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R E S U M O

Ao longo dos anos, a constante evolução da indústria tem levado a muitos avanços
nas fábricas e nos sistemas de fabricação. Os termos "Fábricas Inteligentes" e
"Sistemas de Fabricação Inteligentes" têm sido usados para descrever a última onda
de inovações tecnológicas que transformaram a maneira como as fábricas operam.
Uma dessas inovações é o conceito de Gémeos Digitais, que é uma cópia virtual
realista de um objeto físico. Essa tecnologia permite que todo o chão de fábrica seja
digitalizado e que processos físicos estejam intimamente ligados aos seus contrapartes
cibernéticos.

O desenvolvimento dos Gémeos Digitais abrange vários desafios, incluindo a
precisão do modelo, segurança e integração de diferentes dispositivos e sistemas,
incluindo interoperabilidade e padronização entre eles. O objetivo deste trabalho é
desenvolver aplicações-chave para apoiar a implementação de Gémeos Digitais em
um ambiente de Fábrica Inteligente, descrever um exemplo de desenvolvimento de
uma aplicação habilitadora da Indústria 4.0 para um dispositivo legado, bem como
o projeto de um Gémeo Digital para um sistema industrial real desde o início.

Um resultado chave deste trabalho é um caso de uso bem-sucedido da criação de
um Gémeo Digital para uma célula produtiva real na indústria, usando o Robot-
Studio como ambiente de simulação, e OPC UA como protocolo de comunicação
entre os dispositivos na célula. O Gémeo Digital desenvolvido é capaz de simu-
lar o comportamento dos dispositivos na célula e realizar a lógica de controlo da
célula. Também é capaz de armazenar dados históricos do processo, que podem ser
analisados e usados para realizar a otimização do processo.

Outro resultado relevante está relacionado com o uso do Gémeo Digital de um
dispositivo para apoiar o desenvolvimento de uma aplicação, realizando testes e
validação, eliminando assim a necessidade de aceder ao dispositivo real nessas fases.
Essa abordagem mostra que esta tecnologia pode ser usada para acelerar o desen-
volvimento e reduzir o tempo de inatividade de dispositivos industriais, reduzindo
custos e melhorando o processo de produção.

Keywords— Indústria 4.0, Fábrica Inteligente, Gémeo Digital, OPC UA
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A B S T R A C T

Over the years, the constant evolution of the industry has led to many advancements
in factories and manufacturing systems. The terms "Smart Factories" and "Smart
Manufacturing Systems" have been used to describe the latest wave of technological
innovations that have transformed how factories operate. One of these innovations
is the concept of the Digital Twin, which is a realistic virtual copy of a physical
object. This technology allows entire manufacturing shop-floors to be digitalized,
and physical processes to be tightly intertwined with their cyber counterparts.

The development of Digital Twins encompasses several challenges, including model
accuracy, security, and the integration of different devices and systems, including
interoperability and standardization across them. The goal of this work is to develop
key applications to support the implementation of Digital Twins in a Smart Factory
environment, by describing an example of the development of an Industry 4.0
enabling application for a legacy device, as well as the design of a Digital Twin for
a real industrial system from the ground up.

A key result of this work is a successful use case of creating a Digital Twin
for a quality control cell in the industry, using RobotStudio as the simulation
environment and OPC UA as the communication protocol between the devices in
the cell. The developed Digital Twin is capable of simulating the behaviour of the
devices in the cell, as well as performing the cell’s control logic. It is also capable
of storing historical process data, which could be analyzed and used to perform
process optimization.

Another relevant result is related to the use of a device’s Digital Twin to support
the development of an application, performing tests and validation, while eliminating
the need of accessing the real device. It shows that this technology can be used to
speed up development and reduce downtime of industrial devices, thus reducing
costs and improving the production process.

Keywords— Industry 4.0, Smart Factory, Digital Twin, OPC UA
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1
I N T R O D U C T I O N

The introduction of the Industry 4.0 paradigm has led to many advancements in
Smart Manufacturing Systems over the years. By digitalizing traditional industrial
processes and bridging the physical and virtual worlds together, this paradigm
causes a disruptive transformation and upgrade in intelligent industrialization
(C. Zhang et al., 2021). One of these advancements is the possibility to have an
entire manufacturing shop-floor digitalized, where physical processes are tightly
intertwined with their cyber counterparts. This is the concept of a Digital Twin
(DT), which is a realistic virtual copy of a physical object.

DT is one of the key enabling technologies in Smart Factories and it can provide
real-time state monitoring, energy consumption analysis, product failure analysis
and prediction, product maintenance strategy, as well as intelligent optimization and
update. Based on the concept of DT, Tao and M. Zhang (2017) explore the concept
of Digital Twin Shop-Floor (DTS), defining four key components: the physical
shop-floor, the virtual shop-floor, the shop-floor service system, and shop-floor
digital twin data. As these parts keep consistent and optimized with each other,
data from both the physical and virtual systems, as well as fused data, can be used
to drive production.

According to Lu et al. (2020), DT-driven applications are a core element of future
manufacturing, and they will change the fundamentals of manufacturing systems
and operations, as the convergence of the digital and physical worlds enables smarter
decision making. The work presented in this report aims for the development of key
applications to support the implementation of DTs in a Smart Factory environment,
describing an example of the development of an Industry 4.0 enabling application
for a legacy device, as well as the design of a DT for a real industrial system from
the ground up.

To achieve this goal, key technologies were studied. First, an extensive review of
industrial communications systems was done, to provide a classification and compar-
ison of the different solutions, based on their most relevant features in the context
of Industry 4.0. The result of this study presented Open Platform Communication
(OPC) Unified Architecture (UA) as the most complete and applicable middleware
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introduction

solution for industrial communication systems. For that reason, OPC UA is also
a key enabling technology for the development of the work, and described in this
report. Furthermore, the concepts of DT, Smart Manufacturing and Cyber-Physical
Systems (CPS) were also explored, and a significant body of knowledge on these
areas was reviewed.

The main contributions of this work are the development of key generic, scalable
applications to support DT development using OPC UA, as well as the demonstration
of how DT can be used to support hardware development for an industrial device.
Moreover, this work describes the use of OPC UA and embedded systems to elevate
a legacy device to an Industry 4.0 level, and provide an example of the design of a DT
featuring process control and simulation, historical data storage and retrieval, and
Industry 4.0 compliant communication. The integration of several software tools and
Software Development Kit (SDK) is also discussed, as well as the implementation
of OPC UA applications for several different platforms.

Throughout the development of the masters’ project, two papers were published,
as follows:

• Cavalcanti, Marcella, Hugo Costelha, and Carlos Neves (June 2023). “Industry
4.0 Machine-to-Machine Communication Protocols and Architectures on the
Shop Floor”. In: pp. 222–234. ISBN: 978-3-031-33889-2. DOI: 10.1007/978-3-
031-33890-8_19.

• Cavalcanti, Marcella, Hugo Costelha, Carlos Neves, et al. (July 2023). “Digital
Twin Development for a Quality Control Cell”. In: 2023 9th International
Conference on Control, Decision and Information Technologies (CoDIT).

This report is organized as follows: This first chapter defines the field and the
main goals of the research work, as well as the main contributions that are provided.
Chapter 2 provides the reader with a description of the fundamental concepts that are
the basis of this work and a literature review on those subjects. Chapter 3 describes
the generic applications, based on OPC UA, that were developed throughout this
work. Chapter 4 describes the developed work in creating an Industry 4.0 enabling
application for a legacy device. Chapter 5 details the development of a DT for a
Quality Control (QC) cell in a manufacturing process. Chapter 6 presents the tests
and results of the applications that were developed. Finally, in Chapter 7, the main
conclusions of the work are presented and some paths for future work are suggested.

2



2
F U N D A M E N TA L C O N C E P T S A N D R E L AT E D W O R K

This chapter reviews relevant concepts and related work on the topics relevant
for the developed work, namely Industry 4.0, industrial communication systems,
OPC UA, and Digital Twin, which are significant for the embodiment of subsequent
chapters.

2.1 industry 4.0

Industrial manufacturing systems have been evolving through what is called "In-
dustrial Revolutions" since the late 1700s, as shown in Fig 1. The First Industrial
Revolution brought the transition from manual work to the first manufacturing
processes through mechanization and mechanical power generation. The Second
Industrial Revolution came with the electrification of the industry, and the intro-
duction of work division, assembly lines and mass production. The Third Industrial
Revolution is characterized by the automation of processes, with the introduction
of the first Programmable Logic Controller (PLC) (Rojko, 2017).

Most recently, the Fourth Industrial Revolution, or Industry 4.0, is a concept
introduced by the German government that aims for the transformation of manu-

1 https://mitranslations.com/industrial-revolution

Figure 1: Industrial Revolutions1.
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fundamental concepts and related work

facturing, enabled by advanced technologies such as the Internet of Things (IoT)
and CPS (Hermann et al., 2016), to create Smart Factories and achieve industrial
processes optimization, increase productivity and lower production costs. In an
Industry 4.0 environment, interoperability and connectivity are important elements.
This involves a continuous flow of information between devices, components, manu-
facturing systems, and actors, which is facilitated by Machine-To-Machine (M2M)
interaction, as well as Human-To-Machine (H2M) collaboration, particularly when
production tasks are too unstructured for full automation (Rojko, 2017). This allows
the transformation of the production process from a centralized decision making
instance into a decentralized one (C. Zhang et al., 2021).

2.2 industrial communication systems

Also referred to as “Industrial Networks”, industrial communication systems are net-
works typically adopted in factory automation, manufacturing and process control,
to implement data exchange between controllers, sensors, actuators, input/output
devices and industrial equipment in general (Vitturi et al., 2019). These networks
are also responsible for the data flow and information sharing to higher levels of
automation in factories, such as Supervisory Control and Data Acquisition (SCADA)
systems, Manufacturing Execution Systems (MES) and Enterprise Resource Plan-
ning (ERP).

In the 1980s, dedicated automation networks, called fieldbus systems, were initially
developed and implemented as a replacement for point-to-point links between
industrial devices, using serial digital communication. This change allowed more
flexibility in the shop floor, enabling remote configuration and diagnostics to be
carried out more easily. Moreover, noticeable savings were made in both cabling
and deployment costs, because of the shared communication support (Wilamowski
and Irwin, 2016).

The downside of fieldbuses was, though, the lack of standardization. Over the
years, many proprietary solutions were developed, such as PROFIBUS, INTERBUS
and MODBUS, as well as CAN-based implementations, such as Devicenet and
CANopen. Most of these protocols are still often used in industry, typically in
shop floors, between PLC, I/O-modules, sensors and actuators. In the end of the
1990s, Ethernet-based networks were introduced in the industrial environment, due
to the growing use of Internet technologies and Information Technology (IT). At
first, the lack of genuine real-time capabilities in standard Ethernet prevented the

4



2.2 industrial communication systems

development of one single Ethernet solution for automation purposes (Wollschlaeger
et al., 2017), and more dedicated proprietary ones were created.

Over the years, modifications were made to meet these time constraints and
several solutions emerged, such as EtherCAT and PROFINET IRT, which are two
of the most used Real-Time Ethernet (RTE) protocols. Ethernet protocols are
most commonly being used in industry for communication between process control
entities and support systems, such as SCADA (Wilamowski and Irwin, 2016).

Most recently, aiming for the same practicality of the increasing use of wireless
technology in daily life, industrial wireless networks (IWNs) have emerged. Starting
from the wireless sensor networks (WSNs), such as WirelessHART, these solutions
were initially implemented along with wired networks to increase flexibility, mobility
and easiness of deployment. Some examples used in industry are Zigbee, Bluetooth
and WLAN (Wilamowski and Irwin, 2016).

The main disadvantages of IWNs can be security issues and power consumption,
particularly for battery powered equipment, but its advantages match most of
the requirements for Industry 4.0, with more of these solutions being adopted
within factories (Li et al., 2017). For non-battery operated devices, a physical wired
connection must exist for power, thus the advantage of having a complete wireless
device is lower when compared to a battery-operated device.

It results that, currently, the field of industrial communication networks is very
heterogeneous, with many different, non-interoperable, solutions being used. Table
1 shows some network examples and applications, while Fig. 2 shows the indus-
trial networks market share of new nodes installed in 2022, according to HMS
Networks(Carlsson, 2022). The graph shows Industrial Ethernet had the highest
growth and continues to take market share from fieldbuses, which went from 28% of
new nodes installed in 2021, down to 27% in 2022. Meanwhile, the share for wireless
solutions stayed stable compared to past years. The most used Industrial Ethernet
protocol was Ethernet/IP, whereas PROFIBUS was still number one in fieldbus
usage.

As a consequence of this heterogeneous landscape, automation practitioners resort
to the use of middleware software to interconnect systems. In this context, a mid-
dleware can be seen as a digital interface used to establish communication between
physical (OT-Operations Technology) and digital environments (IT). By connecting
hardware and applications with the necessary level of abstraction from heteroge-
neous systems, it provides a common infrastructure to support communication (Ch
et al., 2018). The use of this kind of strategy is also compatible with the idea of
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Table 1: Classification of Industrial Networks

Features
Networks Solutions Typical use
Fieldbuses PROFIBUS, INTER-

BUS, Modbus, CANopen,
DeviceNET

Device communication in
shop floors

Industrial Ethernet PROFINET IRT, Ether-
CAT, Ethernet/IP, Mod-
bus TCP

Communication between
control units and SCADA
systems

Wireless Networks Zigbee, WirelessHART,
Bluetooth, WLAN

Sensor networks, param-
eter monitoring and au-
tomation control

Figure 2: Industrial Networks market share in 2022(Carlsson, 2022).
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2.2 industrial communication systems

Figure 3: The company pyramid (Tran et al., 2020).

Industrial Internet of Things (IIoT), where every node is connected and data flows
not only horizontally, at the device control level, but also vertically, between control,
production and planning systems (Tran et al., 2020), which becomes even more
relevant considering the typical company pyramid, as shown in Fig. 3. Examples of
communication middleware for industrial applications are Message Queue Telemetry
Protocol (MQTT), Data Distribution Service (DDS), Advanced Message Queuing
Protocol (AMQP), Constrained Application Protocol (CoAP) and OPC UA.

MQTT is a standard developed by the OASIS consortium2. It is described
as “an extremely lightweight publish/subscribe messaging transport that is ideal
for connecting remote devices with a small code footprint and minimal network
bandwidth”3. It uses the concept of an MQTT-server, also known as a broker,
which holds all the data from the connected nodes. Therefore, devices must simply
report data to the broker, not storing any data themselves. Such devices can also
be controlled by the broker (Profanter et al., 2019). MQTT also provides 3 levels of
Quality of Service (QoS), namely, at most once (level 0), at least once (level 1), and
exactly once (level 2).

2 https://www.oasisconsortium.com/
3 https://mqtt.org/
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As MQTT is an open communication protocol, some companies in the automation
sector saw it as an opportunity to develop IIoT solutions using this standard. That
is the case of Sparkplug, which is a specification for MQTT, created with the
purpose of better defining its infrastructure and semantics, in order to improve
interoperability and make data easily available and standardized for SCADA, MES
and Human-Machine Interface (HMI) solutions in industry (Céspedes Cubides and
Gualdrón, 2020).

DDS is an open middleware standard developed by the Object Management Group
(OMG). It works by introducing a virtual Global Data Space where applications are
able to share information by reading and writing data-objects addressed by means
of an application-defined name and a key4. It supports QoS parameters, such as
reliability, bandwidth, delivery deadlines and resource limits. It is also real-time
capable, with its nodes being able to do peer-to-peer communication using UDP
multicast, thus removing the need of a centralized network management system
(Balador et al., 2017).

AMQP is referred to as a reliable protocol for business messaging. It allows
different systems to interact, as long as they can create and interpret this data
format. Using AMQP, the network will be organized in nodes, which can deliver
messages or provide them storage. Data is directly transferred between nodes, so
any network model can be implemented, the most used being the centralized model,
where data is transmitted via the server (Andrei et al., 2020). It also supports QoS.

CoAP is a specialized web transfer protocol for use with constrained nodes
and constrained networks in IoT5. It was developed as an internet standards
document(Leiba, 2008) and it uses the Representational State Transfer (REST)
mechanism (keophilavong et al., 2019). On top of CoAP, the Open Mobile Alliance
(OMA) has defined the LightweightM2M (LwM2M), which is a client-server protocol
with several management functionalities for resource-constrained devices and remote
applications (Karaagac et al., 2019). The LwM2M specification also implements a
data model, which is organized as a three-level tree, and the levels are Object, Object
Instance, and Resource6. The OMA also holds the LwM2M Object and Resource
Registry, where new objects and resources can be submitted for registration.

OPC is “the interoperability standard for the secure and reliable exchange of
data in the industrial automation space and in other industries”7 developed and

4 https://www.omg.org/omg-dds-portal/
5 https://coap.technology
6 https://avsystem.github.io/Anjay-doc/LwM2M.html#data-model
7 https://opcfoundation.org/about/what-is-opc/
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2.3 opc ua

maintained by the OPC Foundation. The standard, named OPC Classic, is based
on Microsoft Windows technology using the COM/DCOM (Distributed Component
Object Model) for the exchange of data between software components. It brings a
series of specifications to define the interface between servers and clients, real-time
and historical data access, and alarm and events monitoring. OPC UA is a platform
independent service-oriented architecture that integrated all OPC Classic function-
alities in one extensible framework8. This architecture has two main components:
transport, which defines the protocols to serialize or deserialize data sent over the
network, and a data model, which defines rules on how to expose an information
model (Balador et al., 2017). The semantic description of this model (the address
space) is one of the major strengths of OPC UA (Profanter et al., 2019).

Additionally, since 2012, there is the oneM2M initiative, which comprises multiple
Standards Developer Organizations (SDOs) worldwide, with the goal of providing a
standard interface where incompatible devices can exchange data, manage informa-
tion, and interact (Willner et al., 2017). There are currently 200 active members
in oneM2M, developing the specifications for a common service layer, which can
exist between applications and networks, exposing functions needed by IoT across
different industry segments. This standard might work as an interoperability hub
across industries and industry-specific protocols9.

2.3 opc ua

OPC UA is a services-oriented architecture for industrial automation systems. It is
a platform-independent open standard that enables secure and reliable exchange
of data between devices, systems, and applications. It allows for the integration
of different devices, regardless of their manufacturer or communication protocol,
providing a common data model, which allows for easy communication and data
exchange between different systems. This enables the creation of a seamless and
secure communication network across various systems and devices, which can be
used for process control, monitoring, and data analysis (Lehnhoff et al., 2012).

The OPC UA standard consists of a series of specifications. The first seven
parts define the core specification (overview and concepts, security, address space
model, services, information model, mappings and profiles), while the others define
data access (events, alarms, conditions, historical access). The address space and

8 https://opcfoundation.org/about/opc-technologies/opc-ua/
9 https://www.onem2m.org/
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information model of OPC UA employ a tree-based hierarchical representation and
use references to organize nodes and constitute a network (Lam and Haugen, 2019).

Schleipen et al. (2016) describe four different application scenarios for OPC UA,
which go from a simple data and information hub, to the most common scenario of
monitoring and control, and even a more "futuristic" scenario that demonstrates the
ability of OPC UA to be used as a generic interface to orchestrate every component
(CPS) in a production cell.

2.3.1 Communication

OPC UA works primarily as a client-server communication model, where clients and
servers implement a set of services to handle communication and the exchange of data
(Mathias et al., 2020), but it also implements a publish-subscriber communication
model, to allow OPC UA to perform deterministic real-time data transfer over Time
Sensitive Networks (TSN) (Zezulka et al., 2019).

The client-server communication model involves the client sending a request to
the server, which then responds with the appropriate data or action. In OPC UA,
this means a client can send requests to monitor variables in the server, call methods,
subscribe to events and alarms, or access historical data.

In the publish-subscribe model, devices and systems can publish data to a topic
or channel, and any interested subscribers can receive this data without having
to make explicit requests. This approach allows the exchange of data in real-time
between devices, and is often used when time constraints need to be met.

2.3.2 Historical Data Access

OPC UA Historical Data Access (HDA) is a separate specification that describes
the access to past values of object instances within an OPC UA server. Under this
service, a client is able to query a snapshot of the server within a specified time
range (Mathias et al., 2020). The server then provides the historical process data
in a standardized manner, which enables applications to retrieve and analyze data
from different sources, including legacy systems, and integrate it into a unified
system for analysis and visualization.

In an industrial context, this historical process data can be used to identify trends
and patterns and provide insights about the performance of industrial processes

10
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over time. By analyzing this data, developers understand how different variables
affect the process, and how it has changed over time. This information can then be
used to optimize processes, improve product quality, reduce energy consumption,
etc.

2.3.3 Companion Specifications

A standardized address space and information model is what allows OPC UA to be
used to connect systems from different vendors and foster interoperability. For that
reason, beyond the core OPC UA information model, there has been an increasing
trend towards the creation of domain-specific information models for different fields
in the industry, such as vision systems, robotics, injection machines, etc. These
information models are called OPC UA Companion Specifications (CS), and they
are created with the collaboration of cross-vendor working groups (Friedl et al.,
2020).

The CS derive from OPC UA core model, inheriting its features and hierarchy,
while also allowing some modifications. This approach allows third parties to develop
their own models, which are suitable for describing new devices and their capabilities
(Perzylo et al., 2019). When similar devices from different manufacturers follow the
same CS, it increases compatibility, eases integration and improves interoperability.

2.4 digital twin

A critical component of both Industry 4.0 and Smart Factories is the Digital Twin,
a virtual replica or digital model of a physical object, system, or process. DTs
are created by combining data from various sources to create a real-time virtual
representation of the physical system (Glaessgen and Stargel, 2012). A DT can be
used throughout the lifecycle of a system or product, from design and development,
through operation and maintenance, to optimize performance, reduce downtime,
and support decision-making (Tao, H. Zhang, et al., 2019).

The development of DTs encompasses several challenges, including model accuracy,
security, and the integration of different devices and systems. DTs often require
the integration of data from a variety of sources, including sensors, manufacturing
systems, and ERP systems. Achieving interoperability and standardization across

11



fundamental concepts and related work

these disparate systems is a significant challenge (Fuller et al., 2020; Liu et al., 2021;
Lu et al., 2020; Tao, Xiao, et al., 2022).

Abdelsattar et al. (2022) proposed an architecture based on OPC UA, which
offers the conversion between an existing SCADA system to a DT, without the
need for additional hardware. It consists of a single client/gateway device that
acts as the point of intersection between industrial controllers, embedded system
controllers and cloud services. Each of these components is considered a server
node and use OPC UA to connect to the gateway device, which is responsible
for gathering and processing all data, and updating the DT. In their case study,
a FESTO MPS (Module Production System) processing station was chosen to
demonstrate the concept, a PLC and a Raspberry-Pi acted as server nodes, and the
Ignition Designer10 module was used to store data and create SCADA and HMI
screens. However, in their case study there is no 3D representation for their DT,
and they rely on the SCADA screen for monitoring and visualization.

The architecture proposed by Souza et al. (2019) utilizes a network of IIoT devices
to gather data and control a physical process. This IIoT Gateway uses OPC UA to
structure this information and send it to an Internal Server, which is responsible for
processing this data and updating the DT. Their DT has two access interfaces, a
more comprehensive one with an operational approach, and a more condensed one
focused on supporting business and management decisions. This concept was used
in an experimental application in a didactic assembling plant. As in the previous
work, their DT does not provide a 3D representation for visualization. The use
of OPC UA is restricted to data gathering and structuring, and there is no data
exchange between devices for process control.

The work presented by Protic et al. (2020) implements a bi-directional DT
application for a smart cobots assembly cell (SCAC). The SCAC consists of two
collaborative robots and a motion control software application responsible for
sending them tasks. The 3D virtual representation of the cell is created in Siemens
NX, and Ignition SCADA is employed as well to acquire and display real time data
from the cobots. All these components are linked through ethernet and communicate
via OPC UA. The use of OPC UA methods in the motion control application, and
in the cobots’ servers for process control, is not explored in this work.

The work by Martins et al. (2020) aims to reduce the commissioning time of
automated systems by implementing Virtual Commissioning using the DT as a
shared model. The work defines methodologies to integrate legacy and newly released

10 https://inductiveautomation.com/ignition/designer
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industrial equipment into a Smart Factory environment, using their DT for design,
commissioning, support, and supervision of the real equipment. A set of novel
virtual engineering tools based on OPC UA and ABB RobotStudio simulation
software was created to achieve this goal, raising the use of simulation to a new
level, with the capability to monitor a real asset, while proposing a methodology
to make industrial devices OPC UA-enabled for Industry 4.0 and future factories.
The guidelines proposed were then implemented in an automation system created
within an academic robotics laboratory. However there is no mention in this work
about historical process data access or the use of databases connected to the DT.
This work served as the basis for the development of the work detailed in the next
chapters of this report.

Finally, Perzylo et al. (2019) propose the architecture for a semantic DT, which is
a semantic representation of a manufacturing resource’s properties, using OWL (Web
Ontology Language) ontologies to encode the information models found in OPC UA
NodeSet specifications, combined with the resource’s geometry and kinematic model,
when applicable. This concept should enable the creation of a full-fledged formal
representation of hardware and software properties of a manufacturing resource.
As in the previous mentioned work, this work also does not explore the concept of
historical data access in the DT.
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3
B U I L D I N G B L O C K S

This chapter describes the development of key block applications using OPC UA,
that will be used in the more comprehensive applications described in the next
chapters. This generic applications are important because they provide a foundation
for building more complex and specific applications that can meet the unique needs
of various industries. These key block applications have been designed to be modular,
scalable, and interoperable, which allows them to be easily integrated into larger
systems and customized to meet specific requirements.

As referred previously, OPC UA is an open source multiplatform service oriented
architecture for automation systems. Several implementations exist, and the ones
used throughout this work are the OPC UA .NET stack, from the OPC Foundation1,
and the open62541 C stack2, developed and maintained mainly by a group of
companies and institutions.

Developed in C# using the .NET StandardLibrary3, UA .NET allows the de-
velopment of applications that run on many common platforms available today,
without requiring platform-specific modifications. As OPC Foundation’s official
stack, UA .NET is well maintained and regularly updated, ensuring that it remains
compatible with the latest OPC UA specifications and best practices. This makes it
a reliable and future-proof choice for developing OPC UA applications.

Open62541, developed in C99 and C++98, is designed to be a lightweight and
modular stack, using less computational resources, and allowing OPC UA appli-
cations to run in less powerful platforms, such as microcontrollers. This makes
open62541 a great choice for developing OPC UA applications in embedded systems,
IoT devices, and other resource-constrained environments. Despite its lightweight
nature, open62541 is still a fully compliant OPC UA stack, supporting all the essen-
tial features and functionalities required for building secure and reliable OPC UA
applications, namely OPC UA client/server communication, subscriptions, method
calls and security (with user authentication and encryption). It also includes a
range of advanced features, such as support for multi-threading, user-defined data

1 https://github.com/OPCFoundation/UA-.NETStandard
2 https://github.com/open62541/open62541
3 https://learn.microsoft.com/en-us/dotnet/fundamentals/

15

https://github.com/OPCFoundation/UA-.NETStandard
https://github.com/open62541/open62541
https://learn.microsoft.com/en-us/dotnet/fundamentals/


building blocks

types, and custom information models, making it a versatile and flexible option for
developers.

3.1 opc ua server smartcomponent

RobotStudio is a powerful software developed by ABB for programming and simu-
lating robot-based processes. It allows users to program, simulate, and test ABB
robots in a virtual environment using the same programs and configuration files
used on the shop floor, thus reducing the need for physical prototyping and testing.
This not only saves time and resources, but also enables users to optimize robot
processes before they are deployed on the shop floor.

RobotStudio (RS) provides a feature called SmartComponent (SC), which are soft-
ware modules that simulate the behaviour of important components in a robotized
system, such as sensors, grippers, conveyors, vision systems, and other mechanisms.
By using SCs, users can accurately simulate the interactions between different
components and optimize the overall performance of the robotized process. For
example, a SC can be created to simulate the behaviour of a conveyor belt, allowing
users to test how the robot interacts with the conveyor without the need for a
physical conveyor.

RS comes with a variety of built-in SCs for simpler operations, such as linear
motion conveyors and mechanism joint position control. These SCs can be easily
used to create custom SCs using the SmartComponent Editor, which provides a
visual interface for defining the properties and behaviour of the component. For
more complex operations, users can also create their own SCs using the RS SDK in
C# through Visual Studio. With this SDK, users can create custom scripts that
can be run within RS, custom user interfaces, or applications to integrate RS with
other software programs.

When creating a SC, users need to define its properties, inputs, and outputs.
Properties are the parameters that define the behaviour of the SC, such as the speed
of a conveyor belt, or the force exerted by a gripper. Inputs and outputs are the
communication channels through which the SC interacts with other components in
the RS simulation. For example, an input for an SC that simulates a sensor could
be the distance between the robot and the object being sensed, while an output
could be a Boolean value indicating whether the object has been detected.
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In their work, Martins et al. (2020) have demonstrated the potential of SCs by
developing a generic SC that launches an OPC UA server or client for an industrial
device, depending on its working mode. The SC works in two modes: monitoring and
simulation. In monitoring mode, the SC runs a client that connects to the device’s
server and subscribes to data, allowing for the DT to be updated in real-time in RS.
This allows users to monitor the behaviour of the physical device in RS, without
the need for physical access to the device. In simulation mode, the SC runs a server
with the same structure as the real device’s server and allows the DT to be used to
simulate the device’s behaviour. This can be useful in situations where the physical
device is not available, or for testing and development purposes. Based on their
work, and in order to support the development of the DT described later in this
report, an OPC UA Server SC was developed using RS SDK, with the structure
shown in Fig. 4.

While in the work by Martins et al. (2020) the device’s behaviour is also imple-
mented in the SC developed with RS SDK, alongside the implementation of the
OPC UA server and client, the SC developed in this work can be used to create
an OPC UA server for any existing SC that already implements the behaviour of
a device. The developed SC replicates all inputs, outputs and properties of the
existing SC, so it can be connected to other components in the RS simulation in
the same way. If there is an existing geometry or mechanism linked to the existing
SC, the developed SC can carry it and bind it to the existing SC. This approach
allows this SC structure to be used to create an OPC UA server for any existing
component in the RS simulation with minimal changes to the code, as it eliminates
the need to recreate the behaviour of the device from scratch.

The OPC UA server in the SC is implemented with UA .NET and its Address
Space can reflect some or all of the properties, inputs and outputs of the existing
component, as well as any other additional data, depending on the user’s needs
related to which information should be available in the device’s server. When
launched in RS, the SC provides the endpoint of the server that was created.

3.2 opc ua server on an esp32

As previously mentioned, the authors of open62541 developed it to be a lightweight
and modular stack implementation of OPC UA, which allows for the creation of OPC
UA applications in many types of devices, including microcontrollers. The ESP32 is
a low-cost, low-power system-on-a-chip (SoC) microcontroller designed by Espressif
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Figure 4: Structure of the OPC UA server SmartComponent.

Systems4. It integrates Wi-Fi and Bluetooth connectivity, and includes a variety
of peripheral interfaces, such as Universal Asynchronous Receiver/Transmitter
(UART), I2C and SPI. Due to their low cost and energy efficiency, there has been a
recent trend towards using microcontrollers like the ESP32 in small-scale industrial
applications (Gatial et al., 2020).

ESP-IDF5 is Espressif’s official open-source IoT Development Framework for the
ESP32 series of SoCs. It provides an SDK for generic application development on
those platforms, using programming languages such as C and C++. It supports many
software components, including Real Time Operating System (RTOS), which is used
for real-time computing applications that process data and events with critically
defined time constraints. To achieve these constraints, in an RTOS application,
repeated tasks are performed within a tight timeframe, unlike in a general-purpose
operating system. The most used RTOS for microcontrollers such as ESP32 is
FreeRTOS6.

An application that uses an RTOS can be structured as a set of tasks, where
each task executes within its own context, with no dependency on other tasks.
Therefore it is possible to develop an OPC UA server in ESP32 using open62541 and
FreeRTOS, by creating a task that implements the server’s configuration, context
and main loop iteration. Fig. 5 shows the output of a server running on ESP32,
visualized with the ESP-IDF monitor function, which relays the logging output of

4 https://www.espressif.com/en
5 https://www.espressif.com/en/products/sdks/esp-idf
6 https://www.freertos.org/
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Figure 5: Output of OPC UA task running on ESP32.

the applications running in ESP32, through the serial connection. This development
was based on the project available in https://github.com/Pro/open62541-esp32.

3.3 opc ua server with historical access

As mentioned in Chapter 2, OPC UA defines in its specification a standard to store
and retrieve historical process data. The HDA enables the clients to access and
analyze the historical data of a server.

Open62541 provides a plugin7 to support the access to historical data. This plugin
contains three main elements, as shown in Fig. 6:

• HistoryDatabase, which contains the main interface between the server and
the plugin. It is responsible for handling the requests made by clients to access
historical data.

• HistoryDataBackend, which implements the integration with a specific database.
It provides the implementation of the callbacks used to retrieve data from the
database. The HistoryDataBackend is responsible for translating the requests
made by the client into queries that can be executed by the database. It also
provides a mechanism for storing data in the database.

• HistoryDataGathering, which encapsulates the gathering and storage of data.
It is responsible for periodically collecting the data from the process and storing
it in the database by calling the methods defined in the HistoryDataBackend,
so it can be retrieved by clients later. Each node in a server that provides
HDA needs to be registered for the gathering of historical data.

7 https://blog.basyskom.com/2019/initial-support-for-servers-with-historical-data-access-in-open62541/,
accessed in 23/03/2020
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Figure 6: Open62541 HDA plugin7.

Open62541 provides a sample HistoryDataBackend that implements an in-memory
database, which is suitable for testing and development purposes, but not for
production environments where data should persist in the long term. In an industrial
context, where process information is mostly stored in a local network database, a
different backend should be implemented. The implementation of a custom backend
involves creating a database connection, defining the necessary queries to insert
and retrieve data, and implementing the HistoryDataBackend interface methods to
perform the required operations.

The example provided in https://github.com/nicolasr75/open62541_sqlite

demonstrates a custom implementation of a HistoryDataBackend which allows
connection to an SQLite8 database. Unlike traditional client-server database man-
agement systems, SQLite operates on a local file system and does not require a
separate server process. Instead, it reads and writes directly to local disk files, using
Structured Query Language (SQL) commands. SQLite is a popular choice for em-
bedded systems and mobile devices due to its lightweight nature, zero-configuration
setup, and ACID (Atomicity, Consistency, Isolation, Durability) compliance.

Based on the SQLite backend example above, a new HistoryDataBackend was
developed, creating a connection to a MySQL database. MySQL9 is an open-
source Relational Database Management System (RDBMS) that is widely used for
managing and organizing data in web and server applications. It is one of the most
popular database management systems in use today10, particularly for web-based
applications and websites. It is also based on the SQL standard, which is used to
manage and manipulate data in relational databases. It can be used to create and

8 https://www.sqlite.org/index.html
9 https://www.mysql.com/

10 https://db-engines.com/en/ranking
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Figure 7: History data request in UaExpert.

manage databases, tables, and other structures, as well as to insert, update, and
retrieve data.

In this project, the MySQL backend was developed in C++, using the MySQL
Connector/C++11 library. When compared to the SQLite backend, the first improve-
ment was the implementation of the serverSetHistoryData, which is a method
in the HistoryDataBackend called by the HistoryDataGathering component to
store new data in the database. This method was not implemented in the SQLite
example. Additionally, the MySQL backend was developed to be more generic, as
it is prepared to handle database interactions for variable nodes of string, integer
and float datatypes. In the database, the historical data of each node is stored
in individual tables, and the table names are a string composed by the node’s
namespace and id in the OPC UA server. Each table stores the timestamp and
value of the variable node.

Fig. 7 shows the result of a historical data access request to the server using
UaExpert12, which is an OPC UA client application from Unified Automation.
The client requested the historical data of two variables in the server in a certain
timeframe, and the History Data View in UaExpert allows for the plot visualization
of these numeric values. Fig. 8 shows how the same data is stored in the database
(shown here using MySQL Workbench13 viewer).

The use of MySQL in this application allows users to store and retrieve OPC UA
historical data in a widely used and reliable RDBMS. The MySQL database can be
hosted locally or remotely, and can handle large amounts of data, depending on
the database server hardware, making it suitable for industrial applications that
require long-term storage of process data.

11 https://dev.mysql.com/doc/dev/connector-cpp/8.0/
12 https://www.unified-automation.com/products/development-tools/uaexpert.html
13 https://www.mysql.com/products/workbench/
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Figure 8: Historical data stored in MySQL database.

3.4 opc ua client-server application

In a Smart Factory environment where every device communicates over OPC UA,
a situation might happen that a single application needs to gather data from many
devices, as a client, and also have data or services available, as a server. A simple
way to create such an application is to use open62541.

The OPC UA client implementation included with open62541, does not yet
implement a background thread or a main loop, which means that the client will
not perform any actions automatically in the background. Therefore, in a new client
application’s main loop, one needs to periodically call a function that keeps the
connection to the server established. Without this, the client may lose its connection
to the server, leading to data loss or system downtime.

On the other hand, the open62541 server’s implementation allows running the
server’s main loop by calling a function only once. This function starts the server,
and the server remains active until it is shut down. However, similar to the client’s
implementation, it is also possible to periodically call a function that executes one
iteration of the server’s main loop. This provides the flexibility to integrate the
server into an existing application and execute other code simultaneously.

Therefore, by combining these two periodical functions in a loop, it is possible to
develop an application that implements both a server and a client. Listing 1 shows
an excerpt of this implementation.
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Listing 1: Open62541 client-server implementation overview.

1 int main(void) {
2 //Create server's object
3 UA_Server* server = UA_Server_new();
4 /*
5 * Perform server's configuration here
6 *
7 */
8 //Create client's object
9 UA_Client* client = UA_Client_new();

10 /*
11 * Perform client's configuration here
12 *
13 */
14 while(running) {
15 UA_Server_run_iterate(server, true);
16 UA_Client_run_iterate(client, 0);
17 }
18 }
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4
I N T E L I T E K PA L L E T C O N V E Y O R O P C U A S E RV E R

This chapter describes the methodology used for the implementation of an OPC
UA server for a pallet conveyor using ESP32 and open62541. The objective of this
implementation is to showcase the integration of a legacy device into Industry 4.0
by adopting the OPC UA standard for data exchange. By using the ESP32, the
implementation benefits from its low power consumption, built-in Wi-Fi capability,
and robustness, making it well-suited for industrial environments. Moreover, by
running the OPC UA server within ESP32, no major physical modifications will be
necessary around the existing pallet conveyor, as ESP32 is such a small piece of
hardware.

In their work, Martins et al. (2019) described the virtualization of a production
system, created in the Advanced Robotics and Smart Factories laboratory of
the Polytechnic of Leiria, mainly used for research, development and education,
composed by several devices, including an Intelitek pallet conveyor. The device is
a rounded corner rectangle, continuous loop, pallet conveyor that belongs to an
earlier CIM (Computer Integrated Manufacturing) system from Intelitek, and it is
controlled by a PLC using a list of commands (strings) sent and received through
RS232 serial communication.

It contains four pallet transporters that move on the conveyor and can be stopped
at three different stations. Each station has a set of sensors that capture the passage
of a transporter, and a message (string) is sent by the conveyor to indicate these
passages when they happen. Each transporter has an unique identification (1-4),
and the user can send a command to stop a certain transporter at a certain station.
This list of strings (messages and commands) was obtained by applying some reverse
engineering to understand how the PLC exchanged data.

As part of the virtualization of the production system, a RS SC was developed
using RS SDK to replicate the geometry and behaviour of the conveyor. The same list
of strings were used for the component in simulation, but TCP/IP communication
was used for outside interaction with the conveyor, instead of serial communication,
in order to provide improved integration within the laboratory systems network.
Fig. 9 shows the conveyor at the laboratory, and Fig. 10 shows the conveyor in RS.
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Figure 9: Intelitek pallet conveyor (Martins et al., 2019).

Figure 10: Intelitek conveyor in RobotStudio with stations (S) and transporters (T) indica-
tions.
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4.1 smartcomponent update

Regarding the project requirements for this development, the control of the
conveyor will continue to be performed by the PLC it is connected to, therefore
there are no strict time constraints. For the OPC UA communication of the conveyor
with the remaining devices in the laboratory, it is important that the conveyor is
able to respond to commands within a timeframe of 500 milliseconds. This is so
because the commands to the conveyor are expected to be done early, before the
parts reach their goal destination, or while the parts are stopped, and because the
interaction of external devices with the parts on the conveyor are always done with
the parts at rest.

4.1 smartcomponent update

In order to develop an OPC UA server in an ESP32 that can be employed in the
real pallet conveyor at the laboratory, the PLC that controls the conveyor needs to
able to communicate with the ESP32 through RS232. To facilitate the development
of the ESP32 application in this scenario, the virtual conveyor running in RS was
used as a DT. This allows for the testing and validation of the ESP32 application’s
functionality without requiring the physical conveyor, thus reducing the development
time.

To be able to use the simulated conveyor as the real one, the conveyor SC was
updated to implement serial communication. Then, all development was done using
the virtual component running in RS, by connecting an USB-RS232 converter to
the computer and allowing the use of RS232 for outside interaction with the virtual
conveyor, as it would be done with the real one.

Fig. 11 shows the strings sent by the conveyor through the serial connection, as
each transporter passes by the stopping stations. The serial port to be used should
be indicated by the user in the SC properties in RS.

4.2 rs232-uart interface

As previously mentioned, the ESP32 is a SoC microcontroller that integrates Wi-Fi
and Bluetooth communication, and includes a variety of peripheral interfaces, such
as UART, which is used for asynchronous serial communication. By leveraging the
UART interface, the ESP32 can be easily used to communicate with legacy devices
that may not support more recent communication protocols.
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Figure 11: Strings sent from conveyor SC through serial connection.

Figure 12: MAX3232-based circuit used in RS232-UART conversion.

RS232 and UART are both serial communication protocols, but they use different
signal voltage levels, which means that they require a transducer to enable commu-
nication between them. Such interface can be created using a simple circuit based
on the MAX32321, thus providing the necessary voltage level conversion and signal
conditioning to enable reliable communication between RS232 and UART devices.

Therefore, the data exchanged between the virtual conveyor running in RS
(through the USB-RS232 interface) and the ESP32 (through the UART interface)
can be converted using a circuit with MAX3232. Fig. 12 shows the schematics of
this circuit connecting the Tx (transmitter) and Rx (receiver) from the USB-RS232
converter to the Rx and Tx of ESP32’s UART interface. The circuit also uses four
electrolytic capacitors and it is powered by the 3.3V source pin in ESP32.

1 https://www.ti.com/lit/ds/symlink/max3232.pdf?ts=1679554852103
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4.3 opc ua server

As described in Chapter 3, an OPC UA server can be developed for an ESP32
using FreeRTOS and open62541. This allows the ESP32 to act as a powerful and
secure industrial automation device, capable of exchanging data and information
with other devices and systems that support the OPC UA protocol.

The address space for the conveyor’s server contains one variable, which displays
the messages received from the conveyor through the UART interface, and one
method, which provides one input argument for the user to send a command to
the conveyor. Even though the same type of messages are used to control and
communicate with the conveyor, this implementation provides a first step to enable
this legacy device to comprise with the Industry 4.0 requirements through the OPC
UA protocol.

Internally, the variable in the server implements a function that periodically
reads from the UART and checks for new messages. In a similar way, the method
implements a function to write in the UART when executed by a client.
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5
D I G I TA L T W I N F O R A Q U A L I T Y C O N T R O L C E L L

This chapter describes the methodology used for the implementation of a Digital
Twin for a Quality Control cell. The development of DTs has gained significant
attention in recent years due to their potential to enhance efficiency and productivity
in various industries, including manufacturing. The DT described in this work
was built in RS, using some of the building blocks described earlier, with the
communication between the devices in the cell being supported by OPC UA.

QC is the process of evaluating a product or service to ensure that it meets the
desired level of quality. In production and manufacturing, QC involves verifying a
product’s conformity to its original design by using techniques such as measuring,
examining, testing, or gauging (Babic et al., 2021). This is an important process, as
it helps to identify and address any defects or issues in the manufacturing process
that could lead to product failures, safety hazards, or customer dissatisfaction.

By implementing rigorous QC processes, manufacturers can ensure that their
products meet the required quality and safety standards. In addition, effective QC
can help improve the efficiency and productivity of production processes, as it can
be used to identify areas for optimization and improvement.

5.1 the manufacturing process

The QC cell outlined in this work is part of a broader production process in the
automotive industry that aims to manufacture plastic components with a metallic
appearance. The component in question is formed by the assembly of two different
parts (top and bottom), as shown in Fig. 13.

These parts come from the injection process and are stored in the factory for 24
hours before heading to the QC cell for analysis. This waiting period is necessary
as certain defects in the injection process may not be immediately noticeable and
only manifest after a period of time.

In the QC cell, the parts are subjected to two types of analysis to ensure their
conformity to the required standards. The first one is a dimensional analysis, which
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digital twin for a quality control cell

Figure 13: Top and bottom parts of the component.

is carried out using a laser profiler to scan the parts. It uses laser triangulation
technology to scan and digitally reconstruct the part as a 3D point cloud. The
second type of analysis is a surface (texture) analysis, which is performed by
processing high-resolution images of the parts captured by a set of cameras. It uses
the deflectometry technique, which consists of creating various scenarios by varying
the intensity and angle of incidence of light on the part, and the position of the
cameras in relation to the part, in order to enhance its surface for defects detection,
such as scratches or material changes. The QC cell is linked to a database where
the results of all analyses are stored. As the two types of parts have different QC
requirements, the top part needs to undergo both dimensional and surface analysis,
while the bottom part will only undergo the dimensional analysis.

In addition to performing QC analysis, the QC cell also has a traceability function.
This is achieved through the use of a label maker machine that is capable of printing
and applying labels to the parts that have been approved in the QC process. This
step is important as it could allow for the development of self-aware smart products,
as the product itself carries information which allows access to its own manufacturing
process data.

After leaving the QC cell, the parts go back to storage and later are directed
to the laser welding station, where they are assembled. Fig. 14 illustrates the
manufacturing process.

5.2 qc cell structure and requirements

As mentioned before, the QC cell in the outlined manufacturing process needs to be
able to manipulate, analyze, and label two types of parts. To achieve this goal, the
cell must be carefully designed and optimized to ensure its ability to handle different
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5.2 qc cell structure and requirements

Figure 14: The manufacturing process of the component.

products in a flexible and efficient manner. This requires careful consideration of
the layout of the cell and the movement of the parts through the various stages of
analysis and labeling. The equipment used in the cell must also be carefully chosen
and configured to ensure the cell is capable of processing the parts accurately and
efficiently.

The QC cell can be divided in two areas, as shown in Fig. 17:

• The manipulation area, composed by:

– an entry conveyor, where parts will be introduced in the QC process.

– a discard conveyor, for parts which do not meet the quality require-
ments.

– an out conveyor, for parts which meet the requirements to exit the cell
and be picked up for storage.

– a Hermes+ label maker with applicator, to tag the approved parts.

– a robot manipulator to move parts inside the cell, in this case, an
Epson N2.

• The Quality Control area, composed by:

– a Gocator, which is a 3D laser profiler that will be used to take
measurements of both types of parts, to check if they meet the dimensional
criteria.

– Genie Nano high resolution cameras, which will be used to check if
the parts (top type) meet the surface (texture) quality criteria.

– a linear rail with a support structure where the robot will place
the parts to be analyzed.
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digital twin for a quality control cell

Figure 15: Gripper designed to fit the parts.

In this cell, the devices in the manipulation area are controlled independently.
In the quality control area, the laser profiler and cameras are directly connected
to a computer that runs the image processing software and provides the analyses
results. Furthermore, the interaction between the various systems is done at rest,
that is, the parts images are captured with the parts stopped and the robots pick the
parts when they are stopped. The only dynamic situation is during the dimensional
analysis, given that the part is translated while a scan is performed. However, that is
considered as a single system from the implementation point of view, integrating the
linear actuators, encoder and the Gocator, which is modelled here at a higher-level,
given that the implementation of that system in practice was not part of this work.
Therefore, there are no strict time constrains for the cell and, as such, we specified
a maximum response of 500 milliseconds for the various OPC UA systems. The
only restriction in place is the total amount of time available to process a single
part, from input to output of the cell, which should be lower or equal to 90 seconds.

To support the development of the DT, the whole structure of the cell was imported
to RS. The structure geometry came from the 3D model CAD files provided by
the company. Additionally, the geometry of a gripper with three vacuum cups was
created to fit the dimensions of both parts that will be manipulated by the robot,
as shown in Figs. 15.

To move the parts within the QC process, two ABB IRB1200 robot manipulators
were added outside of the cell. One will move the parts from the input box to the
entry conveyor, and the other will move the approved parts from the out conveyor
to another (output) box. Both of these robots are also equipped with the gripper
designed to fit the parts. Figs. 16 and 17 show the cell built in RS.

5.3 devices behaviour simulation

To support the DT simulation in RS, the behaviour of each device in the cell needs
to be implemented. In RS there is a type of component called Mechanism, which is
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5.3 devices behaviour simulation

Figure 16: Quality Control Cell in RobotStudio (perspective overview).

Figure 17: Quality Control Cell in RobotStudio (top view with the identification of each
component).
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digital twin for a quality control cell

used to define the physical characteristics and behaviour of a robot or a machine,
from the definition of its links and joints. Three mechanisms were created in RS: the
Epson robot manipulator, the label maker and the linear rail. These mechanisms
allow the motion of the devices when the joint values are changed. As an example,
Fig. 18 shows the jog joint window for the linear rail mechanism in RS.

To control these mechanisms and the behaviour of the other devices in the cell,
SCs were designed in RS Station Logic, using the SmartComponent Editor. Each
SC contains the geometry and/or mechanism of the equipment, and implements
the device’s operating logic. Inputs and outputs were defined for each SC to control
the device and to allow them to interact in the cell. Table 2 details the five SCs
that were created.

The GripperControl SC implements the gripper’s behaviour to attach and detach
parts. It has one digital input, to open and close the griper, and one digital output
to indicate its status. The RobotControl SC receives the desired joint values and
execution time, and there is an input to execute the robot’s motion. As the robot
is implemented as a Mechanism (RS only includes ABB robots) it is not possible
to create targets and paths graphically in RS to control its motion. This SC
encapsulates the GripperControl SC, as the gripper is used as the robot’s tool, so
the GripperControl SC inputs and outputs are replicated in the RobotControl SC.
There is also a digital output indicating if the robot is busy (i.e. performing any
motion).

The ConveyorControl SC is used to control the behaviour of the three conveyors
in the QC station. It simulates two sensors, one at the beggining of the conveyor
and one at the end, to identify the presence of parts and move them along path.
Every time a part is detected at the end of the conveyor, it is stopped until the
part is picked up from the conveyor. If there are no parts in the conveyor, it also
stops. The SC has a digital output that indicates the presence of a part waiting to
be picked up, and another digital output to indicate if the conveyor is running. The
conveyor’s speed can be changed in the SC properties.

The LabelMakerControl SC implements the behaviour of applying a label to a
part. There are two joint positions stored in the label maker mechanism: one is used
when the applicator is retracted, and the other is used when it moves forward to
the position to apply a label. The SC has a digital input that triggers the motion
between these two positions and back, to simulate the application of the label. It
also has an output to indicate if the device is busy.
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5.4 qc cell operation

Figure 18: Mechanism jog joint for the linear rail mechanism.

The VisionSystemControl SC encapsulates the linear rail, the Gocator and the
cameras, and it is used to implement and control the behaviour of the QC area
as a whole. The SC has two digital inputs, each to trigger one type of analysis.
When an analysis is triggered, the linear rail mechanism moves to an already stored
joint position (which is different for each analysis), waits for a determined amount
of time, and returns to the initial position. The SC has outputs to indicate if a
part was approved (true) or not (false). At this stage of development of the DT,
the parts are simulated as OK or NOK (i.e. Not OK) through a random process
implemented in the SC, in which there is a 10% probability that the part will be
considered NOK.

Additionally, the behaviour of the two IRB1200 manipulators was programmed
with RAPID, which is a high-level programming language used to control ABB
robots. Fig. 19 shows the targets and path that implement the robot’s motion to
take a part from the input box and place it on the entry conveyor.

5.4 qc cell operation

Fig. 20 shows the flowchart created for determining the operating logic of the QC
cell. The process begins when the operator scans a box of parts, with the part type
contained in the box being transmitted to the QC cell controller. If the part is a
bottom one, it undergoes dimensional analysis using the Gocator. Upon approval, a
label is generated and affixed to the part, which then proceeds to the out conveyor
for storage.
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5.4 qc cell operation

Figure 19: Targets and path for ABB IRB1200.

In the case of a top part, it must undergo both dimensional and surface analysis,
requiring the part to be rotated, as these tests are performed on different faces of
the part. To aid the process of rotating the part, a 45 degree support was added to
the linear rail, designed to allow the robot to place the part on one side and pick it
from the other. Only if both tests are OK, will the top part receive a label and exit
the QC cell. Any bottom or top part that fails a test is discarded and not labeled.
The interaction between all components that implement the cell’s operating logic is
done through OPC UA and it is detailed in Fig. 21.

5.4.1 Individual devices servers

To support the DT simulation, four OPC UA servers were created, namely, one
for the label maker, one for the robot, one for the entry conveyor, and one for the
vision system. These servers run within RS and were implemented using the RS
and UA .NET SDKs, as described in Chapter 3.

Tables 3 and 4 present the structure of the servers’ address spaces, regarding the
variables and methods available in each one, respectively. These structures were
defined based on each device’s behaviour implementation (described in the previous
section) and the cell’s operating logic, through the identification of the necessary
sensors and controls for the cell, and the determination of which information each
equipment should provide.
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digital twin for a quality control cell

Figure 20: Flowchart of the cell operation.
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5.4 qc cell operation

Table 3: OPC UA Variables available in each individual equipment’s server.
Equipment Variable Type Description Is moni-

tored?
Entry Con-
veyor

SensorOutState Bool Indicates if
there is a part
at the end of
the conveyor
ready to be
picked up.

Yes

Robot J1 - J6 Double[] Joint values. No
RobotBusy Bool Indicates if

the robot is
moving.

Yes

Label Maker Label String Shows the
text of the
last printed
tag.

No

Vision System DAresult Bool Indicates
the result
of the last
dimensional
analysis per-
formed.

Yes

SAresult Bool Indicates the
result of the
last surface
analysis per-
formed.

Yes
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digital twin for a quality control cell

Figure 21: Block diagram of component interaction.

Table 4: OPC UA Methods available in each individual device’s server.
Equipment Method Input Description
Entry Conveyor - - -

Robot
MoveMethod Double[]: Joint

values
Moves the robot to
the desired joint val-
ues
at a certain

Double: Speed speed (degrees/s).
GripperMethod Int:

0(open)/1(close)
Opens or closes grip-
per.

Label Maker LabelMethod String: Label Triggers label maker
to print and apply a
label.

Vision System DAmethod String: Part type Triggers vision sys-
tem for dimensional

SAmethod String: Part type analysis. Triggers vi-
sion system for
surface analysis.
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5.4 qc cell operation

Figure 22: Finite state machine that implements cell’s operating logic.

5.4.2 Cell controller

The cell controller application, developed in C++ using open62541, serves as the
central hub for initiating the QC process, and implements the operating logic of
the cell, as shown in Fig. 20 in the form of a Finite State Machine (FSM), pictured
in Fig. 22. To do that, this application needs the information from the individual
device servers so, four OPC UA clients are implemented. The reason one needs each
individual client for every server is because, in open62541, once a client connects to
an endpoint, it is not possible to switch to another server. The last column in Table
3 indicates which variables are monitored by the cell controller application in each
of the servers.

Additionally, the cell controller application implements an OPC UA server for any
outside interaction with the cell (by a MES or an ERP, for instance). The server’s
address space is structured as shown in Table 5. There are four OPC UA variables,
which essentially replicate from the individual servers key information about the
cell that should be available for an outside operator. This provides a single point of
access to the cell where all important information is available, eliminating the need
for a user to connect to each individual device server to follow the QC process.

The OPC UA method present in the cell server is used to start the process of QC
to a certain box of parts. This method takes as argument the label of the box to be
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Table 5: Quality Control cell server’s Address Space structure.
Type Name Description

Variable

DAResult Indicates the result of the
last dimensional analysis
performed.

SAResult Indicates the result of the
last surface analysis per-
formed.

ProcessedBoxLabel Shows the label of the last
box of parts that entered
the cell.

PrintedLabel Shows the last printed la-
bel in the label maker.

Method Box ID Receives the box label as
an input argument and
iniciates the QC process.

analyzed, which consists of a hyphenated string indicating the box’s id, the type of
part inside, and the number of parts. This information is saved in the memory of
the application, as it is crucial for the operation of the developed FSM.

As the MoveMethod in the robot’s server receives as argument a vector with
the joint values and a speed value (which will be converted to a time value to
enter the RobotControl SC, based on the maximum distance between the desired
and current joint values), each MOVE state in the FSM is associated with a list
of joint values vectors that describes the path that the robot needs to perform.
Usually, when working in RS with ABB manipulators, these paths are described
by a set of targets that indicate position, orientation and configuration, and the
robot controller performs the kinematics to control the robot’s motion. However, the
robot manipulator in this cell was implemented in RS as a Mechanism, and it does
not have an ABB virtual robot controller to perform its kinematics calculations.
Therefore the construction of each path was manually done in RoboDK1, which is
a software for industrial robot simulation and programming that has a library of
robots from multiple manufacturers. The main targets for each path were created
in RS, where all the cell’s geometry is represented, and then replicated in RoboDK,
where some intermediate targets were added and the paths were created and tested.
All the targets that formed a path were then converted to joint values vectors to
compose the lists of targets in each MOVE state. Fig. 23 shows the targets created
in RS and RoboDK.

1 https://robodk.com/index
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5.4 qc cell operation

Figure 23: Targets in RS (left) and RoboDK (right).

Finally, the cell controller application implements a connection to a MySQL
database, to enable the historical access of the four available variables. This HDA
implementation was detailed in Chapter 3. Additionally, this connection to the
database also allows for the storage of the process data in a separate table, which
concatenates the results of the analysis for each part in a readable manner, and
make it available to be accessed by other processes within the factory.

5.4.3 QR Code client

To interact with the cell server and send the trigger for the start of the QC process,
an OPC UA client application was created using open62541 . This program uses
OpenCV2 to, using a camera, identify a QR code representing the label of the box
to be processed by the cell, and transmit this information through OPC UA to
the controller. As detailed before, the box label is a hyphenated string, and this
application, upon identifying the QR code, calls the BoxId method in the cell server
parsing this string as an argument. This client application was developed to be
easily integrated in the QC process as an HMI tool and allow operators to quickly
interact with the cell.

2 https://www.opencv.org/
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6
T E S T S A N D R E S U LT S

This chapter presents several tests and results obtained from the developments
described in this report.

6.1 intelitek pallet conveyor opc ua server

As described in Chapter 4, the development of the OPC UA server for the pallet
conveyor was entirely made using the virtual conveyor running as a SC in RS. After
updating the conveyor’s SC, its behaviour is identical to the real conveyor, including
the RS232 communication, and it can be considered as a DT of the real device.

To connect the virtual conveyor to the ESP32 running the server, a USB-RS232
converter is used in the computer running the RS simulation, attached to a serial
cable with DB9 connectors. In the other end of the cable, the DB9 connector was
removed to expose the wires from TX, RX, and GND, so they could be connected
in the RS232-UART interface using the MAX3232 circuit in the breadboard. The
circuit is then connected to the ESP32, as shown in Fig. 24 (following the schematics
shown in 12).

Once the simulation is running in RS, and the server is running on ESP32, it
is possible to successfully connect to the server using UaExpert to monitor and
control the virtual conveyor. Fig. 25 shows the variable holding the strings sent by
the conveyor being monitored. Fig. 26 shows a method call in which the user sent a
string to stop the transporter number one at the first station. The transporter will
be stopped at the station until another string is sent to let it go.

The results obtained are an example of the power of the DT technology, as
it enables the development of software and hardware applications for industrial
devices, even if the physical asset is inaccessible. It is also important to note the
use of ESP32 to implement the integration of a legacy device in an Industry 4.0
environment through the use of OPC UA.
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Figure 24: ESP32 connected to RS232-UART circuit.

Figure 25: Variable in ESP32 server showing the strings sent by the conveyor.
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6.2 digital twin for a quality control cell

Figure 26: Method in the ESP32 server to send a string to the conveyor.

6.2 digital twin for a quality control cell

Many tests were executed in the DT to evaluate the performance of the RS simulation,
the success of the communication between the cell controller application and the
individual servers running in RS, the implementation of the cell’s operating logic,
the QC cell’s historical data access, and the efficiency of the QR Code reader OPC
UA client implementation to trigger the process. The steps to run the DT are:

• Run the RS simulation.

• Run the cell controller application.

• Run the QR code client application, and scan the QR code in the box, as in
Fig. 27.

When all these steps run successfully, the DT functions as expected. A video of
the simulation is available at https://www.youtube.com/watch?v=_E5botn8A_I.
It demonstrates an effective and seamless OPC UA communication between all
devices and the cell controller, which is successful in performing the proposed
operating logic for the cell, with the FSM-based implementation. The highest
processing time achieved for a single part was 72 seconds, fulfilling the project
requirements. The QR code client application is also able to successfully identify the
text and call the method in the cell’s server that triggers the start of the process.
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tests and results

Figure 27: Box with QR code pictured in RS (left) and test performed in QR code client
(right).

Figure 28: Results stored in the database for two runs.

Fig. 28 shows the results of the process data stored in the database, resulting from
two sequential runs of the DT simulation. First, a box of four bottom components
underwent analysis, and all parts were approved and tagged with the labels shown
in the last column of the DB table. Next, a box of three top parts was analyzed.
Only one part passed both dimensional and surface analysis, while another was
discarded immediately after being processed by the Gocator. The last part was
approved in terms of dimensions, but failed the surface control. The database also
records the label of the box and the analysis’ timestamps.

Finally, Fig. 29 shows the result of a request for historical data access of one of the
variables available in the QC cell’s server. The request was made using UaExpert,
and it is attached to a time frame that the server will use as a parameter to retrieve
data from the database.
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Figure 29: Result of a historical data access request in the cell’s server using UaExpert.
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7
C O N C L U S I O N A N D F U T U R E W O R K

This report first presented the development of four generic and reusable applications
using OPC UA: a SmartComponent that implements an OPC UA server for a
simulated device in RS, an OPC UA server application to run in an ESP32, the
implementation of a HistoryDataBackend to allow the use of OPC UA HDA using
MySQL, and a single C++ application capable of running both an OPC UA server
and a client. All these implementations can be useful in the development of more
complex applications involving OPC UA, RobotStudio, embedded systems, and
database servers.

These building blocks were essential for the development of the remainder of the
work detailed in this report, as they require minimal changes to customize and
replicate, allowing for a shorter development time. Moreover, the use of different
SDKs and platforms shows the flexibility and scalability of the OPC UA standard.

The report also described the development of an OPC UA server in an embedded
system to elevate a legacy device to an Industry 4.0 level, enabling it to communicate
seamlessly with other devices and systems in an industrial context using an Ethernet-
based network. This development was entirely done using the DT of the device, which
shows how the DT technology can be used to facilitate and speed up development.
By using the DT, it was easier to perform tests and validate the developed work.

Future work for this development should be focused on updating the server’s
address space to improve the interaction of the user with the pallet conveyor,
changing the string commands for a more intuitive and accessible logic. It will
also be useful to design a PCB (Printed Circuit Board) to take the circuit with
the MAX3232 out of the breadboard, and create a case for the ESP32 to make
the hardware more resilient and usable in an industrial setting. Furthermore, the
hardware should be tested and deployed in the real pallet conveyor.

Finally, the report has presented the development of a Digital Twin for a quality
control cell using RobotStudio, OPC UA and MySQL. The use of RS in this devel-
opment provides a realist virtual environment for the cell, allowing for an accurate
simulation of the QC process. The use of OPC UA for the communication between
individual devices and the cell controller allows for a standardized centralized point
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conclusion and future work

of access for the operator to interact with the cell, while keeping less relevant
information still available in the individual servers. By connecting the cell to a
RDBMS like MySQL, the results of the quality control process are registered in a
straightforward and readable manner, and become available to be accessed by other
processes within the factory. The connection to the database also makes it possible
for the cell’s server to offer HDA to the variables available in the address space. The
use of the OPC UA servers for the DTs, offering the same address space, variables
and methods as the physical system, allows for easier interchange use of the DT
with the real system.

The tests performed in the DT showed the success of this development regarding
the cell’s operation and control logic and the OPC UA communication, complying
with the project’s requirements. Additionally, the client application with the QR
Code reader can be easily integrated in the process as an HMI tool. Future work of
this development will be focused on connecting the DT with the real QC cell at
the shop floor, and updating the Vision System server to hold detailed information
about the measurements done by the laser profiler and the cameras, beyond the
true or false results. Additionally, the database should be updated to store these
detailed results.

Overall, all the OPC UA server applications detailed in this work can be improved
by the use of OPC UA security mechanisms and Companion Specifications. Secure
communication is an important aspect of OPC UA server applications, as it ensures
the confidentiality, integrity, and the authenticity of the data being transferred over
the network. OPC UA provides different security mechanisms, such as encryption,
user authentication, and authorization, to protect the communication between
clients and servers.

The CS, on the other hand, provide a standard way of describing the information
models of devices and systems for different fields of the industry. In this work, the
OPC UA servers for the robot manipulator, and the vision system in the QC cell’
DT, should be updated to follow existing Robotics and Vision Systems CS. This
would be an additional step towards the system’s interoperability in the future.

54



B I B L I O G R A P H Y

Abdelsattar, Ahmad, Edward J. Park, and Amr Marzouk (July 2022). “An OPC
UA Client/Gateway-Based Digital Twin Architecture of a SCADA System
with Embedded System Connections”. In: 2022 IEEE/ASME International
Conference on Advanced Intelligent Mechatronics (AIM). ISSN: 2159-6255,
pp. 798–803. doi: 10.1109/AIM52237.2022.9863367.

Andrei, G. et al. (2020). “Industrial Messaging Middleware: Standards and Perfor-
mance Evaluation”. In: 2020 IEEE 14th International Conference on Applica-
tion of Information and Communication Technologies (AICT), pp. 1–6. doi:
10.1109/AICT50176.2020.9368846.

Babic, Milica, Mojtaba A. Farahani, and Thorsten Wuest (Jan. 2021). “Image
Based Quality Inspection in Smart Manufacturing Systems: A Literature Re-
view”. en. In: Procedia CIRP. 9th CIRP Global Web Conference – Sustain-
able, resilient, and agile manufacturing and service operations : Lessons from
COVID-19 103, pp. 262–267. issn: 2212-8271. doi: 10.1016/j.procir.2021.

10.042. url: https://www.sciencedirect.com/science/article/pii/

S2212827121008830 (visited on 01/29/2023).
Balador, A., N. Ericsson, and Z. Bakhshi (2017). “Communication middleware

technologies for industrial distributed control systems: A literature review”.
In: 2017 22nd IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), pp. 1–6. doi: 10.1109/ETFA.2017.8247730.

Carlsson, Thomas (May 2022). Industrial networks keep growing despite challenging
times. url: https://www.hms-networks.com/news-and-insights/news-

from- hms/2022/05/02/industrial- networks- keep- growing- despite-

challenging-times (visited on 03/28/2023).
Céspedes Cubides, Andres Sebastian and Eduardo Barrera Gualdrón (Nov. 2020).

“Implementación de SCADA a través del protocolo MQTT”. In: 2020 IX
International Congress of Mechatronics Engineering and Automation (CIIMA),
pp. 1–5. doi: 10.1109/CIIMA50553.2020.9290302.

Ch, G. D. Salazar et al. (Nov. 2018). “Open Middleware proposal for IoT focused
on Industry 4.0”. In: 2018 IEEE 2nd Colombian Conference on Robotics and
Automation (CCRA), pp. 1–6. doi: 10.1109/CCRA.2018.8588117.

55

https://doi.org/10.1109/AIM52237.2022.9863367
https://doi.org/10.1109/AICT50176.2020.9368846
https://doi.org/10.1016/j.procir.2021.10.042
https://doi.org/10.1016/j.procir.2021.10.042
https://www.sciencedirect.com/science/article/pii/S2212827121008830
https://www.sciencedirect.com/science/article/pii/S2212827121008830
https://doi.org/10.1109/ETFA.2017.8247730
https://www.hms-networks.com/news-and-insights/news-from-hms/2022/05/02/industrial-networks-keep-growing-despite-challenging-times
https://www.hms-networks.com/news-and-insights/news-from-hms/2022/05/02/industrial-networks-keep-growing-despite-challenging-times
https://www.hms-networks.com/news-and-insights/news-from-hms/2022/05/02/industrial-networks-keep-growing-despite-challenging-times
https://doi.org/10.1109/CIIMA50553.2020.9290302
https://doi.org/10.1109/CCRA.2018.8588117


bibliography

Friedl, Sebastian et al. (Apr. 2020). “Generation of OPC UA Companion Spec-
ification with Eclipse Modeling Framework”. In: 2020 16th IEEE Interna-
tional Conference on Factory Communication Systems (WFCS), pp. 1–7. doi:
10.1109/WFCS47810.2020.9114448.

Fuller, Aidan et al. (2020). “Digital Twin: Enabling Technologies, Challenges and
Open Research”. In: IEEE Access 8. Conference Name: IEEE Access, pp. 108952–
108971. issn: 2169-3536. doi: 10.1109/ACCESS.2020.2998358.

Gatial, Emil, Zoltán Balogh, and Ladislav Hluchý (July 2020). “Concept of Energy
Efficient ESP32 Chip for Industrial Wireless Sensor Network”. In: 2020 IEEE
24th International Conference on Intelligent Engineering Systems (INES). ISSN:
1543-9259, pp. 179–184. doi: 10.1109/INES49302.2020.9147189.

Glaessgen, Edward and David Stargel (Apr. 2012). “The digital twin paradigm for
future NASA and U.S. air force vehicles”. In: isbn: 978-1-60086-937-2. doi:
10.2514/6.2012-1818.

Hermann, Mario, Tobias Pentek, and Boris Otto (Jan. 2016). “Design Principles
for Industrie 4.0 Scenarios”. In: 2016 49th Hawaii International Conference
on System Sciences (HICSS). ISSN: 1530-1605, pp. 3928–3937. doi: 10.1109/

HICSS.2016.488.
Karaagac, Abdulkadir, Niels Verbeeck, and Jeroen Hoebeke (2019). “The Integration

of LwM2M and OPC UA: An Interoperability Approach for Industrial IoT”.
In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pp. 313–318.
doi: 10.1109/WF-IoT.2019.8767209.

keophilavong, T., Widyawan, and M. N. Rizal (July 2019). “Data Transmission in Ma-
chine to Machine Communication Protocols for Internet of Things Application:
A Review”. In: 2019 International Conference on Information and Commu-
nications Technology (ICOIACT), pp. 899–904. doi: 10.1109/ICOIACT46704.

2019.8938420.
Lam, An Ngoc and Øystein Haugen (Oct. 2019). “Implementing OPC-UA services

for Industrial Cyber-Physical Systems in Service-Oriented Architecture”. In:
IECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics
Society. Vol. 1. ISSN: 2577-1647, pp. 5486–5492. doi: 10.1109/IECON.2019.

8926972.
Lehnhoff, Sebastian et al. (June 2012). “OPC Unified Architecture: A Service-

oriented Architecture for Smart Grids”. In: 2012 First International Workshop
on Software Engineering Challenges for the Smart Grid (SE-SmartGrids), pp. 1–
7. doi: 10.1109/SE4SG.2012.6225723.

56

https://doi.org/10.1109/WFCS47810.2020.9114448
https://doi.org/10.1109/ACCESS.2020.2998358
https://doi.org/10.1109/INES49302.2020.9147189
https://doi.org/10.2514/6.2012-1818
https://doi.org/10.1109/HICSS.2016.488
https://doi.org/10.1109/HICSS.2016.488
https://doi.org/10.1109/WF-IoT.2019.8767209
https://doi.org/10.1109/ICOIACT46704.2019.8938420
https://doi.org/10.1109/ICOIACT46704.2019.8938420
https://doi.org/10.1109/IECON.2019.8926972
https://doi.org/10.1109/IECON.2019.8926972
https://doi.org/10.1109/SE4SG.2012.6225723


bibliography

Leiba, Barry (Jan. 2008). “An Introduction to Internet Standards”. In: IEEE
Internet Computing 12.1. Conference Name: IEEE Internet Computing, pp. 71–
74. issn: 1941-0131. doi: 10.1109/MIC.2008.2.

Li, Xiaomin et al. (Jan. 2017). “A review of industrial wireless networks in the context
of Industry 4.0”. en. In: Wireless Networks 23.1, pp. 23–41. issn: 1572-8196. doi:
10.1007/s11276-015-1133-7. url: https://doi.org/10.1007/s11276-

015-1133-7 (visited on 04/14/2021).
Liu, Mengnan et al. (Jan. 2021). “Review of digital twin about concepts, technolo-

gies, and industrial applications”. en. In: Journal of Manufacturing Systems.
Digital Twin towards Smart Manufacturing and Industry 4.0 58, pp. 346–
361. issn: 0278-6125. doi: 10.1016 /j.jmsy.2020 .06.017. url: https:

/ / www . sciencedirect . com / science / article / pii / S0278612520301072

(visited on 02/02/2023).
Lu, Yuqian et al. (Feb. 2020). “Digital Twin-driven smart manufacturing: Con-

notation, reference model, applications and research issues”. en. In: Robotics
and Computer-Integrated Manufacturing 61, p. 101837. issn: 0736-5845. doi:
10.1016/j.rcim.2019.101837. url: https://www.sciencedirect.com/

science/article/pii/S0736584519302480 (visited on 02/02/2023).
Martins, André, Hugo Costelha, and Carlos Neves (Apr. 2019). “Shop Floor Vir-

tualization and Industry 4.0”. In: 2019 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC), pp. 1–6. doi: 10.

1109/ICARSC.2019.8733657.
— (Apr. 2020). “Supporting the Design, Commissioning and Supervision of Smart

Factory Components through their Digital Twin”. In: 2020 IEEE Interna-
tional Conference on Autonomous Robot Systems and Competitions (ICARSC),
pp. 114–119. doi: 10.1109/ICARSC49921.2020.9096072.

Mathias, Selvine G., Sebastian Schmied, and Daniel Grossmann (Jan. 2020). “An
Investigation on Database Connections in OPC UA Applications”. en. In:
Procedia Computer Science. The 11th International Conference on Ambient
Systems, Networks and Technologies (ANT) / The 3rd International Conference
on Emerging Data and Industry 4.0 (EDI40) / Affiliated Workshops 170, pp. 602–
609. issn: 1877-0509. doi: 10.1016/j.procs.2020.03.132. url: https:

/ / www . sciencedirect . com / science / article / pii / S1877050920305706

(visited on 03/18/2023).
Perzylo, Alexander et al. (Sept. 2019). “OPC UA NodeSet Ontologies as a Pillar of

Representing Semantic Digital Twins of Manufacturing Resources”. In: 2019
24th IEEE International Conference on Emerging Technologies and Factory

57

https://doi.org/10.1109/MIC.2008.2
https://doi.org/10.1007/s11276-015-1133-7
https://doi.org/10.1007/s11276-015-1133-7
https://doi.org/10.1007/s11276-015-1133-7
https://doi.org/10.1016/j.jmsy.2020.06.017
https://www.sciencedirect.com/science/article/pii/S0278612520301072
https://www.sciencedirect.com/science/article/pii/S0278612520301072
https://doi.org/10.1016/j.rcim.2019.101837
https://www.sciencedirect.com/science/article/pii/S0736584519302480
https://www.sciencedirect.com/science/article/pii/S0736584519302480
https://doi.org/10.1109/ICARSC.2019.8733657
https://doi.org/10.1109/ICARSC.2019.8733657
https://doi.org/10.1109/ICARSC49921.2020.9096072
https://doi.org/10.1016/j.procs.2020.03.132
https://www.sciencedirect.com/science/article/pii/S1877050920305706
https://www.sciencedirect.com/science/article/pii/S1877050920305706


bibliography

Automation (ETFA). ISSN: 1946-0759, pp. 1085–1092. doi: 10.1109/ETFA.

2019.8868954.
Profanter, Stefan et al. (Feb. 2019). “OPC UA versus ROS, DDS, and MQTT:

Performance Evaluation of Industry 4.0 Protocols”. In: 2019 IEEE International
Conference on Industrial Technology (ICIT). ISSN: 2643-2978, pp. 955–962.
doi: 10.1109/ICIT.2019.8755050.

Protic, A. et al. (Dec. 2020). “Implementation of a Bi-Directional Digital Twin
for Industry 4 Labs in Academia: A Solution Based on OPC UA”. In: 2020
IEEE International Conference on Industrial Engineering and Engineering
Management (IEEM), pp. 979–983. doi: 10.1109/IEEM45057.2020.9309953.

Rojko, Andreja (July 2017). “Industry 4.0 Concept: Background and Overview”. en.
In: International Journal of Interactive Mobile Technologies (iJIM) 11.5, pp. 77–
90. issn: 1865-7923. url: https://online-journals.org/index.php/i-

jim/article/view/7072 (visited on 04/12/2021).
Schleipen, Miriam et al. (Jan. 2016). “OPC UA & Industrie 4.0 - Enabling Technology

with High Diversity and Variability”. en. In: Procedia CIRP. Factories of the
Future in the digital environment - Proceedings of the 49th CIRP Conference
on Manufacturing Systems 57, pp. 315–320. issn: 2212-8271. doi: 10.1016/

j.procir.2016.11.055. url: https://www.sciencedirect.com/science/

article/pii/S2212827116312094 (visited on 03/17/2023).
Souza, Vinicius et al. (Jan. 2019). “A Digital Twin Architecture Based on the

Industrial Internet of Things Technologies”. In: 2019 IEEE International Con-
ference on Consumer Electronics (ICCE). ISSN: 2158-4001, pp. 1–2. doi:
10.1109/ICCE.2019.8662081.

Tao, Fei, Bin Xiao, et al. (July 2022). “Digital twin modeling”. en. In: Journal
of Manufacturing Systems 64, pp. 372–389. issn: 0278-6125. doi: 10.1016/

j.jmsy.2022.06.015. url: https://www.sciencedirect.com/science/

article/pii/S0278612522001108 (visited on 01/29/2023).
Tao, Fei, He Zhang, et al. (Apr. 2019). “Digital Twin in Industry: State-of-the-Art”.

In: IEEE Transactions on Industrial Informatics 15.4. Conference Name: IEEE
Transactions on Industrial Informatics, pp. 2405–2415. issn: 1941-0050. doi:
10.1109/TII.2018.2873186.

Tao, Fei and Meng Zhang (2017). “Digital Twin Shop-Floor: A New Shop-Floor
Paradigm Towards Smart Manufacturing”. In: IEEE Access 5. Conference Name:
IEEE Access, pp. 20418–20427. issn: 2169-3536. doi: 10.1109/ACCESS.2017.

2756069.
Tran, D. L., T. Yu, and M. Riedl (2020). “Integration of IIoT Communication

Protocols in Distributed Control Applications”. In: IECON 2020 The 46th

58

https://doi.org/10.1109/ETFA.2019.8868954
https://doi.org/10.1109/ETFA.2019.8868954
https://doi.org/10.1109/ICIT.2019.8755050
https://doi.org/10.1109/IEEM45057.2020.9309953
https://online-journals.org/index.php/i-jim/article/view/7072
https://online-journals.org/index.php/i-jim/article/view/7072
https://doi.org/10.1016/j.procir.2016.11.055
https://doi.org/10.1016/j.procir.2016.11.055
https://www.sciencedirect.com/science/article/pii/S2212827116312094
https://www.sciencedirect.com/science/article/pii/S2212827116312094
https://doi.org/10.1109/ICCE.2019.8662081
https://doi.org/10.1016/j.jmsy.2022.06.015
https://doi.org/10.1016/j.jmsy.2022.06.015
https://www.sciencedirect.com/science/article/pii/S0278612522001108
https://www.sciencedirect.com/science/article/pii/S0278612522001108
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/ACCESS.2017.2756069
https://doi.org/10.1109/ACCESS.2017.2756069


bibliography

Annual Conference of the IEEE Industrial Electronics Society, pp. 2201–2206.
doi: 10.1109/IECON43393.2020.9254220.

Vitturi, S., C. Zunino, and T. Sauter (June 2019). “Industrial Communication
Systems and Their Future Challenges: Next-Generation Ethernet, IIoT, and
5G”. In: Proceedings of the IEEE 107.6, pp. 944–961. issn: 1558-2256. doi:
10.1109/JPROC.2019.2913443.

Wilamowski, Bogdan M. and J. David Irwin (Apr. 2016). Industrial Communication
Systems. en. Google-Books-ID: gJbLBQAAQBAJ. CRC Press. isbn: 978-1-4398-
0282-3.

Willner, Alexander et al. (2017). “Semantic communication between components
for smart factories based on oneM2M”. In: 2017 22nd IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–
8. doi: 10.1109/ETFA.2017.8247690.

Wollschlaeger, Martin, Thilo Sauter, and Juergen Jasperneite (Mar. 2017). “The
Future of Industrial Communication: Automation Networks in the Era of the
Internet of Things and Industry 4.0”. In: IEEE Industrial Electronics Magazine
11.1. Conference Name: IEEE Industrial Electronics Magazine, pp. 17–27. issn:
1941-0115. doi: 10.1109/MIE.2017.2649104.

Zezulka, F. et al. (Jan. 2019). “Time-Sensitive Networking as the Communication
Future of Industry 4.0”. en. In: IFAC-PapersOnLine. 16th IFAC Conference
on Programmable Devices and Embedded Systems PDES 2019 52.27, pp. 133–
138. issn: 2405-8963. doi: 10.1016/j.ifacol.2019.12.745. url: https:

/ / www . sciencedirect . com / science / article / pii / S2405896319326941

(visited on 04/14/2021).
Zhang, Caiming et al. (June 2021). “Industry 4.0 and its Implementation: a Review”.

en. In: Information Systems Frontiers. issn: 1572-9419. doi: 10.1007/s10796-

021- 10153- 5. url: https://doi.org/10.1007/s10796- 021- 10153- 5

(visited on 03/05/2023).

59

https://doi.org/10.1109/IECON43393.2020.9254220
https://doi.org/10.1109/JPROC.2019.2913443
https://doi.org/10.1109/ETFA.2017.8247690
https://doi.org/10.1109/MIE.2017.2649104
https://doi.org/10.1016/j.ifacol.2019.12.745
https://www.sciencedirect.com/science/article/pii/S2405896319326941
https://www.sciencedirect.com/science/article/pii/S2405896319326941
https://doi.org/10.1007/s10796-021-10153-5
https://doi.org/10.1007/s10796-021-10153-5
https://doi.org/10.1007/s10796-021-10153-5

	Acknowledgments
	Resumo
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	1 Introduction
	2 Fundamental Concepts and Related Work
	2.1 Industry 4.0
	2.2 Industrial Communication Systems
	2.3 OPC UA
	2.3.1 Communication
	2.3.2 Historical Data Access
	2.3.3 Companion Specifications

	2.4 Digital Twin

	3 Building blocks
	3.1 OPC UA Server SmartComponent
	3.2 OPC UA server on an ESP32
	3.3 OPC UA server with historical access
	3.4 OPC UA client-server application

	4 Intelitek pallet conveyor OPC UA server
	4.1 SmartComponent update
	4.2 RS232-UART interface
	4.3 OPC UA server

	5 Digital Twin for a Quality Control Cell
	5.1 The Manufacturing Process
	5.2 QC Cell Structure and Requirements
	5.3 Devices Behaviour Simulation
	5.4 QC Cell Operation
	5.4.1 Individual devices servers
	5.4.2 Cell controller
	5.4.3 QR Code client


	6 Tests and Results
	6.1 Intelitek pallet conveyor OPC UA server
	6.2 Digital Twin for a Quality Control Cell

	7 Conclusion and Future Work
	 Bibliography

