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Diffusion–Recombination Impedance Model for Solar Cells
with Disorder and Nonlinear Recombination
Juan Bisquert,* Iv�n Mora-Sero, and Francisco Fabregat-Santiago[a]

1. Introduction

The diffusion–recombination impedance model[1] has been
widely applied to the characterization of solar cells by using
the technique of impedance spectroscopy.[2–4] Since its original
derivation,[1] a number of additional physical features have ap-
peared, mainly in the study of dye-sensitized solar cells
(DSCs),[5] but also in the study of other systems that were not
treated in the model. First is the predominance of traps in dis-
ordered materials, which strongly influences the measured ki-
netic coefficients. This issue was first solved by using the quasi-
static approximation,[6, 7] which modifies the time constants as-
sociated to the transport level with a trapping factor. A full
theory that rationalizes the interpretation of measured coeffi-
cients and their relation to stochastic simulations was formulat-
ed thereafter.[5, 8, 9] In addition, it was shown that nonlinear re-
combination is the rule in systems such as DSCs and organic
solar cells,[3, 10, 11] and such a nonlinear feature enhances inho-
mogeneous behavior.[12]

In this paper, we provide a more general derivation of the
impedance model that includes the trapping factors and that
uses a nonlinear recombination rate. The equations used to
determine the impedance are formulated, and they are solved
analytically for the homogeneous and linear cases. This general
formulation reveals the factors that introduce local variations,
which, in addition to nonlinear recombination, requires a nu-
merical solution method.

The most widely used case in applications is that in which
the diffusion length, Ln, is longer than the active layer thick-
ness, L, as usually found, for example, in DSCs.[2, 13–15] However,
in other instances the diffusion length could become shorter
than L, and in that case the general diffusion–recombination
impedance formula converges to the Gerischer impedance, in
which the number of parameters is reduced by one with re-
spect to the former. This situation has been recognized by
some authors,[16] but it is of considerable interest to clarify the
interpretation of the remaining parameters from a theoretical
point of view. We will derive explicit parameters of the Gerisch-
er impedance and their connection to the lifetime and diffu-
sion length.

2. Kinetic Model and Interpretation of Kinetic
Constants

We consider the diffusion–recombination model in the pres-
ence of traps, in a 1D slab of area A. We denote nc as the carri-
er density in the transport level, nL as the carrier density in lo-
calized band-gap states, and n ¼ nc þ nL as the total carrier
density. The model can be formulated in terms of the following
conservation equation [Eq. (1)]:

@nc

@t
¼ GðxÞ � @Jn

@x
� UnðncÞ �

@nL

@t
ð1Þ

in which Jn is the electron flux, related to the free-electron dif-
fusion coefficient, D0, by Fick’s law [Eq. (2)]:

Jn ¼ �D0

@nc

@x
ð2Þ

The diffusion–recombination model is a key tool in under-
standing the photovoltaic operation of solar cells. Dye-sensi-
tized solar cells, organic solar cells, and inorganic semiconduc-
tor solar cells are systems affected by disorder that are often
characterized with impedance spectroscopy. In this paper, we
extend the previous theory of diffusion–recombination impe-
dance including traps and nonlinear recombination. We show
the transmission line equivalent circuit representation, and we
describe the physical meaning of a number of model parame-
ters that can be obtained: the chemical capacitance, Cm; the re-

combination resistance, Rrec; the transport resistance, Rtr; the
electron lifetime, tn; the electron conductivity, sn; the chemical
diffusion coefficient of electrons, Dn; and the diffusion length,
Ln. At most, three of these parameters are independent, but if
the diffusion length is short, the impedance model collapses
to a function that has one degree of freedom less, known as
the Gerischer impedance. We show the connection of the two
parameters that remain to the diffusion length and the life-
time.
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In Equation (1), G is a local generation rate, and Un is the re-
combination rate per unit volume. At the blocking boundary
Jnðx ¼ LÞ ¼ 0. At the extraction contact, the carrier density is
controlled by the voltage. The voltage V is given by the in-
crease in the Fermi level of the electrons relative to the Fermi
level of the hole carriers, which is considered stationary at the
dark equilibrium value EF0 [Eq. (3)]:

qV ¼ EFnðx ¼ 0Þ � EF0 ð3Þ

In this equation, q is the positive elementary charge. In
Equation (1), we adopt a multiple trapping model that has
been shown by experiment and simulation to describe the
characteristics of disordered systems. In many cases, hopping
systems can also be reduced to the multiple trapping model
by using the concept of transport energy.[8, 9, 17]

Next, we introduce some magnitudes that enter the expres-
sion of impedance.[4] First, the chemical capacitance is defined
as follows [Eq. (4)]:[18]

Cm ¼ LAq
dn
dV

ð4Þ

A specific chemical capacitance per unit volume is defined as
[Eq. (5)]:

cm ¼ q
dn
dV

ð5Þ

In the literature, we find two main types of chemical capaci-
tance. The conduction band capacitance is obtained as
[Eq. (6)]:

ccb
m ¼ q

dnc

dV
¼ ncq2

kBT
ð6Þ

in which kBT is the thermal energy. The capacitance of the
traps is associated, within good approximation, to the density
of states of the localized states, gðEÞ, calculated at the Fermi
level [Eq. (7)]:

ctrap
m ¼ q

dnL

dVF
¼ q2gðEFnÞ ð7Þ

In practice, it is often found that ctrap
m � ccb

m , so that
ctot

m ¼ ccb
m þ ctrap

m � ctrap
m .

We also introduce the recombination resistance, which is
given by the reciprocal derivative of recombination flux
[Eq. (8)]:

Rrec ¼
1
A

@jrec

@V

� ��1

ð8Þ

The flux depends on the volume recombination rate as
[Eq. (9)]:

jrec ¼ qLUn ð9Þ

The electron lifetime is given by [Eq. (10)]:[19]

tn ¼
@Un

@n

� ��1

�n

ð10Þ

Therefore, the following is obtained [Eq. (11)]:

Rrec ¼
tn

Ctot
m

ð11Þ

Another important quantity is the transport resistance, given
by the expression [Eq. (12)]:

Rtr ¼
L

Asn

ð12Þ

in terms of the electron conductivity [Eq. (13)]:

sn ¼
q2D0nc

kBT
¼ D0ccb

m
ð13Þ

It is useful to introduce an alternative expression for the
conductivity, given by the generalized Einstein relation, that
links the conductivity, the chemical diffusion coefficient, and
the chemical capacitance [Eq. (14)]:[8]

sn ¼ Dnctot
m ð14Þ

Therefore [Eq. (15)]:

Rtr ¼
L

ADnctot
m

¼ L
AD0ccb

m

ð15Þ

We should remark that Dn is the chemical diffusion coeffi-
cient, which is measured by any small perturbation technique.
Introducing the trapping factor [Eq. (16)]:

VL ¼ 1þ @nL

@nc

� �
¼

ctot
m

ccb
m

ð16Þ

we have [Eq. (17)]:

Dn ¼
1

VL
D0 ð17Þ

Similarly, the measured lifetime is given by Equation (10),
and one can also define the lifetime of the free carrier, tf

[Eq. (18)]:

tf ¼
@Un

@nc

� ��1

�nc

ð18Þ

which relates to the lifetime of the electron as [Eq. (19)]:[9, 19]

� 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemElectroChem 0000, 00, 1 – 9 &2&

These are not the final page numbers! ��

CHEMELECTROCHEM
FULL PAPERS www.chemelectrochem.org

www.chemelectrochem.org


tn ¼ VLtf ð19Þ

Therefore, we can write [Eq. (20)]:

Rrec ¼
tf

Ccb
m

ð20Þ

which is equivalent to Equation (11).

In general, we observe that there are two sets of quantities:
those that are for free carriers, D0, t0, and ccb

m , and those that
include free and trapped carriers, Dn, tn, and ctot

m . Sometimes
we can express impedance parameters in terms of either set,
as shown in Equations (11), (15), and (20). It should be empha-
sized that some impedance elements effectively depend only
on the free carriers, as in Equations (15) and (20). However,
below we show that ctot

m , including the capacitance of the
traps, also appears in the impedance functions, which is indica-
tive of the fact that we cannot get rid of the traps. Therefore,
small perturbation techniques that provide kinetic coefficients,
such as intensity-modulated photocurrent spectroscopy (IMPS),
intensity-modulated voltage spectroscopy (IMVS), and time
transient decays, always give Dn and tn and not the free-carrier
counterparts. The interpretation of these kinetic constants is
completed with single particle quantities such as the jump dif-
fusion coefficient, DJ , which appears explicitly in stochastic sim-
ulation methods.[9]

The diffusion length is given by [Eq. (21)]:

Ln ¼
ffiffiffiffiffiffiffiffiffi
Dntn

p
ð21Þ

In the multiple trapping model, the trapping factors VL

compensate for the diffusion length.[6] However, if the lifetime
of the free carrier shows some dependence on the potential,
as implied by Equation (18), then the diffusion length varies
with voltage, according to [Eq. (22)]:[12]

Ln ¼
ffiffiffiffiffiffiffiffiffi
D0tf

p
ð22Þ

This feature is often observed in experimental results.[13, 20] In
the measurements of DSCs, it is often observed that the diffu-
sion length increases as the voltage increases due to the in-
crease in the lifetime of the free carrier.[19, 21, 22] However, the
present theory applies equally well to either an increase or
a decrease in Ln. The connection of the diffusion length with
the trap dynamics was also investigated by Monte Carlo simu-
lation.[17, 23]

In nanostructured and porous systems, the above quantities
that depend on the volume of the system should be modified
by the porosity, p, of the layer. The steady-state concentration
obtained by solution of Equation (1) is shown in Figure 1 for
different values of the diffusion length.

On the basis of the above-introduced kinetic constants for
transport and recombination, we can define the characteristic
angular frequency of recombination [Eq. (23)]:

wrec ¼ t�1
n ð23Þ

and the characteristic angular frequency for the transit time
[Eq. (24)]:

wd ¼
Dn

L2
ð24Þ

We note the factor relating the characteristic frequencies,
which can be expressed in several alternative ways [Eq. (25)]:[1]

wd

wrec
¼ Rrec

Rtr
¼ Ln

L

� �2

ð25Þ

3. Calculation of Diffusion–Recombination
Impedance in Multiple Trapping

The calculation of the impedance requires the determination
of the quotient of current to voltage under small perturbation
conditions [Eq. (26)]:

Z ¼ V̂ðx ¼ 0Þ
îðx ¼ 0Þ

ð26Þ

The hat (^) denotes small perturbation quantities. The current
density is given by [Eq. (27)]:

îðx ¼ 0Þ ¼ qAĴðx ¼ 0Þ ð27Þ

The flux takes the form [Eq. (28)]:

Ĵ ¼ �D0

@n̂c

@x
ð28Þ

The voltage relates to concentration as [Eq. (29)]:

Figure 1. Distribution of electrons injected by the applied voltage to a semi-
conductor layer at x ¼ 0 with a blocking boundary condition at x ¼ L for dif-
ferent values of the diffusion length Ln . The baseline concentration n0 is indi-
cated.
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n̂cðx ¼ 0Þ ¼ @nc

@V
V̂ ¼ 1

q
ccb

m ðx ¼ 0ÞV̂ ð29Þ

To calculate the relationship of carrier flux to concentration
at the left edge of the layer (Figure 1), we apply small pertur-
bation expansion of Equation (1) [Eq. (30)]:

@n̂c

@t
¼ � @Ĵn

@x
� @Un

@nc

� �
n̂c �

@n̂L

@t
ð30Þ

Equation (30) may be completed by a kinetic equation for
the traps that defines the variation @nL=@t.[7] However, if the
trapping kinetics are fast (with respect to the time scale of the
transient measurement), we may assume that the traps follow
the equilibrium relation with the free carriers [Eq. (31)]:

@n̂L

@t
¼ @nL

@nc

@n̂c

@t
ð31Þ

Equation (31) is termed the quasistatic approximation, and it
was introduced to account for the properties of measured
time constants in DSCs.[6, 7, 9] By applying the quasistatic approx-
imation and the definition of the lifetime of the free carrier,
Equation (30) becomes [Eq. (32)]:

1þ @nL

@nc

� �
@n̂c

@t
¼ � @ Ĵ

@x
� 1

tf
n̂c ð32Þ

By transformation to Laplace domain @=@t ! iw, in which w

is the angular frequency of the small perturbation, we can
write [Eq. (33)]:

� @ Ĵn

@x
¼ iwVL þ

1
tf

� �
n̂c ð33Þ

Let us define the quantity [Eq. (34)]:

Lnðw; xÞ ¼ D1=2
0 iwVL þ

1
tf

� ��1=2

¼ Ln 1þ iw
wrec

� ��1=2
ð34Þ

and we remark that [Eq. (35)]:

Lnðw ¼ 0Þ ¼ Ln ð35Þ

Then, we express Equation (33) as [Eq. (36)]:

@2n̂c

@x2 �
n̂c

Lnðw; xÞ ¼ 0 ð36Þ

Equation (36) is a classical diffusion equation; however, the
coefficient Ln is position dependent due to the @nL=@nc and tf

terms in Equation (34) that depend on the local value of the
Fermi level. To obtain an analytical solution, let us assume that
Ln is nearly homogeneous. The solution n̂c of Equation (36)

that satisfies the boundary conditions of Equation (29) and
Ĵnðx ¼ LÞ ¼ 0 is [Eq. (37)]:

n̂cð0Þ ¼
1
q

ccb
m V̂ cosh

x
Ln

� �
� tanh

L
Ln

� �
sinh

x
Ln

� �� �
ð37Þ

We can find the current by using Equation (27), and the im-
pedance function is obtained [Eq. (38)]:

Z ¼ LnðwÞ
AD0ccb

m

cotanh
L

LnðwÞ

� �
ð38Þ

Although Equation (38) is the solution of the impedance
model under the stated approximations, it is convenient to ex-
press this function in alternative forms that clarify the physical
interpretation. By using the characteristic frequencies intro-
duced in Equations (23) and (24) we can write [Eq. (39)]:

Z ¼ tn

Actot
m Ln

1þ iw
wrec

� ��1=2

cotanh
wrec

wd
þ iw

wd

� �1=2� �
ð39Þ

and also [Eq. (40)]:

ZðwÞ ¼ RtrRrec

1þ iw
wrec

 !1=2

cotanh
Rtr

Rrec

� �1=2

1þ iw
wrec

� �1=2� �
ð40Þ

This result is the same as the standard expression,[1] but now
the parameters in Equation (40) are well justified with the in-
clusion of the trapping factors.

In connection with the last two expressions, let us define
the following parameters. First, CG with dimensions of capaci-
tance [F] [Eq. (41)]:

CG � Actot
m Ln ð41Þ

and RG is a resistance W½ � [Eq. (42)]:

RG �
tn

CG
¼ RtrRrecð Þ1=2 ð42Þ

These will be used below to describe the total [direct cur-
rent (DC)] resistance and the Gerischer impedance.

4. Transmission-Line Model

A transmission line (TL) is a general type of model for the
propagation of a signal in space.[24] In the electrical case, the
model is defined in a 1D system with a local voltage f̂ and
current î and local impedances c and z [Eqs. (43) and (44)]:[1]

@f̂

@x
¼ �cðxÞ̂i ð43Þ

@ î
@x
¼ 1

zðxÞ f̂
ð44Þ
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The impedance of this system can be represented as the dis-
tributed equivalent circuit shown in Figure 2 a.[25–27] Equa-
tions (43) and (44) can be taken to the form of Equation (36) to
apply the method of solution indicated above. Another alter-
native to solve the system of m equations is to establish a dis-
crete equivalent circuit and to apply a continued fraction to
sum the total impedance.[28]

If the quantity l ¼ z=cð Þ1=2 is independent of position, then
the system of differential equations can be integrated with an
analytical solution [Eq. (45)]:

Z ¼ lcð0ÞcotanhðL=lÞ ð45Þ

which corresponds to Equation (38).

The equations of the diffusion–recombination model in
small perturbation, discussed in the previous section, can be
taken to the form of Equations (43) and (44) to show the struc-
ture of the TL. Equation (28) can be written [Eq. (46)]:

î ¼ � 1
rtr

@V̂
@x

ð46Þ

for which [Eq. (47)]:

rtr ¼
1

ADnctot
m

¼ 1
AD0ccb

m

¼ kBT
Aq2D0

n�1
c ð47Þ

is a distributed transport resistance, so that we obtain c ¼ rtr,
as shown in Figure 2. In Equation (47), we indicated explicitly
the dependence of the local impedance element on the con-
centration of free carriers, nc.

The equation for spatial variation of the current [Eq. (33)]
can be stated as [Eq. (48)]:

@ î
@x
¼ 1

rrec
þ iwActot

m

� �
V̂ ð48Þ

In this equation, we have introduced a distributed recombina-
tion resistance [Eq. (49)]:

rrec ¼
tn

Actot
m

¼ tf

Accb
m

ð49Þ

and clearly, Actot
m is the chemical capacitance per unit length.

The transverse element of the TL is therefore given by
[Eq. (50)]:

z ¼ 1
rrec
þ iwActot

m

� ��1

ð50Þ

The full transmission-line model for diffusion–recombination is
shown in Figure 2 b.

We note that the local impedances rtr and rrec depend only
on the quantities of the free carriers. Indeed, the resistances
are not affected by trapping factors in the multiple trapping
model. However, any time-dependent measurement involves
a capacitive component, and it is unavoidable to measure
Actot

m , which contains the contribution from the traps. Thus, the
total capacitance appears in the impedance as indicated in
Equation (50), and this will also be reflected in the measure-
ment of any time constant by whatever technique, as men-
tioned above.

We can find from Equations (47) and (50) that [Eq. (51)]:

l ¼ z=rtrð Þ1=2¼ 1
L2

n

þ iw
Dn

� ��1

ð51Þ

We mentioned above that the condition of integrability of
the TL model was that l must be constant. In Equation (22),
we observe that Ln is constant only for linear recombination, in
which tf ¼ t0. In Equation (17), we observe that Dn is a constant
only if the traps can be neglected (VL ¼ 1). Under these condi-
tions, or if the quantities tf and VL can be considered uniform,
Equations (38) and (45) are valid; otherwise, the impedance
should be calculated numerically.

If the resistances rtr and rrec are homogeneous, then we
obtain the total resistances defined above as [Eqs. (52) and
(53)]:

Rtr ¼ Lrtr ð52Þ

Rrec ¼
rrec

L
ð53Þ

5. Limiting Cases of DC Resistance According
to Diffusion Length

The DC resistance is a very important impedance parameter
[Eq. (54)]:

RDC ¼ Zðw ¼ 0Þ ð54Þ

From Equation (39) we obtain [Eq. (55)]:

RDC ¼ RG cotanh
L
Ln

� �
ð55Þ

Figure 2. a) Transmission-line model with blocking boundary conditions.
b) The transmission line in the diffusion–recombination model.
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The DC resistance takes different limiting forms depending
on the parameter z ¼ Ln=L. The function cotanhð1=zÞ is shown
in Figure 3. For the long diffusion length cotanhð1=zÞ � z ;
hence [Eq. (56)]:

RDC �
tn

Actot
m L
¼ Rrec ð56Þ

whereas for the short diffusion length [Eq. (57)]:

RDC �
tn

Actot
m Ln
¼ RG ð57Þ

RDC does not depend on thickness in the case of the short
diffusion length.

6. Interpretation of Diffusion–Recombination
Impedance

Equation (40) is one way to write the diffusion–recombination
impedance, but of course, one can use other sets of parame-
ters: the chemical capacitance, the chemical diffusion coeffi-
cient, and so on by using the expressions given above. Repara-
metrization has sometimes led to confusion regarding the in-
formation that can be obtained from the impedance spectra.

The diffusion–recombination impedance provides two basic
kinds of spectra according to the conditions of Equation (20).
The case of a long diffusion length, that is, the spectrum for
which Rtr < Rrec, is shown in Figure 4 a, b. At high frequency, it
contains the characteristic Warburg impedance of diffusion,
with an inclination of 458, which turns into an arc at low fre-
quency. The arc is given by the standard expression [Eq. (58)]:[1]

Z ¼ 1
3

Rtr þ
Rrec

1þ iw
wrec

ð58Þ

If the resistances Rtr and Rrec can be determined from the
spectra, then the diffusion length can be obtained from the ex-
pression derived from Equation (25) [Eq. (59)]:[1]

Ln ¼
Rrec

Rtr

� �1=2

L ð59Þ

If the diffusion Warburg part is indeed detected, the impe-
dance model provides three basic parameters: the recombina-
tion resistance, Rrec; the chemical capacitance, Ctot

m ; and the
transport resistance, Rtr. Regardless of the specific parameters
used for fitting, there are three independent impedance pa-
rameters that can be derived from the model. However, if the
conductivity is large, the transport resistance vanishes and
cannot be observed. Only the arc in Figure 4 a will be ob-
served, and the only information that can be derived from the
spectrum is recombination resistance, Rrec; the chemical capaci-
tance, Ctot

m ; and parameters derived from these two. No param-
eter of transport can then be obtained from the measurement.

7. The Gerischer Impedance

In the case of strong recombination, the diffusion length be-
comes short (Ln < L). The injected carriers penetrate to a re-
stricted extent into the layer, of the order Ln (Figure 1), so that
all the impedance parameters should be independent on the
actual thickness L. The impedance spectra adopt the form of
the Gerischer impedance [Eq. (60)]:

Z ¼ RG

1þ iw
wrec

	 
1=2 ð60Þ

Figure 3. Representation of the function cotanhð1=zÞ.

Figure 4. a) Diffusion–recombination impedance spectra with reflecting
boundary conditions. Simulation of the impedance with parameters
Rrec ¼ 103 W, Cm ¼ 5� 10�6 F, and increasing transport resistance Rtr ¼ 102

(a, b),Rtr ¼ 103 (c), and Rtr ¼ 104 W (d). The frequency [Hz] at selected points
is shown: the characteristic frequency of the low-frequency arc (&), related
to the angular frequency wrec ¼ t�1

n , and the low-frequency resistance. The
frequency [Hz] of the turnover from Warburg behavior to the low-frequency
recombination arc (&), related to the characteristic frequency wd, is also
shown.
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shown in Figure 4 d and in several different representations in
Figure 5. In Equation (42), Rtr and Rrec appear in RG as a product
and cannot be separately determined.[16] In Section 5, it was
shown that RDC follows Rrec at low applied voltage and coin-
cides with RG after the cross-over potential.

The square root of the resistances in Equation (42) depends
only on volume-specific quantities but not on film thickness L,
as mentioned above, and we expect Equation (60) to depend
on the diffusion length.

The impedance in Equation (60) can be expressed as
[Eq. (61)]:

Z ¼ 1
CGwrec

1

1þ iw
wrec

	 
1=2 ð61Þ

Thus, the Gerischer impedance provides two independent
parameters, CG (which contains the diffusion length) and wrec.
Of course, other choices can be proposed, but it is not possible
to determine three separate parameters, as in Equation (40).

From Equation (61), we may write the frequency-dependent
Gerischer capacitance as [Eq. (62)]:

C*ðwÞ ¼ 1
iwZ
¼ CG

wrec

iw
1þ iw

wrec

� �1=2

ð62Þ

which at low frequency yields [Eq. (63)]:

Clf ¼
CG

2
1�i

wrec

w

	 

ð63Þ

There are several different parameters to characterize the
Gerischer impedance (see the Supporting Information). A
direct advantage that we may obtain from the representation
in Equation (61) is that it is possible to read the values of RG,

CG, and wrec from the complex
plane plots and bode plots, as
shown in Figure 5. In particular,
RG represents the DC limit of the
Gerischer impedance, whereas
CG=2 represents the DC limit of
the real part of the Gerischer ca-
pacitance.

8. Discussion

In experimental situations, the
impedance spectra of a solar
cell are determined over a wide
range of voltages.[2, 3, 13–15] One
may expect to obtain Cm , Rrec,
and Rtrif Ln > L, but if the varia-
tion of voltage causes Ln < L,
then only tn and CG can be de-
termined. In practice, Ln � 0:5 L
is the limit for obtaining all
three parameters.

Equation (41) shows that the diffusion length is available
from the Gerischer impedance only if the specific chemical ca-
pacitance can be determined. It is not possible to obtain the
chemical capacitance from the impedance data if Ln < L, but it
can be extrapolated from the voltage domain where Ln > L,
for which the general expression given in Equation (40) ap-
plies. In contrast, CG can be determined over the whole voltage
range, and it should be compared to Ctot

m .
As an application of the analytical theory, we consider

a model system that is trap free (VL ¼ 1, Dn ¼ D0, ctot
m ¼ ccb

m )
but with nonlinear recombination that produces a lifetime that
decreases with the voltage, as indicated by the following ex-
pressions [Eqs. (64), (65), and (66)]:

nc ¼ n0eqV=kB T ð64Þ

ctot
m ¼

n0q2

kBT
eqV=kB T ð65Þ

tn ¼ tf ¼ t0e�qgV=kB T ð66Þ

Thus, the diffusion length decreases with increasing voltage
[Eq. (67)]:

Ln ¼ L0e�qgV=2kB T ð67Þ

in which L0 ¼
ffiffiffiffiffiffiffiffiffi
D0t0

p
. In this case, from Equations (11), (61), and

(62) we obtain [Eq. (68)]:

rrec ¼
kBT
q2

t0

n0
e�qð1þgÞV=kB T ð68Þ

The results of the calculations of the different parameters in-
troduced above are shown in Figure 6. We remark the cross-
over of the parameters at the voltage at which Ln ¼ L.

Figure 5. Simulated Gerischer impedance with RG = 10 kW, wrec = 50 rad s�1, and CG = 1 mF. Nyquist (a, b) and bode
(c, d) diagrams of impedance (a, c) and capacitance (b, d).
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9. Summary and Conclusions

The characterization of semiconductor solar cells by impe-
dance spectroscopy provides a number of parameters : the
chemical capacitance, Cm; the recombination resistance, Rrec;
the transport resistance, Rtr; the electron lifetime, tn; the elec-
tron conductivity, sn; the chemical diffusion coefficient, Dn; and
the diffusion length, Ln. Of this collection, at most only three
are independent parameters that can be used to fit the impe-
dance spectra. However, in some cases not all such parameters
can be determined. If transport is very efficient, Rtr cannot be
measured. The number of fitting parameters is reduced to two,
and the transport parameters sn, Dn, and Ln cannot be deter-
mined. In contrast, if the diffusion length is short, then
Rrec < Rtr. In this case, the number of parameters is reduced to
two in the Gerischer impedance. We showed that one parame-
terization consists of the lifetime, tn, and the capacitance
CG ¼ Actot

m Ln, which in essence implies that the chemical capaci-
tance of the semiconductor film is taken over one diffusion
length. These remarks should be useful for the analysis of im-
pedance spectra of solar cells.
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Figure 6. Representation of impedance parameters of a trap-free model system with the following values:
L = 10 mm, A = 1 cm2, n0 = 1016 cm�3, D0 = 10 cm2 s�1, t0 = 10�4 s, and g= 0.6.
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Model for Solar Cells with Disorder
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Diffusing out: The theory of diffusion–
recombination impedance applied to
nanostructured solar cells is presented
with an emphasis on the effects of
energy disorder and short diffusion
length.
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