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Abstract We compute the fundamental solution for time-fractional diffusion Dirac-like equations, which arise from the 
factoriza-tion of the multidimensional time-fractional diffusion-wave equation using Dirac’s factorization approach.

INTRODUCTION

The free Dirac equation arises from the factorization of the Klein-Gordon equation using matrix coefficients satisfying
anticommutation relations. Here, we focus on the factorization of the multidimensional time-fractional diffusion-wave
equation ( C∂ α

t −c2Δx)u(x, t) = 0, with 0 < α ≤ 2, applying Dirac’s factorization method. The one-dimensional case
has been previously studied by various authors (cf. [7, 8, 9] and references therein). Dirac’s factorization method,
as outlined in [3], says that for the sum of the square of two operators A and B, we can define an operator O such

that O=
√

A2 +B2. This operator O can be written as O= γ1A+ γ2B, where γ1 and γ2 are such that γ2
1 + γ2

2 = 1 and
γ1γ2 + γ2γ1 = 0. The Pauli’s matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, σiσ j = iεi jkσk +δi jI2,

{
σi,σ j

}
= 2δi jI2,

where I2 is the identity matrix of order 2, δi j represents the Kronecker’s delta, and εi jk is the Levi-Civita symbol
defined as totally antisymmetric in all three indices, satisfy the previously imposed condition for γ1 and γ2. In this
sense, the operator O is expressed as O= σkA+σlB, where k, l ∈ {1,2,3} and k �= l. Different choices of pairs (k, l)
yields to different solutions for the problem under analysis.

PRELIMINARIES

Here, we review fundamental concepts related to fractional calculus, special functions, Clifford analysis, and integral
transforms. The left Caputo fractional derivative of order α > 0 over the interval [a,b]⊂ R is defined as (see [6]):(CDα

a+ f
)
(t) =

1

Γ(m−α)

∫ t

a

f (m) (w)

(t −w)α−m+1
dw, t > a, m = �α�+1 (1)

The one and two-parameter Mittag-Leffler functions of a complex variable z are defined using power series expansions,
as introduced in [5]:

Eβ1
(z) =

∞

∑
n=0

zn

Γ(β1n+1)
, Re(β1)> 0, Eβ1,β2

(z) =
∞

∑
n=0

zn

Γ(β1n+β2)
, Re(β1)> 0, β2 ∈ C. (2)

As can be easily seen Eβ1,1 (z) = Eβ1
(z) .
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Let us now turn to the higher dimensional setting. Consider the standard basis of the Euclidean vector space in R
n

given by {e1, · · · ,en}. The associated Clifford algebra, which is denoted by R0,n, is the free algebra generated by R
n

modulo x2 =−‖x‖2 e0, where x ∈R
n and e0 is the identity element with respect to the multiplication operation in the

Clifford algebra. The defining relation leads to the multiplication rules eie j + e jei =−2δi j. In particular, e2
i =−1 for

all i = 1, . . . ,n. Hence, the standard basis vectors operate as imaginary units. A vector space basis for R0,n is given
by {eA : A ⊆ {1, . . . ,n}} with eA = el1 . . . elr , where 1 ≤ l1 < .. . < lr ≤ n, 0 ≤ r ≤ n, and e /0 := e0 := 1. Thus, for
x ∈ R0,n we have x = ∑A xAeA with xA ∈ R. The conjugation in R0,n is given by x = ∑A xAeA, with eA = elr . . . el1 ,

and e j = −e j for j = 1, . . . ,n, e0 = e0 = 1. The multiplicative inverse of a non-zero vector x ∈ R
n is given by x

|x|2 .

An R0,n-valued function f over Ω ⊆ R
n has the the following representation f = ∑A eA fA where the components are

such that fA : Ω → R0,n. Properties such as continuity or differentiability have to be understood componentwise. The

Euclidean Dirac operator is given by ∂x = ∑n
j=1 e j∂x j and it is such that ∂ 2

x = −Δx, with Δx being the n-dimensional
Euclidean Laplace operator. For more details about Clifford algebras we refer to [2].

The n-dimensional Fourier transform of a real-valued integrable function f (x), where x ∈R
n, is defined as follows:

F { f (x)}(κ) = f̂ (κ) =
∫
Rn

eiκ·x f (x) dx, κ ∈ R
n,

and the corresponding inverse Fourier transform is defined by

f (x) = F−1
{

f̂ (κ)
}
(x) =

1

(2π)n

∫
Rn

e−ix·κ f̂ (κ) dκ .

The Fourier transform satisfies the Convolution Theorem

F {( f ∗x g)(x)}(κ) = f̂ (κ) ĝ(κ) ,

where the convolution ∗x is given by ( f ∗x g)(x) =
∫
Rn f (x− z) g(z) dz. We have the following Fourier pairs (see [1])

F {Δx f (x)}(κ) =−|κ|2 f̂ (κ) and F {∂x f (x)}(κ) = iκ f̂ (κ) . (3)

TIME-FRACTIONAL DIFFUSION DIRAC-LIKE EQUATIONS

Starting from the time-fractional diffusion-wave equation in R
n ×R

+ with Caputo time-fractional partial derivative( C∂ α
t − c2Δx

)
u(x, t) = 0, x ∈ R

n, t > 0, c ∈ R
+, 0 < α ≤ 2, Δx =

n

∑
i=1

∂ 2
xixi

(4)

and considering the Dirac factorization method, the square root of the time-fractional differential operator C∂ α
t −c2Δx

yields to the following matrix fractional differential equation(
σ j

C∂ α/2
t + cσk∂x

)
Φ = 0, j �= k, (5)

where Φ(x, t) = [φ1(x, t) φ2(x, t)]T is a two component vector function, depending on x and t. Each component of
Φ(x, t) also satisfies (4), if the semigroup property of the time-fractional is verified. Since 0<α ≤ 2 then 0<α/2≤ 1,
and the system (5) represents an interpolation between the Helmholtz equation (α = 0 as limit case), the diffusion
case (α = 1) and the heat equation (α = 2). Solutions of these systems could model the diffusion of particles whose
behavior depends on the space and time coordinates, as usual, but also on their internal structures (cf. [8, 9]).

We consider two choices of couples ( j,k), namely ( j,k) = (1,2) and ( j,k) = (3,2). In the first case, the matrix
equation (5) originates the following two independent equations(

C∂ α/2
t − ic∂x

)
φ2 (x, t) = 0,

(
C∂ α/2

t + ic∂x

)
φ1 (x, t) = 0. (6)

In the second case, ( j,k) = (3,2) we obtain a system of coupled equations

C∂ α/2
t φ ∗

1 (x, t)− ic∂xφ ∗
2 (x, t) = 0, C∂ α/2

t φ ∗
2 (x, t)− ic∂xφ ∗

1 (x, t) = 0. (7)
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The solutions of (7) are related with the solutions of (6). In fact, if φ1 and φ2 are solutions of (6) then

φ ∗
1 = (φ1 +φ2)/2 and φ ∗

2 = (φ2 −φ1)/2 (8)

are solutions of (7). This is based on the fact that we can find matrices A and B such that Aσ1B = σ3 and Aσ2B = σ2.

Now, we construct the fundamental solution of the equation
(

C∂ α/2
t − ic∂x

)
φ2(x, t) = 0 subject to the initial condi-

tion φ2(x,0) = δ (x) = ∏n
j=1 δ (x j). Applying the Fourier transform with respect to x and taking into account (3) and

the initial condition φ̂2 (κ,0) = 1, we obtain the time-fractional differential equation( C∂ α/2
t + cκ

)
φ̂2(κ, t) = 0, (9)

whose solution in the Fourier domain is given by φ̂2 (κ, t) = Eα/2(−ctα/2κ) (see [4]). Taking into account the series

representation of the one-parameter Mittag-Leffler function (see (2)), and the relations κ2 j = (−1) j|κ|2 j and κ2 j+1 =
(−1) j|κ|2 jκ valid for all j ∈ N0, we obtain the splitting formula

Eα/2

(− ctα/2κ
)
=

∞

∑
j=0

(− ctα/2
)2 j κ2 j

Γ
(α

2 2 j+1
) +

∞

∑
j=0

(− ctα/2
)2 j+1 κ2 j+1

Γ
(α

2 (2 j+1)+1
)

=
∞

∑
j=0

(
c2 tα) j

(−1) j |κ|2 j

Γ
(
α j+1

) − ctα/2 κ
∞

∑
j=0

(c2 tα) j(−1) j|κ|2 j

Γ
(
α j+ α

2 +1
)

= Eα
(− c2 tα |κ|2) − ctα/2 κ Eα,α/2+1

(− c2 tα |κ|2). (10)

By Proposition 3.6 and Theorem 4.3 in [5] we can ensure that the Mittag-Leffler functions appearing in (10) belong
to the space L1 (R

n) for each t fixed. Therefore, applying the inverse Fourier transform and using the convolution
theorem together with the relation F−1 {κ}(x) =−i∂xδ (x) derived from (3), we get

φ2(x, t) =F−1
{

Eα
(− c2 tα |κ|2)}(x, t) + i c tα/2

∫
Rn

∂yδ (y)F−1
{

Eα,α/2+1

(− c2 tα |κ|2)}(x− y, t) dy. (11)

The explicit formulas for the inverse Fourier transforms of the Mitagg-Leffler functions in (11) can be obtained from
the general formula (cf. [4] for the special case β2 = 1)

F−1
{

Eβ1,β2

(
−λ |κ|2

)}
(x) =

1

2πn/2 |x|n
1

2πi

∫ γ+i∞

γ−i∞

Γ
(
1− s

2

)
Γ
( n−s

2

)
Γ(β2 −β1s)

(
2
√

λ
|x|

)−s

ds (12)

=
1

2πn/2 |x|n H0,2
2,1

⎡⎣ 2
√

λ
|x|

(
0, 1

2

)
,
(
1− n

2 ,
1
2

)(
1−β2,

β1

2

) ⎤⎦ , (13)

where H p,q
m,n (z) is the Fox H-function of one complex variable (see [6]). Using the duality relation

∫
Rn ∂yδ (y)ϕ(y)dy=

−∫
Rn δ (y)∂yϕ(y)dy and (12) in (11) we obtain, after straightforward computations, the following theorem:

Theorem 1 The fundamental solution of the time-fractional diffusion Dirac-like equation
(

C∂ α/2
t − ic∂x

)
φ2(x, t) = 0

subject to the initial condition φ2(x,0) = δ (x) is given by

φ2(x, t) =
1

2πn/2 |x|n
1

2πi

∫ γ+i∞

γ−i∞

Γ
(
1− s

2

)
Γ
( n−s

2

)
Γ
(
1− α

2 s
) (

2ctα/2

|x|

)−s

ds− ictα/2

πn/2

x
|x|n+2

1

2πi

∫ γ+i∞

γ−i∞

Γ
(
1− s

2

)
Γ
(
1+ n−s

2

)
Γ
(
1+ α

2 − α
2 s
) (

2ctα/2

|x|

)−s

ds

=
1

2πn/2 |x|n H0,2
2,1

[
2ctα/2

|x|

(
0, 1

2

)
,
(
1− n

2 ,
1
2

)(
0, α

2

) ]
− i

ctα/2

πn/2

x
|x|n+2

H0,2
2,1

[
2ctα/2

|x|

(
0, 1

2

)
,
(− n

2 ,
1
2

)(−α
2 ,

α
2

) ]
. (14)

We give a direct proof of our main theorem.

Proof: First we compute the term C∂ α/2
t φ2(x, t). Using the Mellin-Barnes representation of φ2 (see (14)) we first

make the change of variables s 
→ −s and then we use the differentiation formulas

C∂ α/2
t

(
t

α
2 s)= Γ

(
1+ α

2 s
)

Γ
(
1+ α

2 s− α
2

) t
α
2 s− α

2 and C∂ α/2
t

(
t

α
2 s+ α

2
)
=

Γ
(
1+ α

2 s+ α
2

)
Γ
(
1+ α

2 s
) t

α
2 s
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to get

C∂ α/2
t φ2(x, t) =

1

2πn/2 tα/2 |x|n
1

2πi

∫ γ+i∞

γ−i∞

Γ
(
1− s

2

)
Γ
( n−s

2

)
Γ
(
1− α

2 − α
2 s
) (

2ctα/2

|x|

)−s

ds

− ic
πn/2

x
|x|n+2

1

2πi

∫ γ+i∞

γ−i∞

Γ
(
1− s

2

)
Γ
(
1+ n−s

2

)
Γ
(
1− α

2 s
) (

2ctα/2

|x|

)−s

ds,

where we have changed −s 
→ s in the end of the calculations. Now we compute the term ∂x φ2(x, t). Since

∂x(|x|s−n) = (s−n)x |x|s−n−2 and ∂x(x|x|s−n−2) = ∂x(x)|x|s−n−2 + x∂x(|x|s−n−2|) = (2− s)|x|s−n−2

we get

∂x φ2(x, t) =− 1

πn/2

x
|x|n+2

1

2πi

∫ γ+i∞

γ−i∞

Γ
(
1− s

2

)
Γ
(
1+ n−s

2

)
Γ
(
1− α

2 s
) (

2ctα/2

|x|

)−s

ds

− i
2ctα/2

πn/2|x|n+2

1

2πi

∫ γ+i∞

γ−i∞

Γ
(
2− s

2

)
Γ
(
1+ n−s

2

)
Γ
(
1+ α

2 − α
2 s
) (

2ctα/2

|x|

)−s

ds. (15)

Making the change of variables s 
→ s+2 in the second integral of (15), it becomes equal to

− i
2πn/2ctα/2 |x|n

1

2πi

∫ γ+i∞

γ−i∞

Γ
(
1− s

2

)
Γ
( n−s

2

)
Γ
(
1− α

2 − α
2 s
) (

2ctα/2

|x|

)−s

ds.

By the terms calculated it follows immediately that the equation ( C∂ α/2
t − ic∂x)φ2(x, t) = 0 is fulfilled.

�
Corollary 2 The fundamental solution of the time-fractional diffusion Dirac-like equation

(
C∂ α/2

t + ic∂x
)
φ1(x, t) = 0

subject to the initial condition φ1(x,0) = δ (x) is given by

φ1(x, t) =
1

2πn/2 |x|n H0,2
2,1

[
2ctα/2

|x|

(
0, 1

2

)
,
(
1− n

2 ,
1
2

)(
0, α

2

) ]
+ i

ctα/2

πn/2

x
|x|n+2

H0,2
2,1

[
2ctα/2

|x|

(
0, 1

2

)
,
(− n

2 ,
1
2

)(−α
2 ,

α
2

) ]
. (16)

Moreover, the fundamental solutions of the coupled equations (7) are obtained by putting (14) and (16) in (8).
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