our work for integer programming problems. The gray set contains all instances of ILP, and the subsets contain the hard or respectively easy to solve instances. 
By hard to approximate, we mean that there is no polynomial time algorithm that approximates the size of the optimal solution up to a factor of optα · ∣I∣β, where ∣I∣ is the 
instance size; α, β are constants, such that α ≥ 0, 0 ≤ β < 1; and opt denotes the size of the optimal solution. Whether the dotted line holds true, i.e., whether there exists 
a problem that can be solved exactly by a polynomial-time quantum algorithm but are hard to approximate classically, is left for further research.
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variational quantum optimization. Because the classical approxima-
tion hardness stems from the hardness of inverting the RSA encryp-
tion function (21), the core of the quantum advantage found in this 
work is ultimately essentially borrowed from, once again, Shor’s 
quantum algorithm (1) for factoring.

The kind of reasoning developed here resembles the mindset of 
Sweke et al. (23), Pirnay et al. (24), and Liu et al. (25) to the problem 
of approximating solutions to combinatorial optimization. The ar-
gument we have put forth compellingly shows that quantum com-
puters can indeed perform provably substantially better than 
classical computers on instances of approximating combinatorial 
optimization problems, in fact, featuring a super-polynomial speed-
up. To make contact with quantum approximate optimization, we 
also spell out how the problem instances can be written in terms of 
Hamiltonian optimization. While the results found here are highly 
motivating and do show the potential of quantum devices to tackle 
these practically relevant problems, it remains open to which extent 
this potential can be unlocked for short variational quantum circuits 
as they are accessible in near-term quantum computers.

This result is interesting due to the technical aspects in its own 
right—showcasing the potential of quantum computers to offer 
speedups when tackling combinatorial optimization problems. It is 
also interesting conceptually because it provides guidance on the 
question what type of speedups one can expect from further quan-
tum approximation algorithms. The present work does not suggest 
to solve NP-hard problems exactly on a quantum computer in poly-
nomial time. Instead, we provide a full proof for an in-principle 
quantum advantage for classically hard-to-approximate combinato-
rial optimization problems and along the way introduce a polyno-
mial reduction strategy. This can be seen as a positive result on the 
potential use of fault tolerant quantum computers and, possibly, 
variational quantum algorithms to address these problems.

Technical results
Technically, in this work, we show a quantum-classical separation for 
the computational task of approximating combinatorial optimization 
problems. To show this, one needs a set of combinatorial optimiza-
tion problem instances that are classically hard-to-approximate but 
for which we provide an efficient quantum approximation algorithm. 
For the classically hard-to-approximate problem instances, we build 
on the work of Kearns and Valiant (21), who have shown the classical 
hardness of approximating the solution of the so-called FC problem, 
a combinatorial optimization problem that generalizes the graph col-
oring problem. Before we proceed with the quantum efficiency part, 
we want to briefly explain the FC problem and how classical approxi-
mation hardness for specific instances can be obtained.

The FC problem is defined over a formula F with the integer vari-
ables z1, …, zm ∈ ℕ. The value of a variable acts as the color of the 
variable. A k-​coloring is an assignment of colors to the zi, described 
by a partitioning P of the variable set into k equivalence classes, such 
that two variables are in the same partition if and only if they are 
assigned the same color. We write zi = zj if and only if the two vari-
ables are assigned the same color, and hence, they are in the same 
partition in P. Otherwise, we write zi ≠ zj. Let us now give a formal 
definition of the FC problem.

Definition II.1 [FC problem (21)].
Instance: A Boolean formula F(z1, …, zm), which consists of con-

junctions of clauses of the form either (zi ≠ zj) or the form [(zi = zj) 
→ (zk = zl)].

Solution: A minimal coloring P for F(z1, …, zm), such that F is 
satisfied.

A minimal coloring to the FC problem is a coloring with the few-
est colors, i.e., ∣P∣ is minimal for all possible colorings, such that F is 
satisfied. To internalize, consider the example formula

which has the four coloring {{z1}, {z2}, {z3}, {z4}} satisfying the for-
mula and has the minimal coloring {{z1, z3}, {z2, z4}} using only two 
colors while satisfying the formula. It can be easily seen that one can 
encode the graph coloring problem into the FC problem by con-
structing a formula that only consists of clauses (zi ≠ zj) for each 
edge in the graph between nodes zi and zj. Thus, the FC problem 
belongs to the computationally hard-to-solve class of NP-complete 
problems. In this work, we show a quantum advantage for a specific 
subset of FC problems that are provably hard to even approxi-
mate, but for which, we present an efficient quantum approxima-
tion algorithm. Further, we give an approximation-preserving 
reduction from the FC problem to the integer linear program-
ming (ILP) problem, thus showing also a quantum advantage for 
integer programming.

Definition II.2 (ILP problem).
Instance: A linear objective function J over integer variables sub-

ject to linear constraints of the variables.
Solution: A valid assignment 𝒜 of the variables under the con-

straints, such that the objective function J(𝒜) is minimal for all as-
signments that satisfy the constraints.

So what is this subset of classically hard-to-approximate FC/ILP 
problem instances? Kearns and Valiant (21) show how one can clev-
erly encode the deterministic finite automaton (DFA) that decrypts 
an RSA ciphertext into the FC problem. That is to say, they show how 
to construct a set FC problem instances FC-RSA, where if one would 
be able to find the smallest (or even approximately small) coloring, 
then one would be able to learn a DFA that could decrypt RSA cipher-
texts. Because decrypting RSA ciphertexts is assumed to be intracta-
ble for classical computers, when the secret key is unknown, it follows 
that approximating the solutions to FC-RSA must be intractable. In 
this work, we substantially extend this result to ILP problems by de-
fining a subset ILP-RSA by means of a polynomial, approximation-
preserving reduction of FC-RSA to ILP. For the detailed description 
on how the hard-to-approximate instances are constructed and an 
in-depth explanation of why they are hard-to-approximate, we refer 
the reader to Materials and Methods. Specifically, the section “Quan-
tum efficiency” in the Materials and Methods presents an overview of 
the chain of reductions and further hardness results derived in (21).

Building on the machinery developed in (21), we prove the clas-
sical approximation hardness for the combinatorial optimization 
task of integer programming, i.e., for the specific subset of problem 
instances called ILP-RSA. As described before, the instances in ILP-
RSA cleverly encode the decryption of an RSA ciphertext, for which 
the secret cryptographic key is unknown. Hence, we obtain the fol-
lowing theorem, which must hold if inverting the RSA encrpytion 
function is computationally intractable for classical algorithms.

Theorem II.3 (Classical hardness of approximation for linear 
programming). Assuming the hardness of inverting the RSA func-
tion, there exist no classical probabilistic polynomial-time algorithm 
that, on input, an instance ILPF of ILP-RSA finds an assignment 𝒜 
of the variables in ILPF, which satisfies all constraints and approxi-
mates the optimal objective value optILP(ILPF) by

(z1 ≠ z2) ∧
[
(z1 = z3)→ (z2 = z4)

]
(1)
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for any α ≥ 1 and 0 ≤ β < 1/4.
The quantity optILP(ILPF) is the minimal objective function value 

possible under the constraints in ILPF, and ∣ILPF∣ denotes the size of 
the problem instance in some fixed encoding. The theorem above 
essentially states that there is no classical algorithm that finds an as-
signment 𝒜, such that the objective value J(𝒜) is upper bounded by 
some polynomial in optILP(ILPF) times a prefactor that is deter-
mined by the size of the problem. That is under the assumption that 
inverting the RSA function is not possible in polynomial time on a 
classical computer.

However, we show that there does exist a polynomial-time quan-
tum algorithm that finds an assignment 𝒜 of the variables that satis-
fies the constraints in ILPF, such that the objective value is smaller 
than some polynomial in optILP(ILPF).

Theorem II.4 (Quantum efficiency for ILP-RSA). There exists a 
polynomial-time quantum algorithm that, on input an instance 
ILPF of ILP-RSA, finds a variable assignment 𝒜 that satisfies all con-
straints and for which the objective function is bounded as

for all ILPF and for some α ≥ 1.
Essentially, the efficient quantum algorithm cleverly reads out 

the RSA parameters from an instance ILPF of ILP-RSA and then 
runs Shor’s algorithm for integer factorization, thereby reconstruct-
ing the secret RSA key. Given the RSA secret key, the algorithm can 
find an assignment of the variables in ILPF, such that the objective 
function is a polynomial in optILP(ILPFS). This yields the sought after 
super-polynomial quantum advantage for approximating the opti-
mal solution of combinatorial optimization problems. The nature of 
this advantage is illustrated in Fig. 1 (B and C). Note that the factor 
∣ILPF∣β in the hardness result (Theorem II.3) cannot decrease the
approximation gap because ∣ILPF∣β ≥ 1 for all β ∈ [0,1/4).

The quantum algorithm presented is distinctly not of a variation-
al type, as they are commonly proposed for approximating combi-
natorial optimization tasks using a quantum computer (10). It is still 
meaningful to formulate the optimization problem as an energy 
minimization problem to closely connect our findings to the perfor-
mance of variational quantum algorithms (11, 12) in near-term 
quantum computing. In Materials and Methods, we give the con-
struction on how the ILP at hand can be stated in terms of a qua-
dratic unconstrained binary optimization problems. All these 
problems can be directly mapped to Hamiltonian problems where 
the optimal objective value is equivalent with the ground state en-
ergy of the quantum Ising Hamiltonian.

DISCUSSION
In this work, we have made substantial progress on the important 
question of what potential quantum computers may offer for ap-
proximating the solution of combinatorial optimization problems. 
Given the social and economic impact of these problems and the 
large body of the recent literature on near-term quantum computing 
focusing on use cases of this kind, this is an important question.

We actually address this question from a fresh and unorthodox 
perspective. Equipped with tools from mathematical cryptography 
and materializing the Occam’s Razor framework in the reduction—
hence settling an open question—we technically present here that 

we prove a super-polynomial speedup for approximating the solu-
tion of instances of NP-hard combinatorial optimization problems 
using a fault tolerant quantum computer. We explicitly show these 
speedups for instances of the much discussed ILP, which are proven 
to be hard to approximate by classical computations.

In this work, we provide the end-to-end construction of the ad-
vantage bearing instances, allowing further work to gain valuable 
insights into the quantum advantage for combinatorial optimiza-
tion. Such instances are expected to prove to be useful to compare 
quantum versus classical optimization algorithms and provide a 
fruitful arena for future research in this field. The work here shows 
and provides guidance for the discussion of what one can reasonably 
hope for when discussing the potential of near-term quantum algo-
rithms to tackle problems of combinatorial optimization.

MATERIALS AND METHODS
Preliminaries
Notation and acronyms
For what follows, some notation will be required. We will heavily 
build on literature from the cryptographic context and hence make 
use of substantial notation that is common in this context. By {0,1}n, 
we will denote the set of n-bit strings, whereas {0,1}* are arbitrary 
finite length bit strings. 2X is the power set of X, for X being a set. 
1(a) is the indicator function that equates to 1 if a is true and 0 oth-
erwise. LSB(x) is the least significant bit (LSB) of x. ℤN is the residue 
class ring ℤ/Nℤ. The application of the function binary (x1, …, xk) 
explicitly converts its inputs x1, …, xk to a single coherent bit string 
using some fixed binary encoding. The result established in this 
work is based on a series of reductions between various classes of 
computational problems and brings them together in a fresh fash-
ion. While each of the terms is introduced explicitly in the subse-
quent sections, we summarize them here in Table 1 for the reader’s 
convenience.
Deterministic finite automata
DFAs (26) are models in computation theory, used for modeling 
systems with a finite number of states. A DFA is formally defined as 
a quintuple (Q, Σ, λ, q0, ω), where Q is a finite set of states, Σ is a finite 
set of symbols, constituting the automaton’s alphabet, λ : Q × Σ → Q 
is the transition function, q0 ∈ Q represents the start state, and 
ω ⊆ Q denotes the set of accept states.

The DFA operates on a string composed of symbols from 
Σ. Beginning from the start state q0, it transitions between states ac-
cording to the transition function λ. Upon processing the entire 
string, if the DFA is in a state that is part of ω, then the string is ac-
cepted by the DFA; otherwise, it is rejected. Figure  2 presents a 
graphical illustration of an exemplary DFA. It is known that DFAs 
recognize exactly the set of regular languages (26).
Representation classes
To show a quantum-classical separation for a computational task, 
one needs a classically hard problem. Many computational tasks 
that are hard for classical computers may be derived from cryptog-
raphy, where it can be shown that under cryptographic assumptions 
(such as “factoring is hard”), learning certain concepts or properties 
about a specific cryptographic function is hard. In particular, in this 
work, we are concerned with how these concepts are represented 
and how large these representations are. To do this, let us introduce 
the notion of representation classes that capture the model of con-
cepts in a precise manner. Let X ⊆ {0,1}* be a set of binary strings

J(�) ≤ optILP(ILPF)
α∣ILPF∣

β (2)

J(�) ≤ optILP(ILPFS
)α
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with finite length, called the domain, which encodes all objects of 
interest to us. For example, X may be the set of all images or X may 
be the set of all music songs. A concept over X is described by a 
subset of X, which is defined via {x ∈ X ∣ concept is true for x}. A 
concept may be for example “depicts a tree” or “is a happy song.”

We are in particular interested in how a concept is represented. 
Different representations for a concept can, for example, be Boolean 
circuits, Boolean formulae, Turing machines, or DFA (26). We, 

therefore, define a representation class over X to be the pair (σ, C), 
where C ⊆ {0,1}* is the set of representation descriptions, for exam-
ple, the set of descriptions for Boolean circuits or finite automata. 
The function σ : C → 2X maps a representation description to a con-
cept. For example, σ maps a DFA to the set of bit strings that it ac-
cepts or a Boolean formula to its satisfying assignments. We will 
sometimes denote (σ, C) simply by C if σ is clear from the context. 
Figure  3 visualizes the relationship between representations and 
concepts.

Observe that for all c ∈ C, σ(c) is a concept over X and the entire 
image space σ(C) is called the concept class represented by the rep-
resentation class (σ, C). We denote by ∣c∣ the length of the represen-
tation description using some standard encoding. In addition, for a 
representation c ∈ C, we denote by c(x) = 1 [if x ∈ σ(c)] the label of 
x under the concept σ(c), with the index function 1. Furthermore, a 
labeled sample

of a concept σ(c) is a set of labeled examples from a subset X̃ of the 
domain X. Note that a sample consists of multiple examples. Last, let 
(ϕ, H) be another representation class over X and let D be a proba-
bility distribution over X. For any h ∈ H, we define the error of h 
under D with respect to a target representation c as

Polynomial-time reductions
Polynomial-time reductions are an important building block of 
this work, as they will be an integral part of our proof of a 

S =
{[

x, c(x)
]
∣x ∈ �X ⊆ X

}
(3)

errorc,D(h) = Prx∼D[c(x) ≠ h(x)] (4)

Table 1. An overview of notation and acronyms used in this manuscript. 

Acronym Meaning Section/definition

Eval Evaluation problem Definition IV.1

Con Consistency problem Definition IV.2

optCon(S) Size of the minimal consistent representation class Learning of representations

A.P.R approximation-preserving reduction Reductions among representations

RSA Rivest-Shamir-Adleman asymmetric cryptosystem The RSA encryption function

LSB Least significant bit The RSA encryption function

BC Polysize log-depth Boolean circuits Reductions among representations

C-RSA Boolean circuits inverting RSA Definition IV.5

DFA Class of deterministic finite automata Deterministic finite automata

DFA-RSA Subclass of DFAs computing the LSB of RSA Classical approximation hardness for more  
representation classes

FC Formula coloring problems Definition II.1

FC-RSA Subclass of FC encoding the solution to  
Con(DFA-RSA, DFA)

Approximation hardness of formula coloring

BF Boolean formulas Reductions among representations

BF-RSA Subclass of BF computing the LSB of RSA Classical approximation hardness for more  
representation classes

LSTM Log-space Turing machine Approximation hardness of formula coloring

LSTM-RSA subclass of LSTM computing the LSB of RSA Classical approximation hardness for more  
representation classes

ILP Integer linear programs Definition IV.10

ILP-RSA Subclass of ILP encoding the solution to FC-RSA Classical approximation hardness for more  
representation classes

Fig. 2. Example of a DFA. The DFA is represented as a quintuple (Q, Σ, λ, q0, ω), 
where Q = {q0, q1, q2}, Σ = {a, b}, λ is defined by the transitions (e.g., λ(q0, a) = q1, 
λ(q0, b) = q2, etc.), q0 is the initial state, and ω = {q2} is the set of accept states.
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quantum-classical computational separation for combinatorial opti-
mization problems. Building on the work of Kearns and Vazirani 
(27), reductions are required to “carry over” classical hardness re-
sults of representation learning to combinatorial optimization prob-
lems. At the same time, we find that quantum computers can break 
the construction and lead to a quantum advantage for combinato-
rial optimization. Let us now introduce the notion of general 
polynomial-time reductions among computational problems.

Let A, B be two computational problems. Consider the function 
τ to map an instance 𝒜 of A to an instance τ(𝒜) of B. Furthermore, 
let g be a function that maps from the solution space of B to the solu-
tion space of A. The pair of functions (τ, g) is a polynomial-time 
reduction from A to B, if τ, g are computable in polynomial time and 
if yℬ is a solution of τ(𝒜) if and only if g(yℬ) is a solution of A.

Note that while τ maps instances from A to B, g works in the 
backward direction, mapping solutions of B to A. This will be 
important for reductions between combinatorial optimization 
problems. In some cases, where g is the identity, we call the re-
duction simply by the instance transformation τ. Further, we de-
note by A≤pB (“A polynomial time reduces to B”) if there exists a 
polynomial-time reduction from A to B. Note that because the run 
time of τ and g are at most polynomial in their inputs, the outputs 
can be larger than the inputs at most by a factor of poly(∣𝒜∣), 
poly(∣yℬ∣), respectively.
Reductions among representations
To understand our proof of the quantum advantage in combinato-
rial optimization, we require polynomial-time reductions among 
the evaluation problem of representation classes. Intuitively, these 
reductions show that one representation class is at least as powerful 
as another and that they can be transformed into each other. In (21), 
these reductions have been used to derive (classical) computation-
ally hard problems for different representations. First we define a 
technical construction, the evaluation problem.

Definition IV.1 [Evaluation problem Eval(C)].
Instance: The pair (c, x), where C is a representation class over 

the domain X, c ∈ C is a representation description, and x ∈ X.
Solution: The result c(x) of c on x.
Let n ∈ ℕ and define BCn to be the representation class of poly-

nomially evaluable Boolean circuits with domain X = {0,1}n and

with depth O[log (n)] and size O[poly(n)], and let BC = ∪n≥1BCn. In 
a similar manner, define BF to be the representation class of Boolean 
formulae of polysize, define LSTM to be the representation class of 
log-space Turing machines and, lastly, define DFA to be the repre-
sentation class of deterministic finite automata (26) of polysize. It 
holds that

Subsequently, we sketch the proof ideas for the three reductions 
above. The full proofs can be found in (27) and (21). From here on 
after, we consider n to be the size of the input to a Boolean cir-
cuit in BC.

In Eq. 5 We denote this polynomial-time reduction by τ1. Recall 
that τ1 is the instance transformation algorithm and the solution 
transformation is the identity. Let c be a Boolean circuit in BC with 
depth d = O[log (n)] and size s = O[poly(n)]. Every Boolean circuit 
can be identified with a directed acyclic graph where each vertex has 
fan-in at most 2. The instance transformation in the reduction goes 
by starting at the output vertex of c and recursively building the 
Boolean formula f by walking back through c and substituting claus-
es in f. f will then consist of at most 2d clauses over n variables, which 
is size O[poly(n)]. Clearly, c and f compute the same function, the 
reduction (Eq.  5) holds because the transformation can be per-
formed by an O[poly(n)]-time algorithm. We have τ1(c, x) = (f, x).

In Eq. 6 we denote this polynomial-time reduction by τ2. This 
reduction uses the fact that we can transform any Boolean formula f 
to a log-space Turing machine m that, on input, x computes m(x) = 
f(x) in time O[poly(n)]. The details for this transformation can be 
found in (27). Again, we denote the operation of this instance trans-
formation algorithm as τ2(f, x) = (m, x).

In Eq.  7 we denote this polynomial-time reduction by τ3. The 
reduction uses a transformation of log-space Turing machines to 
DFA (26). In particular, for each log-space Turing machine m, one 

Eval(BC)≤pEval(BF) (5)

Eval(BF)≤pEval(LSTM) (6)

Eval(LSTM)≤pEval(DFA) (7)

Fig. 3. The interplay between representations and concept. The domain X can formally be seen as a set of finite bit strings. Concepts are subsets of the domain, which 
can be described by representations c ∈ C. Together with the map σ, mapping representations to concepts, the tuple (σ, C) is called a representation class.
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can construct a DFA t that, on input of polynomially, many copies of 
the original input x simulates m (27). Note that in the reduction 
here, the input is transformed, such that x is repeated p(n) many 
times and then taken as the input to t, where p is a polynomial in n. 

We thus have τ3(m, x) =

⎡
⎢⎢⎢⎣
t, x, … , x

⏟⏟⏟

p(n)times

⎤
⎥⎥⎥⎦
 , such that

Sometimes we are only interested in the transformation of the 
representation description and not in the input x. If we say that we 
transform a representation description c using τ1,2,3, then we omit 
the second input x and simply write τ1,2,3(c). Recall that in the reduc-
tions above, because the instances are transformed by polynomial-time 
algorithms, the output instances can be larger than the input at most 
by a polynomial factor.
Learning of representations
To obtain a classical hardness result for approximation tasks, the 
work of Kearns and Valiant (21) use the so-called Occam learning 
framework (28). Generally speaking, the Occam learning frame-
work makes a connection between nearly minimal hypotheses, 
which are consistent with observations and the ability to generalize 
from the observed data in the sense of probably approximately cor-
rect (PAC) learning. To introduce this formalism, let (σ, C), (ϕ, H) 
be two representation classes over the domain X ⊆ {0,1}n. In the fol-
lowing, we write C for (σ, C) and H for (ϕ, H) and denote the two 
representation descriptions c ∈ C and h ∈ H as elements of the set of 
representation descriptions of (σ, C) and (ϕ, H). Given a labeled sample

of m examples, we say that h ∈ H is consistent with S if and only if 
c(xi) = h(xi) for all i = 1, …, m. The x1, …, xm ∈ X might be drawn at 
random according to a distribution D over X. We denote by optCon(S) 
the size of the smallest h ∈ H that is consistent with S. The consis-
tency problem is defined as follows:

Definition IV.2 [Consistency problem Con(C, H) (21)].
Instance: A labeled sample S of some c ∈ C.
Solution: h ∈ H, such that h is consistent with S and ∣h∣ is 

minimized.
We denote by Con(C, H) the problem of finding a minimal h ∈ H 

that is consistent with some labeled sample S of some c ∈ C, and 
likewise, we call such a minimal consistent h a solution to the con-
sistency problem of an instance S of Con(C, H). Occam’s razor 
makes a connection between the consistency problem and the abil-
ity to learn one representation class by another. In this context, 
learning is defined as follows: Let 0 ≤ ϵ < 1 and 0 < δ ≤ 1. An (ϵ, 
δ)-PAC (29) learning algorithm for C by H outputs an h ∈ H, such 
that errorc,D(h) ≤ ϵ with a probability at least 1 − δ (for all distribu-
tions D over X and all c ∈ C).

We are now in the position to introduce the core theorem of this 
section, which connects the task of PAC learning and an approxima-
tion task. Intuitively, the following theorem states that finding a hy-
pothesis that explains the observed data (i.e., is consistent with S) 
and is substantially more compact than the data is sufficient for PAC 
learning.

Theorem IV.3 [Occam’s razor (21, 28)]. Given a labeled sample S 
of c of size

where the m examples have been sampled independently from D 
and for some fixed α ≥ 1 and 0 ≤ β < 1, any h that is consistent with 
S and which satisfies

does also satisfy errorc,D(h) ≤ ϵ with a probability at least 1 − δ.
Here, α and β are fixed values for the Occam’s razor prescription, 

the intuition for them being hinted at in (28). When m is fixed to a 
sufficiently large number, fulfilling the scaling of the above theorem, 
then α can be seen as reflecting the property that optCon(S)α bounds
some polynomial in optCon(S) and β can hence be viewed as a “com-
pression parameter.” If β = 0, we have complete compression. Then, 
the algorithm provides a consistent hypothesis of complexity at 
most optCon(S)α, independent of the sample size. The sample size 
needed is then m = O

(
1

ϵ
log 1

δ

)
 . For β → 1, we actually have not 

learned much because almost all of S can be encoded in h.
Then, note that the size of S is a polynomial in 

(
n, 1

ϵ
, 1
δ

)
 . The 

variable α resembles that ∣h∣ must be smaller than some polynomial 
in the optimal solution size, while β forces that h does not simply 
hard-encode S. Clearly, it follows that any algorithm that for all c ∈ 
C and all D on input S sampled according to D of size poly

(
n, 1

ϵ
, 1
δ

)

outputs an h ∈ H with ∣h∣ upper bounded as in the “Theorem IV.3” 
is a PAC learning algorithm for C by H. Learning C by H can be in-
terpreted as an approximation task. Specifically, the task is to ap-
proximate the optimal solution optCon(S), which is the size of the 
smallest representation consistent with S by ∣h∣, where h is a repre-
sentation that is also consistent with S for any S of sufficient size. An 
algorithm achieving such an approximation within a factor of 
optCon(S)α−1∣S∣β, for all S with ∣S ∣ = poly

(
n, 1

ϵ
, 1
δ

)
 , is an (ϵ, δ)-PAC 

learner for C. In the remainder of this work, when we say that some 
“algorithm approximates the solution of the Con(C, H) problem,” 
we mean that the algorithm outputs an h, such that ∣h∣ approximates 
optCon(S) by a factor optCon(S)α−1∣S∣β, where h has the important
property of being consistent with S. This sense of approximation 
might seem unnatural, but the Con problem will later be reduced to 
a combinatorial optimization task, where it is natural to approxi-
mate some scalar quantity and satisfy some constraints.
Formula coloring problem
We now introduce the formula coloring problem (FC) that takes the 
center stage in our later argument. It is a combinatorial optimization 
problem that has originally been introduced in (21) as a generaliza-
tion of the more common graph coloring problem. It is an optimiza-
tion problem of the type as is frequently considered in notions of 
quantum approximate optimization: In a subsequent section, we 
will formulate this problem as a problem of minimizing the energy 
of a commuting local Hamiltonian to make that connection explicit. 
It is one of the main results of this work to show a super-polynomial 
quantum advantage for FC and integer programming. Let z1, …, zm 
∈ ℕ be the variables in a Boolean formula, each being assigned an 
integer value, which acts as the integer valued color of the variable. 
That is to say, each of the variables z1, …, zm takes exactly one of the 
possible values referred to as colors. We regard an assignment of 
colors to the zi (called a coloring) as a partition of the variable set 

m(x) = t(x, … , x) (8)

S =
{[
x1, c(x1)

]
, … ,

[
xm, c(xm)

]}
(9)

m = O

[
1

ϵ
log

1

δ
+
(
nα

ϵ
log

nα

ϵ

)1∕(1−β)
]

(10)

∣h∣ ≤ optCon(S)
α ∣S∣β (11)
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into equivalence classes. That is to say, two variables have the same 
color if and only if they are in the same equivalence class. For the FC 
problem, we consider Boolean formulae F(z1, …, zm), which consist 
of conjunctions of two types of clauses. On the one hand, these are 
clauses of the form (zi ≠ zj). This is, in fact, precisely of the form as 
the clauses of the more common graph coloring problem. On the 
other hand, there are clauses of the form [(zi = zj) → (zk = zl)]. This 
material conditional, as it is called in Boolean logic, can equivalent-
ly and possibly more commonly be written as

A coloring is an assignment of colors to the zi, described by a parti-
tioning P of the variable set into k equivalence classes, i.e., ∣P∣ = k. 
This means that zi = zj if and only if they are in the same partition of 
the k partitions in P. We are now in the position to formulate the 
FC problem.

Definition IV.4 [Formula coloring problem FC (21)].
Instance: A Boolean formula F(z1, …, zm) which consists of con-

junctions of clauses of the form either (zi ≠ zj) or the form [(zi = zj) → 
(zk = zl)].

Solution: A minimal coloring P for F(z1, …, zm) such that F is 
satisfied.

A minimum solution to the FC problem is a coloring with the 
fewest colors, i.e., ∣P∣ is minimal for all possible colorings, such that 
F is satisfied. The example given in (21) is the formula

has as a model the two-color partition {z1, z3}, {z2, z4} and has as a 
minimum model the one-color partition {z1, z2, z3, z4}. The FC prob-
lem is obviously NP-complete, as the problem is in NP and graph 
coloring is NP-hard.
The RSA encryption function
Throughout this work, we will make use on the hardness of invert-
ing the RSA encryption function (30), which forms the foundation 
of the security of the RSA public key cryptosystem, one of the ca-
nonical public key crypto systems and presumed to be secure against 
classical adversaries (31).

Let N = p × q be the product of two primes p and q, both of 
similar bit length. Define Euler’s totient function ϕ, where ϕ(N) is 
equal to the number of positive integers up to N that are relative 
prime to N. It holds that xϕ(N) = 1 mod N. When two parties, which
we refer to as Bob and Alice, wish to communicate via an authen-
ticated but public channel, they can do so as follows: First, Alice 
generates two primes p and q of similar bit length and computes 
their product N = p × q. Then, Alice generates a so-called public-
private key pair (d, e), where d is the secret key satisfying d × 
emodϕ(N) = 1 and e is the public exponent. Alice shares the public 
key (e, N) with Bob over the public channel. We define the RSA 
encryption function for a given exponent e, a message x ∈ ℤN, and 
a modulus N as

To encrypt a message x ∈ ℤN, Bob simply computes the output of the 
RSA encryption function, given N and e. Bob then sends the cipher-
text c = xe mod N to Alice, who decrypts the ciphertext by comput-
ing cd mod N = (xe)d mod N = x1+i×ϕ(N) mod N = x mod N, where
the last step follows from the fact that xϕ(N) = 1 mod N and e × d =
1 + i × ϕ(N) for some i ∈ ℕ because e × d mod ϕ(N) = 1.

The security of the RSA cryptosystem is closely related on the 
presumed hardness of integer factoring and, more generally, is based 
on the presumed hardness of inverting the RSA encryption function 
without knowledge of the secret key d. That is, there is no known 
classical polynomial-time algorithm that, given [RSA(x, N, e), N, e] 
outputs x. On a quantum computer, however, Shor’s algorithm (1) 
can be used to factor the integer N in polynomial time. This im-
mediately gives rise to a quantum polynomial time algorithm that 
inverts the RSA encryption function—simply factor the public 
modulus using Shor’s algorithm and then compute ϕ(N) = (p − 1) × 
(q − 1). Then, one can find a d, such that e × dmodϕ(N) = 1 by using 
the extended Euclidean algorithm. In summary, under the standard 
cryptographic assumption that the RSA encryption function is 
hard to invert, Shor’s algorithm thus gives rise to a computational 
quantum-classical separation. As we will show, this separation ex-
tends to the approximation of combinatorial optimization problems 
as well.

Throughout this work, we will make use of the fact that deter-
mining the LSB of x, given that RSA(x, N, e) is as hard as inverting 
the RSA encryption function. Formally, Alexi et  al. (32) have 
proven that if there exists a classical polynomial-time algorithm 
that finds the LSB of x, given RSA(x, N, e), then there exists a clas-
sical polynomial-time algorithm that inverts the RSA encryption 
function.

Classical hardness of approximation
To show our quantum advantage, we require a classical hardness re-
sult and quantum efficiency result. In this section, we establish the 
classical hardness of approximating combinatorial optimization so-
lutions. We build on the results of Kearns and Valiant (21), where 
the hardness of approximation tasks has been established. Further-
more, their work shows how these hard-to-approximate problems 
can be reduced to the combinatorial optimization problem of 
FC. We then extend these results by showing an approximation-
preserving reduction from FC to ILP. These results will constitute 
the classical hardness part for the quantum-classical separation we 
show. Figure 4 gives a high level overview of the results presented in 
this section.
Approximation hardness of the Con problem
In this subsection, we present the result that approximating the so-
lution of Con(DFA, DFA) is hard using a classical computer (21). 
This result is obtained through the assumption that inverting the 
RSA encryption function is hard, a widely accepted cryptographic 
assumption. To do this, one defines a class of Boolean circuits that 
essentially decrypt a given RSA ciphertext and output the LSB of the 
clear text. Intuitively, the authors in (21) show that, because PAC 
learning these Boolean circuits is hard (otherwise one would be able 
to invert RSA), the approximation of these decryption circuits by 
any polynomially evaluable representation class in the sense of the 
“Theorem IV.3” must also be hard using a classical computer. They 
then show that this implies that approximating the solution of 
Con(DFA, DFA) must also be hard. To follow the argumentation in 
(21), let N ∈ ℕ and x ∈ ℤN and define

as the sequence of the first log(N) + 1 square powers of x.

[
(zi ≠ zj) ∨ (zk = zl)

]
(12)

(z1 = z2) ∨
[
(z1 ≠ z2) ∧ (z3 ≠ z4)

]
(13)

RSA(x,N , e) = xemod N (14)

powersN (x)≔xmodN , x2modN , x4modN , …

… , x2
log(N)

modN
(15)
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Definition IV.5 [Boolean circuit for the LSB of RSA (21)]. Let 
C-RSAn ⊂ BCn and C-RSA = ⋃n≥1 C-RSAn be the representa-
tion class of log-depth, poly-size Boolean circuits that on input
binary{powersN[RSA(x, N, e)], N, e} and output LSB(x) for all x ∈ 
ℤN. Each representation in C-RSAn is defined by a triple (p, q, e), 
and this representation will be denoted as r(p,q,e), where p and q are 
primes of exactly n/2 bits and e ∈ ℤN and N = p · q.

An example of r(p,q,e) ∈ C-RSAn is of the form

with x ∈ ℤN.
It is important to note at this point that the calculation of the LSB 

of x, given the input binary{powersN[RSA(x, N, e)], N, e} can indeed 
be performed by a O[log (n)]-depth, poly(n)-size Boolean circuit if 
the decryption key d is known (21). In Fig. 5, we depict a schematic 
picture of such a Boolean circuit in C-RSA. Because learning the 
LSB of the cleartext is as hard as inverting the RSA function (32), 
which is widely assumed to be intractable for classical computers, 
Kearns and Valiant (21) show the classical approximation hardness 
of Con(C-RSA, H), where H is any polynomially evaluable represen-
tation class. The following theorem states that (assuming the classi-
cal hardness of inverting RSA) and given some sample S of some 
r(p,q,e) ∈ C-RSA, no polynomial-time classical algorithm can output 
a hypothesis h ∈ H that is consistent with S and only polynomially 
larger than the smallest possible hypothesis.

Theorem IV.6 [Classical approximation hardness of C-RSA 
(21)]. Let H be any polynomially evaluable representation class. As-
suming the hardness of inverting the RSA function, there exists no 
classical probabilistic polynomial-time algorithm that on input an 

instance S of Con(C-RSA, H) finds a solution h ∈ H that is consistent 
with S and approximates the size optCon(S) of the optimal solution by

for all S and any α ≥ 1 and 0 ≤ β < 1.

Because ∣S∣ = n ×m = n × poly
(
n,

1

ϵ
,
1

δ

)
 and α ≥ 1 we get that 

the optimal size optCon(S) cannot be approximated up to a polyno-
mial factor, holding for all classical probabilistic polynomial-time 
algorithms, where the sense of approximation is explained in detail 
in “Learning of representations.”
Classical approximation hardness for more 
representation classes
Furthermore, Kearns and Valiant (21) show that the approximation 
hardness of C-RSA implies approximation hardness for Boolean 
formulae, log-space Turing machines, and DFAs. In particular, let 
BF-RSA be the class of Boolean formulae that we obtain when 
we reduce every instance in C-RSA using τ1, i.e., BF-RSA = {F∣(F, 
x) = τ1(I)andIinstanceofEval(C-RSA)}. In a similar manner, LSTM-
RSA is the class of log-space Turing machines that we obtain when
we reduce B-RSA using τ2, and lastly, DFA-RSA is the class of DFAs 
that we obtain when using τ3 on BF-RSA. Because the evaluation 
problem of resulting representations are poly-time reducible to 
each other and are at most polynomially larger, the following 
holds (21):

Theorem IV.7 [Classical approximation hardness of more repre-
sentations (21)]. Let H be any polynomially evaluable representa-
tion class. Assuming the hardness of inverting the RSA function, 
there exists no classical probabilistic polynomial-time algorithm 
that, on input an instance S of (i) Con(BF-RSA, H), (ii) Con(LSTM-
RSA, H), or (iii) Con(DFA-RSA, H), finds a solution h ∈ H that is 
consistent with S and approximates the size optCon(S) of the optimal 
solution by

for all S and any α ≥ 1 and 0 ≤ β < 1. Specifically, note that approxi-
mating the solution of Con(DFA-RSA, DFA) is at least as hard as to 
approximate the solution of Con(DFA-RSA, H).
Approximation hardness of formula coloring
In this work, we are interested in showing a quantum advantage for 
approximating the solution of combinatorial optimization prob-
lems. Therefore, we require a classical approximation hardness re-
sult for a combinatorial optimization problem. To that end, the work 
of Kearns and Valiant (21) gives an approximation-preserving 

(
binary

{
powersN

[
RSA(x, N, e)

]
,N , e

}
, LSB(x)

)
(16)

∣h∣ ≤ [optCon(S)]
α∣S∣β

∣h∣ ≤ [optCon(S)]
α∣S∣β

Fig. 4. The reduction chain from the consistency problem to combinatorial 
optimization problems. In "Approximation hardness of the Con problem," we in-
troduce Boolean circuits, whose sizes are hard to approximate by ∣h∣, where h is a 
hypothesis that is consistent with a sample labeled by the circuits. This directly 
implies the approximation hardness of Con(DFA, DFA). In "Approximation hard-
ness of formula coloring," we present an approximation-preserving reduction from 
Con(DFA, DFA) to FC (21). We then extend the results of Ref. (21) by showing in 
"Approximation hardness of integer linear programming" an approximation-
preserving reduction from FC to ILP, yielding the approximation hardness for ILP.

Fig. 5. A Boolean circuit in the class C-RSA. The input to the circuit in C-RSA is the power sequence of the RSA ciphertext of RSA(x, N, e) = y. The circuit computes the LSB 
of x by simply performing modular multiplication on the 2ith powers of the power sequence where the secret key bit di = 1, for the secret key d. Thereby, the secret key d
is hard-wired into the circuit, and the decryption x = yd mod N is explicitly performed. This can be done in an O[log (n)] deep circuit (36).
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reduction from the Con(DFA, DFA) problem to the FC problem, 
which is a combinatorial optimization problem. We denote the 
approximation-preserving reduction from Con(DFA, DFA) to FC 
by (τ4, g1), where we will explicitly give the construction of the in-
stance transformation τ4, which maps an instance S of Con(DFA, 
DFA) to an instance FS of FC. First, observe that S contains the 
examples (w1, b1), (w2, b2), …, (wm, bm), where wi ∈ {0,1}k and the
labels bi ∈ {0,1}. The formula FS will be over variables zj

i
 , where 1 ≤ 

i ≤ m and 0 ≤ j < k. Essentially, each variable zj
i
 will correspond to 

the state that a consistent DFA would be in after reading the jth 
bit of wi.

We now give the construction for the formula FS: For each i1, i2 
and j1, j2, such that 0 ≤ j1, j2 < k and wj1+1

i1
= w

j2+1

i2
 , we add the 

predicate

to the conjunctions in FS. Intuitively, this encodes that for two in-
puts, wi1, wi2, a DFA that is in the same state for both inputs and then 
reads the same symbol for both those strings next, the resulting state 
should also be the same. To ensure that the DFA is consistent with 
the labels of the sample as well, for each 1 ≤ i1, i2 ≤ m, such that 
bi1 ≠ bi2, we add the predicate

to the conjunctions in FS. Those clauses encode the fact that for dif-
ferent labels, the states (after reading the whole input) of a consistent 
DFA must be different because any state can either only accept 
or reject.

If ∣S∣ is the number of bits in S, then the resulting FS consists of 
Θ(∣S∣ 2) many clauses. For the solution transformation g1, as well as 
the proof that this reduction is indeed correct, we refer to the proof 
in (21). Note that by the construction above, the bits of the examples 
are now encoded in the clauses of FS together with the correct 
working of the DFA and the solution (the structure of the minimal 
DFA) is the minimal coloring of FS. Because of the results in (21), 
the following theorem holds:

Theorem IV.8 [Reduction of Con(DFA, DFA) to FC (21)]. 
There is a polynomial time algorithm τ4 that on input an instance S 
of the problem Con(DFA, DFA) outputs an instance FS of the FC, 
problem such that S has a k-state consistent hypothesis M ∈ DFA if 
and only if FS has a coloring P, with ∣P∣ = k.

Note that the algorithm τ4 is precisely the instance transforma-
tion of the reduction (τ4, g1), and we have

In particular, it holds that

where FC-RSA is the class of FC problems that result out of run-
ning τ4 (introduced in “Approximation hardness of formula color-
ing”) on the instances in the problem Con(DFA-RSA, DFA). In 
particular, g1 transforms the minimal solution of FC into the mini-
mal solution of Con(DFA, DFA), thus optFC(FS) = optCon(S) (due to 
Theorem IV.8) and ∣FS∣ = Θ(∣S∣ 2). From those two facts, it follows 
that finding a valid coloring P of FS, such that ∣P∣ ≤ optFC(F)α∣F∣β′,

would contradict Theorem IV.7 for the parameter range α ≥ 1, 0 ≤ β′ < 
1/2. Thus, the reduction (τ4, g1) preserves the approximation 
hardness of Con(DFA-RSA, DFA) in the sense of the following 
theorem (21):

Theorem IV.9 [Classical hardness of approximation for coloring 
(21)]. Assuming the hardness of inverting the RSA function, there 
exists no classical probabilistic polynomial-time algorithm that on 
input an instance FS of FC-RSA finds a valid coloring P that ap-
proximates the size optFC(FS) of the optimal solution by

for any α ≥ 1 and 0 ≤ β < 1/2.
In a similar mindset, we present an approximation preserving 

reduction of FC to the ILP problem in the subsequent section.
Approximation hardness of ILP
In this section, we show an approximation-preserving reduction of 
the FC problem to the problem of ILP. ILP is an NP-complete prob-
lem, in which many practically relevant combinatorial optimization 
tasks are formulated, such as planning or scheduling tasks (33). The 
problem is to minimize (or maximize) an objective function that 
depends on integer variables. In addition, there are constraints on 
the variables that need to be followed. Let us define an ILP problem 
within our formalism:

Definition IV.10 [ILP problem (ILP)].
Instance: An linear objective function over integer variables sub-

ject to linear constraints of the variables.
Solution: A valid assignment of the variables under the con-

straints, such that the objective function is minimal.
We now show the reduction (τ5, g2) of FC to ILP by first giving 

the instance transformation τ5:
Let F(z1, …, zM) be a FC instance over variables z1, …, zM ∈ ℕ, 

which is a conjunction of Q clauses of the form (zu ≠ zv) and R claus-
es of the form [(zu = zv) → (zk = zl)] {which is equivalent to [(zu = 
zv) ∨ (zk ≠ zl)]}. For 1 ≤ u, i ≤ M and 1 ≤ j ≤ R, we introduce the ILP 
variables wi, xu,i, aj, bj, sj ∈ {0,1} and 1 ≤ ẑu ≤M , where ẑu resembles 
the variable zu in F, wi indicates if the ith color is used, and xu,i indi-
cates if the variable ẑu = i and aj, bj, sj are helper variables.

Note that for some k-coloring P = {P1, …, Pk} of F, the clause (zu = 
zv) in F is true iff zu, zv ∈ Pi for some color i. On the other hand, 
the clause (zu ≠ zv) in F is true iff zu ∈ Pi and zv ∈ Pi for some color 
i. In our ILP construction, we introduce an analog variable to zu,
namely, ẑu , where ẑu directly takes as value the color i, i.e., ẑu = i iff 
zu ∈ Pi.

By our construction, we get the ILP problem ILPF

subject to the following constraints

[(z
j1

i1
= z

j2

i2
)→ (z

j1+1

i1
= z

j2+1

i2
)] (17)

(zk
i1
≠ zk

i2
) (18)

Con(DFA,DFA)≤pFC (19)

Con(DFA-RSADFA)≤pFC-DSA (20)

∣P∣ ≤ optFC(F)
α∣F∣β (21)

minimize
∑

1≤ i≤M

wi (22)

for all u, i∈{1, … ,M}, (xu,i =1)⟺ (ẑu= i) (23)

for all u ∈ {1, … ,M},

M∑
i=1

xu,i = 1 (24)

for all u, i ∈ {1, … ,M}, xu,i ≤ wi (25)

for allQ clauses (zu≠ zv) and all i∈{1, … ,M}, xu,i+xv,i ≤1(26)
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Before explaining the constraints, let us note that for the sake of un-
derstanding, we display here logical clauses in Eqs. 23, 27, 28, and 
29, although they are technically not ILP constraints. We refer to 
“Modelling logical clauses as inequality constraints” on how the 
logical clauses in Eqs. 23, 27, 28, and 29 are concretely converted to 
inequality constraints.

We define the binary variable wi to be 1 if color i is used. Hence, 
the minimization task at hand over the wi′s corresponds to finding 
the minimal coloring of F. Constraint Eq. 23 defines the binary vari-
able xu,i to be 1 iff ẑu = i , i.e., indicating that zu ∈ Pi. Constraint Eq. 
24 ensures that any variable is assigned to exactly one color. Con-
straint Eq. 25 ensures that if there is some zu ∈ Pi, then wi = 1 be-
cause color i is used. Constraint Eq. 26 encodes the (zu ≠ zv) clauses 
in F, i.e., that zu, zv are not assigned the same color. Constraints Eqs. 
27, 28, 29, and 30 encode the [(zu ≠ zv) ∨ (zk = zl)] clauses in F.

In total, we get M(4M + Q + 1) + 12R constraints and 2M(M + 
1) + 5R variables, which are polynomial in the size of F. Thus, τ5 is
indeed computable in polynomial time. Now, the solution transfor-
mation g2 simply works by partitioning the variables zu, zv into the
same set iff ẑu = ẑv . Clearly, g2 is computable in polynomial time.
We show that (τ5, g) is indeed a reduction of FC to ILP by proving
an even stronger result:

Theorem IV.11 (Reduction of FC to ILP). Let τ5 be a polynomial-
time algorithm that on input an instance F  (z1, …. zM) of the FC 
problem FC outputs an instance ILPF of the ILP problem. Let g2 be 
a polynomial-time algorithm that on input an assignment A of ILPF 
outputs a coloring P of F. There exist τ5 , g2, such that P is a valid k-​
coloring of F if and only if A is a valid assignment of the variables in 
ILPF, such that the objective function of ILPF is k.

Proof. Let τ5 and g2 be the algorithms described in the beginning 
of this section.

⇒: We first prove that if F has a valid coloring P of k colors, then 
there exists an assignment A of the variables, such that

Without the loss of generality, assume an ordering of the sets in 
={P1, …. Pk}. Because P is a coloring of P, the Pi’s are pair-
wise disjoint.

We assign the variables in ILPF as follows

Clearly, the objective function of ILPF is k. It remains to be shown 
that the constraints in ILPF are satisfied. First, note that from the 
variable assignments, it follows that (ẑu = i)⇐⇒ [1(zu ∈ Pi) = 1] . 
We can then see that the constraint Eq. 23 is satisfied, because

The constraint Eq. 24 is satisfied due to the pairwise disjointed-
ness of the sets in P, and we get

Next, we turn our attention to constraint Eq. 25. To see why this 
constraint is satisfied, observe the following: From the fact that 
ΣM
i=1

xu,i = 1 , it follows that there is exactly one i′, for which xu,i′ = 1. 
By the definition of xu,i′, we have 1 (zu ∈ Pi′) = 1. Because P = {P1, 
…, Pk} and Pi′ is not empty, it must hold that i′ ≤ k and hence by 
construction wi′ = 1. For all other i ≠ i′, we have xu,i = 0, and thus 
xu,i ≤ wi and constraint Eq. 25 is satisfied. The constraint Eq. 26 is 
satisfied, since we have

because of the assumption that P is a valid coloring, and this con-
straint occurs only for clauses of the form (zu ≠ zv). The constraint 
Eqs. 27 and 28 are satisfied by definition. One can easily see that 
constraint Eqs. 29 and 30 are also satisfied, since P is a valid color-
ing, and these constraints only occur for clauses of the form [(zu ≠ 
zv) ∨ (zk = zl)].

⇐: Assume that we are given a valid assignment A of the vari-
ables in ILPF, such that ∑1≤i≤Mwi = k, then we can construct a 
valid coloring P for the corresponding FC instance F. To this end, g2 
is run by partitioning the variables zu, zv into the same sets if 
ẑu = ẑv . Because

there exist i1, …, ik, for which wi1, …, wik = 1. Because for all u ∈{1,
…, M}, we have

and xu,i ≤ wi, there exist u1, …, uk, for which xu1,i1, …, ≤ xuk,ik = 1.
Therefore, because the u1, …, uk are pairwise different and i1, …, ik 
are pairwise different, and because (xu,i = 1)⇔ (ẑu = i) , there are 
ẑu1 = i1, … , ẑuk = ik that are different from each other. Therefore, if 
we partition variables zu, zv into the same partition iff ẑu, ẑv , then we 
obtain exactly k partitions. Now, we need to show that this coloring 
is a valid coloring for F. The clauses (zu ≠ zv) are satisfied because 
constraint Eqs. 26 and 23 are satisfied. The clauses [(zu ≠ zv) ∨ (zk = 

for allR clauses [(zu≠ zv)∨ (zk = zl)] with j∈{1, … ,R}

(aj =1)⟺ (ẑk = ẑl)
(27)

(bj = 1)⟺ (ẑu ≠ ẑv) (28)

sj = (aj ∨ bj) (29)

sj ≥ 1 (30)

andwi, xu,i , aj, bj, sj ∈{0, 1} and 1≤ ẑu, ẑv , ẑk , ẑl ≤M (31)

∑
1≤ i≤M

wi = k (32)

For all i ∈ {1, … ,M} wi = 1(i ≤ k) (33)

for all u∈{1, … ,M} ẑu=

M∑
i=1

1(zu∈Pi)× i (34)

for all u, i∈{1, … ,M} xu,i =1(zu∈Pi) (35)

for allR, clauses [(zu≠ zv)V(zk = zl)] with j∈{1, … ,R},

aj =1(ẑk = ẑl) (36)

bj = 1(ẑu ≠ ẑv) (37)

sj = aj + bj (38)

(xu,i =1)⇐⇒ [1(zu∈Pi)=1]⇐⇒ (ẑu= i) (39)

M∑
i=1

xu,i =

M∑
i=1

1(zu ∈ Pi) = 1 (40)

xu,i + xvi = 1(zu ∈ Pi) + 1(zv ∈ Pi) ≤ 1 (41)

∑
1≤ i≤M

wi = k (42)

M∑
i=1

xu,i = 1 (43)
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zl)] are satisfied since constraint Eqs. 27, 28, 29, and 30 are satisfied. 
This ends the proof of the reduction.

Thus, we have that

and in particular

where ILP-RSA are the instances of ILP that we get when we apply 
τ5 to all instances of FC-RSA. Since by the same arguments as in 
“Approximation hardness of formula coloring” and since g2 trans-
forms the minimal solution of ILP to the minimal solution of FC 
and ∣ILPF∣ = Θ(∣F∣2), the reduction (τ5, g2) preserves the approxima-
tion hardness of FC-RSA in the sense of the following theorem.

Theorem IV.12 (Classical hardness of approximation for ILP). 
Assuming the hardness of inverting the RSA function, there exists 
no classical probabilistic polynomial-time algorithm that on input 
an instance ILPF of ILP-​RSA finds an assignment of the variables 
in ILPF, which satisfies all constraints and approximates the size 
optILP(ILPF) of the optimal solution by

for any α ≥ 1 and 0 ≤ β < 1/4. To give a high-level overview of the 
hardness results established in this section, we present in Fig. 6 the 
chain of implications.

Quantum efficiency
In the previous section, we have presented proofs for the classical 
hardness of various approximation tasks. In this section, we turn 
to showing a quantum advantage by proving that the instances 
resulting from the reductions described in “Classical hardness of 
approximation” can be solved in polynomial time given access to a 
fault-tolerant quantum computer. This yields the desired result of 
quantum separation for natural problems: Under the assumption 
that inverting the RSA function is hard, quantum computers can 
find close to optimal solutions to problem instances for which 
classical computers are incapable of findings solutions of the 
same quality.

First, we demonstrate that the solutions to instances of Con(C-
RSA, BC) can be approximated by a polynomial factor in quantum 
polynomial time leveraging Shor’s algorithm. Later, we show ap-
proximation separation results for more “natural” problems, name-
ly, FC and ILP.

Theorem IV.13 [Quantum efficiency for approximating the solu-
tion of Con(C-RSA, BC)]. There exists a polynomial-time quan-
tum algorithm that, on input of an instance S of Con(C-RSA, BC), 
finds a consistent hypothesis h ∈ BC, which approximates the size 
optCon(S) of the optimal solution by

for all S and for some α ≥ 1.

FC≤pILP (44)

FC-RSA≤pILP-RSA (45)

∑
1≤ i≤M

wi ≤ optILP(ILPF)
α∣ILPF∣

β
(46)

∣h∣ ≤ optCon(S)
α (47)

Fig. 6. The argument chain that propagates the hardness to invert the RSA function to the hardness of approximating combinatorial optimization tasks. 
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Proof. Let S be an instance of Con(C-RSA, BC). In Algorithm 1, 
on input S, a hypothesis circuit h is output, which is of size poly(n) 
and which explicitly decrypts a RSA ciphertext given by its power 
series. We know from “Approximation hardness of the Con prob-
lem” that h is consistent with S and of polynomial size. It is clearly 
the case that n ≤ optCon(S), and thus it holds that

Contrasted with the explicit approximation hardness from Theorem 
IV.6, this yields the super-polynomial advantage of quantum algo-
rithms over classical algorithms for the specific approximation task,
namely, approximating the optimal consistent hypothesis size by |h|
with h consistent with S. We can indeed obtain similar results also for
Con(BF-RSA, BF), Con(LSTM-RSA, LSTM), and Con(DFA-RSA,
DFA). In particular, given S, we can use Algorithm 1 to obtain a con-
sistent h of C-RSA and then leverage the poly-time instance transfor-
mations τ1, τ2, and τ3 to obtain an at most poly(n) larger approximation 
to the solution of Con(BF-RSA, BF), Con(LSTM-RSA, LSTM), and 
Con(DFA-RSA, DFA). Thus, we obtain the following corollary:

Corollary IV.14 (Quantum efficiency for more approximation 
tasks). There exists a polynomial-time quantum algorithm that, on 
input an instance S of (i) Con(BF-RSA, BF), (ii) Con(LSTM-RSA, 
LSTM), or (iii) Con(DFA-RSA, DFA), finds a consistent hypothesis 
(i) h ∈ BF, (ii) h ∈ LSTM, and (iii) h ∈ DFA, which approximates the 
size optCon(S) of the optimal solution by

for all S and for some α ≥ 1.
This again yields super-polynomial advantages of quantum al-

gorithms over classical algorithms for approximating the optimal 
solution size of the consistency problem by the size of a hypothesis 
that is consistent with the a sample. While this notion of approxi-
mation might seem unnatural, in the subsequent section, we turn 
our attention to approximating the solution of combinatorial opti-
mization problems, for which it is natural to approximate some 
optimal scalar value while satisfying certain constraints.
Quantum advantage for combinatorial optimization
We now show a super-polynomial quantum advantage for approxi-
mating the solution of the combinatorial optimization task of FC. We 
have already established the classical approximation hardness of FC-
RSA in Theorem IV.9 and give a polynomial-time quantum algorithm 
for approximating FC-RSA in the proof of the following theorem.

Theorem IV.15 (Quantum efficiency for FC-RSA). There exists a 
polynomial-time quantum algorithm that on input of an instance FS 
of FC-RSA finds a valid coloring P, such that

Proof. Let us first describe how any instance FS of FC-RSA looks 
like. The overview of the construction of FC-RSA is that we started 
from class C-RSA of log-depth polysize Boolean circuits that explicitly 
decrypt an RSA ciphertext. The representation descriptions in C-RSA 
were then transformed using τ1, τ2, and τ3 to the class DFA-RSA. Thus, 
recall that any instance S of Con(DFA-RSA, DFA) is of the form

where || is the big concatenation of binary strings. Note that the rep-
etition of wi p(n) times comes from the reduction τ3, where for the 
construction of a DFA that simulates a log-space TM, the input 
needs to be repeated p(n) times.

Now, FS is obtained by the reduction (τ4, g1) from “Approxima-
tion hardness of formula coloring,” and FS is over the variables 
z
j

i
, 1 ≤ i ≤ m, 1 ≤ j ≤ p(n) × (n2 + 2n) + 1 . Recall that zj

i
 encodes the 

state the DFA is in after reading bit j on input wi. By the construction 
of FS, we know that for each i1, i2 and j1, j2, such that

and wj1+1

i1
= w

j2+1

i2
 , the following predicate

occurs in FS. Note that z0 i is the starting state of the DFA.
Consider the bit wn2+n

1
 , which is the LSB of N, for which we know 

that LSB(N) = wn2+n
1

= 1 , since N cannot be even. We know that for 
all other bits wj2+1

i2
 in S that are equal to wn2+n

1
 , there occurs a predi-

cate of the form

in FS. Thus, by parsing FS and looking for all predicates of the form 
as in Eq. 52, we can infer all bits in wi given FS, for all i. Thus, we can 
reconstruct all wi’s from FS. Algorithm 2 does exactly this and runs 
in time poly(n) because there are O(|S|2) clauses in FS.

∣h∣ ≤ n
α ≤ optCon(S)

α (48)

∣h∣ ≤ optCon(S)
α

∣P∣ ≤ optFC(FS)
α

(49)

0 ≤ j1, j2 < p(n) × (n2 + 2n) + 1 (50)

[(z
j1

i1
= z

j2

i2
)→ (z

j1+1

i1
= z

j2+1

i2
)] (51)

[(zn
2+n−1

1
= z

j2

i2
)→ (zn

2+n
1

= z
j2+1

i2
)] (52)
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Remember that our goal in this proof is to give a polynomial-
time quantum algorithm that on input an FS finds a valid col-
oring of size less than optFC(FS)α. At this point, we have 
described how the instances FS look like and how we can ex-
tract the wi’s from it. After having obtained a wi from FS, we 
read e and N from it and then construct the Boolean circuit c 
by the same technique used in Algorithm 1. Note that c is ex-
actly of the form of Boolean circuits in C-RSA, from which we 
originally constructed FC-RSA. When presented the input bi-
nary {powersN [RSA(xi, N, e)], N, e}, c outputs LSB(xi). We 
can transform c into a DFA that is consistent with S and then 
find a coloring for FS from that DFA. Therefore, to obtain a 
DFA that is consistent with S, we run c through the instance 
transformations t′ = τ3{τ2[τ1(c)]} to obtain the DFA t′, which 
is consistent with S and of size poly(n). On input wi, t′ accepts 
if LSB(xi) = 1 and rejects if LSB(xi) = 0. Now, we minimize t′ 
using the standard DFA minimization algorithm (26) to ob-
tain the smallest and unique DFA t, which accepts the same 
language as t′ and thus is also consistent with S and of mini-
mal size. This DFA minimization is in principle not needed 
for the proof, but it is a further optimization step.

We then run Algorithm 3 to obtain a coloring for FS from t. 
The DFA t consists of the set of states Q, the set of input symbols 
Σ = {0, 1}, the set of accepting states ω ⊆ Q, the start state q0 ∈ Q, 
and the transition function λ that takes as arguments a state and 
an input symbol and returns a state (26). Furthermore, without 
loss of generality, we fix an ordering of the states in Q = 0, …, k 
− 1 with q0 = 0. We can convince ourselves that the result of Al-
gorithm 3 is indeed a valid coloring for FS because it assigns zj1

i1
 

and zj2
i2

 the same color if and only if t is in the same state after 

reading wj1
i1
 on input wi1 and after reading wj1

i2
on input wi2. There-

fore, a conjunct

cannot be violated since it appears in FS only if wj1+1

i1
= w

j2+1

i2
 and, by 

Algorithm 3, if zj1
i1
 is assigned the same color as zj2

i2
 , then zj1+1

i1
 and 

z
j2+1

i2
 have the same color (21). In addition, a conjunct

cannot be violated because it appears only if bi1 ≠ bi2 and if 
z
p(n)×(n2+2n)

i1
 would be assigned the same color as zp(n)×(n

2+2n)

i2
 , then 

t would be in the same state after reading all bits of wi1 and wi2,
which is either an accepting or rejecting state, which in turn 
contradicts that t is consistent with S and bi1 ≠ bi2 (21). It fol-
lows that the coloring obtained through Algorithm 3 is upper 
bounded by optFC(FS)α for some α because t has polynomial size
with the number of states given by k = ∣Q∣ ≤ nα ≤ optCon(S)α =
optFC(Fs)α and Theorem IV.8.

[
(z

j1

i1
= z

j2

i2
)→ (z

j1+1

i1
= z

j2+1

i2
)

]
(53)

[
z
p(n)×(n2+2n)

i1
≠ z

p(n)×(n2+2n)

i2

]
(54)
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Thus, because of Theorem IV.9 and IV.15, we have the super-
polynomial quantum advantage for approximating a combinatorial 
optimization solution.

Note that whether an instance I of FC belongs to the set FC-RSA 
can be decided in quantum polynomial time. To see why, for a given 
FC instance I, it can be decided in quantum polynomial-time 
whether the instance is also contained in FC-RSA, consider the fol-
lowing algorithm A. First, A tries to reconstruct the RSA parameters 
N,e, and the ciphertext-label pairs from I. If these parameters cannot 
be reconstructed from I (because it does not follow the correct 
structure), clearly I ∉ FC-RSA. If A can reconstruct the respective 
parameters, then A constructs a Con(DFA, DFA) instance and then 
applies the described reduction chain to create an instance of FC-
RSA. If the resulting instance matches instance I, clearly I ∈ FC-RSA 
and can therefore be solved by algorithm 3. We reuse the techniques 
used above to prove the super-polynomial quantum advantage for 
approximating the optimal solution of an ILP problem, namely, IL-
PFS∈ ILP-RSA.

Theorem IV.16 (Quantum efficiency for ILP-RSA). There exists 
a polynomial-time quantum algorithm that, on input an instance 
ILPFSof ILP-RSA, finds a variable assignment A that satisfies all con-
straints and for which the objective function is bounded as

for all ILPFS and for some α ≥ 1.
Proof. Given an instance ILPFS, one can easily reconstruct FS from 

the constraint Eq. 26 to 30 in polynomial time. It is then possible to 
obtain a valid coloring P of FS, given the routine described in the 
proof for Theorem IV.15, such that |P| ≤ optFC(FS). With P, we 
can get a valid assignment of the variables in ILPFSusing the routine 
described in the ⟹-direction in the proof of Theorem IV.11. Also, 
due to Theorem IV.11, we know that this variable assignment admits 
the objective function of ILPFSto be less than optILP(ILPFS)α =
optFC(FS)α.

Thus, because of the classical approximation hardness from Theo-
rem IV.12, we encounter a super-polynomial quantum advantage for 
approximating the solution of an ILP problem. It is important to stress 
that the reduction is explicit: That is to say, we can construct the in-
stances for which one can achieve a quantum advantage of this kind.

The optimization problem in terms of a 
quantum Hamiltonian
The quantum algorithm presented is distinctly not of a variational 
type, as they are commonly proposed for approximating combinato-
rial optimization tasks using a quantum computer (10). That said, it 
is still meaningful to formulate the problem at hand as an energy 
minimization problem, to closely connect the findings established 
here to the performance of variational quantum algorithms (11, 12) 
in near-term quantum computing, as this is the context in which 
these problems are typically stated. It remains to be investigated to 
which extent the resulting instances can be practically studied and 
solved on near-term quantum computers. The aim here is to provide 
a formal connection from FC and ILP problems to variational quan-
tum algorithms, where the problems are commonly stated as uncon-
strained binary optimization problems of the form

where f : {0,1}n → ℝ is an appropriate cost function and x∗ is a solu-
tion bit string of f. Particularly common are quadratic unconstrained 
binary optimization problems

where Q = QT is a real symmetric matrix. It is a well-known result
that all higher order polynomial binary optimization problems can 
be cast into the form of such a quadratic unconstrained binary opti-
mization problem, possibly by adding further auxiliary variables; 
However, it can also be helpful to keep the higher order polynomi-
als. All these problems can be directly mapped to Hamiltonian 
problems. Notably, for quadratic unconstrained binary optimization 
problems, the minimum is equivalent with the ground state energy 
of the quantum Ising Hamiltonian defined on n qubits as

where Zj is the Pauli-​Z operator supported on site labeled j. For 
higher order polynomial problems, one can proceed accordingly.

Let us, pars pro toto, show how the FC problem in the center of 
this work can be cast into a quartic binary optimization problem. 
Let k ∈ ℕ be an upper bound to the number of colors used for a 
formula over m variables, with z1, …, zm ∈ {1, …, k} being the vari-
ables in the formula. We can then make use of n = mk bits (which 
then turn into n = mk qubits). These bits referred to as bv,c feature 
the double labels (v, c), where v ∈ {1,...,m} labels the vertices and c ∈ 
{1,...,k} the colors. If the vertex v is assigned the color c, we set 
bv,c = 1, and bv,d = 0 for all d ≠ c. To make sure that the solution will 
satisfy such an encoding requirement, one adds a penalty of the 
form (1−

∑k

c=1
bv,c)

2 . The clauses of the form (Zi ≠ Zj) are actually 
precisely like in the graph coloring problem (34). This can be incor-
porated by penalty terms of the type 

∑k

c=1
bzi ,cbzj ,c : Then, equal col-

ors are penalized by energetic terms. The second type of clause 
requires more thought: Exactly if (Zi = Zj) is true and (Zj = Zk) is 
false, there should be a Hamiltonian penalty. Hence, this is a qua-
dratic Boolean constraint of the form

Again, this can be straightforwardly be incorporated into a com-
muting classical Hamiltonian involving only terms of the type 
(1 − Zj) for suitable site labels j, precisely as commonly considered 
in quantum approximate optimization (10). Last, to ensure we find 
a minimal coloring, we can either run the quantum optimization 
algorithm for increasing k and check whether a valid coloring has 
been found or one adds additional k qubits wc, c ∈ {1, …, k}, which 
we enforce to be 1 if color c is used and 0 if color c is not used by 
adding the energetic penalty bv, c − bv, cwc for all v ∈ {1, …, m}, c ∈ 
{1, …, k}. This corresponds to enforcing the inequality bv, c ≤ wc. We
can then add the energetic penalty 

∑k

c=1
wc to enforce the optimiza-

tion algorithm to find the minimal coloring. For these reasons, the 
approximation results proven here motivate the application of 
quantum optimization techniques for commuting Hamiltonian 

∑
1≤ i≤M

wi ≤ optILP(ILPF)
α

x
∗ ≔ argmin

x∈{0,1}n f (x) (55)

minimize f (x) = x
T
Qx (56)

x
∗ ≔ argmin

x∈{0,1}n f (x) (57)

H =

n∑
i,j=1

Qi,j(1 − Zi)(1 − Zj) (58)

(
k∑

c=1

bzi ,cbzj ,c

)(
1 −

k∑
d=1

bzi ,dbzk ,d

)
(59)
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optimization problems. Note that this construction is very similar to 
the integer linear program we proposed in “Approximation hardness 
of integer linear programming” to reduce the FC problem to ILP.

Because any combinatorial optimization problem of the type dis-
cussed here can be mapped to a local Hamiltonian, it is apparent that the 
local Hamiltonian problem is NP-hard. It is even known to be QMA-
complete (35), which is at least as hard as NP. However, for the FC-RSA 
instances—which give rise to a specific subclass of local Hamiltonians—
it remains to be studied how well the corresponding Hamiltonians can 
be solved using quantum optimization algorithms in practice.

Modeling logical clauses as inequality constraints
In this section, we present some details of proofs that are made ref-
erence to in the main text. To model the logical Boolean operator ∨, 
such that s: = (a ∨ b) for binary variables s, a, and b, we require the 
inequality constraints

which is easily seen as being equivalent.
We are here interested in modeling logical equivalences of the 

form (a = 1)⇔ (ẑu = ẑv) and (b = 1)⇔ (ẑu ≠ ẑv) for the binary 
variables a, b and integers ẑu = ẑv . For the former, we model the 
forward and backward implications as follows.

(a = 1)⇒ (ẑu = ẑv) : Choose a large enough constant L, such that 
ẑu = ẑv ≤ L , and then, because ẑu = ẑv ≥ 0 , the following con-
straints encode the implication

Clearly, the constraint Eqs. 63 and 64 are satisfied for ̂zu = ẑv if a = 1 
and for any ẑu = ẑv if a = 0. (ẑu = ẑv)⇒ (a = 1) : Note that this im-
plication is equivalent to (a ≠ 1)⇒ (ẑu ≠ ẑv) , which again is equiva-
lent to (a ≠ 1)⇒

[
(�zu > �zv)V(�zu < �zv)

]
 , which we will model below. 

We introduce a new binary variable q, for which if a = 0 and q = 1 
then �zu < �zv , and if a = 0 and q = 0, then �zu > �zv . This can be mod-
eled by the constraints

The constraint Eqs. 65 and 66 are satisfied for ̂zu ≠ ẑv if a = 0 and for 
any ẑu, ẑv if a = 1. The variable q essentially indicates if �zu < �zv or 
if �zu > �zv when a = 0 and can be ignored after the optimization 
process. In a similar manner to the constraints above, we can 
model (b = 1)⇔ (ẑu ≠ ẑv) as

in terms of inequality constraints.
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