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Abstract

For a detailed understanding of chemical processes in nature and industry, we need

accurate models of chemical reactions in complex environments. While Eyring transi-

tion state theory is commonly used for modeling chemical reactions, it is most accurate

for small molecules in the gas phase. A wide range of alternative rate theories exist that

can better capture reactions involving complex molecules and environmental effects.

However, they require that the chemical reaction is sampled by molecular dynamics

simulations. This is a formidable challenge since the accessible simulation timescales

are many orders of magnitude smaller than typical timescales of chemical reactions. To

overcome these limitations, rare event methods involving enhanced molecular dynam-

ics sampling are employed. In this work, thermal isomerization of retinal is studied using

tight-binding density functional theory. Results from transition state theory are com-

pared to those obtained from enhanced sampling. Rates obtained from dynamical

reweighting using infrequent metadynamics simulations were in close agreement with

those from transition state theory. Meanwhile, rates obtained from application of

Kramers' rate equation to a sampled free energy profile along a torsional dihedral

reaction coordinate were found to be up to three orders of magnitude higher. This

discrepancy raises concerns about applying rate methods to one-dimensional reaction

coordinates in chemical reactions.

K E YWORD S

DFT, DFTB, Kramers, metadynamics, rate theory, retinal, square-root approximation, umbrella
sampling

1 | INTRODUCTION

Precise models of chemical reactions, encompassing reaction mecha-

nisms and precise rate constants, are critical for a nuanced under-

standing of reactions occurring in nature, laboratory experiments, and

industrial processes. Yet, computational models of chemical reactions

remain challenging, because the transition state of a reaction has to

be calculated using a highly accurate model of the Born-Oppenheimer

potential energy surface (PES). This usually involves evaluating the

electronic structure and explicitly calculating the electronic energy at

each nuclear configuration. Thus, the current standard to calculate

reaction rate constants remains Eyring transition state theory (TST),1

which requires only calculations at a few select points along the PES.

However, Eyring TST makes strong assumptions for the shape of the

PES and the dynamics on this PES and is therefore limited to small to

medium sized systems in the gas phase.

Eyring TST defines the transition state as a saddle point on the

PES, assumes an equilibrium between reactant state A and transition
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state TS and models the PES at A and TS by a harmonic approxima-

tion.2 The dynamics of the nuclei are treated quantum mechanically. The

most prominent error source is the accuracy of the energy barrier, which

enters the equation for the rate exponentially. But the assumptions are

easily violated if (i) the saddle point of the PES does not coincide with

the bottleneck of the reaction (i.e., the free energy maximum along

the optimal reaction coordinate), (ii) the PES at A or at TS is anharmo-

nic, (iii) the reaction coordinate has a strong curvature in the configu-

rational space, or (iv) the reactant state exhibits multiple minima.

These violations occur in systems with many degrees of freedom,

in particular if these degrees of freedom are very mobile. Then the reac-

tant state may comprise multiple molecular conformations and various

vibrational modes may couple to the reactive vibrational mode. The sit-

uation is further complicated if the reaction occurs in solution or if the

reactants otherwise strongly interacts with their environment, for

example, in a catalysed reaction. To model reactions for these systems,

one shifts to a classical description of the nuclear dynamics and samples

the reaction using molecular dynamics (MD) simulations.3

The simplest estimator for a reaction rate constant from a MD simu-

lation is to count the number of transition from reactant state A to prod-

uct state B. However, since the accessible simulation times are orders

of magnitude smaller than the mean first passage times even of very

fast reactions, one uses enhanced sampling protocols to increase the

statistics. A wide variety of methods to recover accurate rate con-

stants and mechanisms from these sped-up simulations have been

proposed.2,4 They broadly fall into two categories: (i) dynamical

reweighting methods5 sample the reaction on a biased PES and

reweight the transition count, (ii) reaction coordinate based methods

define a one-dimensional reaction coordinate s6 and calculate the rate

constant from an effective dynamics on this reaction coordinate.

Besides the definition of a reaction coordinate, the second approach

involves the calculation of the free energy surface (FES)7 and diffusion

profile8 via MD simulations.

Kramers' rate theory9 is the most prominent example for this second

approach. It assumes separation of timescales and models the FES at A

and TS by a harmonic approximation. These two assumptions may be

relaxed by using Pontryagin's rate theory.10 In both cases, the dynam-

ics are modelled by a stochastic classical equation of motion. Infre-

quent metadynamics11 is an example for the first approach. The

method assumes separation of timescales, but does not use a har-

monic approximation. The dynamics are modelled and simulated in

the full configurational space using either a deterministic or a stochas-

tic classical equation of motion.

Owing to recent progress in electronic structure calculations12–14

and quantum mechanics/molecular mechanics approaches,15 the devel-

opment of reactive force fields,16 and the emergence of neural network

potentials,17 chemical reactions will increasingly be modeled through

simulations rather than through Eyring TST. Thus, models of chemical

reactions in large molecular systems with complex environments come

within reach. However, moving from Eyring TST to sampling-based rate

estimates involves a considerable reconstruction of the theoretical

foundation through which the reaction is modelled. Most importantly,

the quantum mechanical description of the nuclear degrees of freedom

is replaced by a classical approximation. Furthermore, the search for a

transition state TS is replaced by a statistical estimate of the transition

count (first approach) or by the search for an optimal reaction coordi-

nate. It is not obvious how these changes influence the accuracy with

which the reaction rate constant can be determined.

The first aim of this study is to explore and to quantify the

influence of these approximations on the estimate of a reaction

rate constant. As test reactions we choose the thermal cis-trans

isomerization in two analogues of retinal: pSb5 and pSb1

(Figure 1). When modelled in vacuum, the thermal cis-trans isomer-

ization over a C=C double bond fulfills the assumptions of Eyring

TST well. Additionally, it is an unimolecular reaction, so that the

encounter complex of the reactants does not need to be modelled.

Thus for this specific system, we expect that Eyring TST yields an

accurate rate constant, which can serve as a reference for more

approximate TST models or for sampling-based approaches. On the

other hand, the reaction energy barrier is high and the two mole-

cules are large enough for non-trivial coupling between vibrational

modes, so that the two test systems pose a reasonable challenge

for sampling-based approaches.

Extensive literature has addressed the precise modeling of the

potential energy surface (PES) for the cis-trans isomerization in

retinal,18 as well as for retinal analogues.19–21 We here model the PES

by self-consistent-charge density-functional tight-binding method

with a third-order expansion of the total energy around a reference

density (DFTB3)12,22 and include density functional theory (DFT)23,24

as a reference. This allows us to explore the sensitivity of the reaction

rate constant to variations in both the rate model and the underlying

PES. Thus, as a second aim of the study, we ask whether the precision

of the activation energy is indeed the most pivotal parameter when

calculating a reaction rate constant.

2 | THEORY

We here summarize the rate theories used in this study. For a more

in-depth exploration of rate theories, please refer to References 2, 4,

and section I of the supplementary material.

(A)

(B)

(C)

F IGURE 1 Structures of retinal compounds: (A) Retinal cofactor
attached to lysine chain, (B) pSb5 and (C) pSb1.
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2.1 | Eyring TST

The cis-trans isomerization around a C=C double bond is a unimole-

cular reaction

A!kAB B, ð1Þ

which, according to the theory of the activated complex, is mod-

eled as

A ⇌ AB‡ !B ð2Þ

where A is the reactant state, B is the product state and AB‡ is the

activated complex. The critical assumption in Equation (2) is

that reactant and transition state configurations are in equilib-

rium. Eyring TST1 models this equilibrium by statistical thermo-

dynamics and arrives at the following equation for the reaction

rate:2,4

kEyrAB ¼RT
h

~qAB‡

qA
exp � Eb

RT

� �
ð3aÞ

¼RT
h

exp �ΔF‡

RT

� �
ð3bÞ

where R is the ideal gas constant, T is the temperature, and h is the

Planck constant in molar units. See section I of the supplementary

material.

The free energy difference ΔF‡ between the AB‡ and A can be

calculated from the molecular partition function at the transition state

~qAB‡ and the molecular partition function at the reactant state qA:

ΔF‡ ¼ Eb�RT ln
~qAB‡

qA

� �
ð4Þ

where Eb is the potential energy barrier, that is, the potential energy

difference between the reactant minimum and the maximum of the

energy barrier. The partition functions are calculated relative to

the electronic ground state energy of the respective configurations.

The tilde symbol in ~qAB‡ indicates that, for AB‡, the vibrational contri-

bution corresponding to the reaction coordinate is excluded in the

free energy calculation.

We calculate and report potential and free energies in units of

Jmol�1, correspondingly the thermal energy is also reported as a

molar quantity: RT. If units of energy are used for potential and free

energies, R should be replaced by the Boltzmann constant kB ¼R=NA

in Equations (3) and (4) and all of the following equations. NA is the

Avogadro constant.

The molecular partition functions are determined by separat-

ing their translational, rotational, vibrational and electronic

degrees of freedom. Each part is treated using appropriate quan-

tum mechanical models, that is, particle-in-a-box for translational,

rigid rotor for rotational and harmonic oscillator for vibrational

degrees of freedom. In the case of a unimolecular reaction, the

contributions of the translational degrees of freedom to the

free energy difference in Equation (4) will cancel. We assume

qel ¼1 for all situations, that is, the electronic ground state energy

level is non-degenerate, and any contributions from higher electronic

states can be ignored. With these approximations, the free energy

difference (Equation 4) of the cis-trans isomerization can be decom-

posed as

ΔF‡ ¼ EbþΔFrotþΔFvib ð5Þ

where

ΔFrot ¼�RT ln
qAB‡ ,rot

qA,rot

� �
ð6aÞ

ΔFvib ¼�RT ln
~qAB‡ ,vib

qA,vib

� �
ð6bÞ

define the rotational and vibrational free energy difference. qA,rot and

qAB‡ ,rot are the rotational partition functions of A and AB‡. qA,vib and

~qAB‡ ,vib are the vibrational partition functions of A and AB‡, where the

tilde symbol indicates that the reactive vibrational mode has been

excluded from vibrational partition function of AB‡. See section I of

the supplementary material.

2.2 | High-temperature TST

If the thermal energy RT is large compared to the energy difference of

the vibrational states, the following high-temperature approximation

to Eyring TST may be used

kEyrAB ≈ khtAB ¼
Q3N�6

k¼1 νA,kQ3N�6
k¼1,k ≠ rνAB‡ ,k

exp � Eb
RT

� �
ð7Þ

where the frequencies νA,k and νAB‡ ,k correspond to the harmonic fre-

quencies at the reactant and transition state respectively. Note that

the frequency of the reactive vibrational mode νAB‡ ,r is excluded from

the product.

Equation (7) can be brought into the form of Equation (3b) by

setting

ΔF‡ ≈ΔF‡,ht ¼ Eb�RT ln
~qhtAB‡ ,vib

qhtA,vib

 !

¼ EbþΔFhtvib

ð8Þ

where ~qhtAB‡ ,vib and qhtA,vib are the high-temperature approximations to

the vibrational partition functions of A and AB‡. In deriving Equa-

tions (7) and (8), one assumes that the moments of inertia of the reac-

tant and TS configuration are approximately the same and thus the

rotational contribution to the ΔF‡ is negligible. Additionally, one

neglects the vibrational zero-point energy and takes the continuum

1392 GHYSBRECHT AND KELLER
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limit of the vibrational partition function. See section I of the supple-

mentary material.

The high-temperature TST can also be derived by treating the parti-

tion functions in Equations (3a) and (4) classically and using a harmonic

approximation for the PES. See section I of the supplementary material.

Equations (7) and (8) thus constitute the link between a quantum

mechanical and a classical treatment of the activated complex.

2.3 | Infrequent metadynamics

A statistical estimate for the reaction coordinate rate constant is

obtained via the mean first-passage time τAB

kAB ¼ 1
τAB

, ð9Þ

where τAB is the average time it takes for the system to reach the

product state B from the reactant state A. The relation between kAB

and τAB stated in Equation (9) relies on a separation of timescales

between the timescale of equilibration within A and the much slower

timescale of equilibration between A and B. From MD simulations on

the PES VðxÞ, where x is the molecular configuration, τAB can be calcu-

lated as the arithmetic mean of the first-passage times from A to B.2

However, a better statistical accuracy is obtained by fitting a the

cumulative distribution function of a Poisson process25

PðτAB,iÞ¼1� exp �τAB,i
τAB

� �
ð10Þ

to the cumulative distribution histogram of these fist passage times. In

Equation (10), τAB,i is the i first-passage time observed in the simula-

tion and τAB is the MFPT and acts as a fitting parameter, which is

inserted into Equation (9) to obtain the reaction rate.

Infrequent metadynamics11 is a method to calculate transition

times for systems in which the mean first-passage times is larger than

the accessible simulation time. The molecular system is prepared in

the reactant state A and a time dependent bias function Uðx,tÞ is

introduced that increases in strength as the simulation proceeds and

pushes the system over the barrier into state B. One terminates the

simulation and records the biased transition time τInMetaD
AB,i , where i is

the index of the infrequent metadynamics simulation. Each acceler-

ated first-passage time is then reweighted to the corresponding physi-

cal first-passage time by a discretized time-integral over the length of

the trajectory11,26–28

τAB,i ¼Δt
XTi

k¼1

exp
Uðxi,k ,kΔtÞ

RT

� �
, ð11Þ

where Δt is the time step of the trajectory, Ti is the total number of

time steps in the ith trajectory, xi,k is the kth configuration in this tra-

jectory, and t¼ kΔt is the corresponding time. This reweighting

assumes that no bias has been deposited on the transition state,

which is approximately ensured by the slow deposition of the infre-

quent metadynamics protocol.29

Equation (11) is derived from the Equation (3b), that is, the

method assumes that the reaction proceeds via an activated com-

plex. In contrast to Eyring TST, partition functions qA and qAB‡ are

treated classically. The derivation considers a statistical estimate of

qAB‡=qA from MD simulation data, which has the advantage that no

harmonic approximation is needed. See section I of the supplementary

material.

2.4 | Reaction coordinate based rate theories

In reaction coordinate based rate theories, one assumes that the sys-

tem evolves according to a diffusive dynamics along a reaction coordi-

nate sðxÞ. This approach requires the free energy surface (FES) along

sðxÞ, which is defined as:2

FðsÞ¼�RT lnπðsÞ ð12Þ

where πðsÞ is the equilibrium distribution in s:

πðsÞ¼Z�1
x

ð
Γx

dx exp �VðxÞ
RT

� �
δ sðxÞ� sð Þ: ð13Þ

Zx the configurational partition function, Γx is the configurational

space, and δ sðxÞ� sð Þ is the Dirac delta function.

The interaction of the internal degrees of freedom with the effective

dynamics along s is modelled as a thermal bath, that is, by a friction

and random force which are balanced by the Einstein relation. The

friction force can be scaled by a friction coefficient or collision rate ξ

(with units time�1).

The following two rate theories assume separation of timescales

which can be quantified in terms of the FES as F‡AB �RT, where

F‡AB ¼ FðsAB† Þ�FðsAÞ is the difference of the FES between the FES

minimum in the reactant state and the maximum of the free energy

barrier. We remark that the location of the free energy maximum sAB†

does not necessarily coincide with a saddle point in the PES.

In Kramers' rate theory,2,4,9 the reactant and product state, as

well as the maximum of the FES are modelled using a harmonic

approximation of the FES around these extrema. In the medium-

to-high friction regime, one obtains the following analytical expression

for the reaction rate constant

kKraAB ¼ ξ

ω‡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þω2

‡

ξ2

s
�1
2

0
@

1
AωA

2π
exp �F‡AB

RT

� �
ð14Þ

where ωA is the angular frequency of the harmonic approximation in

the reactant state A, and ω‡ is the angular frequency of the harmonic

approximation at the maximum of the free energy barrier.

By relaxing the harmonic approximation one obtains Pontryagin's

expression for the rate constant:10
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kPonAB ¼
ðsB
sA

ds0 1
Dðs0 Þe

βFðs0 Þ
ðs0
�∞

ds00 e�βFðs00 Þ
" #( )�1

ð15Þ

where β¼1=RT, and DðsÞ¼ RT
μqξðsÞ. DðsÞ is the position dependent diffu-

sion profile, which arises from the position dependent friction coeffi-

cient ξðsÞ. μq is a effective molar mass. DðsÞ can be estimated form

MD simulations following Reference 8. Note that, while Equation (14)

is valid in the intermediate and in the high friction regime,

Equation (15) is only valid in the high friction regime, where the

effective dynamics can be modelled by overdamped Langevin

dynamics. Equation (15) is often quite generically referred to as the

formula for the mean first-passage time (MFPT) for diffusion over a

barrier (which is inverted to get the rate) or the escape rate. For the

sake of clarity, we shall refer to it as the Pontryagin rate equation

after Reference 10.

The assumptions of the reaction rate models introduced in this

section are summarized in Table 1. We remark that all sampling-based

approaches use the high-temperature approximation, and that infre-

quent metadynamics needs a reaction coordinate to apply the bias,

but not for the actual estimate for the rate constant.

3 | MODEL SYSTEMS AND POTENTIAL
ENERGY SURFACE

pSb5 and pSb1 (Figure 1B,C) are model compounds for retinal. In pro-

teins, retinal is covalently linked to a lysine side chain via a protonated

Schiff base (Figure 1A). In pSb5 (naming following Reference 18), the

β-ionone ring and methyl substituents as well as the lysine chain have

been removed. In pSb1 (naming following Reference 18), the β-ionone

ring and methyl substituents remain but the lysine chain has been

replaced by a methyl group. Both compounds have been used as

models for retinal in previous studies.18–20,30–34

Our goal is to evaluate various rate theories for two model com-

pounds on a specific potential energy surface. Here, we outline our

selection of the electronic structure method for PES calculation. Even

though most computational models emphasize photo-isomerization in

electronically excited states, our focus centers on the thermal isomeri-

zation within the electronic ground state.

A critical point in modelling the thermal isomerization is the

highly correlated π-electron system along the retinal polyene chain,

which allows for two possible pathways for the cis-trans isomeriza-

tion. In the first pathway, the double bond is broken homolytically

when the torsion angle reaches ca. 90 degrees, creating a transition

state with diradical character. In the second pathway, cis-trans isom-

erization over the double bond occurs through charge transfer, with

the electrons moving towards the protonated imine in the transition

state.

From quantum chemical methods that account for dynamic elec-

tron correlation, there is little consensus as to whether cis-trans isom-

erization in molecules with three conjugated double bonds proceeds

via a charge-transfer or a diradical mechanism.21,35–37 However, DFT

studies of retinal and related systems18,20,32–34 conclude that the

isomerization over double bonds in the polyene chains proceeds

through a charge-transfer pathway if the Schiff-base is protonated.

Since both pSb5 and pSb1 feature a protonated Schiff-base, the

charge-transfer pathway seems to be a reasonable assumption for the

isomerization of the C13=C14 double bond in our model compounds.

In a charge-transfer pathway, electrons stay paired (closed-shell) dur-

ing isomerization, and we thus do not necessarily need an electronic

structure method that models unpaired electrons.

Ab-initio MD simulations of the thermal isomerization in retinal

at the level of DFT are limited to simulation times in the order 1 ns

to 10 ns, which is not enough to converge a free energy surface. An

alternative is the self-consistent-charge tight-binding density-

functional method (DFTB),12,22 whose computational cost is 2–3

orders of magnitude lower than DFT, thus giving access to much

longer simulation timescales. DFTB is an approximation to DFT

based on expansion of the total energy around a reference

density,22 where DFTB312 includes the third order of the expansion.

Even though spin polarization has been introduced for DFTB,38–40

most applications are based on restricted DFT and cannot model

unpaired electrons.

For retinal compounds, DFTB-predicted structures are in good

agreement with NMR experiments.41 Relative to DFT, DFTB yields a

reasonable description of the torsional properties of retinal not only in

the gas phase,34 but also in the protein environment.18,42,43 Torsional

barriers for the C13=C14 bond in retinal compounds are slightly

TABLE 1 Overview of the model assumptions for different reaction rate models.

Equation

Activated

complex

Separat. of

timescales

Harmonic

approx. High T

QM versus

CM

TS versus

RC Sampling

Further

assumptions

Eyring TST 3b ✓ — ✓ — QM TS —

High T TST 7 ✓ — ✓ ✓ QM/CM TS —

InMetaD 11 ✓ ✓ — ✓ CM (RC) ✓ Poisson statistics

No bias on TS

Pontryagin 15 — ✓ ✓ ✓ CM RC ✓ High friction

Kramers 14 — ✓ — ✓ CM RC ✓ Medium-to-high friction

Abbreviations: CM, classical mechanics; QM, quantum mechanics; RC, reaction coordinate; TS, transition state.
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underestimated (about 2 kcalmol�1) when using DFTB as compared

to DFT/B3LYP.

More approximate potential energy functions, including

semi-empirical methods such as AM1 or PM3, overestimate the delo-

calization more dramatically than DFTB.34 In empirical force fields, the

delocalization can be modelled by imposing the bond lengths along

the polyene chain. But since these potential energy functions use

fixed partial atomic charges, they are not well suited to describe the

charge-shift in the polyene chain during the isomerization, and conse-

quently the isomerization is highly sensitive to the choice of these

charges.

Since DFTB strikes a suitable balance between the accuracy of

the potential energy function and the computational cost of conduct-

ing ab-initio MD simulations, we use will use it in our simulations. For

rate theories that do not require sampling, we include calculations at

the level of unrestricted DFT/B3LYP/6-31G* for comparison to a

higher level of theory.

4 | RESULTS

4.1 | Free energy surface and diffusion profile

The potential energy functions of pSb5 and pSb1 are high-

dimensional functions of 72 and 156 internal degrees of freedom,

respectively. With MD simulations, one can characterize these high-

dimensional energy functions in more manageable, lower-dimensional

collective variable spaces using free energy surfaces (FES) and diffu-

sion profiles.

Figure 2 shows the FES (Equation 12) along the C13=C14 torsion

angle φ, as estimated from umbrella sampling44 (US) and well-

tempered metadynamics29,45 (MetaD) simulations using ab-initio MD

with the DFTB3 method. The line thickness shows the statistical error

in the estimated FES.

A full rotation around φ yields two barriers which, as expected,

have the same absolute height. The vertical rotational barriers are

F‡t!c ≈89 kJmol�1 and F‡c!t ≈81 kJmol�1 for pSb5 and

F‡t!c ≈79 kJmol�1 and F‡c!t ≈75 kJmol�1 for pSb1 (both from

MetaD1 in Figure 2). The rotational barrier in pSb5 is slightly higher

than in pSb1, because the tertiary C13 in pSb1 stabilizes the positive

charge at the charge-transfer transition state better than the second-

ary C13 in pSb5.19,20 As usual for a carbon double bond, the trans

state at φ¼ π rad is slightly more stable than the cis state at φ¼0 rad,

however the stabilization is larger in pSb5 (9:43�1:20 kJmol�1) than

in pSb1 (2:70�1:23 kJmol�1). A possible explanation might be that in

the trans state of pSb1, the methyl group at C13 sterically interacts

with the hydrogens at C15, which destabilizes this conformation.

The effective dynamics along a reaction coordinate are suitably

modelled by stochastic dynamics with position dependent diffusion

constant. The dependence of the diffusion constant on the collective

variable is due to the dynamics in the orthogonal degrees of freedom

and due to the curvature of the collective variable. The diffusion pro-

file in Figure 2 show the form that is expected for a dihedral angle

rotations. Note that the estimate of the diffusion constant fails in the

barrier region, because of the sharpness of the barriers.

In pSb1, umbrella sampling and metadynamics yield essentially

the same FES for various parameter settings (Figure 2B). By contrast,

estimates of the FES for pSb5, and especially the relative stability of

the cis state, depends on the method that is used to construct the

FES and on the parameter settings (Figure 2A). Additionally, the meta-

dynamics simulations converge much slower for pSb5 than for pSb1.

Convergence of the metadynamics simulation can be checked by

monitoring the estimated free-energy difference between cis and

trans state ΔF as function of simulation time (Figure 3A), or by moni-

toring average errors in block analysis46 as a function of block size

(Figure 3B).

The kinks in the lines in Figure 3A correspond to transitions

between cis and trans state during the metadynamics build-up. The

larger and less frequent kinks in the simulations for pSb5 compared to

those for pSb1 imply that the bias builds up within one state longer

before moving to the other. Slow convergence can be caused by cor-

related motion in degrees of freedom orthogonal to the biased coordi-

nate, which in this case is the C13=C14 dihedral φ.

4.2 | Correlated degrees of freedom

Using MD simulations, correlation between various collective vari-

ables can be assessed. In the case of pSb1, previous research in

Ref. 18 documented correlations between the C13=C14 dihedral angle

and adjacent dihedral angles along the minimum energy path, that

is, at 0K. In Figure 4, the correlations at 300K are presented for both

pSb5 and pSb1. These correlation plots were generated from US sim-

ulations, with each color in the plot representing a different umbrella

potential. Crosses represent the minimum energy path calculated at

unrestricted DFT/B3LYP/6-31G*.

The MD simulations at DFTB3 follow closely the B3LYP/6-31G*

minimum energy path, which substantiates that DFTB faithfully repre-

sents the DFT-PES of these two molecules. However, there is consid-

erable thermal fluctuations around the minimum energy path. For the

single-bond dihedrals C12-C13 and C14-C15, the spread is �0:4 rad

(≈ �23degrees), whereas for the improper torsions the spread is

�0:2 rad (≈ �11degrees). Overall, we find that the correlation

extends to the neighboring single bond, but not to the improper dihe-

drals at C12 and C15. We observed a certain level of correlation to the

C15-N double bond along the minimum energy paths. However, this

correlation is obscured by thermal fluctuations at 300K (see Figure S1

in the supplement).

The most remarkable feature of the correlations plots are the sud-

den jumps at the transition states (φ¼þπ=2 rad and φ¼�π=2 rad).

The improper dihedral angles at C13 and C14 represent the planarity at

these sp2-carbon atoms, with χ¼0 rad representing a planar confor-

mation. Consider the improper torsion at C14 when approaching the

transition state at φ¼�π=2 rad from the trans-state, the local confor-

mation at C14 bends out of plane up to 20 degrees (0:35 rad, minimum

energy value). At the transition state, it suddenly inverts to an
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out-of-plane distortion of �20degrees. On top of the out-of-plane

wagging at C14, the substituent at N (H for pSb5 and CH3 for pSb1)

slightly rotates. The concerted motion is illustrated in Figure 5, where

structures of pSb1 nearing the transition state (φ≈ �90degrees) from

cis (orange structure, φ¼�60degrees) and from trans (red structure,

φ¼�120 degrees) are aligned along the C13, C15 and N atoms. Note

that the out-of-plane wagging at C14 contributes to the correlation

between C13=C14 dihedral and C14-C15 dihedral.

C13 shows a similar out-of-plane wagging as C14. However, while

at C14 we do not find any difference between pSb5 and pSb1, the cor-

relation of the C13=C14 dihedral to the improper dihedral at C13 and

the C13-C12 torsion is less pronounced in pSb1 than in pSb5. Presum-

ably, the methyl substituent hinders the out-plane motion at C13 in

pSb1 compared to C14 in the same molecule and thus interrupts the

correlation.

4.3 | Rates for the DFTB3 potential energy surface

With a model of the free energy surface of pSb5 and pSb1 and good

understanding of the reaction mechanism, we are ready to discuss the

reaction rate constants for the thermal isomerization at the level of

DFTB3 (Tables 2 and 3). Transition states for both compounds were

optimized using the Nudged Elastic Band (NEB) method. NEB optimi-

zation converged well for pSb5, but was very sensitive to the choice

of the NEB parameters (spring constants, maximal force, amount of

nodes) for pSb1.

4.3.1 | Eyring TST

In pSb5, the potential energy barrier Eb for trans!cis reaction is

112:2 kJmol�1, which is in good agreement with the previously

reported value of 27:5 kcalmol�1 ¼115:1 kJmol�1.34 The barrier for

cis ! trans reaction is about 7:7 kJmol�1 lower, which implies that

the cis reactant state is slightly higher in energy than the trans state.

This aligns closely with the free energy difference of 8 to 10 kJmol�1

between cis and trans states in pSb5 (Figure 2). For pSb1, the poten-

tial energy barriers have about equal height (93.7 and 91.1 kJmol�1)

and are about 10 kJmol�1 lower than for pSb5. Again, this aligns

closely with the FES along φ for this molecule.

In each of the four reactions, the free energy difference ΔF‡ at

T¼300K is about 8 to 12 kJmol�1 lower than Eb due to the vibra-

tional and rotational contribution to the free energy difference. For

pSb5, the Eyring TST rates are 8:30 �10�6 s�1 for the trans ! cis

(A) (B)

F IGURE 2 Free energy surfaces FðφÞ and diffusion profiles DðφÞ along C13=C14 dihedral angle φ for (A) pSb5 and (B) pSb1 from
metadynamics (MetaD) and umbrella sampling (US) using DFTB3. Parameters for MetaD and US simulations are reported in Tables 4 and 5. Free
energy curves are filled between plus and minus one standard error.

(A)

(B)

F IGURE 3 (A) Convergence of free energy difference ΔF¼ Fcis�
Ftrans from metadynamics bias as a function of simulation time for
pSb5 (dashed) and pSb1 (full). (B) Convergence of the average errors
from block averaging analysis as a function of block size for the same
simulations as above.
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reaction and 1:99 �10�4 s�1 for the reverse reaction. In pSb1, the

lower energy barrier Eb leads to considerably faster rates, namely

1:42 �10�2 s�1 for the trans!cis transition and 2:06 �10�1 s�1 for the

reverse reaction.

4.3.2 | High-temperature TST

The high-temperature approximation approximates the free energy

contribution to the rates by neglecting the contribution due to the

rotational degrees of freedom and by making a classical approximation

for the harmonic vibrational partition function. Tables 2 and 3 show

that for pSb5 and pSb1 the rotational contribution is less than 1

kJmol�1, and thus neglecting this contribution is well justified. In our

systems, the vibrational component contributes negatively to the free

energy difference, thereby reducing the overall free energy difference

ΔF‡ in comparison to the potential energy barrier Eb. This effect is

slightly underestimated in the classical approximation. Consequently,

ΔF‡,ht in high-temperature TST appears higher than ΔF‡ in Eyring TST,

and the high-temperature TST rates are slower than Eyring TST rates.

The effect amounts to about 3 kJmol�1 which lowers the rate by

about a factor of two. Thus, the high-temperature approximation is

suitable for our two systems.

4.3.3 | Infrequent metadynamics

The high-temperature approximation constitutes the link between a

quantum partition function and the classical partition functions.

Models based on classical partition functions can be sampled by MD

simulations to obtain a statistical estimate of the rate. One method to

do this is infrequent metadynamics, in which Gaussian bias function

are deposited in the potential energy well of the reactant state, and

the enhanced reaction rate constant is subsequently reweighted to

the unbiased reaction rate constant. Rate constants for two different

deposition paces of the Gaussian bias functions are shown in Tables 2

and 3. The obtained rate constants were insensitive with regards to

doubling the pace of deposition (Table S1), indicating that the deposi-

tion rate is infrequent enough for rate constants to be reliable. The

infrequent metadynamics simulations passed the Kolmogorov-

Smirnoff test25 which serves as indication whether the assumptions

of TST are violated. The rate constants from infrequent metadynamics

F IGURE 4 Correlations in pSb5 and pSb1. (A) Umbrella sampling simulations using DFTB3 (set US1) for pSb5 showing correlation between
C13=C14 dihedral φ and dihedral C12-C13, the improper dihedral on C13, the dihedral C14-C15 and the improper dihedral on C14. Different colors
represent different umbrella windows. Black crosses represent constrained optimizations along φ using unrestricted DFT/B3LYP/6-31G*. (B)
Same analysis for pSb1.
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are in very good agreement with the rate constants from high-

temperature TST. Only in pSb1, the rate constant for the cis ! trans

reaction is slightly underestimated by infrequent metadynamics.

Infrequent metadynamics and high-temperature TST are based on

very similar assumptions (Table 1). In this sense, infrequent metady-

namics may be regarded as a sampling-based analogue to high-

temperature TST. Because the results from infrequent metadynamics

and high-temperature TST are in excellent agreement, we may con-

clude that sampling-based approaches are suitable for the calculation

of reaction rates of chemical reaction and the required MD simulation

times are accessible when using DFTB3 to calculate the PES.

4.3.4 | Reaction coordinate based rate theories

We calculated the rate constants from Kramers' (Equation 14) and

Pontryagin's (Equation 15) rate theories using the free energy surfaces

and diffusion profiles in Figure 2 (Tables 2 and 3). Values for the

parameters in Equation (14) are reported in Tables S2 and S3 in

the supplement. Surprisingly, these rates are orders of magnitude

higher than rates from TST or from infrequent metadynamics. In

pSb5, Kramers' rate constant is three orders of magnitude higher then

the rate constant from high-temperature TST. This can be traced back

to the low free energy barriers F‡AB in the FES compared to the energy

difference ΔF‡, as calculated within TST.

Kramers' rate theory can treat reactions that violate the TST

assumptions. Therefore, differences between high-temperature

TST and Kramers' rate theory might be explained by a complicated

reactant state or by violations of the harmonic approximation. How-

ever, the choice of our test system, the slow convergence of the

metadynamics simulations for the FES in pSb5, as well as the sensitiv-

ity of the FES to parameters collectively raise concerns about the

optimality of the chosen reaction coordinate. With a sub-optimal

reaction coordinate, the free-energy barriers are underestimated and

thus Kramers' rate theory overestimates the rate constants. Although

φ appears an intuitive choice for the reaction coordinate, the corre-

lated motions in orthogonal degrees of freedom described above sug-

gests that these motions need to be taken into account to construct a

sufficiently accurate reaction coordinate.

On the other hand, while pSb1 exhibits the same correlated

motions as pSb5, the discrepancy between F‡AB and ΔF‡ is much smal-

ler. Consequently Kramers' rate theory overestimates the rate con-

stants from high-temperature TST for pSb1 only by a factor of 40 for

the trans ! cis reaction and by a factor of 17 for the reverse reaction.

Additionally, the calculation of the FES converges quickly for pSb1. It

is not obvious, why the C13=C14 dihedral angle φ would be a poor

reaction coordinate for pSb5 but a reasonably accurate reaction coor-

dinate in pSb1.

Pontryagin's rate theory yields even higher rate constants than Kra-

mers' rate theory and this points to a second effect that might be at

play. Pontryagin's rate theory assumes overdamped Langevin dynamics

along the reaction coordinate and would overestimate the rates if the

effective dynamics actually falls into the intermediate or weak friction

regime. In the weak friction regime, also Kramers' rate theory for inter-

mediate friction (Equation 14) would overestimate the rate constant.

The friction regime is in part determined by the “sharpness" of the free

energy barriers as measured by ω‡, the angular frequency of the har-

monic approximation of the FES maximum. Both systems in fact

exhibit very sharp barriers and thus high values of ω‡, which might

shift the effective dynamics into the weak-to-intermediate friction

regime.

4.4 | Comparison across different PES

Tables 2 and 3 compare the energy barriers and the rotational and

vibrational contribution to the free energy differences at the level of

DFTB3 to those at the unrestricted DFT/B3LYP/6-31G* level, abbre-

viated DFT/B3LYP in the following. The potential energy barriers Eb

from DFT/B3LYP calculations closely aligning with literature-reported

values.2,20,21

Compared to unrestricted DFT/B3LYP, DFTB3 tends to underes-

timate the barrier heights, as has been reported previously.34,42,43

Energies of constrained optimizations along φ for DFT/B3LYP and

DFTB3 are shown in Figure S2 in section III of the supplementary

F IGURE 5 (A) Minimum energy structures from constrained
optimizations using unrestricted DFT/B3LYP/6-31G* calculations on
pSb1 at φ¼�60degrees (cis, orange structure) and φ¼�120 degrees
(trans, red structure). Structures are aligned along the N, C15 and C13

atoms. (B) Zoom on the reaction center.
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material. The discrepancy between DFT/B3LYP and DFTB3 is larger

for the trans ! cis transitions than in the cis ! trans transitions, with

a discrepancy as high as 11:4 kJmol�1 in pSb5. The exception to this

trend is the cis ! trans transition in pSb1, for which the DFT/B3LYP

is 1 kJmol�1 lower than the DFTB3 barrier.

The rotational contributions to total free energy difference are

nearly identical at DFT/B3LYP and at DFTB3, which can be attributed

to the rigid molecular scaffold. The vibrational motion lowers the total

free energy barrier in all four reactions. However, the effect is smaller at

the level of DFT/B3LYP than with DFTB3. The discrepancy between

DFT/B3LYP and DFTB3 for the vibrational contribution can be as large

as the discrepancy for the potential energy barrier Eb (see e.g., cis !
trans reaction in pSb1). This highlights the need to consider not only

the potential energy barrier but also the vibrational free energy of the

reactant and transition state when comparing different PES.

Overall, we find that the total free energy difference ΔF‡ is 6 to

13 kJmol�1 larger in DFT/B3LYP than in DFTB3. Consequently, the

Eyring TST rate constants at the level of DFT/B3LYP are one to two

orders of magnitude lower than at the level of DFTB3. As with

DFTB3, the high-temperature rate constant is slightly lower than the

Eyring TST rate constant, because the reduction of the total free

energy difference due to the vibrational contribution is underesti-

mated when using the high-temperature limit. Rates from infrequent

metadynamics or reaction-coordinate based methods are not avail-

able, because they require ab-initio MD simulations. The necessary

simulation time to converge these rate estimates is challenging to

attain at this level of theory.

The last two columns in Tables 2 and 3 report the influence of

the the D3 dispersion correction for DFT47 on the energy barriers and

the free energy contributions to the rates. The effect is less than

1 kJmol�1 (only exception: ΔFvib for trans ! cis in pSb1). The differ-

ence in the energies for constrained optimizations along φ (Figure S2

in the supplement) is equally small. As a result, there is a minimal dif-

ference in the rates when calculated with and without D3 correction.

We suspect that the small influence of the D3 correction on the PES

stems from the linear and rigid structure of the two molecules. Disper-

sion is a strongly distance-dependent pairwise interaction. Due to the

linearity, the molecules likely have a small intramolecular dispersion

overall. Due to the rigid polyene scaffold, most pairwise distances do

not change during the reaction. Even though rotation from trans to cis

shortens the distance between the Schiff base and the β-ionone ring,

the distance remains so large that the two groups have minimal dis-

persion interaction.

5 | METHODS

Calculations for DFTB3 were carried out with the DFTB+ software

package48 using the 3ob-3-1 Slater-Koster parameter set.49 Energy

minimizations, constrained optimizations and Nudged Elastic Band

TABLE 2 Rates for thermal cis-trans isomerization around the C13=C14 double bond in pSb5 using DFTB3 as well as DFT/B3LYP/6-31G*
without (DFT) and with (DFT-D3) Grimme's dispersion correction.

DFTB3 DFT DFT-D3

Equation trans ! cis cis ! trans trans ! cis cis ! trans trans ! cis cis ! trans

Free energy difference between A and AB‡ in Eyring TST [kJmol�1]

Eb 112.2 104.5 123.6 108.5 123.6 109.3

ΔFrot 6a �0:5 0.2 �0:4 0:1 �0:4 0.1

ΔFvib 6a �7:3 �8:3 �6:2 �6:5 �6:5 �6:6

ΔF‡ 5 104.4 96.5 117.0 102.2 116.8 102.8

Free energy difference betweeen A and AB‡ in high-temperature TST [kJmol�1]

Eb 112.2 104.5 123.6 108.5 123.6 109.3

ΔFhtvib 8 �4:6 �5:2 �3:6 �3:6 �3:7 �3:7

ΔF‡,ht 8 107.6 99.3 120.0 104.8 119.9 105.6

Free energy barrierF‡AB [kJmol�1]

F‡AB 89.0 80.5 n/a n/a n/a n/a

Rates [s�1]

Eyring TST 3 8:30�10�6 1:99�10�4 5:40�10�8 2:04�10�5 5:81�10�8 1:56�10�5

high T TST 7 2:28�10�6 6:39�10�5 1:62�10�8 7:00�10�6 1:65�10�8 5:19�10�6

InMetaD 1 11 1:94�10�6 1:04�10�4 n/a n/a n/a n/a

InMetaD 2 11 2:63�10�6 9:22�10�5 n/a n/a n/a n/a

Kramers 14 4:06�10�3 1:74�10�1 n/a n/a n/a n/a

Pontryagin 15 1:14�10�2 2:74�10�1 n/a n/a n/a n/a
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(NEB) calculations were done by interfacing DFTB+ with the Atomic

Simulation Environment (ASE)50 and using the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm51 for numerical optimization.

Vibrational analysis of the optimized structures was done using DFTB

+ to obtain the vibrational frequencies, while rotational moments of

inertia were calculated by entering the optimized configuration into

the Gaussian 16 software.52 From these data we calculated rates for

Eyring TST and high-temperature TST.

Ab-initio MD simulations were performed using DFTB+ using the

velocity-Verlet integrator with a time step of 1 fs. Before simulations,

energy minimization was done, followed by temperature equilibration

at 300K in two steps. In a first equilibration run, the Berendsen ther-

mostat53 with a coupling time of 2 ps is employed, while in a second

equilibration run a Nosé-Hoover chain setup54–56 of coupling time

2ps and chain length 3 is used. For production runs, the same thermo-

stat setup was used as for the second equilibration runs.

Well-tempered metadynamics29 and umbrella sampling44 were

carried out by interfacing the PLUMED57 software package with

DFTB+. Parameter sets for metadynamics and umbrella sampling sets

can be found in Tables 4 and 5 respectively. Sets of runs for infre-

quent metadynamics were set up by equilibrating in the reactant

state, after which a metadynamics bias is applied until a transition is

registered. The transition times were reweighted using the accelera-

tion factor which was directly calculated by PLUMED. The set of

reweighted transition times was fitted to the theoretical cumulative

distribution function of a Poisson distribution (Equation 10) to obtain

a mean first-passage time and corresponding rate.

Diffusion profiles were calculated using the method from

Reference 8. Effective masses of the reactant states were calcu-

lated by measuring the average squared velocity along the dihe-

dral angle and using the equipartition theorem. Frequencies of

the harmonic approximations of the reactant wells and transition

state barriers were calculated from spring constants obtained by

harmonically fitting the corresponding wells or barriers. Free

energy barriers F‡AB are measured from the FES directly. One-

dimensional rate methods (Kramers and Pontryagin) can then be

applied straightforwardly.

Calculations at the DFT level were performed using the

Gaussian 16 software52 using unrestricted DFT with the B3LYP

functional23,24 and the 6-31G* basis set.58 Full geometry optimi-

zations as well as constrained optimizations were done using the

Berny optimization algorithm59 as implemented in Gaussian. Tran-

sition state search was performed using the Synchronous Transit-

guided Quasi-Newton (STQN) method60,61 as implemented in

Gaussian, where the reactant and product state input configura-

tions were chosen to be the geometry optimized structures in the

trans and cis states. Gaussian performs a full thermochemical

analysis including calculation of the translational, rotational and

TABLE 3 Rates for thermal cis-trans isomerization around the C13=C14 double bond in pSb1 using DFTB3 as well as DFT/B3LYP/6-31G*
without (DFT) and with (DFT-D3) Grimme's dispersion correction.

DFTB3 DFT DFT-D3

Equation trans ! cis cis ! trans trans ! cis cis ! trans trans ! cis cis ! trans

Free energy difference between A and AB‡ in Eyring TST [kJmol�1]

Eb 93.7 91.1 98.0 90.1 98.2 90.4

ΔFrot 6a �0:1 0.0 �0:1 �0:0 �0:1 �0:0

ΔFvib 6a �7:7 �12:0 �2:4 �3:8 �4:1 �3:7

ΔF‡ 5 85.8 79.2 95.4 86.2 94.0 86.7

Free energy differenceΔF‡ between A and AB‡ in high-temperature TST [kJmol�1]

Eb 93.7 91.1 98.0 90.1 98.2 90.4

ΔFhtvib 8 �5:1 �9:4 0:5 �1:1 �1:1 �0:9

ΔF‡,ht 8 88.5 81.7 98.4 89.0 97.0 89.5

Free energy barrierF‡AB [kJmol�1]

F‡AB 78.9 75.0 n/a n/a n/a n/a

Rates [s�1]

Eyring TST 3 1:42�10�2 2:06�10�1 3:09�10�4 1:24�10�2 5:35�10�4 9:92�10�3

high T TST 7 4:81�10�3 7:44�10�2 9:21�10�5 4:12�10�3 1:58�10�4 3:31�10�3

InMetaD1 11 2:97�10�3 9:30�10�3 n/a n/a n/a n/a

InMetaD2 11 3:09�10�3 1:22�10�2 n/a n/a n/a n/a

Kramers 14 1:92�10�1 1:30�100 n/a n/a n/a n/a

Pontryagin 15 5:43�10�1 2:07�100 n/a n/a n/a n/a
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vibrational partition functions and corresponding energies and

entropies.62

This allows for straightforward calculation of rates for

Eyring TST. Vibrational frequencies were obtained from

Gaussian separately63 and used to calculate rates for high-

temperature TST.

A complete overview of the computational details is given in

section II of the supplementary information.

6 | CONCLUSIONS

We studied the thermal cis-trans isomerization in two retinal ana-

logues at 300K in the gas phase. This reaction falls well within the

approximation of TST, and thus accurate values for the reaction rate

constant can be obtained from this theoretical framework. However,

reactions in molecules with numerous flexible degrees of freedom or

reactions in complex environments may not be accurately modeled by

TST. We therefore explored whether accurate estimates of the reac-

tion rate constant can be obtained from MD simulations. The impact

of changing the theoretical framework for modelling the reaction rate

must be assessed relative to the error in the potential energy surface

(PES), which is often considered to be the primary error source in rate

modeling. To gauge the effect of changing the PES, we compared TST

rate constants at the level of at the DFTB3 and the unrestricted

DFT/B3LYP/6-31G* level. Figure 6 summarizes our results.

Reaction rate constants at DFTB3 are larger than those at DFT,

with a difference of one to two orders magnitude. However only in

pSb5 the increase in reaction rate can be mainly attributed to a lower

potential energy barrier. In pSb1, the change of the vibrational free

energy has an equally strong (trans ! cis) or even larger (cis ! trans)

contribution to the increase of the reaction rate constant. Thus,

reducing the comparison of different PES to the height of the poten-

tial energy barrier and neglecting entropic effects may be misleading.

It is important to note that we only compared PES that are ultimately

derived from DFT. DFT and wavefunction-based methods tend to differ

in delocalization of the conjugated π-electron system, with DFT typi-

cally overdelocalizing the π-electrons.64 Overdelocalization reduces

the double-bond character in the C13=C14 double bond, and thus

decreases the reaction barrier. In fact, for cis-trans isomerization in polyene

chains, DFT/B3LYP/6-31G* underestimates the torsional barrier compared

to CASSCF65 as well as compared to experimental data.66–68 Thus, the true

reaction rate constant might be even lower than our DFT estimates.

An important assumption when estimating reaction rate con-

stants from MD simulations is that classical mechanics are used to

TABLE 4 Parameters for metadynamics and infrequent metadynamics simulations for pSb5 and pSb1 using DFTB3.

Height [kJmol�1] Width [rad] Pace [ps] Bias factor Time [ns] Runs

pSb5

MetaD1 1.3 0.15 0.5 16 152 n/a

MetaD2 1.3 0.10 0.5 16 87 n/a

MetaD3 0.75 0.075 0.25 25 51 n/a

InMetaD1 1.3 0.05 5.0 16 n/a 25

InMetaD2 1.3 0.05 10.0 16 n/a 30

pSb1

MetaD1 1.3 0.10 0.5 16 86 n/a

MetaD2 1.3 0.05 0.5 16 63 n/a

MetaD3 1.3 0.10 0.5 16 24 n/a

InMetaD1 1.3 0.05 5.0 16 n/a 25

InMetaD2 1.3 0.05 10.0 16 n/a 30

TABLE 5 Parameters for umbrella sampling using DFTB3.

Windows
Biased
region [rad]

Interval
[rad]

Force constant
[kJmol�1 rad�2]

63 ½�3:1, þ3:1� 0.1 500

10 ½�1:95, �1:05� 0.1 500

10 ½þ1:05, þ1:95� 0.1 500

Note: Each umbrella sampling set was run with 83 windows positioned as

shown here. In total, three sets were run for pSb5 and three for pSb1

(Figure 2).

F IGURE 6 Effect of rate model and PES on the estimated
reaction rate constant.
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model the dynamics of the nuclei and to approximate the partition

functions. The classical limit is well justified for rugged potential

energy landscapes with broad minima and relatively low energy bar-

riers, but might not be appropriate for modelling a chemical reaction.

In both of our molecules, the classical limit (high-temperature TST)

yields a lower rate constant than Eyring TST, but the effect is less than

an order of magnitude. Thus, the error due to the classical limit is small

compared to the uncertainty due to the model of the PES.

Since the classical limit is justified for our systems, one should in

principle be able to estimate reaction rate constants from MD simula-

tions. Indeed, the infrequent metadynamics results are in excellent

agreement with results from high-temperature TST. The length of the

simulations (on a biased PES) were in the nanosecond regime,

the mean-first passage times τAB ¼1=kAB are in the regime of hun-

dreds to hundred thousands of seconds. This is a enormous speedup,

with the largest acceleration factors being of the order of 1014.

By contrast, our results from Kramers and Pontryagin's rate the-

ory overestimate the rate constant by multiple orders of magnitude.

These two methods rely on a reaction coordinate – in our case the

C13=C14 torsion angle φ - but the FES can be very sensitive to the

choice of this reaction coordinate. In fact, we found that the improper

dihedrals of the substituents on the C13 and C14 atoms correlate with

the reaction coordinate φ. We hypothesized that this was indicative

of a isomerization mechanism consisting of a concerted motion where

the C14 atom temporarily nods out of the polyene plain, before the

isomerization is completed. Thus, even though the torsion angle φ is a

very intuitive reaction coordinate, it might not be optimal enough to

yield accurate results for Kramers and Pontryagin's rate theory.

This places us in a challenging position. Both MD based-

approaches, infrequent metadynamics and reaction coordinate based

rate models, come with a high computational cost. Our simulations

required approximately 10 to 100 ns for each rate estimation. However,

since infrequent metadynamics is derived from TST, it is particularly

suitable for chemical reactions that align well with Eyring TST. By con-

trast, reaction coordinate based rate theories have the potential to

model systems deviating from the harmonic approximation and the sep-

aration of timescales. However, their robustness is compromised due to

sensitivity to the reaction coordinate and the friction regime.

Fortunately, several alternatives exist. Within reaction coordinate-

based rate models, one can optimize the reaction coordinate,69,70 and

we will explore this approach in subsequent work.71 Interestingly, neu-

ral networks17,72 can be used to optimize reaction coordinates. Another

avenue extends these models to encompass effective dynamics within

multidimensional collective variable spaces.73,74 Alternatively, one can

opt for transition path sampling75–77 and leverage dynamical reweight-

ing techniques that are not based on TST.5,78,79 In summary, while sam-

pling chemical reactions in complex systems poses a formidable

challenge, there is optimism that this wide variety of ideas will allow us

to solve this task.
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