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Study of hysteretic thermoelectric behavior in

photovoltaic materials using the finite element method,

extended thermodynamics and inverse problems
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aMecánica de Medios Continuos y Teoŕıa de Estructuras, Universitat Politècnica de
València, Spain

bStructural Mechanics & Hydraulic Engineering, University of Granada, Spain

Abstract

The main objective of the present work is to develop and prove a theoret-

ical explanation based on the Extended Non-Equilibrium Thermodynamics

(ENET) for the hysteretical thermoelectric behavior observed in certain thin-

film photovoltaic materials. The ENET introduces dissipative fluxes in the

entropy balance that could explain this behavior. To verify this explanation

from a numerical point of view, results are generated using a Finite Element

(FE) formulation based on the ENET and already developed in previous

publications by the authors. In addition, an identification Inverse Prob-

lem (IP) is formulated; a cost function is defined as the quadratic difference

between experimental and numerical results and the IP is solved minimiz-

ing the cost function using genetic algorithms. The conclusion is that the

loop-like distributions are due to energy dissipation introduced by dissipa-

tive fluxes that are closely related with relaxation times. Also, the FE-IP

combination permits to find an approximated characterization of properties

for several materials from single experimental curves. Finally, several numer-

ical simulations are proposed for laboratory experiments to further validate

Preprint submitted to Energy Conversion and Management July 9, 2012

*Complete Manuscript including All Figs & Tables
Click here to view linked References



the theoretical interpretation and to confirm the relation between relaxation

times and hysteresis.

Keywords: Thin-film, Thermoelectric, Hysteresis, Finite Element Method,

Extended Thermodynamics, Relaxation times, Inverse problems

1. Introduction

Thin-film semiconductors have drawn great attention in the last two

decades due to their suitability, among other applications, for cells in solar

energy. Semiconductors of the thermoelectric type are completely character-

ized by their figure-of-merit, that depends on thermal and electric conduc-

tivities and on the Seebeck coefficient. These properties must be determined

experimentally to characterize the semiconductors and to design the solar

cells themselves.

An experimental study for the measurement of the Seebeck coefficient in

thin-film semiconductors has been published in [1], reporting a hysteretic

behavior that prevents correct and unique measurements of this coefficient.

In [2], a similar behavior was observed in the cuticle of the oriental hornet

Vespa Orientalis. This cuticle seemly works as a thermoelectric heat pump

for the cooling of the hornet body, and as a solar energy harvesting allowing

the hornet to increase its activity in the presence of strong insolation, [3].

A theoretical and a practical challenge emerge from these works:

i) Physical interpretation of the hysteretic behavior

ii) Measurement of the Seebeck coefficient

The first was undertaken in the references, concluding that the reason for

this behavior could lay in ferroelectric properties (polarization phenomena).
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Pyroelectric interactions were discussed and discarded in [1]. According to

[4], the reason could be related with the heating and cooling speeds during

the measurement process. For the second challenge, an empirical procedure

without solid theoretical basis was proposed in [1], consisting on an analytical

fitting of the experimental curves. An alternative explanation was proposed

in [2], measuring the Seebeck coefficient uniquely at the heating branch.

In the present work we state that from a theoretical point of view and us-

ing the Extended Non-Equilibrium Thermodynamics (ENET) [5], hysteretic

phenomena are due to the presence of multiple thermodynamic configurations

accessible to the thermodynamic system; these metastable configurations are

closely related with relaxation times, [6]. The ENET assumes the existence

of a non–equilibrium entropy density that depends on the classical state

variables and on the dissipative fluxes, in a formulation defined as mixed

thermodynamic. This theory allows the study of thermodynamic systems for

which the local equilibrium hypothesis is not valid, introducing relaxation

times in the formulation.

We aim to undertake the two aforementioned challenges, studying them

with the Finite Element (FE) formulation based on ENET developed in [7],

along with classical Inverse Problem (IP) techniques. Experiments for sev-

eral materials performed in [1] are numerically replicated, and in addition

a Sensitivity Analysis complemented by an IP is developed. In particular

the FE-IP combination is employed for the characterization of the Seebeck

coefficient and, in the future, for the optimization of solar cell efficiencies.

Finally, three numerical experiments for the verification of the ENET-based

explanation are discussed and proposed for laboratory verification.
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2. Theoretical formulation

The thermoelectric balance equations are the balance of energy and of

electric charge [8]:

ρ
m
c Ṫ = −∇ · q − j ·∇V ;

∇ · j = 0

(1)

where ρ
m
, c, T , q, j, V are the mass density, heat capacity, temperature,

heat flux, current density and voltage, respectively. In the previous equation

the supradot ( ˙ ) denotes time derivative. The entropy balance required to

obtain the transport equations is given by [9]:

ρ
m
ṡ = −∇ · js + σs ⇒

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

js =
q

T
;

σs = q ·∇

(

1

T

)

−
1

T
j ·∇V

(2)

where ṡ, js, σ
s are entropy rate, flux and production, respectively. Note that

the entropy production is increased by two factors: thermal conduction and

Joule heating, the latter electric energy converted into thermal one. From (2)

and using the procedure described in [10], the classical transport equations

are:

q = −κ ∇T + α T j ;

j = −γ ∇V − α γ ∇T

(3)

where γ, κ are electric and thermal conductivities and α the Seebeck coeffi-

cient. These parameters are usually denominated transport properties and,

in general, depend on temperature as reported in [11].
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Figure 1: Experimental configuration for the measurement of the Seebeck coefficient in

thermoelectric photovoltaic materials.

As discussed in the introduction, the ENET considers dissipative fluxes

q̇, j̇ in the classical entropy balance (2). Therefore and according to [12], the

entropy production becomes:

σs = q ·

[

∇

(

1

T

)

+
C1

T
q̇ +

C3

T
j̇

]

+ j ·

[

−
1

T
∇V +

C2

T
q̇ +

C4

T
j̇

]

(4)

where C1 to C4 are constants to be determined, closely related with relaxation

times. Note that these dissipative fluxes increase the entropy, in other words,

add irreversibilities to the thermodynamic system. According to [12], [7], the

ENET transport equations are:

q = −κ ∇T + α T j − τqj α T γ ∇V̇ + τq κ ∇Ṫ ;

j = −γ ∇V − α γ ∇T − τjq α γ ∇Ṫ + τj γ ∇V̇

(5)
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Figure 2: Experimental results reported in Ferrer 2006 [1] for FeS2 (top) and Ti-doped

FeS2 (bottom) thermoelectric thin films.

The direct relaxation times τq, τj represent thermal and electric “viscosities”,

closely related with Cattaneo [13], [14] and Drude [15] models; the coupling

relaxation times τqj , τjq represent thermal and electric viscosities due to the

presence of voltage and of temperature gradients, respectively.

Finally, in order to obtain the thermoelectric governing equations, the

boundary conditions are incorporated:

Dirichlet : T = T̄ , V = V̄ ;

Neumann : q · n = qc , j · n = jc

(6)

where T̄ , V̄ are the temperature and voltage, and qc, jc the heat flux and
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current density, all of them prescribed. In particular, T̄ will be Th, Tc and V̄

the V=0 at the cold face in Figure 1.

3. Physical interpretation of the hysteretic behavior

Before developing a theoretical explanation of the hysteretic behavior

using the ENET, the experimental procedure and empirical results reported

in [1] are reviewed.

3.1. Experimental procedure

The experimental configuration for the measurement of the Seebeck coef-

ficient usually involves thermally connecting the test device between hot Th

and cold Tc faces’ temperature and fixing at the latter the voltage, as shown

in Figure 1. Considering the classical transport equations (3) and zeroing

the prescribed flux j, a linear relationship between the applied temperature

difference ∆T and the measured voltage drop ∆V is obtained:

j = −γ ∇V − α γ ∇T

j = 0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⇒ ∆V = −α ∆T (7)

Note that gradients have been replaced by increments to be in accordance

with the experimental measurements. The Seebeck coefficient is determined

plotting ∆V versus ∆T and calculating the slope α of the linear relationship

(7); the sign of α is related to the semiconductor type: n or p.

Two thin-film material samples with dimensions Lx2
= 15, Lx1

= 25 [mm]

were characterized by the procedure described in the previous paragraph.

Two very different results were observed:
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• For FeS2, the linear relationship ∆V –∆T shown in Figure 2 top, with

constant α > 0

• For Ti-doped FeS2, the hysteretic behavior shown in Figure 2 bottom,

with different values of α

As discussed in the introduction, for samples that present a hysteretic

behavior it is difficult to assign a representative Seebeck coefficient: α was

calculated from the heating branch in [2] and from the common diagonal

slope of different loops obtained applying different ∆T ’s in [1], fitting the

experimental results to a unique α:

∆V = −α ∆T − α K
d(∆T )

dt
(8)

where K was an empirical magnitude with dimension of time. Therefore, the

loop shape and its slope, Figure 2 (bottom), were determined by the second

and first terms on the right side of (8), respectively.

3.2. Theoretical explanation

The motivation to provide a theoretical explanation using the ENET is

due to the dependency of the empirical equation (8) on d∆T/dt and on K.

The two magnitudes can be closely related with those introduced by the

ENET: dissipative fluxes and relaxation times.

The relaxation τj can be neglected in the absence of free electric charges,

[7]. From the electric transport equation (5), forcing again j = 0:

∇V = −α ∇T − α τjq
∂(∇T )

∂t
(9)

Comparing (8) and (9), the equivalence K ≡ τjq is evident. Therefore,

the loop shape, i.e. hysteresis, is inferred to be dependent on τjq. From a
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theoretical point of view, the relation between hysteresis and relaxation times

already was stated in [6]: this hysteresis depends on the ratio τjq/tob, where

tob is the observation time. The ratio depends on the material properties,

observing different behaviors if:

τjq/tob << 1 → Linear response

τjq/tob ≈ 1 → Hysteretical response

Summarizing, from statistical physics it can be said that the microscopic

relaxation time τjq increases when the FeS2 is doped with Ti, provoking the

hysterical behavior.

4. Finite element equations

Several numerical techniques to study the thermoelectric coupling such

as the finite difference [16] and the FE methods have been published. The

authors of the present work have developed several non-linear FE formula-

tions, see [17], [18], [19], [7]. The first two are steady–state formulations;

the third one is dynamic and includes the relaxation time τq, permitting the

study of hyperbolic propagations of temperature, voltage and heat flux after

the Cattaneo model. Finally, the last work presents a complete FE formu-

lation including three relaxation times: τq, τqj , τjq. These formulations are

fully described in the references and therefore will not be repeated. Since

the thermoelectric problem only requires two degrees of freedom per node
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(temperature and voltage), the assembled FE matrix is:
⎡

⎢

⎢

⎢

⎣

c1K
TT + c2C

TT + c3M
TT c1K

TV + c2C
TV

c1K
V T + c2C

V T c1K
V V

⎤

⎥

⎥

⎥

⎦

(10)

where c1, c2, c3 are time integration parameters and K, C, M the tangent

conductivity, capacity and thermal inertia matrices, respectively. Note that

K is denominated stiffness matrix in the Continuum Mechanics community;

however, for the thermoelectric problem it represents the conductivity ma-

trix. Note also that the coupled matrix will not be symmetric, requiring a

special algorithm for the inversion of the assembled matrix.

All terms in the assembled matrix are developed in [19]. In particular,

the submatrices CV T , CTV were incorporated in [7] to take into account τjq,

τqj , respectively:

CV T
AB = −τjq

∫

Ω

(BA)
t α γ BB dΩ

CTV
AB = −τqj

∫

Ω

(BA)
t TB α γ BB dΩ

(11)

where A, B denote two generic global FE nodes, Ω the domain and B the

discretized gradient matrix.

The time-integration algorithm is regularized to avoid Gibbs phenomena

with the procedure described in [19]. Since the FE formulation was intended

to be complete, a three-dimensional isoparametric element is used, although

due to geometry and boundary conditions the models are one-dimensional in

the present work.

Finally, the FE formulation was implemented into the research code FEAP

[20], from the University of California at Berkeley. This code provides several
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dummy routines (user elements) that can be used for the implementation of

newly developed modular elements written in Fortran.

5. Calibration of the numerical model: inverse problem

Material properties are required for the numerical simulation of the exper-

iment from [1], but some of these properties were not reported. In addition,

the relaxation time is not considered in the experimental work (K is empir-

ically fitted). Therefore, the present numerical model is calibrated with two

steps:

1. A Sensitivity Analysis (SA) to identify the thin-film properties that are

relevant for the hysteretic behavior

2. An identification IP to quantify these properties from a single experi-

mental curve

5.1. Sensitivity Analysis

The objective of the SA is the determination of the relationships between

the uncertainties for dependent and independent (or random) variables. The

SA is a method for checking the quality of a given model; there are many

available procedures to develop a SA and we apply the one from [21]. This

procedure uses the concept of Standardized Regression Coefficients (SRC),

whose absolute values provide a measure of the importance of each variable,

[22].

The dependent variable is a cost function defined as the quadratic differ-

ence between the voltage drops obtained from the experimental curve∆V EXP
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drawn in Figure 2 bottom, and from the FE simulation ∆V NUM :

f =
1

N

N
∑

i=1

(

∆V EXP
i −∆V NUM

i

)2
(12)

where N is the number of measurement points or FE nodes.

The random variables are defined as the set {α, γ, κ, c, ρ
m
, τq, τjq} and

are assumed to be normally distributed: mean values given in Table 2 are

obtained from [23], [1], and standard deviations are assumed to be 25%.

These deviations are higher than the usual 10% to take into account the

worst-case scenario.

To reduce CPU cost and at the same time guarantee convergence, an

optimized sample of sizem = 1000 was calculated by the procedure developed

in [24]. According to this reference, the sample is of the Latin Hypercube type

since the convergence is faster than the one related with random techniques.

τ
jq

τ
q

ρ
m

cκγα

0.4

0.2

0

Figure 3: Standardized regression coefficients in absolute value for random variables (ma-

terial properties).

Figure 3 shows the SRC’s in absolute value obtained from the SA. As

expected, the cost function is sensitive to the Seebeck coefficient α and par-

ticularly sensitive to the relaxation time τjq. These facts agree with the
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theoretical assumptions made in Section 3.2: the loop shape and its diago-

nal slope depend on τjq and α, respectively. The sensitivities of κ, c, ρ
m
are

smaller but relevant, since the electric energy generated by the Seebeck effects

depends on the thermal material properties as will be shown below. Finally,

the sensitivities of γ, τq are not relevant at all, the first due to j = 0. The

second irrelevancy implies that the purely thermal viscosity is not present in

this phenomenon, τq/tob << 1. Consequently, these two random variables

will not be considered in the following.

5.2. Inverse problem

The identification IP is directed to evaluate the magnitude of the random

variables identified by the SA from a reduced set of data, in particular ex-

perimental loops ∆V –∆T . Note that the material properties taken from the

references are not used now, with the objective of characterizing the material

without the need of a complete set of experiments. The IP is solved using

the procedure described in [24], [25], defining: (i) a set of output variables

(parametrization) introduced into the FE code to solve the direct problem,

(ii) a cost function and (iii) a minimization method.

Parametrization

In the IP framework, the concept of model parametrization implies the def-

inition of the possible solution through a set of parameters, that are the

working variables and at the same time the IP output. The choice of the

parametrization is often not obvious, a critical step in the problem setup.

Here, according to the SA results from Figure 3, the output set is defined

as {α, κ, c, ρ
m
, τjq}. Starting from a wide range of these parameters given by

13



the user, the optimization algorithm searches the optimal values, that must

be very similar to the ones taken from the literature.

Cost function

The cost function (12) is redefined as:

fL = log (f + ε) (13)

where ε = 10−16 is a very small non-dimensional value that ensures the

function existence when f → 0. According to [26], this redefinition often

increases the minimization algorithm convergence.

Minimization

A standard Genetic Algorithm (GA), see [27], is employed to minimize (13)

and to obtain the IP output listed in the first column of Table 2. Other

optimization techniques such as gradient-based algorithms could be applied,

but according to [28] the GA guarantees convergence, whereas gradient-based

algorithms strongly depend on the initial guess.

Table 1 first column lists the intrinsic GA parameters. The selected popu-

lation size permits to find a global optimum with an adequate computational

Parameter Value

Population size 30

Crossover ratio 0.8

Mutation ratio 0.02

Number of generations 100

Table 1: Parameter values for the genetic algorithm.
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Figure 4: Genetic algorithm convergence. Cost function vs. number of generation.

cost. The mutation and crossover parameters are found by trial and error

and inject genetic diversity, ensuring that the solution does not fall in a local

minima. A large number of generations is chosen to warrant convergence.

5.3. IP results

Figure 4 shows the GA convergence to fit the experimental curve of Figure

5 top (see below), reached with approximately 50 generations and therefore

evidencing that the GA parameters from Table 1 were correctly chosen. The

IP is repeated ten times to ensure accurate results; the corresponding means

and standard deviations are listed in Table 2 second and third columns. Stan-

dard deviations are less than 2%, except for the most sensitive parameters

α, τjq with a 3%.

The calculated κ, c, ρ
m

are very close to the experimental ones (fourth

column). Also, the calculated α, τjq can be compared with those empiri-

cally fitted in [1]. The relative errors between the IP and empirical results

are approximately equal to the standard deviations obtained minimizing the

problem with GA: the proposed FE-IP combination is suitable for the correct
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calibration of the material from a single experimental curve.

From the calculated parameters, FE and experimental responses are com-

pared in Figures 5 for samples of Ti-doped FeS2 of the n–type, in the top

∆V versus time and in the bottom ∆V versus ∆T . The FE model (circles)

correctly reproduces the experimental distribution; the only noticeable dif-

ferences appear at the initial times, for which some error is due to the sharp

discontinuity (from ∆T = 0 to 2 [K]) of the initial boundary conditions, see

second term on the right side of (9). Smoother initial boundary conditions

would fix the problem, but this error is not important for the targeted results.

In the same figure, FE distributions for two different τjq have also been

plotted to study the influence of the relaxation time on the loop shape; as

explained before the lower the relaxation the narrower loop, in particular

there is no hysteresis if τjq = 0. Although no experimental comparisons are

available, the distributions when τjq decreases imply that the error at initial

times is mitigated. This fact is again due to the second term on the right

side of (9): the smaller τjq the less influent this term is.

Figure 6 shows the same comparison but for a p-type Ti-doping; the

agreement between experimental and numerical loops is again very good. Ten

IP cases have been executed to recalculate the material properties, obtaining

the same κ, c, ρ
m

but different α = 55.5 [µV/K], τjq = 30.6 [s], probably

due to a difference in the doping process. No comparison is given here since

no values are reported. The Seebeck coefficient changes sign due to the p-

type doping and its value is smaller, hinting the lower performance of this

material. The value of τjq is about one third, reflecting the narrowness of the

loop with respect to that of Figure 5. This reduction is also detrimental since
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from (9) it can be observed that the higher the relaxation time the higher

the voltage drop.

The FE-IP combination is now used to characterize two new samples from

[1], executing again ten IP’s and obtaining values:

• for a PdS sample a calculated α = −350 ± 32 [µV/K], same order as

the experimental -300±40 reported in [29]

• for an n-type FeS2 sample a calculated α = −18±3 [µV/K] again close

to the experimental α = −19, measured in [1].

The calculated relaxation times for both samples are τjq =30, 102 [s], not

measured in the references.

Finally, a more complete experiment from [1] for the second sample is

numerically reproduced in Figure 7: a non–regular ∆T versus time signal is

applied and the voltage drop is measured. Four pulses of different bandwidth

and amplitude are prescribed (upper right) producing four loops (main fig-

ure). The objective of this experiment was to show that all loops have a

common slope α, making possible its measurement. To accurately replicate

the experiment, a careful data reading with a smoothing technique of the

slopes and amplitudes is necessary. Four different symbols are used to differ-

entiate the four loops. The agreement between experimental and numerical

results is again very good, not only for the loops but also for the distributions

at the beginning and at the end of the process.
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6. Design of experiments for the validation of the theoretical ex-

planation

The aim of this section is to present three numerical cases that could

be experimentally performed in the future to further validate the theoretical

explanation for the hysteretic behavior. From the energy balance (1) and

transport equations (5), and assuming j = 0, τq = 0 as before, the following

Poisson equation is obtained:

∇2V = −α
ρ

m
c

κ
Ṫ − τjq α

ρ
m
c

κ
T̈ (14)

In (14), the sources (terms on the right side) depend on material proper-

ties α, κ, ρ
m
, c, on temperature derivatives Ṫ , T̈ and on the relaxation time,

τjq; according to the proposed explanation:

τjq = 0 or T̈ = 0 ⇒ No hysteresis

As already verified, there will be no hysteretic behavior if τjq = 0. To

check now the absence of hysteresis when the prescribed signal is so that

T̈ ≡ d2(∆T )/dt2 = 0, three numerical cases are performed in the following

subsections. In all of them, the simulation is done with the FE, studying an

n-type sample of Ti-doped FeS2 material.

6.1. Case A

The signal is forced to have T̈ = 0 with a linear T shown in Figure 8 top

left. A completely linear response without any hysteresis is obtained when

∆V is plotted versus ∆T as in the top right, and its slope is the unique α

value. Therefore, an alternative for the proper characterization of the Seebeck
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coefficient of these materials would be to apply a T̈ = 0 signal and use the

classical relation (7).

6.2. Case B

In this case, the influence of the frequency is studied; two sinusoidal T -

signals with the same amplitude but different frequencies ω = 4π/t̂, 12π/t̂ are

prescribed as in Figure 8 middle left. The signal is applied up to an arbitrary

time of 60 [s]. The middle right figure shows two recurrent and superimposed

hysteretic ellipses for each of the periods. For both frequencies, hysteretic

behaviors are observed, since τjq ̸= 0 and T̈ ̸= 0. Three interesting remarks

can be made:

• At ∆T = ±1 [K], the voltage drop for the two signals is equal, since

for both T̈ = 0

• At ∆T = 0 [K] the difference between ellipse heights is maximum, since

T̈ is also maximum

• The increase of voltage drop (ellipse height) is proportional to the signal

frequency since T̈ ∝ ω2

The last remark confirms, as was argued in [5], that the influence of

relaxation times is stronger for fast effects such as ultrasound waves. For

these concentric ellipses, α could be obtained geometrically measuring their

common slopes, as in [1].

6.2.1. Case C

The influence of the T -signal amplitude is studied in this case. An ex-

ponentially increasing sinusoidal signal is applied, as in Figure 8 bottom
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left. The response, bottom right, is a growing spiral centered at the origin.

The distance between two branches is proportional to the time between two

consecutive signal periods.

Again the slope of the symmetry axis gives the Seebeck coefficient. Given

that the same material is simulated, the three slopes of the right figures are

equal, although they look different due to the different scale.

7. Conclusions

This work presents a theoretical explanation for the understanding of the

hysteretic behavior in thin-film photovoltaic materials, using the extended

non-equilibrium thermodynamics. It is concluded that the hysteresis de-

pends on the relaxation time τjq and on the acceleration of the prescribed

temperature T̈ . The latter dependency could explain the strong influence of

relaxation times on fast effects such as ultrasonic waves. Experimental cases

from the literature have been simulated using a finite element formulation

developed by the authors in previous publications, validating the theoreti-

cal explanation. Three numerical cases have been proposed and simulated

to fully validate in the future our theoretical explanation with laboratory

experiments.

In addition, an identification inverse problem has also been performed for

the characterization of the Seebeck coefficient and of the relaxation time τjq

along with other relevant material properties. The combination of the inverse

problem and of the finite element method permits a good characterization of

thin-film material properties from a single experimental curve.
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Para- Mean Standard Experi- Units

meter IP deviation mental

α -68 3 -65.8 [µV/K]

κ 1.66 1.8 2 [W/mK]

c 534 1.9 547 [J/KgK]

ρ
m

5328 1.3 4900 [Kg/m3]

τjq 93 3 93 [s]

Table 2: Means and standard deviations obtained solving ten times the inverse problem

for an n-type sample of Ti-doped FeS2. Experimental values taken from [23] except α, τjq

empirically found in [1].
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FE: τjq= 0
FE: τjq=31
FE: τjq=93
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Figure 5: Experimental (thick line) and finite element (symbols) results for three relaxation

times, n-type Ti-doped FeS2. Top: voltage drop vs. time, bottom: idem vs. prescribed

temperature difference.
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Figure 6: Experimental (solid line) and finite element (circles) results for a p-type sample

of Ti-doped FeS2. Measured voltage drop vs. applied temperature difference.
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Figure 7: Experimental (solid line) and finite element (symbol for each peak) results for

n-type sample of FeS2. Measured voltage drop vs. applied temperature difference for four

different peaks.
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Figure 8: Proposed numerical experiment temperature increment signals vs. time (left) and

resulting voltage drop vs. difference temperature (right) for an n-type sample of Ti-doped

FeS2. Applied signals: linear (top), sinusoidals (middle) and exponentially increasing

(bottom). For middle figure, frequencies ω = 4π/t̂ continuous line, 12π/t̂, dashed. Only

finite element results shown.
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